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Introduction

Pattern formation in dynamical systems is a phenomena that connects several
different dynamics passing through some scaling limits. In some cases, dynamics
which behaves very randomly is transformed into another which satisfies some
rigid properties. This can be possible since procedure of scaling limits wastes
detailed information and picks up rough movement of dynamics.

In this paper we introduce a fomulation of dynamical rescaling between two
dynamics passing through another parametrized ones, and have explicit con-
structions. Iteration dymanics has been studied quite deeply and known to show
various aspects of dynamical properties. Typically they behave quite chaostic
manner, and so in general it would be impossible to trace their movements rig-
orously. On the other hand several integrable systems show some predictable
dynamics and create some patterns. Of particular interest are solitons in KdV
solutions. We will call a dynamical rescaling between such dynamics as a dy-
namical pattern formation. We construct dynamical pattern formations between
iteration dynamics by families of maps and some partial differential equations.
As an intermediate dynamics, we pass through parametrized complex dynam-
ics which arise from tropical geometry. Our main theorem is a construction
of dynamical pattern formations in our sense, from the iteration dynamics by
piecewise linear maps to the KdV and Lotka Volterra solutions.

Let (Z, d′) be a metric space and consider a family of dynamical spaces on
it:

σt : Z → Z

where t ∈ [1,∞) and σt are continuous maps.
Let us take another metric space (X, d, τ) equipped with a continuous map

τ : X → X on it.
A contracting map between these dynamical systems consistes of a parametrized

maps:
ϕt : Z → X, t ∈ [1,∞)
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so that for any m, σt(m) ∈ Z:

d(τ(ϕt(m)), ϕt(σt(m))) → 0,

d(ϕt(m), ϕt(m
′)) → 0

hold as t → ∞. Thus as t → ∞, ϕt looks as though equivariant, but the maps
are collapsing neighbourhood of points and approaching constant. We denote
it as ϕt : (Z, σt) → (X, τ).

Similarly ϕt : (Z, σt) → (X, τ) is an expanding map, if the following two
conditions hold:

d(τ(ϕt(m)), ϕt(σt(m))) → 0,

d(ϕt(m), ϕt(m
′)) → ∞

Let (X, d, τ) and (Y, d′′, µ) be two metric spaces equipped with continuous
maps. Here we introduce the following:

Definition 0.1 A dynamical rescaling from (X, d, τ) to (Y, d′′, µ) is the set
{(Z, d′, σt), ϕt, φt}, where:

ϕt : (Z, σt) → (X, τ)

is a contracting map, and:

φt : (Z, σt) → (Y, µ)

is an expanding map.

In some cases the dynamics (X, d, τ) will show chaostic behaviour in its nature,
on the other hand the dynamics (Y, d′′, σ) may satisfy some rigidity. This will
be possible by changing their scalings of dynamics as above. We construct
dynamical pattern formations from dynamics of families of piecewise linear maps
on R to some integrable partial differential equations including KdV and Lotka
Volterra equations.

In general these spaces may be of infinite dimension. But in some cases these
can be reduced to dynamics on finite dimensional spaces. These are the cases
for us, where X = R∞ and Z = C∞. In some cases we have a reduction on
R∞ to finite automata, and on C∞, we always have a reduction to a family of
dynamics on a parametrized affine algebraic varieties.

Let us say that a contracting map from (X, d, τ) to (Z, d′, σt) admits a finite
dimensional reduction, if there are parametrized finite dimensional manifolds
Vt ⊂ CN , families of functions:

Pn : Z → C, n = 0, 1, . . . ,

Q : C∞ → Y
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and a1, a2, b1, b2 ≥ 0 so that for each n ≥ ai, bj and z ∈ Z, the following
conditions hold:

(Pn−a1
(z), . . . , Pn+a2

(z), Pn−b1(σt(z)), . . . , Pn+b2(σt(z))) ∈ Vt,

Q(P0(z), P1(z), . . . ) = ϕt(z).

We denote such reduction as:

ϕt : (Vt, σt) → (X, τ).

Later when we construct dynamical rescalings, we will choose a1 = 0, a2 =
1, b1 = 1, b2 = 0, since they are related to cell automata. In that case, Vt

are all hypersurfaces in C4.
Let f1, . . . , fa : [0, 1] → [0, 1] be a family of continuous maps. In [K3],

we have introduced a family of dynamics on the one sided fullshift Xa =
{(k0, k1, . . . ) : ki ∈ {1, . . . , a}} induced from the family:

Φ({fi}i) : [0, 1] × Xa → [0, 1] × Xa

as Φ(x, (m0, m1, . . . )) = (x, Φ(x)(m0, m1, . . . )). We call it an interaction map.
Such families of maps are induced from another families of dynamical sys-

tems:
Φ̄ : [0, 1] × [0, 1]∞ → [0, 1] × [0, 1]∞

Φ̄(x, (y0, y1, . . . )) = (x, Φ̄(x)(y0, y1, . . . )). In a sense the dynamical systems
generalize the one dimensional iteration dynamics, and they will behave quite
complicated manner.

Let πa : [0, 1] → {1, . . . , a} be the projection. It gives a map π : [0, 1]∞ → Xa

by π(y0, y1, . . . ) = (π(y0), π(y1), . . . ). Then one has commutativity:

π ◦ Φ̄ = Φ ◦ π.

Let us divide the square [0, 1]2 into a2 number of cells of length 1/a. When
the graphs of a family of continuous maps sit into each cell in a nice way, which
we call the cell type, then the dynamics on Xa is reduced to a cell automaton
A. Thus general interaction maps can be regarded as perturbations of cell au-
tomata. There are cell automata which do not come from families of continuous
maps, on the other hand such class of automata include Lotka Volterra cell
automaton, and other important integrable automata ([K3,4]).

On the above constrution, the number of the maps must be finite, since one
has normalized domains and used projection πa : [0, 1] → {1, . . . , a}. Thus when
one has infinite number of maps, then it will be natural to use denormalized
projection π : R → Z. Thus for a family of maps fi : R → R, i ∈ Z, one
obtains another dymanics and the induced dymanics as:

Φ̄ : R×R∞ → R×R∞,

Φ : R× X∞ → R× X∞.
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In the case of Lotka Volterra cell automaton, it is known that one can obtain
subdynamics where the number of alphabets are bounded, and so it induces
Φ : R× X → R× X , X ⊂ Xa for some a.

When one has a map F : Rn → R, then it induces a family of maps:

fi1,...,in−1
: R → R,

fi1,...,in−1
(x) = f(i1, . . . , in−1, x) ∈ R.

A family of maps {fi1,...,in−1
} is said to be piecewise linear, if the corresponding

dynamics on X∞ is induced from a piecewise linear maps F : Rn → R.
When a family of maps is piecewise linear, then we will obtain contracting

maps, which translate its dynamics into complex dynamical systems, where for
the process, we use tropical geometry ([Mi],[V]).

Let F : Cn → C be a polynomial. Then it induces a dynamical systems:

Φ̃(F )(z) : C∞ → C∞

by a similar way as above. The above dynamics admits a finite dimensional
reduction over V ⊂ Cn+1.

Let (R∞
+ , Φ̄) be its restriction, and let:

Logt : C → R, Logt(z) = logt |z|

Our main construction is the following:

Theorem 0.1 Let f : Rn → R be a picewise linear map. Then there is a
parametrized polynomials Ft, t ∈ [1,∞) so that there is a contracting map:

Logt : (R∞
+ , Φ̃(Ft)) → (R∞, Φ̄(f))

which are reduced to parametrized affine algebraic varieties Vt.

In our notation, it is expressed as:

Logt : (Vt, Φ̃(Ft)) → (R∞, Φ̄(f)).

When the latter dymanics (R∞, Φ̄(f)) is reduced to an automaton A, then we
will say that Logt gives a contracting map from (Vt, Φ̃) to an automaton A and
denote as:

Logt : (Vt, Φ̃) → A.

Thus once one finds expanding maps, then they consiste of a dynamical
rescaling.

Proposition 0.1 (H) There are continuous deformations both from discrete
KdV to KdV equation, and from discrete LV to LV equation.
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In our formulation these continuous procedures are interpreted as expanding
maps. Combining this with the above contracting map, one obtains construc-
tions of dynamical pattern formations:

Theorem 0.2 (1) Let f : R3 → R be a partially defined piecewise linear map
given by:

f(x2, x3, x4) = x2 − max(0, x2 + x3), x4 ≤ max(0, x2 + x3) − x2.

Then it gives a dynamical rescaling from a cell automaton:

A : V1 + max(0, V2 + V3) = V2 + max(0, V1 + V4)

to KdV flows:

Logt : (V, σ) = {(z1, z2, z3, z4) : z2 + z1z2z4 = z1 + z1z2z3} ⊂ C4 → A,

φt : (V, σ) → {u(x.s) : us −
1

p3
uux +

1

48p2
(1 −

1

p4
)u3x = 0}.

(2) Let f : R3 → R be a piecewise linear map given by:

f(x2, x3, x4) = x2 + max(0, x3) − max(0, x4).

Then it gives a dynamical rescaling from a cell automaton:

B : V1 + max(0, V4) = V2 + max(0, V3)

to LV flows:

Logt : (V, σ) = {(z1, z2, z3, z4) : z2 + z2z3 = z1 + z1z4} ⊂ C4 → B,

φt : (V, σ) → {u(x, s) : u′
n = un(un+1 − un−1)}

Algebraic varieties admit various operations on themselves. Passing through
them, one can induce operations on the dynamics on piecewise linear maps or
on automata. The projective duality is an involution on the set of algebraic
varieties, which comes from Legendre transformation ([GKZ]). Passing through
our contracting maps, we will introduce duality on piecewise linear maps or on
automata:

{fi,j}i,j → {f∨
i,j}i,j , A → A∨.

The projective duality uses global geometry of spaces, and so it seems hard to
obtain dual cell automata directly. We have an example of such duality for the
case of some curves.

The author would like to appreciate to the Max Planck Institute in Bonn
for their hospitarity during his stay there.
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1 Dynamical rescaling

1.A Interacting maps: Let fi : [0, 1] → [0, 1], i = 1, . . . , a be a family of maps
and

Xa = {(k0, k1, . . . ) : ki ∈ {1, . . . , a}}

be the one sided full shift.
For each element k̄ = (k0, k1, . . . ) ∈ Xa, we will associate a family of maps:

{hm(x)}k=0,1,..., hm : [0, 1] → [0, 1]

by:
hm(x) ≡ fkm

◦ fkm−1
◦ · · · ◦ fk0

(x).

We call the famliy as the interaction maps.
Let us put a subset S(f1, . . . , fa; k̄) = {x ∈ [0, 1] : hm(x) ∈ { i

a
}a−1

i=1 for some
m} in [0, 1]. We call it the singular set. The regular set with respect to k̄ is
given by R(f1, . . . , fa; k̄) ≡ [0, 1]\S(f1, . . . , fa; k̄).

The regular set of the family of maps {f1, . . . , fa} is defined by:

R(f1, . . . , fa) ≡ ∩k̄∈Xa
R(f1, . . . , fa; k̄) ⊂ [0, 1].

Let:

π : [0, 1]\{
1

a
,
2

a
, . . . ,

a − 1

a
} → {0, 1, . . . , a}

be a measurable map given by π(( i−1

a
, i

a
)) ≡ i for i = 1, . . . , a.

Let k̄ ∈ Xa and {hm}m be the corresponding famliy of maps. For each x ∈
R(f1, . . . , fa), one can compose {hm(x)}m with π : [0, 1]∞ → Xa, π(x0, x1, . . . ) ≡
(π(x0), π(x1), . . . ), and obtains another element:

k̄′ ≡ π((h0(x), h1(x), . . . )) ≡ (π ◦ h0(x), π ◦ h1(x), . . . ) ∈ Xa.

Thus for each element k̄ ∈ Xa, one has assigned k̄′ ∈ Xa. We denote it as
Φ({fi}i)(x) : Xa → Xa by Φ({fi}i)(x)(k̄) = π((h0(x), h1(x), . . . )). It gives a
family of symbolic dynamics:

Φ(f1, . . . , fa) : [0, 1] × Xa → [0, 1]× Xa,

Φ({fi}i)(x, k̄) = (x, Φ({fi}i)(x)(k̄))

with domain R(f1, . . . , fa)×Xa. This is the most basic dynamics in this paper.
We call it the interaction map.

Φ above is a reduction of the map Φ̄(x) : [0, 1]∞ → [0, 1]∞ defined below.
For (y0, y1, . . . ) ∈ [0, 1]∞, let us denote:

k̄ = (π(y0), π(y1), . . . ) ∈ Xa
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and let {hm}m be the family of maps on [0, 1] corresponding to ({fi}i, k̄). Then
we put:

Φ̄(x)(y0, y1, . . . ) = (h0(x), h1(x), . . . ) ∈ [0, 1]∞.

Its reduction by the projection gives a commutative maps:

π ◦ Φ̄ = Φ ◦ π.

Suppose one has infinite number of family of maps. Then one cannot follow
the above construction for a = ∞. In this case one can use denormalized
projections. Let fi : R → R, i ∈ Z be infinite family of maps, and put
π : R → Z be a measurable map given by π((i − 1, i)) ≡ i. Then by use of this
π, a parallel construction gives a family of dynamics:

Φ̄({fi}i) : R×R∞ → R×R∞

which reduces to the family of symbolic dynamics:

Φ : R× X∞ → R× X∞.

1.B Reduction to cell automata: Let {f1, . . . , fa} be a family of maps. We
say that the family is of cell type, if each map satisfies:

fl((
i

a
,
i + 1

a
)) ⊂ (

j

a
,
j + 1

a
), l = 1, . . . , a

for all i = 0, . . . , a − 1, where j = 0, . . . , a − 1 depends on l and i.
Let Φ(x) : Xa → Xa be the corresponding interacting map, and denote the

flows as:
Φ(x)t(k̄) = (kt

0, k
t
1, . . . ), t = 0, 1, . . .

Let π : [0, 1] → {1, . . . , a} be the projection.

Lemma 1.1 Suppose the family of maps {f1, . . . , fa} be of cell type. Then there
is a map:

ϕ : {1, . . . , a}2 → {1, . . . , a}

so that the flows above are determined by the finite automaton:

A : kt+1

i+1 = ϕ(kt
i+1, k

t+1

i )

for all i, t = 0, 1, 2, . . . .

Thus when a family of maps are of cell type, then the reduction to symbolic
dynamics as in 1.A becomes in fact the one to a finite automaton:

π : (Φ̄, [0, 1]× Xa) → (A, W )

where W is the set of strings of infinite length determined by A.
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In order to relate the interaction maps with cell automata, let us generalize
the composition way as follows. Let {fi,j}1≤i,j≤a be a family of continuous
maps on [0, 1] and choose k̄ = (k0, k1, . . . ) ∈ Xa. Then we inductively define
another family of maps {hm : [0, 1] → [0, 1]}m≥0 as:

hm(x) = fkm,km+1
◦ hm−1(x), h0(x) = x.

By the same way as above, one defines the interaction map:

Φ(x) : Xa → Xa, Φ(x)(k̄) = (π ◦ h0(x), π ◦ h1(x), . . . ).

Let us denote its iterations Φ(x)t(k̄) = (kt
0, k

t
1, . . . ) for t = 0, 1, . . .

Definition 1.1 The interaction map Φ given by a family of maps {fi,j}1≤i,j≤a

is called cell automaton type, if for each x ∈ R({fi,j}i,j), there are two maps:

ϕ1, ϕ2 : {1, . . . , a}4 → {1, . . . , a}

so that its reduction to symbolic dynamics is detemined by the equality:

ϕ1(k
t
m, kt

m−1, k
t−1
m , kt−1

m+1) = ϕ2(k
t
m, kt

m−1, k
t−1
m , kt−1

m+1)

hold for all m and t, where kt
0 = π(x).

This is exactly the case when the family of maps map {fi,j}i,j is of cell type
defined above.

Let fi1,...,in−1
: R → R, i1, . . . , in−1 ∈ Z be a family of maps., and let

φ : R×X∞ → R×X∞ be the corresponding interaction map. Similarly we say
that Φ is called automaton type, if there are two maps:

ϕ1, ϕ2 : Zn+2 → Z

so that

ϕ1(k
t
m, kt

m−1, k
t−1
m , . . . , kt−1

m+n−1) = ϕ2(k
t
m, kt

m−1, k
t−1
m , . . . , kt−1

m+n−1)

hold for all m and t.

1.B.2 Lotka Volterra cell automaton: Lotka Volterra equation is an ordi-
nary differential equation, known as describing the growth rate of competiting
lives. The equation is obtained as a continuous limit of discrete Lotka Volterra
equation. On the other hand by taking another way of limit, one obtains a cell
automaton called the Lotka Volterra cellular automaton ([TTMS]):

CA(LV ) : V t+1
n − V t

n = max(L0, V
t
n+1) − max(L0, V

t+1
n−1)

for n, t = 0, 1, . . . and L0 ≥ 1 is a fixed integer. One of the important behaviour
of the dynamics is existence of soliton. It is known that solitary property is
preserved under the continuous limits.
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Proposition 1.1 (K3) There is a family of maps {fi,j}1≤i,j≤a of cell type so
that the Lotka Volterra cell automaton is described as flows {Φ(x)t(k̄)}t=0,1,...

of the corresponding interaction map.

Thus one obtains a reduction to CA(LV) from interacting dynamics by a family
of maps:

π : (Φ̄, [0, 1]× [0, 1]∞) → CA(LV ).

The dynamics of the former will be quite complicated, and passing through the
projection, one can reduce it to the cell automaton which contains solitons.

1.B.3 Piecewise linear maps: Let F : Rn → R be a piecewise linear map.

Lemma 1.2 A piecewise linear map F above is expressed by a (max,±)-type
equation as:

y = F (x̄) = Σs
l=1 ± max(αl

1 + z̄l
1x̄, . . . , αl

m + z̄l
mx̄)

where x̄ ∈ Rn, some families of constants {z̄l
i ∈ Rn}i=m,l=s

i=1,l=1
, z̄lx̄ is the inner

product, and αl
i ∈ R.

It can be written as:
F1(x̄) = F2(x̄)

by two (max, +)-type functions F1, F2 : Rn+1 → R of the form:

F1(x̄) = Σsi

l=1
max(αl

1 + z̄l
1x̄, . . . , αl

m + z̄l
mx̄), x̄ = (y, x1, x2, . . . , xn)

and F2 is similar.

A family of maps {fi,j}1≤i,j≤a is said to be piecewise linear, if there is a
piecewise linear map F : R3 → R so that the equalities hold:

π(F (a−1i, a−1j, z)) = π(fi,j(z)) ∈ {1, . . . , a}

for all i, j = 1, . . . , a and z ∈ [0, 1].
Conversely a piecewise linear map F : R3 → R determines a piecewise linear

family {fi,j}1≤i,j≤a by fi,j(z) = F (a−1i, a−1j, z).

Example: For the Lotka Volterra cell automaton, one can choose:

F (i, j, z) = i + max(
L0

a
, j) − max(

L0

a
, z).

1.C Tropical geometry: Let us consider a (max,±)-function F :

F (x̄) = Σs
i=1 ± max(αi

1 + m̄i
1x̄, . . . , αi

l + m̄i
lx̄)

where m̄i
j ∈ ZN , αi

j ∈ R and x̄ = (x1, . . . , xN ) ∈ RN . When all m̄i
j ∈ ZN

+ have
potive components, then we say that F is a positive (max,±)-type function.
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Tropical geometry associates with parametrized rational maps ft to (max, +)-
type functions for t ∈ [1,∞) ([Mi]). If F is a positive (max, +)-type function,
then ft are parametrized polynomials.

Let F be a (max, +)-type functions as above.

Definition 1.2 The associated family of rational maps is given by:

ft(z̄) = Πs
i=1(t

αi

1 z̄m̄i

1 + · · · + tα
i

l z̄m̄i

l )

where z̄m̄ = ΠN
i=1z

mi

i .

Conversely F can be recovered from the family ft. Thus the correspondence
F ↔ ft is one to one.

Let (F1, F2) be a pair of (max, +)-type functions, and (f 1
t , f2

t ) be the corre-
sponding rational families.

The associated affine algebraic variety is defined by:

Vt(F1, F2) = {z ∈ CN : f t
1(z) = f t

2(z)}.

We denote its Zariski closure V̄t(F1, F2) ⊂ CP N .

1.C.2 From pl maps to polynomials: Let {fi,j}i,j be a piecewise linear
familiy, and denote the corresponding interacting map by Φ(x)s(k̄) = (ks

0, k
s
1, . . . ),

s = 0, 1, . . .
Let F : R3 → R be the piecewise linear map corresponding to the family

{fi,j}i,j . It is given by a pair of (max, +)-type functions (F1, F2) by F1(x̄) =
F2(x̄) for x̄ = (x1, x2, x3, x4). From dynamical view point, we fix the correspon-
dence of the variables as:

x1 ↔ ks+1
n , x2 ↔ ks

n, x3 ↔ ks
n+1, x4 ↔ ks+1

n−1.

Now we denote the associated varieties as:

Vt({fi,j}i,j) ≡ Vt(F1, F2) ⊂ C4.

Example: The Lotka Volterra cell automaton has the associated variety:

Vt(z1, z2, z3, z4) = {(z1, z2, z3, z4) : ft(z1, z4) = ft(z2, z3)}

where ft(z, w) = tLz + zw.

1.C.3 The associated complex dynamics: Let {fi,j}i,j be a piecewise linear
familiy. It gives the corresponding pair of (max, +)-type functions (F1, F2), and
the pair of the rational families (f 1

t , f2
t ).

The pair of the rational families gives flows:

Φ̃(z)t : C∞ → C∞, Φ̃(z)t(z0, z1, . . . ) = (z′0, z
′
1, . . . )
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determined by the equality:

f1
t (z′m, zm, zm+1, z

′
m−1) = f2

t (z′m, zm, zm+1, z
′
m−1).

We say that it is the associated complex dynamics, and denote their iterations
as Φ̃(z)s

t (z0, z1, . . . ) = (zs
0, z

s
1, . . . ), s = 0, 1, . . .

Lemma 1.3 For each n and s, the sets lie on the varieties:

pn,s = (zs
n, zs−1

n , zs−1

n+1, z
s
n−1) ∈ Vt({fi,j}i,j) ⊂ C4

Thus for n ≥ 1, the families:
{pn,s}

∞
s=0

give flows on Vt({fi,j}i,j).

Example: For the LV case, the complex dynamics is determined successively by
the equalities:

zs+1
n = (tL + zs+1

n−1)
−1(tLzs

n + zs
nzs

n+1).

When domains of piecewise linear maps are Rn, then by the same way one
can generalize the associated complex dynamics determined by the equalities of
the type:

f1
t (zn−a1

, . . . , zn+a2
, z′n−b, . . . , z

′
n) = f2

t (zn−a1
, . . . , zn+a2

, z′n−b, . . . , z
′
n)

for some a1, a2 and b.
In 1.C.4, we consider the relationships of dynamics between automata and

the corresponding complex dynamics as above.

1.C.3.2 Periodic complex dynamics The domain of assoiciated complex
dynamics is C∞. When one puts some periodicity conditions, then it becomes
dynamics on finite dimensional complex planes. It turns out that the dynamics
is given by a correspondince between varieties in the case of cell automata.

Let f : CN → C be a polynomial, and a1, a2, b ≥ 0 be non negative integers
with N = a1 + a2 + 1 + b + 1. Suppose Φ̃ : C∞ → C∞ is given by the equation:

f(zn−a1
, . . . , zn+a2

, z1
n−b, . . . , z

1
n) = 0

where Φ̃(z0, z1, . . . ) = (z1
0 , z1

1 , . . . ). Put c = max{a1 + a2 + 1, b + 1}. Then the
associated periodic complex dynamics is given by a multivalued map:

Φ̃p : C∞ → C∞

defined by f(zn−a1
, . . . , zn+a2

, z1
n−b, . . . , z

1
n) = 0 for all n mod c + 1. It is

determined by the first c components, and so can be expressed as Φ̃p : C ×
Zc → C × Zc. These are multi-valued, since here we do not impose any initial
conditions on z0.
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Let us consider the case of cell automata we have considred so far, where
a1 = 0, a2 = 1, b = 1. Thus c = 2 and N = 4. let C4 = {(z1, z2, w1, w2)} be a
coordinate. Let M1, M2 ⊂ C4 be hypersurfaces, and S = M1 ∩M2 ⊂ C4 be the
surface of the intersection.

Let f be a polynomials of 4 variables so that

M1 = {(z1, z2, w1, w2) : f(z1, z2, w1, w2) = 0},

M2 = {(z1, z2, w1, w2) : f(z2, z1, w2, w1) = 0}

hold respectively. Thus:

S = {(z1, z2, w1, w2) : f(z1, z2, w1, w2) = 0, f(z2, z1, w2, w1) = 0}.

So given (z1, z2) ∈ C2, there are at most finitely many points (w1, w2) so that
(z1, z2, w1, w2) are points on S. This determines a correspondence:

ϕ : C2 → C2

which is a multivalued, and its iteration gives two dimensional interaction dy-
namics determined by f .

Example: For the LV case, f = fLV and fLV (z1, z2, w1, w2) = w2(t
L + w1) −

(tLz1 + z1z2). Thus S is defined by the equations:

S = {(z1, z2, w1, w2) :w2(t
L + w1) = (tLz1 + z1z2),

w1(t
L + w2) = (tLz2 + z1z2)}.

1.C.4 Scaling limit from pl to complex: Maslov introduced dequantization
of the real line R ([LM], [V]). It is given by a family of semirings Rt for t > 1,
which are all the real number R as sets. The multiplication and the addition
are respectively given by:

x ⊕t y = logt(t
x + ty), x ⊗t y = x + y.

The important feature for us is the behaviour as t → ∞, and in fact one has
the equality:

x ⊕∞ y = max{x, y}.

Corresponding to polynomials in the usual real numbers, one has Rt-polynomials
whose limit t → ∞ satisfies a max plus equation:

ϕt(x) = ⊕t(αj + mjx), x ∈ Rn, mj ∈ Zn,

ϕ∞(x) = max(α1 + m1x, . . . , αk + mkx).

Let F be a positive (max, +)-type function of the form:

F (x̄) = Σs
i=1 max(αi

1 + m̄i
1x̄, . . . , αi

l + m̄i
lx̄)

12



on RN , and ft be the associated polynomials with respect to F .
We define the corresponding Rt-polynomials Ft by:

Ft(x̄) = Σs
i=1(α

i
1 + m̄i

1x̄) ⊕t · · · ⊕t (αi
l + z̄i

l x̄).

Then we have the equality
lim

t→∞
Ft = F.

Let us denote:
Logt : CN → R+

by Logt(z1, . . . , zN ) = (logt |z1|, . . . , logt |zN |).

Proposition 1.2 (LM,V) The equality holds:

log−1

t ◦Ft ◦ Logt = ft

on RN
+ .

Let F : Rn → R be a positive piecewise lieanr map (positive (max,±)-type
function), and {fi1,...,in−1

} be the corresponding piecewise linear family. As in
1.A, it gives a dynamical systems:

Φ̄(F ) : R×R∞ → R ×R∞.

Let (F1, F2) be the pair of positive (max, +)-type functions corresponding to
F , and (f1

t , f2
t ) be the pairs of the parametrized polynomials. It gives a complex

dymanics:
Φ̃(f1

t , f2
t ) : C×C∞ → C×C∞

and the associated algebraic varieties:

Vt(F ) = Vt(f
1
t , f2

t ) ⊂ Cn+1.

By this way, F above produces two dymanics Φ̄(F ) and Φ̃(f1
t , f2

t ) with a
parametrized algebraic varieties Vt(F ).

Let (Φ̃(f1
t , f2

t ),R∞
+ ) be the restriction of Φ̃ on R+.

Theorem 1.1 There is a contracting map:

Logt : (Φ̃(f1
t , f2

t ),R∞
+ ) → (Φ̄(F ),R∞)

which admits a reduction to parametrized affine algebraic varieties Vt(F ).

Proof: Let us put Φ̃(z)(z0, z1, . . . ) = (z′0, z
′
1, . . . ), and:

x̄ = (zn−a1
, . . . , zn+a2

, z′n−b, . . . , z
′
n) ∈ Rn+1.

13



These sets satisfy the equality:

f1
t (x̄) = f2

t (x̄).

We check that F1(Logt(x̄)) − F2(Logt(x̄)) approaches to zero as t → ∞.
Let (F 1

t , F 2
t ) be the pair of the Rt-polynomials corresponding to F . By the

proposition 1.2, one has the equality:

F 1
t ◦ Logt(x̄) = F 2

t ◦ Logt(x̄)

on positive and real points x̄ ∈ Rn+1
+ . Since their limits satisfy the equalities:

lim
t→∞

F i
t = Fi, i = 1, 2

Logt gives a contracting map as desired. We put:

Pi : C∞ → C, Pi((z0, z1, . . . )) = zi,

Q(z0, z1, . . . ) = (Logt(z0), Logt(z1), . . . ).

By lemma 1.3, this gives a reduction of Φ̃|R∞
+ to a parametrized affine algebraic

varieties Vt(F ). This completes the proof.

In particular, if the dymanics Φ̄ is reduced to a call automaton A, then one
obtains a contracting map:

Logt : (Vt(F ), Φ̃) → A.

1.C.5 Duality on cell automata: By invertibility of our contracting maps,
one can obtain various operations on automata arising from geometric opera-
tions on varieties.

[GKZ] introduced the projective duality for projective varieties:

X ⊂ P N (V ) → X∨ ⊂ P N (V ∗)

for a C-vector space V and its projectivization P (V ). V ∗ is the dual vector
space.

Suppose both are hypersurfaces. Then they have the defining polynomials
unique up to constant multiplications. This implies that one obtains an as-
signment from polynomials to themselves by the above duality, unique up to
constant multiplications.

Let {fi,j}i,j be a piecewise linear family, (f t
1, f

t
2) be the associated polyno-

mials and Vt({fi,j}i,j) be the associated hypersurfaces.

Definition 1.3 (K4) Let {fi,j}i,j be a picewise linear family. Another picewise
linear family {gi,j}i,j is called the dual picewise linear family, if the parametrized
hypersurfaces Vt({gi,j}i,j) satisfy the equality:

Vt({fi,j}i,j)
∨ = Vt({gi,j}i,j)

for all t ∈ [1,∞).
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Similarly let A be an cell automaton. Another cell automaton A∨ is called the
dual cell automaton, if the corresponding hypersurfaces satisfy the equality:

Vt(A)∨ = Vt(A
∨)

for all t.
In general it is not so easy to find the defining polynomials of the projective

dual varieties. We have calculated dual automata in the case of some curves:

Lemma 1.4 (K4)

[max{aun, α + aun+1} = c]∨ =

max{
a

a − 1
(c −

α

a
) +

a

a − 1
un+1,

ac

a − 1
+

a

a − 1
un} = c.

1.D Scaling limits: Let (f1, f2) be two polynomials, and correspondingly
{zt

i}i,t be the iterated complex dynamics.
A smooth function α : R+ ×R+ × (0, 1] → R+ is called a scaling function.
Let us take two scaling functions α and β, and have the change of variables

as:
n = α(x, s, ε), t = β(x, s, ε).

Let us fix a constant p and a small ε > 0. A scaled function with respect
to {zt

i}i,t is given by a function u with variables (x, s) so that it satisfies the
equation:

zt
n = p + εu(x, s).

As ε → 0, the values of u may go to infinity, and so this is an expanding change
of dynamics.

Suppose there are polynomials F and {fi, gi}
m
i=1 with fi(x, 0) = x, gi(s, 0) =

s so that the equality:

F (ε, p, u(f1(x, ε), g1(s, ε)), . . . , u(fm(x, ε), gm(s, ε))) = 0

holds, which is induced from the iterated complex dynamics.
The formal Taylor expansion of the scaled equation is given by the one of

the above equation:

F (ε, p,u(f1(x, ε), g1(s, ε)), . . . , u(fm(x, ε), gm(s, ε)))

= εlD(u) + εl+1D1(u) + . . .

for some l ≥ 0, where D is a partial differential operator on u.
The PDE at infinity induced from the complex dynamics {zt

n}n,t, is given
by the above partial differential equation D(u) = 0. As ε → 0, u approaches to
solutions of a PDE at infinity. Thus one has:
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Lemma 1.5 Suppose a complex dymanics arising from (f1, f2) admits a scaling
change as above so that a formal Taylor expansion εlD(u) + εl+1D1(u) + . . . is
obtained.

Then this gives an expanding map from Φ̃(f1, f2) to solutions of PDE D(u) =
0.

1.D.2 Dynamical pattern formations: Here we construct two dynamical
rescalings from iteration dynamics by families of piecewise linear maps to some
PDEs, KdV and LV. They are obtained by combination of our construction of
contracting maps with expanding maps obtained by Hirota. Now we have our
main theorem:

Theorem 1.2 (1) Let f : R3 → R be a partially defined piecewise linear map
given by:

f(x2, x3, x4) = x2 − max(0, x2 + x3), x4 ≤ max(0, x2 + x3) − x2.

Then it gives a dynamical rescaling from a cell automaton:

A : V1 + max(0, V2 + V3) = V2 + max(0, V1 + V4)

to KdV flows:

Logt : (V, σ) = {(z1, z2, z3, z4) : z2 + z1z2z4 = z1 + z1z2z3} ⊂ C4 → A,

φt : (V, σ) → {u(x.s) : us −
1

p3
uux +

1

48p2
(1 −

1

p4
)u3x = 0}.

(2) Let f : R3 → R be a piecewise linear map given by:

f(x2, x3, x4) = x2 + max(0, x3) − max(0, x4).

Then it gives a dynamical rescaling from a cell automaton:

B : V1 + max(0, V4) = V2 + max(0, V3)

to LV flows:

Logt : (V, σ) = {(z1, z2, z3, z4) : z2 + z2z3 = z1 + z1z4} ⊂ C4 → B,

φt : (V, σ) → {u(x, s) : u′
n = un(un+1 − un−1)}

Proof: (1) Let us consider the equation x1 = f(x2, x3, x4) = x2−max(0, x2+x4),
x3 ≤ max(0, x2 + x4) − x2. It is easy to see that it induces the automaton
x1 + max(0, x2 + x4) = x2 + max(0, x1 + x3). Then the associated polynomials
are independent of the time t:

f1(z1, z2, z3, z4) = z1 + z1z2z3,

f2(z1, z2, z3, z4) = z2 + z1z2z4.
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The associated complex dynamics satisfy the equalities:

zt
n + zt+1

n zt+1
n−1z

t
n = zt+1

n + zt
n+1z

t+1
n zt

n.

which is the same as zt
n+1 − zt+1

n−1 = 1

z
t+1
n

− 1

zt
n

.

Now we rewrite it as:

z
t− 1

2

n+1 − z
t+ 1

2

n−1 =
1

z
t+ 1

2
n

−
1

z
t− 1

2
n

and put scaling parameters as:

n =
s

ε2
, t =

x

ε
−

cs

ε3
,

zt
n = p + ε2u(x, s)

where c and p are constants satisfying 1 − 2c = 1/p2. The change of variables
gives a parametrized dynamics:

{zt
n}n,t → {uε(x, s)}ε.

By applying these change of variables into the defining equation above, one
obtains the equation:

ε2u(x −
ε

2
+ cε, s + ε3) − ε2u(x +

ε

2
− cε, s − ε3)

=
1

p + ε2u(x + ε
2
, s)

−
1

p + ε2u(x − ε
2
, s)

.

The Taylor expansion of the above equation at ε = 0 gives a formula ([H]):

ε5(us −
1

p3
uux +

1

48p2
(1 −

1

p4
)u3x) + o(ε7) = 0.

Now let us put t = ε−1, and denote the parametrized dynamics {uε(x, s)}ε

as (σt, V ). By the above estimate, it gives an expanding map from (σt, V ) to
KdV flows. Thus combining with our construction of contracting maps, one
has obtained a dynamical rescaling from the above cell automaton to the KdV
flows. This completes the proof of (1).

(2) The piecewise linear map f determines the cell automaton:

xt+1
n + max(0, xt+1

n−1) = xt
n + max(0, xt

n+1).

The associated polynomials are:

f1(z1, z2, z3, z4) = z1 + z1z4,

f2(z1, z2, z3, z4) = z2 + z2z3.
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Thus the associated complex dynamics satisfy the equalities:

zt+1
n − zt

n = zt
nzt

n+1 − zt+1
n zt+1

n−1.

Let us put rescaling parameters t = s
ε
, zt

n = εun(s). Then one obtains the
the equality:

ε(un(s + ε) − un(s)) − ε2(un(s)un+1(s) − un(s + ε)un−1(s + ε)) = 0.

Thus the formal Taylor expansion of the above equation at ε = 0 gives a formula
([H]):

(
d

ds
un − un(un+1 − un−1)) + o(ε) = 0.

By this way we have an expanding map from the above cell automaton to the
Lotka Volterra flows at infinity. Thus one has obtained a dynamical rescaling
from the above cell automaton to the Lotka Volterra flows.
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