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FACTORISED SOLUTIONS OF TEMPERLEY-LIEB qKZ EQUATIONS

ON A SEGMENT

JAN DE GIER AND PAVEL PYATOV

Abstract. We study the q-deformed Knizhnik-Zamolodchikov equation in path repre-
sentations of the Temperley-Lieb algebras. We consider two types of open boundary
conditions, and in both cases we derive factorised expressions for the solutions of the
qKZ equation in terms of Baxterised Demazurre-Lusztig operators. These expressions
are alternative to known integral solutions for tensor product representations. The fac-
torised expressions reveal the algebraic structure within the qKZ equation, and effectively
reduce it to a set of truncation conditions on a single scalar function. The factorised ex-
pressions allow for an efficient computation of the full solution once this single scalar
function is known. We further study particular polynomial solutions for which certain
additional factorised expressions give weighted sums over components of the solution. In
the homogeneous limit, we formulate positivity conjectures in the spirit of Di Francesco
and Zinn-Justin. We further conjecture relations between weighted sums and individual
components of the solutions for larger system sizes.
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1. Introduction

The q-deformed Knizhnik-Zamolodchikov equations (qKZ) are widely recognized as im-
portant tools in the computation of form factors in integrable quantum field theories [44]
and correlation functions in conformal field theory and solvable lattice models [26]. They
can be derived using the representation theory of affine quantum groups [24] or, equiva-
lently and using a dual setup, from the affine and double affine Hecke algebra [5]. The
qKZ equations have been extensively studied in tensor product modules of affine quan-
tum groups or Hecke algebras, and much is known about their solutions in the case of
cyclic boundary conditions [47, 46]. We refer to [22] and references therein for extensive
literature on the qKZ equations.

Recently interest has arisen in the qKZ equation in the context of the Razumov-
Stroganov conjectures. These relate the integrable spin-1/2 quantum XXZ spin chain
[45, 39] in condensed matter physics and the O(1) loop model [2, 40] in statistical mechan-
ics, to alternating sign matrices and plane partitions [4]. Further developments surround-
ing the Razumov-Stroganov conjectures include progress on loop models [6, 33, 15, 19,
20, 51, 18] and quantum XXZ spin chains [7, 37, 38], the stochastic raise and peel models
[9, 10, 35, 36, 1], lattice supersymmetry [3, 23, 48, 49], higher spin and higher rank cases
[50, 17, 41], as well as connections to the Brauer algebra and (multi)degrees of certain
algebraic varieties [8, 16, 31].

The connection to the qKZ equation was realised by Pasquier [34] and Di Francesco
and Zinn-Justin [17], by generalising the Razumov-Stroganov conjectures to include an
extra parameter q or τ = −(q+ q−1). In particular, the polynomial solutions for level one
qKZ equations display intriguing positivity properties and are conjectured to be related
to weighted plane partitions and alternating sign matrices [34, 17, 28, 13, 18].

In the Razumov-Stroganov context one considers the qKZ equation in a path represen-
tation for SL(k) quotients of the Hecke algebra, using cyclic as well as open (non-affine)
boundary conditions. In the case k = 2 this quotient corresponds to the Temperley-Lieb
algebra, for which there is a well known and simple equivalence between the path repre-
sentation and its graphical loop, or link pattern, representation. In this paper we study
the qKZ equation for k = 2 in the path representation and for the two types of open
boundary conditions also considered in [13, 51, 18].

The solution of the qKZ equation is a function in N variables xi i = 1, . . . , N taking
values in the path representation. The components of this vector valued function can be
expressed in a single scalar function which we call the base function. We derive factorised
expressions for the components of the solution of the qKZ equations for the Temperley-
Lieb algebra (referred to as type A) and the one-boundary Temperley-Lieb algebra (type
B) with arbitrary parameters. The factorised expressions are given in terms of Baxterised
Demazurre-Lusztig operators, acting on the base function which we assume to be known.
The formula for type A was already derived for Kazhdan-Lusztig elements of Grasmannians
by Kirillov and Lascoux [30]. We further reduce the qKZ equation to a set of truncation
relations that determine the base function. These relations also appear in a factorised form.
We conjecture that the truncation relations can be recast entirely in terms of Baxterised
elements of the symmetric group.
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Restricting to polynomial solutions, the factorised expressions provide an efficient way
for computing explicit solutions. We note here that polynomial solutions may also be
obtained from Macdonald polynomials [5, 34, 28, 29]. Using the factorised expressions,
we compute explicit polynomial solutions of the level one qKZ equations, recovering and
extending the results of Di Francesco [14] in the case of type A, and of Zinn-Justin [51]
in the case of type B. We would like to emphasize the importance of such explicit solu-
tions as a basis for experimentation and discovery of novel results. Based on the explicit
solutions, and in analogy with Di Francesco [13, 14] and Kasatani and Pasquier [28], we
formulate new positivity conjectures in the case of type B for two-variable polynomials in
the homogeneous limit (xi → 0) of the solutions of the qKZ equations. In the inhomoge-
neous case, the factorised expressions furthermore suggest to define linear combinations
(weighted partial sums) of the components of the solution in a very natural way. Special
cases of these partial sums are also considered in the homogeneous limit by Razumov,
Stroganov and Zinn-Justin [37, 38] and by Di Francesco and Zinn-Justin [18]. We conjec-
ture identities between the partial sums and individual components of solutions for larger
system sizes.

The first three sections of this paper are a review of known results. We define the
Hecke and Temperley-Lieb algebras of type A and B, the path representations and explain
the qKZ equation in these representations. In Section 4 we state our main theorems
concerning factorised solutions and truncation conditions for the qKZ equation of type A
and B. These results are proved in Section 6 and Appendix A. The fifth section contains a
list of conjectures regarding the explicit polynomial solutions of the qKZ equation. These
conjectures relate to the positivity of solutions in the homogeneous limit, and to natural
partial sums over components of the solution. Our observations are based on explicit
solutions for type A and B which are listed in Appendices B and C.

Throughout the following we will use the notation [x]q for the usual q-number

[x]q =
qx − q−x

q − q−1
.

The notation [x] will always refer to base q.

Acknowledgments. Our warm thanks go to Arun Ram, Ole Warnaar and Keiichi Shigechi
for useful discussions. JdG thanks the Australian Research Council for financial assistance.
PP was supported by RFBR grant No. 05-01-01086-a and by the DFG-RFBR grant (436
RUS 113/909/0- 1(R) and 07-02-91561-a)

2. Relevant algebras and their representations

2.1. Iwahori-Hecke algebras.

2.1.1. Type A.

Definition 1. The Iwahori-Hecke algebra of type AN , denoted by HA
N (q), is the unital

algebra defined in terms of generators gi, i = 1, . . . , N − 1, and relations

(gi − q)(gi + q−1) = 0, gigj = gjgi ∀ i, j : |i− j| > 1,

gigi+1gi = gi+1gigi+1. (2.1)
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Hereafter we always assume

q ∈ C \ {0}, and [k] 6= 0 ∀ k = 2, 3, . . . , N, (2.2)

in which case the algebra HA
N (q) is semisimple. It is isomorphic to the group algebra of

the symmetric group C[SN ] ≃ HA
N (1).

It is sometimes convenient to use two other presentations of the algebra HA
N (q) in terms

of the elements ai and si

ai := q − gi, si := q−1 + gi , i = 1, . . . , N − 1.

For each particular value of index i the elements ai and si are mutually orthogonal un-
normalised projectors

aisi = siai = 0, ai + si = [2] ,

generating the subalgebra HA
2 (q) →֒ HA

N (q). Traditionally they are called the antisym-
metrizer and the symmetrizer and associated, respectively, with the two possible partitions
of the number 2: {12} and {2}.

The HA
N (q) defining relations (2.1) in terms of generators ai, i = 1, . . . , N − 1, read

a2
i = [2] ai, aiaj = ajai ∀ i, j : |i− j| > 1,

aiai+1ai − ai = ai+1aiai+1 − ai+1, (2.3)

and in terms of si, i = 1, . . . , N − 1, they read

s2i = [2] si, sisj = sjsi ∀ i, j : |i− j| > 1,

sisi+1si − si = si+1sisi+1 − si+1.

2.1.2. Type B.

Definition 2. The Iwahori-Hecke algebra of type BN , denoted by HB
N (q, ω), is the uni-

tal algebra defined in terms of generators gi, i = 0, . . . , N − 1, satisfying, besides (2.1),
relations

(g0 + qω)(g0 + q−ω) = 0, g0gi = gig0 ∀ i > 1,

g0g1g0g1 = g1g0g1g0. (2.4)

If in addition to (2.2) we assume [ω ± k] 6= 0 ∀ k ∈ 0, 1, . . . , N − 1, then the algebra
HB

N (q, w) becomes semisimple. Hereafter we do not need the semisimplicity and we only
assume that [ω + 1] 6= 0.

It is sometimes convenient to use the presentations of HB
N (q, ω) in terms of either the

antisymmetrizers ai, or the symmetrizers si, supplemented, respectively, by the boundary
generators

a0 :=
−q−ω − g0

qω+1 − q−ω−1
, or s0 :=

qω + g0
qω+1 − q−ω−1

. (2.5)

The generators a0 and s0 are mutually orthogonal unnormalised projectors,

a0s0 = s0a0 = 0, a0 + s0 =
[ω]

[ω + 1]
.
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The defining relations (2.4) written in terms a0 and ai read

a2
0 =

[ω]

[ω + 1]
a0, a0ai = aia0 ∀ i > 1,

a0a1a0a1 − a0a1 = a1a0a1a0 − a1a0, (2.6)

and written in terms of s0 and si they read

s20 =
[ω]

[ω + 1]
s0, s0si = sis0 ∀ i > 1,

s0s1s0s1 − s0s1 = s1s0s1s0 − s1s0.

2.2. Baxterised elements and their graphical presentation. It is well known that
the defining relations of the Iwahori-Hecke algebras (2.1), (2.4) can be generalised to
include a so-called spectral parameter (see [27, 25] and references therein). This generali-
sation is sometimes called Baxterisation and is relevant both in the representation theory
of these algebras as well as in their applications to the theory of integrable systems.

2.2.1. Type A. For the algebra HA
N (q), the Baxterised elements gi(u), i = 1, . . . , N − 1,

are defined as

gi(u) := q−2u gi − q2u−1

gi − q−2u−1
,

which we can write alternatively as

gi(u) =
qu − [u] gi

[u+ 1]
=

[1 − u] + [u] ai

[1 + u]
= 1 −

[u]

[u+ 1]
si. (2.7)

Here u ∈ C \ {−1} is the spectral parameter. It can be shown that the following relations
hold

gi(u)gi(−u) = 1, ∀u ∈ C \ {−1, 1}, (2.8)

gi(u)gi+1(u+ v)gi(v) = gi+1(v)gi(u+ v)gi+1(u), (2.9)

gi(u)gj(v) = gj(v)gi(u) ∀ i, j : |i− j| > 1, (2.10)

The relations (2.7)–(2.10) are equivalent to the defining set of conditions (2.1). The
relations (2.8) and (2.9) are called, respectively, the unitarity condition and the Yang-
Baxter equation.

Notice that the unitarity condition is not valid at the degenerate points u = ±1. It
is therefore useful in certain cases to use a different normalisation for the Baxterised
elements,

hi(u) :=
[1 − u]

[u]
gi(−u) =

[u+ 1]

[u]
− ai = si −

[u− 1]

[u]
. (2.11)

Note that now the elements hi(u) are ill-defined at u = 0. In this normalisation we have

hi(u)hi(−u) = 1 −
1

[u]2
, hi(1) = si, hi(−1) = −ai,
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and hi(u) still satisfies the Yang-Baxter and the commutativity equations (2.9) and (2.10).
We also note that hi satisfies the simple but very useful identity

hi(u) = hi(v) +
[v − u]

[u][v]
. (2.12)

2.2.2. Type B. In this case we additionally define

g0(u) := q−2u [ω+ν
2 + u](g0 + q2u−ν)

[ω+ν
2 − u](g0 + q−2u−ν)

,

which alternatively can be written as

g0(u) =
k(u, ν) − [2u][ω + 1]a0

k(−u, ν)
= 1 +

[2u][ω + 1]

k(−u, ν)
s0, (2.13)

where k(u, ν) := [ω+ν
2 + u][ω−ν

2 + u], and ν is an additional arbitrary parameter.
The boundary Baxterised element g0(u) satisfies relations

g0(u)g0(−u) = 1, (2.14)

g0(v)g1(u+ v)g0(u)g1(u− v) = g1(u− v)g0(u)g1(u+ v)g0(v), (2.15)

g0(u)gi(v) = gi(v)g0(u) ∀ i > 1,

which are equivalent to the defining relations (2.4). Relations (2.14) and (2.15) are called,
respectively, the unitarity condition and the reflection equation [42]. An alternative nor-
malisation for the boundary Baxterised element is

h0(u) := −
k(u/2, ν)

[u][ω + 1]
g0(−u/2) = −

k(−u/2, ν)

[u][ω + 1]
− a0 = s0 −

k(u/2, ν)

[u][ω + 1]
. (2.16)

In this normalisation we find

h0(ω ± ν) = −a0, h0(−ω ± ν) = s0,

h0(v − u)h1(v)h0(u+ v)h1(u) = h1(u)h0(u+ v)h1(v)h0(v − u). (2.17)

2.2.3. Graphical presentation. For our purposes it is convenient to represent the Baxterised
elements graphically as tiles and the boundary Baxterised element as a half-tile

i−1 i+1 0 1

gi(u) = u

i

, g0(u) = u .

The (half-)tiles are placed on labeled vertical lines and they can move freely along the
lines unless they meet other (half-)tiles. Multiplication in the algebra corresponds to a
simultaneous placement of several (half-)tiles on the same picture and a rightwards order
of terms in the product corresponds to a downwards order of (half-)tiles on the picture.
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In this way, the Yang-Baxter equation (2.9) can be depicted as

v

i

u

u+v

i+1

=

i i+1

u

v

u+v
. (2.18)

and the reflection equation can be depicted as

0 1 0 1

u

v

u+v

u−v

=
u+v

u−v

u

v

.

For the alternative set of Baxterised elements we will use dashed pictures,

i 0

uhi(u) = u , h0(u) = (2.19)

The picture of the Yang-Baxter equation for the dashed tiles is the same as (2.18), but
the picture of the reflection equation (2.17) has a different arrangement of the spectral
parameters

0 1 0 1

=

u

v

v

u

u+v

v−u

v−u

u+v

(2.20)

Let us remark that expressions for the boundary half-tile g0(u) and the dashed half-tile
h0(u) depend on an arbitrary parameter ν which is not shown in the pictures. For the
dashed half-tile we shall exploit this degree of freedom in Section 4.2, see (4.4).

2.3. Temperley-Lieb algebras. The Iwahori-Hecke algebras have a well known series of
SL(2) type, or Temperley-Lieb, quotients whose irreducible representations are classified
in the semisimple case by partitions into one or two parts (i.e., by the Young diagrams
containing at most two rows). The Temperley-Lieb algebra can be described in terms of
equivalence classes of the generators ai (different generators belong to different equivalence
classes). Below we use the notation ei for the equivalence class of −ai.
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Definition 3. The Temperley-Lieb algebra of type AN , denoted by T A
N (q), is the unital

algebra defined in terms of generators ei, i = 1, . . . , N − 1, satisfying the relations

e2i = −[2]ei, eiej = ejei ∀ i, j : |i− j| > 1,

eiei±1ei = ei. (2.21)

Definition 4. The Temperley-Lieb algebra of type BN , T B
N (q, ω) (also called the blob

algebra [32]), is the unital algebra defined in terms of generators ei, i = 0, . . . , N − 1,
satisfying, besides (2.21), the relations

e20 = −
[ω]

[ω + 1]
e0, e0ei = eie0 ∀ i > 1,

e1e0e1 = e1. (2.22)

2.3.1. Graphical presentation. We reserve empty tiles and half-tiles for the generators ei
and e0

i 0

ei = , e0 = . (2.23)

The defining relations (2.21) and (2.22) are depicted, respectively, as

−
1

[2]

��

@@

@@

��

��

@@

@@

��
i

= �
�

�

@@

@@

��

��@
@

@

@@

��
i−1 i

=

��

@
@

@

@
@

@

�
�

�

@@

�
�

�
i i+1

= ��

@@

@@

��

i

,

(2.24)

and

@@

��

@@

��

0

= −
[ω]

[ω + 1]
@@

��

0

,

@@��

��@@

�
�

�@
@

@

0 1

= @@

��@@

��

1

.

(2.25)

2.3.2. Baxterisation. Obviously, one can adapt all formulas for the Baxterised elements
from the previous subsection to the case of Temperley-Lieb algebras by the substitution
ai 7→ −ei. We shall follow tradition and will use a special notation — Ri(u) and K0(u) —
for the Baxterised elements and the boundary Baxterised element of the Temperley-Lieb
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algebras. In the same normalisation used for gi(u) (see (2.7), (2.13)), we have

Ri(u) :=
[1 − u] − [u] ei

[1 + u]
,

K0(u) :=
k(u, δ) + [2u][ω + 1]e0

k(−u, δ)
, k(u, δ) := [ω+δ

2 + u][ω−δ
2 + u]. (2.26)

Here we have intentionally used a different notation to denote an arbitrary additional
parameter, δ instead of ν which was used in the Iwahori-Hecke case, see (2.13). The two
parameters δ and ν will play different roles in what follows below (see the comment after
(3.12)).

The elements Ri(u) and K0(u) satisfy the unitarity conditions (2.8), (2.14), the Yang-
Baxter equation (2.9) and the reflection equation (2.15). They are usually called the
R-matrix and the reflection matrix. This notation comes from the theory of integrable
quantum spin chains. The path representations of the Temperley-Lieb algebras, which are
introduced in the next subsection and which are used later on in the qKZ equations, are
invariant subspaces of the state space of certain quantum spin-1/2 XXZ chains, see, e.g.,
[7].

Remark 1. In order to make contact with other notations in the literature, we note that
our notation here correspond to those in [7] if we identify q = eiγ , qω → eiω, qδ → −eiδ,
and in [51] to qδ = −ζ. Further useful notations in [7] that we shall employ later are:

τ = −[2], τ ′ =
√

2 + [2] = [2]q1/2 , a = −
[ω + 1]

[ω−δ
2 ][ω+δ

2 ]
.

2.4. Representations on paths. We will now decribe an important and well-known
representation of the Temperley-Lieb algebras of type A and type B on Dyck and Ballot
paths respectively.

2.4.1. Dyck path representation.

Definition 5. A Dyck path α of length N is a vector of (N + 1) local integer heights

α = (α0, α1, . . . , αN ),

such that α0 = 0, αN = 0 for N even and αN = 1 for N odd, and the heights are subject
to the constraints αi ≥ 0 and αi+1 − αi = ±1.

By DN we denote the set of all Dyck paths of length N .
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Each Dyck path α of length N corresponds uniquely to a word in wα ∈ T A
N (q), repre-

sented pictorially as

N even: wα =

N=12

,

αN=16?

N=11

-�
�� �� �� �� ��@@ @@ @@ @@ @@

�� �� �� �� �� ��@@ @@ @@ @@ @@
�� �� �� �� ��@@ @@ @@ @@ @@

�� �� ��@@ @@ @@
��@@

N odd: wα = ,

where the empty tiles at horizontal position i are the generators ei, see (2.23).
We now define an action of the algebra T A

N (q) on a space which is spanned linearly by
states |α〉 labeled by the Dyck paths, identifying the states |α〉 with the corresponding
words wα ∈ T A

N (q). This action is given by a set of elementary transformations of pictures
shown in (2.24). A typical example of such an action is given in Figure 1.

Figure 1. The result of ei|α〉 if α has a slope at i. If i + r is the first
position to the right of an upward slope at i whose height is equal to that
at i, i.e. αi+r = αi > 0, then a layer of tiles between i and i+ r is peeled
off the original path and the result is again a Dyck path. A similar peeling
mechanism to the left works for downward slopes.

In doing so we find the following representation of the algebra T A
N (q):
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Proposition 1. The action of ei for i = 1, . . . , N − 1 on Dyck paths is explicitly given by

• Local Minimum:

ei| . . . , αi + 1, αi, αi + 1, . . .〉 = | . . . , αi + 1, αi + 2, αi + 1, . . .〉,

• Local Maximum:

ei| . . . , αi − 1, αi, αi − 1, . . .〉 = −[2] | . . . , αi − 1, αi, αi − 1, . . .〉,

• Uphill Slope: αi−1 < αi < αi+1.

Let j > i be such that αj = αi and αl > αi ∀ l : i < l < j, then

ei| . . . , αi − 1, αi, αi + 1, αi+2, . . . , αj , . . .〉 =

| . . . , αi − 1, αi, αi − 1, αi+2 − 2, . . . , αj−1 − 2, αj , αj+1, . . .〉,

• Downhill Slope: αi−1 > αi > αi+1.

Let k < i be such that αk = αi and αl > αi ∀ l : k < l < i, then

ei| . . . , αk, . . . , αi−2, αi + 1, αi, αi − 1, . . .〉 =

| . . . , αk, αk+1 − 2, . . . , αi−2 − 2, αi − 1, αi, αi − 1, . . .〉

Remark 2. For generic values of q the Dyck path representation is the irreducible repre-
sentation of the Temperley-Lieb algebra T A

N (q) corresponding in the conventional classifi-

cation to the partition {⌊N+1
2 ⌋, ⌊N

2 ⌋}.

Definition 6. We call the unique Dyck path without local minima in the bulk the maximal
Dyck path and denote it ΩA. Explicitly this path reads:

ΩA = (0, 1, 2, . . . , ⌊N−1
2 ⌋, ⌊N+1

2 ⌋, ⌊N−1
2 ⌋, . . . , ǫN ),

where ǫN := N mod 2 is the parity of N .

It is clear from Proposition 1 that the maximal Dyck path plays a role of a highest
weight element of the Dyck path representation.

2.4.2. Ballot path representation.

Definition 7. A Ballot path α of length N is a vector of (N + 1) local integer heights

α = (α0, α1, . . . , αN ),

such that αi ≥ 0, αi+1 − αi = ±1 and αN = 0.
We denote the set of all Ballot paths of the length N by BN .
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Each Ballot path α of length N corresponds uniquely to a word wα ∈ T B
N (q, w), repre-

sented pictorially as

6

?

α0=4

N even: wα =

N=12

,

6

?

-�

α0=3

N=11

�� �� �� �� �� ��@@ @@ @@ @@ @@
�� �� �� �� ��@@ @@ @@ @@ @@ @@

�� �� �� �� ��@@ @@ @@ @@ @@
�� ��@@ @@@@

N odd: wα = ,

where the empty (half-)tiles at horizontal position i (0) are the generators ei (e0), see
(2.23).

Now we can define an action of the algebra T B
N (q, ω) on the space which is spanned

linearly by states |α〉 labeled by the Ballot paths, identifying the states |α〉 with the
corresponding words wα ∈ T B

N (q, ω). We thus find the following representation of the

algebra T B
N (q, ω):

Proposition 2. The action of ei for i = 1, . . . , N −1 on Ballot paths is explicitly given by
Proposition 1 in the case of a local extremum or an uphill slope. In the remaining cases
we find

• Downhill Slope, Type I:

If there exists k < i such that αk = αi and αl > αi ∀ l : k < l < i, then

ei| . . . , αk, . . . , αi−2, αi + 1, αi, αi − 1, . . .〉 =

| . . . , αk, αk+1 − 2, . . . , αi−2 − 2, αi − 1, αi, αi − 1, . . .〉

• Downhill Slope, Type IIa:

If i is odd and αk > αi ∀ k < i, then

ei|α0, . . . , αi−2, αi + 1, αi, αi − 1, . . .〉 =

|α0 − 2, . . . , αi−2 − 2, αi − 1, αi, αi − 1, . . .〉. (2.27)

• Downhill Slope, Type IIb:

If i is even and αk > αi ∀ k < i, then

ei|α0, . . . , αi−2, αi + 1, αi, αi − 1, . . .〉 =

−
[ω]

[ω + 1]
|α0 − 2, . . . , αi−2 − 2, αi − 1, αi, αi − 1, . . .〉. (2.28)
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The action of the boundary generator e0 is given by

• Uphill Slope at i = 0:

e0|α0, α0 + 1, α2, . . .〉 = |α0 + 2, α0 + 1, α2, . . .〉

• Downhill Slope at i = 0:

e0|α0, α0 − 1, α2, . . .〉 = −
[ω]

[ω + 1]
|α0, α0 − 1, α2, . . .〉

Remark 3. For generic values of q and ω the Ballot path representation is the ir-
reducible representation of the Temperley-Lieb algebra T B

N (q, ω) corresponding to bi-

partition {⌊N+1
2 ⌋}, {⌊N

2 ⌋}.

Definition 8. We call the unique Ballot path without local minima in the bulk the maximal
Ballot path and denote it by ΩB. Explicitly this path reads:

ΩB = (N,N − 1, . . . , 2, 1, 0).

As follows from the Proposition 2 the maximal Ballot path plays a role of a highest
weight element of the Ballot path representation.

3. q-deformed Knizhnik-Zamolodchikov equation

3.1. Definition. Let us consider a linear combination |Ψ〉 of states |α〉 with coefficients
ψα taking values in the ring of formal series in N variables q±xi, i = 1, 2, . . . , N :

|Ψ(x1, . . . , xN )〉 =
∑

α

ψα(x1, . . . , xN )|α〉.

Here α runs over the set of either Dyck (type A), or Ballot (type B) paths of length N .
The qKZ equation in the Temperley-Lieb algebra setting is a system of finite difference

equations on the vector |Ψ〉. Actually, we consider the qKZ equation in an alternative
form with permutations in place of finite differences. This is historically the first form it
appeared in literature [43]. In both types A and B the qKZ equation reads universally
[51],

Ri(xi − xi+1)|Ψ〉 = πi|Ψ〉, ∀ i = 1, . . . , N − 1, (3.1)

K0(−x1)|Ψ〉 = π0|Ψ〉, (3.2)

|Ψ〉 = πN |Ψ〉. (3.3)

Here Ri are the Baxterised elements of the Temperley-Lieb algebra, K0 is the boundary
Baxterised element in the type B case and K0 is the identity operator in type A. The
operators Ri(xi − xi+1) and K0(−x1) act on states |α〉, whereas the operators πi permute
or reflect arguments of the coefficient functions

πiψα(. . . , xi, xi+1, . . .) = ψα(. . . , xi+1, xi, . . .),

π0ψα(x1, . . .) = ψα(−x1, . . .), (3.4)

πNψα(. . . , xN ) = ψα(. . . ,−λ− xN ). (3.5)

Here λ ∈ C is a parameter related to the level of the qKZ equation, see [22].
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Remark 4. Clearly, the elementary permutations πi, i = 1, . . . , N − 1, are the generators
of the symmetric group SN , whereas π0 and πN are left and right boundary reflections.
They satisfy the relations

π2
i = 1, πiπi+1πi = πi+1πiπi+1, πiπj = πjπi ∀ i, j : |i− j| > 1,

π2
0 = 1, π0π1π0π1 = π1π0π1π0, π0πi = πiπ0 ∀ i > 1,

π2
N = 1, πNπN−1πNπN−1 = πN−1πNπN−1πN , πNπi = πiπN ∀ i < N − 1.

Therefore the unitarity conditions (2.8), (2.14), the Yang-Baxter relation (2.9) and the
reflection equation (2.15) for the operators Ri and K0 are consistency conditions for the
qKZ equation.

3.2. Algebraic interpretation. In this subsection we consider the algebraic content of
the qKZ equation. We follow the lines of the paper [34].

3.2.1. Type A. Consider equation (3.1). Here the R-matrix Ri(xi − xj) acts on the states
|α〉, α ∈ DN , while the operator πi acts on the functions ψα(x1, . . . , xN ). In other words,
the qKZ equation (3.1) written out in components becomes

∑

α∈DN

ψα(x1, . . . , xN ) (Ri(xi − xi+1)|α〉) =
∑

α∈DN

(πiψα)(x1, . . . , xN )|α〉,

which can be rewritten as

∑

α∈DN

ψα(x1, . . . , xN ) (−ei|α〉)

=
∑

α∈DN

(
[xi − xi+1 + 1]

[xi − xi+1]
πi +

[xi − xi+1 − 1]

[xi − xi+1]

)
ψα(x1, . . . , xN )|α〉

=
∑

α∈DN

(aiψα) (x1, . . . , xN )|α〉. (3.6)

Here we have used notation

ai :=
1

[xi − xi+1]
(πi − 1)[xi+1 − xi + 1]

= (πi + 1)
[xi − xi+1 − 1]

[xi − xi+1]
, i = 1, 2, . . . , N − 1, (3.7)

for symmetrising operators acting on functions in the variables xi [21]. These operators
satisfy the Hecke relations (2.3). Moreover, they generate a faithful representation of the
algebra HA

N (q) in the space of functions in N variables xi (i = 1, . . . , N), thus justifying
the use of the identical notation ai in (2.3) and in (3.7). The generator gi = q − ai in
this representation is known as the Demazurre-Lusztig operator [5]. The alternative set
of generators si and the Baxterised elements hi(u) (2.11) in this particular representation
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read

si =
[xi − xi+1 + 1]

[xi − xi+1]
(1 − πi),

hi(u) =
[xi − xi+1 + u]

[u][xi − xi+1]
−

[xi − xi+1 + 1]

[xi − xi+1]
πi. (3.8)

Looking back at the equations (3.6) we notice that their solution amounts to construct-
ing an explicit homomorphism from the Dyck path representation of the Temperley-Lieb
algebra T A

N (q) into the functional representation (3.7) of the Iwahori-Hecke algebra HA
N (q):

|α〉 7→ ψα ∀α ∈ DN , (3.9)

where ψα are the components of the solution |Ψ〉 of the qKZ equation of type A.

3.2.2. Type B. In this case we additionally have a non-trivial operator K0 affecting equa-
tion (3.2), which reads in components:

∑

α∈BN

ψα(x1, . . . , xL) (K0(−x1)|α〉) =
∑

α∈BN

(π0ψα)(x1, . . . , xL)|α〉,

where the summation is taken now over all Ballot paths. Recalling the definition

k(u, δ) = [u+
ω + δ

2
][u+

ω − δ

2
],

from (2.26), this can be rewritten as

∑

α∈BN

ψα(x1, . . . , xN ) (−e0|α〉)

=
∑

α∈BN

(
k(x1, δ)

[2x1][ω + 1]
π0 −

k(−x1, δ)

[2x1][ω + 1]

)
ψα(x1, . . . , xN )|α〉

=
∑

α∈BN

(a0ψα) (x1, . . . , xN )|α〉. (3.10)

where we have denoted

a0 := −(π0 + 1)
k(−x1, δ)

[2x1][ω + 1]
=

1

[2x1][ω + 1]
(π0 − 1)k(−x1, δ) (3.11)

The operator a0 and the operators ai from (3.7) satisfy the defining relations (2.6) for
the type B Iwahori-Hecke algebra. Moreover, the realisation (3.11), (3.7) gives a faithful
representation of HB

N (q, ω). The generator s0 defined in (2.5) and the boundary Baxterised
element h0(u) from (2.16) in this realisation read

s0 =
k(x1, δ)

[2x1][ω + 1]
(1 − π0), h0(u) = s0 −

k(u/2, ν)

[u][ω + 1]
. (3.12)

Let us stress here the difference between the parameters δ and ν. The “physical” param-
eter δ appears in the definition of the boundary Baxterised element K0(u) and therefore
enters the qKZ equation and the boundary conditions of related integrable models, see e.g.
[7, 51]. The parameter ν is introduced here for the first time in this section. It plays an
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auxilliary role and we will fix it later to obtain a convenient presentation of the solution
of the qKZ equation of type B, see (4.4) below.

Finally, the relation (3.10) states that the solution |Ψ〉 of the qKZ equation of type B
encodes an explicit homomorphism from the Ballot path representation of the Temperley-
Lieb algebra T B

N (q, ω) into the functional representation (3.7), (3.11) of the Iwahori-Hecke
algebra HB

N (q, ω):
|α〉 7→ ψα ∀α ∈ BN .

3.3. Preliminary analysis.

3.3.1. Type A. Equation (3.6) breaks up into two cases, depending whether or not a path
α in the sum on the right-hand side of (3.6) has a local maximum at i, i.e. whether or not
it is of the form α = (. . . , αi − 1, αi, αi − 1, . . .). We will first look at the case in which it
does not.

Case i): α does not have a local maximum at i.
As each term in the left-hand side of (3.6) is of the form ei|α〉, and hence corresponds

to a local maximum at i,
the coefficient of |α〉 in the right-hand side of (3.6) has to equal zero. Hence we obtain

− (aiψα)(x1, . . . , xN ) ≡ (hi(−1)ψα)(x1, . . . , xN ) = 0, (3.13)

which can be rewritten as

(πi − 1) {[xi − xi+1 − 1]ψα(x1, . . . , xN )} = 0 for |α〉 6∝ ei|α
′〉.

Hence, if |α〉 6∝ ei|α
′〉 the function

[xi − xi+1 − 1]ψα(x1, . . . , xN )

is symmetric in xi and xi+1 which implies that [xi+1 − xi − 1] divides ψα(x1, . . . , xN ) and
the ratio is symmetric with respect to xi and xi+1.

Iterating (3.1) we find

Ψ(x1, . . . , xk−1, xm, xk, . . . , xm−1, xm+1, . . . xN ) =

Rk(xk − xm) · · ·Rm−1(xm−1 − xm)Ψ(x1, . . . , xN ). (3.14)

Consider now the component ψα on the LHS of (3.14), where α does not have a local
maximum at any i for k ≤ i ≤ m − 1. This component can only arise from the same
component on the RHS of (3.14), on which the R-matrices have acted as multiples of the
identity. Hence, if α is a path which does not have a local maximum for any k ≤ i ≤ m−1,
we find

ψα(x1, . . . , xk−1, xm, xk, . . . , xm−1, xm+1, . . . , xN ) =

m−1∏

i=k

[1 − xi + xm]

[1 + xi − xm]
ψα(x1, . . . , xN ).

(3.15)
It follows from (3.15) that if α does not have a local maximum between k and m − 1,
then ψα(x1, . . . , xN ) contains a factor

∏
k≤i<j≤m[1 + xi − xj ] and the ratio is symmetric

in the variables xi, k ≤ i ≤ m. An analogous argument can be given when considering
the boundary equations (3.2), with K0 = 1, and (3.3). In summarising the effects of these
considerations, it will be convenient to introduce the following notation:
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Definition 9. We denote by ∆±
µ the following functions:

∆±
µ (xk, . . . , xm) :=

∏

k≤i<j≤m

[µ+ xi ± xj],

where µ is a parameter.

Lemma 1. The following hold:

• If α does not have a local maximum between k and m − 1, then ψα(x1, . . . , xN )
contains a factor ∆−

1 (xk, . . . , xm) and the ratio is symmetric in the variables
xi, k ≤ i ≤ m.

• If α does not have a local maximum between 1 and m−1, then ψα(x1, . . . , xN ) con-
tains a factor ∆−

1 (x1, . . . , xm)∆+
−1(x1, . . . , xm) and the ratio is an even symmetric

function in the variables xi, 1 ≤ i ≤ m.
• If α does not have a local maximum between k and N−1, then ψα(x1, . . . , xN ) con-

tains a factor ∆−
1 (xk, . . . , xN )∆+

λ+1(xk, . . . , xN ) and the ratio is an even symmetric
function in the variables (xi + λ/2), k ≤ i ≤ N .

Corollary 1. The base coefficient function ψA
Ω corresponding to the maximal Dyck path

ΩA (see Definition 6) in the solution of the qKZ equation of type A has the following form:

ψA
Ω(x1, . . . , xN ) = ∆−

1 (x1, . . . , xn)∆+
−1(x1, . . . , xn)∆−

1 (xn+1, . . . , xN )

∆+
λ+1(xn+1, . . . , xN ) ξA

(
x1, . . . , xn|xn+1 + λ

2 , . . . , xN + λ
2

)
, (3.16)

where n = ⌊(N + 1)/2⌋ and ξA(x1, . . . xn|xn+1, . . . , xN ) is an even symmetric function
separately in the variables xi, 1 ≤ i ≤ n and xj, n+ 1 ≤ j ≤ N .

Proof. The path ΩA does not have a local maximum between 1 and n and neither between
n+ 1 and N , and the result follows immediately from Lemma 1. �

In the sequel we use the following picture to represent ψA
Ω :

ψA
Ω =

x1 x2 . . . xn xn+1 . . . xN

(3.17)

Relation (3.13) for ψA
Ω can then be displayed pictorially as

x1 . . . xi xi+1 . . . xn xn+1 . . . xN

−1

(hi(−1)ψA
Ω )(x1, . . . , xN ) = = 0,

(3.18)

where 1 ≤ i < N , i 6= n, and we use the graphical notation (2.19) to represent hi(−1).

Case ii): α has a local maximum at i.
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Now (3.6) gives,

([2] − ai)ψα ≡ si ψα ≡ hi(1)ψα =
∑

β 6=α
eiβ=α

ψβ = ψα− +
∑

k=1,2,...

ψα+k . (3.19)

A pictorial definition of the paths α− and α+k, k = 1, 2, . . . , is given in Figure 2. In the
example of Figure 2, the heights of the paths α+k to the right of the point i are higher
than those of α. This happens in case if the path α has a local minimum at the point
i + 1, i.e., if αi = αi+1 + 1 = αi+2. Equally well, if the path α has a local minimum at
the point i − 1 (αi = αi−1 + 1 = αi−2), the sum in (3.19) contains one or several paths
α+k whose heights are higher than those of α to the left of the point i. The number of
paths α+k appearing in the sum (3.19) depends on the shape of α and varies from 0 to
⌊(N − 1)/2⌋.

@
@�
�
ei

?

@�
�

�@�
�

�@
@

@�
�

�@�
�@

@
@

@�
�@

@
@�

��

?
α

?

α+1

?
α+2

?
α+3

6
α−

Figure 2. Definition of the Dyck paths α− and α+k, k ≥ 1.

Remark 5. An important observation is that the path α− is absent in Figure 2 in case
αi = 1. In this case the condition α−

i = αi − 2 = −1 implies that the path α− is no longer
a Dyck path, and that consequently the term ψα− in (3.19) has to vanish.

A further analysis of equation (3.19) will be made in sections 4 and 6.

3.3.2. Type B. The analysis of the bulk qKZ equation (3.6) in case i) is identical to that
of type A and we conclude:

Corollary 2. The base coefficient function ψB
Ω corresponding to the maximal Ballot path

ΩB (see Definition 8) in the solution of the qKZ equation of type B has the following form:

ψB
Ω(x1, . . . , xN ) = ∆−

1 (x1, . . . , xN )∆+
λ+1(x1, . . . , xN ) ξB

(
x1 + λ

2 , . . . , xN + λ
2

)
, (3.20)

where ξB(x1, . . . , xN ) is an even symmetric function in all of its variables xi, 1 ≤ i ≤ N .

Proof. The path ΩB does not have a local maximum between 1 and N , so the result follows
immediately from Lemma 1. �
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In the sequel we use the following picture to represent ψB
Ω:

ψB
Ω =

x1 x2 . . . xN

(3.21)

Case ii): α has a local maximum at i.
For type B, (3.6) gives,

hi(1)ψα =
∑

β 6=α
eiβ=α

cβ ψβ = ψα− + c0(i)ψα+0 +
∑

k=1,2,...

ψα+k , (3.22)

where a pictorial definition of the paths α− and α+k, k ≥ 0, is given in Figure 3. For
ψα− and ψα+k the coefficients cβ are all equal to 1, but c0 may be different from 1. This
coefficient is defined by the following rules: c0 = 0 if the path α+0 is not in the preimage
of α under ei, that is, ∃ j < i : αj < αi − 1. Otherwise, c0(i) = 1 if i is odd and
c0(i) = −[ω]/[ω + 1] if i is even (this follows from the rules (2.27) and (2.28)). Further
analysis of case ii) is postponed to sections 4 and 6.

@
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ei
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@�
�

�@�
�@

@
@
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�@

@�@
@

@
@
?

α

?

α+0

?

α+3

?

α+2

?

α+1

6
α−

Figure 3. Definition of the paths α− and α+k, k ≥ 0.

Now consider the nontrivial type B boundary qKZ equation (3.10). As before, the
analysis breaks up into two cases, depending whether or not a path α in the sum on
the right-hand side of (3.10) has a maximum at 0, i.e. whether or not it is of the form
α = (α0, α0 − 1, . . .). We will first look at the case in which it does not.

Case i): α does not have a local maximum at 0.
As each term in the left-hand side of (3.10) is of the form e0|α〉, and hence corresponds

to a maximum at 0, the coefficient of |α〉 in the right-hand side of (3.10) has to equal zero.
We thus obtain

(a0ψα)(x1, . . . , xN ) = 0, (3.23)

which can be rewritten as

(π0 − 1)
{
[x1 −

ω+δ
2 ][x1 −

ω−δ
2 ]ψα(x1, . . . , xL)

}
= 0 for |α〉 6∝ e0|α

′〉.

Hence, if |α〉 6∝ e0|α
′〉 the function

[x1 −
ω+δ

2 ][x1 −
ω−δ

2 ]ψα(x1, . . . , xN )
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is an even function in x1 which implies that [x1 + ω−δ
2 ][x1 + ω+δ

2 ] divides ψα(x1, . . . , xN ),
and the ratio is even in x1.

Case ii): α has a local maximum at 0.
Now (3.10) gives,

( [ω]
[ω+1] − a0

)
ψα = s0ψα = ψα−0 . (3.24)

Here by α−0 we denote the path coinciding with α everywhere except at the left boundary,
where one has α−0

0 = α0 − 2, so that e0|α
−0〉 = |α〉. Relation (3.24) in fact implies

condition (3.23) as any path with a local maximum at 0 is the α−0 path for a certain
path α. Therefore, the type B boundary qKZ equation (3.10) is equivalent to the relation
(3.24).

4. Factorised solutions

We now present factorised formulas, in terms of the Baxterised elements hi(u), i =
0, 1, . . . , N − 1, for the coefficients ψα of the solution |Ψ〉 to the qKZ equation (3.1)-
(3.3). For type A, such formulas were obtained earlier by Kirillov and Lascoux [30] who
considered factorisation of Kazhdan-Lusztig elements for Grassmanians.

4.1. Type A. The factorised expression for ψα is most easily expressed in the following
pictorial way. Complement the Dyck path α with tiles to fill up the triangle corresponding
to the maximal Dyck path ΩA, as in Figure 4. To each added tile at horizontal position i
and height j assign a positive integer number ui,j according to a following rule:

• put ui,j = 1 if in the list of added tiles there are no elements with the coordinates
(i± 1, j − 1);

• otherwise, put ui,j = max{ui+1,j−1, ui−1,j−1} + 1.

Algorithmically this rule works as follows. First, observe that the added tiles taken to-
gether form a Young diagram Yα (see Figure 4). In other words, the Young diagram Yα

is the difference of the maximal Dyck path ΩA and the Dyck path α. Then, act in the
following way:

• Assign the integer 1 to all corner tiles of the Young diagram Yα and then remove
the corner tiles from the diagram.

• Assign the integer 2 to all corner tiles of the reduced diagram and, again, remove
the filled tiles from the diagram.

• Continue to repeat the procedure, increasing the integer by 1 at each consecutive
step, until all tiles are removed.

Once the assignment of integers is done, define an ordered product of operators hi(uij)

Hα :=

րu∏

i,j

hi(uij) , (4.1)

where the product is taken over all added tiles and the factors of the product are ordered
in such a way that their arguments ui,j do not decrease when reading from left to right
(note that factors with the same argument commute).
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Figure 4. Solution of the qKZ equations of type A. We use the graphi-
cal notation (2.19) and (3.17) to represent the Baxterised elements hi(k),
k = 1, 2, . . . , and the coefficient ψA

Ω . The associated Young diagram Yα

corresponds to the partition {92, 6, 13}.

Theorem 1. Let α be a Dyck path of length N . The corresponding coefficient function
ψα in the solution of the qKZ equations (3.1)-(3.3) of type A is given by

ψα = Hαψ
A
Ω , (4.2)

where ψA
Ω is the base function corresponding to the maximal Dyck path ΩA of length N

and the factorised operator Hα is defined in (4.1) (see also Figure 4).

The proof of Theorem 1 is given in Section 6.1.

4.1.1. Truncation conditions. For k = 1, 2, . . . , ⌊N/2⌋, let β(k) denote the path of length
N which has only one minimum, occuring at the point 2k − 1, with β(k)2k−1 = −1.
Note that β(k) is therefore not a Dyck path. The associated Young diagram Yβ(k) is

a (n − k + 1) × k rectangle, n = ⌊N+1
2 ⌋. We introduce notation HA

k := Hβ(k) for the
corresponding factorised operator. An example of β(k) and its corresponding operator
HA

k is given in Figure 5 for k = 3 and N = 12.

Proposition 3. The base coefficient function ψA
Ω for the solution of the type A qKZ

equation is subject to truncation relations

HA
k ψ

A
Ω = 0 ∀ k = 1, 2, . . . , ⌊N/2⌋. (4.3)

Conditions (3.16), (4.1), (4.2), (4.3) together are equivalent to the qKZ equations (3.1)-
(3.3) of type A.

Proof. Using the techniques described in the proof of Theorem 1, see
Section 6.1, it follows that the relations (4.3) ensure the vanishing of the contributions

ψα− in (3.19) if α− is not a Dyck path, see Remark 5. Explicit examples are given in
subsection 4.3. �
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0
2k−1=5
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1
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Figure 5. The path β(3) of the length N = 12 is drawn in bold. The cor-
responding factorised operator HA

3 is an ordered product of the Baxterised
elements hi(uij) represented by dashed tiles on the picture. The additional
conditions (4.3) require that this picture vanishes.

For a particular value of the boundary parameter λ a simple polynomial solution of the
conditions (4.3) was found in [12]:

Proposition 4. For λ = −3, the conditions (4.3) admit the simple solution ξA = 1. In
this case the coeficients of the qKZ equation, when properly normalised, are polynomials
in variables zi = qxi , i = 1, . . . , N .

Using the factorised formulas we have calculated these solutions for system sizes up
to N = 10. In the homogeneous limit xi → 0 the coefficients ψα(x1, . . . , xN ) become
polynomials in τ = −[2]. In fact, up to an overall factor, each ψα becomes a polynomial
in τ2 with positive integer coefficients. These polynomials were considered in [14], where
their intriguing combinatorial content was described. In Appendix B we present a table
of these polynomials up to N = 10, and we shall further discuss them in Section 5.

4.2. Type B. We will now formulate a factorised solution for type B. This result was
deduced from some exercises we made for small size systems. As we found these instructive,
we have given these in Appendix A. Analysing the expressions for the coefficient functions
in the cases N = 2, 3 we see that in order to write them as a product of the Baxterised
elements hi(u), i ≥ 0, we have to fix in a special way the auxiliary parameter ν in the
definition (3.12) of h0(u). From now on we therefore specify

k = h̄0(k) := h0(k)|ν=ω+pk
= s0 −

[⌊k/2⌋] [ω + ⌊(k + 1)/2⌋]

[k][ω + 1]
, (4.4)

where pk = k mod 2. Note that the Baxterised boundary element h̄0(u) is defined for
integer values of its spectral parameter u ∈ Z as only such values appear in our consider-
ations.

Now we can repeat the procedure described in the beginning of Section 4.1 but with
the set of Ballot paths instead of Dyck paths. For each Ballot path α we consider its
complement to the maximal Ballot path ΩB. This complement may be thought of as half a
transpose symmetric Young diagram, cut along its symmetry axis. We fill the complement
with (half-)tiles corresponding to the (boundary) Baxterised elements hi(ui,j) and h̄0(ui,j)
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as shown in Figure 6. The rule for assigning integers ui,j to the tiles remains exactly the

1

22

4444

1

2 2

1

3

3331

55 5 5 5

6666

77 7 7

888

9 99

1010

1111

12

13

Figure 6. Solution of the qKZ equation of type B. We use the graphical
notation (2.19), (4.4) and (3.21) to represent the Baxterised elements hi(k),
the boundary Baxterised elements h̄0(k) and the coefficient ψB

Ω.

same as for type A. For the half-tiles the rule is:

• put u0,j = 1 if there is no adjacent tile h1 with the coordinate (1, j − 1);
• otherwise, put u0,j = u1,j−1 + 1.

The operator Hα corresponding to the Ballot path α is given by the same formula
(4.1) as for type A, where now index i may take also value 0, thus allowing the boundary
operators h̄0(u0,j) enter the product.

Theorem 2. Let α be a Ballot path of length N . The corresponding coefficient ψα of the
solution of type B qKZ equation is given by

ψα = Hαψ
B
Ω, (4.5)

where ψB
Ω is the base function corresponding to the maximal Ballot path ΩB of length N

and the factorised operator Hα is defined in (4.1), see also Figure 6.

The proof of Theorem 2 is given in Section 6.2.

4.2.1. Truncation conditions. For k = 1, . . . , n = ⌊N+1
2 ⌋, let γ(k) denote the path of the

lengthN with only one minimum, occuring at the point 2k−ǫN−1 with γ(k)2k−ǫN−1 = −1

(recall that ǫN = N mod 2). Note that γ(k) is therefore not a Ballot path. The associated
half-Young diagram has a shape of trapezium. We introduce the notation HB

k := Hγ(k)

for the corresponding factorised operator. An example of a path γ(k) with N = 10 and
k = 3 is shown in Figure 7.

Proposition 5. The base coefficient function ψB
Ω for the solution of the type B qKZ

equation satisfies the truncation conditions

HB
k ψ

B
Ω = 0 ∀ k = 1, 2, . . . , n. (4.6)
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Figure 7. The path γ(3) of the length N = 10 is drawn in bold. The cor-
responding factorised operator HB

3 is an ordered product of the Baxterised
elements hi(uij) represented by dashed tiles on the picture. The additional
conditions (4.6) require that this picture vanishes.

Conditions (3.20), (4.5) and (4.6) together are equivalent to the qKZ equations (3.1)-(3.3)
of type B.

Proof. Just as for type A, the relations (4.6) ensure the absence of ψα− in (3.22) if α− is
not a Ballot path. Explicit examples are considered in Appendix A. �

For particular values of the boundary parameter λ and the algebra parameter ω the
simplest polynomial solution of the conditions (4.6) was found in [51]:

Proposition 6. In case λ = −3/2 and ω = −1/2 the conditions (4.6) admit the simple
solution ξB = 1. In this case the coeficients of the qKZ equation, when properly normalised,
become polynomials in variables zi = qxi , i = 1, . . . , N .

4.3. Separation of truncation conditions.

4.3.1. Type A. The equations (4.3) impose restrictions on the otherwise arbitrary sym-
metric functions ξA of the ansatz (3.16). Based on experience with calculations for small
N we observe that these restrictions can be written in a more explicit way. Namely, one
can separate the functional part (depending on variables xi) and the permutation part
(depending on the permutations πi) in the operators HA

k in (4.3).
To formulate this separation in a precise way, let us first define the following set of

Baxterised elements in the group algebra of the symmetric group C[SN ] ≃ HA
N (1):

πi(u) := u−1 − πi i = 1, . . . , N − 1.

Denote furthermore by ΠA
k the permutation operators obtained from the operators HA

k by
substituting hi(ui,j) 7→ πi(ui,j).
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Conjecture 1. The left hand side of the truncation condition (4.3) for Type A can be
written in the following separated form (remind that n = ⌊N+1

2 ⌋)

HA
k ψ

A
Ω =

∆−
1 (xk, . . . , xn+k)

∆−
0 (xk, . . . , xn+k)

ΠA
k

∆−
0 (xk, . . . , xn)∆−

0 (xn+1, . . . , xn+k)

∆−
1 (xk, . . . , xn)∆−

1 (xn+1, . . . , xn+k)
ψA

Ω . (4.7)

Example 1. In the case N = 5 there are two truncation conditions on the base function
ψA

Ω :

• Condition (4.7) for k = 1 reads

h1(1)h2(2)h3(3)ψ
A
Ω =

∆−
1 (x1, . . . , x4)

∆−
0 (x1, . . . , x4)

ΠA
1

∆−
0 (x1, x2, x3)

∆−
1 (x1, x2, x3)

ψA
Ω = 0,

or, in terms of ξA

ΠA
1

{
∆−

0 (x1, x2, x3)∆
+
−1(x1, x2, x3)∆

−
1 (x4, x5)

∆+
λ+1(x4, x5)ξ

A(x1, x2, x3|x4 + λ
2 , x5 + λ

2 )
}

= 0, (4.8)

where ΠA
1 := (1 − π1)(

1
2 − π2)(

1
3 − π3). Since the function in braces in (4.8) is

antisymmetric in the variables x1, x2, x3, the operator ΠA
1 in this formula can be

equivalently substituted by

ΠA
1 7→ (1 − π3 + π2π3 − π1π2π3). (4.9)

• Condition (4.7) for k = 2 reads

h3(1)h2(2)h4(2)h3(3)ψ
A
Ω =

∆−
1 (x2, . . . , x5)

∆−
0 (x2, . . . , x5)

ΠA
2

∆−
0 (x2, x3)∆

−
0 (x4, x5)

∆−
1 (x2, x3)∆

−
1 (x4, x5)

ψA
Ω = 0.

or, in terms of ξA

ΠA
2

{
∆−

0 (x1 + 1, x2, x3)∆
+
−1(x1, x2, x3)∆

−
0 (x4, x5)

∆+
λ+1(x4, x5)ξ

A(x1, x2, x3|x4 + λ
2 , x5 + λ

2 )
}

= 0.

The operator ΠA
2 := (1 − π3)(

1
2 − π2)(

1
2 − π4)(

1
3 − π3) in this formula can be

equivalently substituted by

ΠA
2 7→ (1 − π3 + π2π3 + π4π3 − π2π4π3 + π3π2π4π3). (4.10)

Formulas (4.9), (4.10) suggest the following proposition

Proposition 7. In condition (4.7) one can substitute the operator ΠA
k by a polynomial

in the permutations (−πi), i = k, . . . , n + k − 1, with unit coefficients. The terms of the

polynomial are labeled by the sub-diagrams of the rectangular Young diagram {k(n−k+1)}
corresponding to the path β(k), see subsection 4.1.1. Their form is given by formula (4.1),
where one has to substitute the factors hi(uij) by −πi.
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4.3.2. Type B. In this case we found analogues of the expressions (4.7) for particular
truncation conditions (4.6) only.

Let us supplement the set of Baxterised elements πi(u) with the boundary Baxterised
element

π0(u) := u−1 − π0.

The elements πi(u), i = 0, 1 satisfy a reflection equation of the form (2.17).

Denote by ΠB
n the operator obtained from HB

n by the substitutions

h̄0(ui,j) 7→ π0(1), hi(ui,j) 7→ πi(ui,j) ∀ i ≥ 1.

Conjecture 2. The left hand side of the condition (4.6) for k = n and arbitrary N can
be transformed to

HB
n ψ

B
Ω =

{Θ(x1, . . . , xN )∆−
1 (x1, . . . , xN )

∆−
0 (x1, . . . , xN )

ΠB
n

∆−
0 (x2, . . . , xN )

Θ(x2, . . . , xN )∆−
1 (x2, . . . , xN )

−

[⌊N/2⌋][ω + n]

[ω + 1]

}
ψB

Ω ,

where n = ⌊N+1
2 ⌋ and Θ(xi, . . . , xj) :=

∏
i≤p≤j

k(xp, δ)
[2xp][ω+1] .

For N odd denote by ΠB
1 the operator obtained from HB

1 by the substitutions

h̄0(ui,j) 7→ π0(ui,j), hi(ui,j) 7→ πi(ui,j) ∀ i ≥ 1.

Conjecture 3. The left hand side of the condition (4.6) for k = 1 and N odd can be
written in the following separated form

HB
1 ψ

B
Ω = Θ(x1, . . . , xn)

∆−
1 (x1, . . . , xn)∆+

−1(x1, . . . , xn)

∆−
0 (x1, . . . , xn)∆+

0 (x1, . . . , xn)
ΠB

1

∆−
0 (x1, . . . , xn)

∆−
1 (x1, . . . , xn)

ψB
Ω. (4.11)

Remark 6. Notice that condition (4.11) does not actually depend on the algebra param-
eter ω. If we choose ξB = 1, then it is satisfied for λ ∈ {−3/2,−2} only.

5. Observations and conjectures

In this section we consider explicit polynomial solutions of the qKZ equation described
in Propositions 4 and 6, and we consider the homogeneous limit xi → 0. We would like
to emphasize the importance of these explicit solutions for experimentation and for the
discovery of many interesting new results. In this section we formulate some of these ob-
servations. We present new positivity conjectures and relate partial sums over components
to single components for larger system sizes. Furthermore, based on our results we have
been able to find a compact expression for generalised partial sums in the inhomogeneous
case.
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5.1. Type A. In Appendix B we have listed the solutions described in Proposition 4 up
to N = 10 in the limit xi → 0, i = 1, . . . , N . These solutions were obtained using the
factorised forms of the previous section.

In the following we will write shorthand ψα for the limit xi → 0 of ψα(x1, . . . , xN ).
The complete solution is determined up to an overall normalisation. We will choose
ξA = (−1)n(n−1)/2 where n = ⌊(N + 1)/2⌋ for which we have

ψA
Ω = τ ⌊N/2⌋(⌊N/2⌋−1)/2.

An immediate observation was already noted in [14]:

Observation 1. The components ψα(x1, . . . , xN ) of the polynomial solution of the qKZ
equation of type A in the limit xi → 0, i = 1, . . . , N are, up to an overall factor which is
a power of τ , polynomials in τ2 with positive integer coefficients. Here τ = −[2].

We now conjecture a partial combinatorial interpretation, by considering certain natural
sums over subsets of Dyck paths. Let us first define the paths Ω(N, p) ∈ DN whose local
minima lie on the height p̃, where

p̃ = ⌊(N − 1)/2⌋ − p.

Figure 8 illustrates the path Ω(12, 3).

N=12

p=3

Ω(12,3)
p=2~

Figure 8. The minimal path Ω(12, 3) ∈ D12,3 .

For later convenience we also define, in the case of odd N , the paths Ω̃(N, p) ∈ DN whose
first p − 1 local minima lie on the height p̃, except for the last minimum which lies at

height 0. Figure 9 illustrates the path Ω̃(13, 4).
We define the subset DN,p of Dyck paths of length N which lie above Ω(N, p), i.e. whose

local minima lie on or above height p̃. Formally, this subset is described as

DN,p = {α ∈ DN | αi ≥ Ωi(N, p) = min(Ωi, p̃)} ,

where Ωi = min{i,N + ǫN − i}, ǫN = N mod 2, are integer heights of the maximal Dyck
path ΩA = Ω(N, 0). We further define an integer cα,p associated to each Dyck path in the
following way (see also Appendix B). Let α = (α0, α1, . . . , αN ) ∈ DN,p be a Dyck path of
length N whose minima lie on or above height p̃. Then cα,p is defined as the signed sum

of boxes between α and Ω(N, p), where the boxes at height p̃+h are assigned (−1)h−1 for
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N=13

Ω(13,4)
∼

p=4

Figure 9. The path Ω̃(13, 4) ∈ D13,6 .

h ≥ 1. An example is given in Figure 10, and an explicit expression for cα,p is given by

cα,p =
(−1)p̃

2




⌊N/2⌋∑

i=1

(α2i − Ω2i(N, p)) −

⌊(N−1)/2⌋∑

i=0

(α2i+1 − Ω2i+1(N, p))


 .

+ + + +

+

_ __ α

Ω(12,4)

N=12

Figure 10. Definition of the number cα,p as the signed sum of boxes be-

tween the α and the path Ω̃(12, 4). In this figure N = 12 and p = 4 and
cα,4 = 4 − 3 + 1 = 2.

Consider the partial weighted sums

S±(N, p) =
∑

α∈DN,p

τ±cα,p ψα, . (5.1)

It was noted in [36, 33] that for τ = 1 (q = e2πi/3), these partial sums for system size
N , correspond to certain individual elements for size N + 1. Here we observe that this
correspondence holds also for arbitrary τ : the partial sums S±(N, p) are up to an overall
normalisation proportional to certain individual components ψα of the solution for system
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size N + 1:

S+(4, 1) = ψ S−(4, 1) = τ−2ψ

S−(5, 2) = τ−2ψ

S−(5, 1) = τ−2ψ

S+(6, 2) = ψ S−(6, 2) = τ−3ψ

S+(6, 1) = ψ S−(6, 1) = τ−3ψ

S−(7, 3) = τ−3ψ

S−(7, 2) = τ−3ψ

S−(7, 1) = τ−3ψ

S+(8, 3) = ψ S−(8, 3) = τ−4ψ

S+(8, 2) = ψ S−(8, 2) = τ−4ψ

S+(8, 1) = ψ S−(8, 1) = τ−4ψ

We formalise this observation in the following conjecture:

Observation 2.

S+(N, p) = ψΩ(N+1,p), N even

S−(N, p) = τ−N/2 ψeΩ(N+1,p+1), N even

S−(N, p) = τ−(N−1)/2 ψΩ(N+1,p), N odd.

The weigthed partial sums were defined in (5.1) in an ad-hoc way. This was the way
they were discovered when searching for relations as in Observation 2. In fact, these partial
sums arise in a natural way as we will show now:

Observation 3. The partial sums S±(N, p) are obtained from factorised expressions. In
particular, let

P−
N =

p∏

j=1

p−1∏

i=j−1

hp̃+2i+j(1 + j),

P+
N =

p∏

j=1

p−1∏

i=j−1

hp̃+2i+j(−1),
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where the product is ordered as in Figures 11 and 12. Then we have

S±(N, p) = lim
xi→0

P±
N ψA

Ω . (5.2)

−1 −1 −1

−1

−1

−1

Figure 11. The partial sum S+(10, 3) in factorised form.

2 2 2

3

4

3

Figure 12. The partial sum S−(10, 3) in factorised form.

In fact, we conjecture that (5.2) with (5.1) remain valid in the presence of the variables
xi:

Observation 4. Define

PN (u) =

p∏

j=1

p−1∏

i=j−1

hp̃+2i+j(u+ j − 1).

The weighted partial sums are special cases of the following identity for polynomials in
x1, . . . , xN ,

S(N, p, u) := PN (u)ψA
Ω(x1, . . . , xN ) =

∑

α∈DN,p

(
[1 − u]

[u]

)cα,p

ψα(x1, . . . , xN ). (5.3)

Note that (5.3) has many interesting specialisations, such as u = 0 and u = 1 which,
when properly normalised, correspond to the single coefficients ψΩ(N,⌊(N−1)/2⌋) and
ψΩ(N,⌊(N−3)/2⌋) respectively. The standard sum rule where one performs an unweighted
sum, corresponds to u = 1/2. Interestingly, a special case of the generalised sum rule
(5.3) is closely related to a result of [18], were a similar generalised sum was consid-
ered, based on totally different grounds and in the homogeneous limit xi → 0 and for
p = ⌊(N − 1)/2⌋. By computation of a repeated contour integral, it was shown in [18]
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u u u

u+1

u+2

u+1

Figure 13. The partial sum S(10, 3, u) in factorised form.

that in this case, S(N, ⌊(N − 1)/2⌋, u) is equal to the generating function of refined t, τ -
enumeration of (modified) cyclically symmetric transpose complement plane parititions,
where t = [1−u]/[u]. Because of the natural way this parameter appears in (5.3), we hope
that this result offers further insights into the precise connection between solutions of the
qKZ equation and plane partitions.

5.2. Type B. In Appendix B we have listed solutions of the qKZ equation for type B
from Proposition 6 up to N = 6 in the limit xi → 0, i = 1, . . . , N . These solutions were
obtained using the factorised forms of the previous section. As in the case of type A, we
again find a positivity conjecture, this time in the two variables τ ′ and a which are defined
by

τ ′2 = 2 − τ = 2 + [2] = [2]2
q1/2 , a =

[1/2]

[2δ+1
4 ][2δ−1

4 ]
.

The complete solution is determined up to an overall normalisation. We will choose
ξB = a⌊N/2⌋(−τ ′2)N(N−1)/2, for which we have

Observation 5. The solutions ψα(x1, . . . , xN ) of the qKZ equation of type B in the limit
xi → 0, i = 1, . . . , N are polynomials in τ ′2 and a with positive integer coefficients.

For a = 1 this conjecture was already observed in [51]. As was conjectured in [11] for
τ ′ = 1, the parameter a corresponds to a refined enumeration of vertically and horizontally
symmetric alternating sign matrices. A sum rule for this value of τ ′ was proved in [51].
We suspect that the parameter τ ′ is related to a simple statistic on plane partitions, as
it is for type A. We thus have an interesting mix of statistics, one which is natural for
ASMs, and one which is natural for plane partitions. In a forthcoming paper we hope to
formulate some further results concerning the solutions for type B.

6. Proofs

6.1. Proof of Theorem 1. We have to show that the vector |Ψ〉 whose coefficients are
given by the formulas (3.16), and (4.1), (4.2) satisfies the qKZ equations (3.1)-(3.3) of
type A. Following the preliminary analysis of Section 3.3.1 we divide the proof of (3.1)
into two parts, depending on whether or not the word corresponding to the path α begins
with ei.

1. α does not have a local maximum at i. We have to show that, see (3.13),

− (aiψα)(x1, . . . , xN ) = (hi(−1)ψα)(x1, . . . , xN ) = 0 (6.1)
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for ψα given by (4.2).
If α does not have a local maximum at i, then either hi(−1) acts on a local minimum,

or on a slope of α.

• hi(−1) acts on a local minimum of α.
In this case ψα is divisible by hi(1) from the left and (6.1) follows directly from

hi(−1)hi(1) = −ai si =

1

−1

= 0 .

• hi(−1) acts on a slope of α.
In this case we use the Yang-Baxter equation (2.18) to push hi(−1) through the
operator Hα (4.1) in the expression for ψα (4.2). Then hi(−1) vanishes when
acting on ψA

Ω , see (3.18). This mechanism is illustrated in Figure 14.

−1

1

2

3

4

5

6

=
−1

1

2

4

3

5

6

= 0

Figure 14. Action of hi(−1) on a slope of a Dyck path α. The first
equality follows from the Yang-Baxter equation (2.18) and the second fol-
lows from (3.18). For the operators Hα of a more general form (like, e.g.,
the one shown in Figure 4) the first part of this transformation should be
repeated until hi(−1) commutes through all the terms of Hα.

2. α has a local maximum at i. The harder part of the proof of Theorem 1, to which we
come now, lies in proving (3.19) when hi(1) acts on a component ψα where the path α has
local maximum at i. If this maximum at i does not have a nearest neighbour minimum
at i− 1 or i+ 1 then (3.19) becomes simply

hi(1)ψα = ψα− ,

and the action of hi(1) is the addition of a tile with content 1 at i, which is just the
prescription of the Theorem 1, see Figure 15.

We will now look at the action of hi(1) on ψα (4.2), where the Dyck path α satisfies
conditions (see Figure 16)

a) α has a maximum at i with a neighbouring minimum at i+ 1;
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1

v
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u

u −1

v

v −1

+1

α

v

v

v

+1

−1

u

u −1

α −

Figure 15. Graphical representation of the equation hi(1)ψα = ψα− cor-
responding to the addition of a tile with content 1 at a maximum without
neighbouring minima. In this case u > 1 and v > 1.

i i+1 i+r i+2p+1 i+2r+1

u

u+1

u+2

u+3

u+4

u+5

u+6

u+7

v

v+1

v+2

v+3

v+4

v+5

v+6

v+7

1

2

3

4

5

6

7

1

4

5

6

3

4

5

2

3

4

1

2

3

1

. . . . . .

Figure 16. The Dyck path α satisfying conditions a) and b). Between
i+1 and i+2r+1 this path contains exactly one local minimum at i+2p+1
which has the same height as the minimum at i+ 1.

b) α crosses the horizontal line at height αi+1 = αi − 1, for the first time to the right
of i, at i+ 2r + 1, r ≥ 1: αi+2r − 1 = αi+2r+1 = αi+2r+2 + 1 = αi+1.

In this case we observe that the factorised expression (4.2) for ψα contains a strip of tiles
Hi+1,i+r(1), where

Hi+1,i+r(u) := hi+1(u)hi+2(u+ 1) × · · · × hi+r(u+ r − 1). (6.2)

This strip is shown shaded on Figure 16.
We are going to rewrite the term hi(1)Hi+1,i+r(1) in the product hi(1)ψα in such a way

that we obtain the components ψα− and ψα+k from the right hand side of (3.19), see also
Figure 2, defined according to the rules (4.1), (4.2). As a first step we prove the following
proposition:
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Proposition 8. Let X be an arbitrary element of the algebra HA
N (q) taken in its faithful

representation (3.7), (3.8). We denote by Ai,j , i ≤ j, the linear span of terms Xak =
Xhk(−1) ∀ k : i ≤ k ≤ j. We define additionally Ai,i−1 := 0, Hi,i−1(1) := 1.

The following relation is valid modulo Ai,i+r−1 :

Hi,i+r(u) = Hi,i+r(u+ v) +
[v]

[u][u+ v]
Hi+1,i+r(1) mod Ai,i+r−1 ∀ r ≥ 0 . (6.3)

For the proof of Proposition 8 we need the following two simple lemmas.

Lemma 2. One has

1. hi(u)Hi+1,i+r(u+ 1) = Hi,i+r(u);

2. Hi,i+r(u)hi+r+1(u+ r + 1) = Hi,i+r+1(u);
3. for generic values of u and v

Hi,i+r(u) = Hi,i+r(u+ v)

+

r∑

k=0

[v]

[u+ k][u+ v + k]
Hi,i+k−1(u+ v)Hi+k+1,i+r(u+ k + 1) . (6.4)

Proof. The first two parts of the lemma follow immediately from the definition of Hi,i+r(u)
in (6.2). To prove (6.4) we use induction on r. For r = 0 equation (6.4) reduces to (2.12).
Now we shall make the inductive step by assuming (6.4) is true for some r, and prove it
for r + 1:

Hi,i+r+1(u) = Hi,i+r(u)hi+r+1(u+ r + 1) = Hi,i+r(u+ v)hi+r+1(u+ r + 1)

+
r∑

k=0

[v]

[u+ k][u+ v + k]
Hi,i+k−1(u+ v)Hi+k+1,i+r(u+ k + 1)hi+r+1(u+ r + 1)

= Hi,i+r(u+ v)

(
hi+r+1(u+ v + r + 1) +

[v]

[u+ r + 1][u+ v + r + 1]

)

+
r∑

k=0

[v]

[u+ k][u+ v + k]
Hi,i+k−1(u+ v)Hi+k+1,i+r+1(u+ k + 1)

= Hi,i+r+1(u+ v) +
r+1∑

k=0

[v]

[u+ k][u+ v + k]
Hi,i+k−1(u+ v)Hi+k+1,i+r+1(u+ k + 1),

where we used (2.12) and the induction assumption. This completes the proof of Lemma 2.
�

Lemma 3. One has

Hi,i+r(u) =
[u+ r + 1]

[u]
mod Ai,i+r , (6.5)

In particular, the coefficient ψA
Ω (3.16) of the maximal Dyck path ΩA satisfies the relations

Hi,i+r(u)ψ
A
Ω =

[u+ r + 1]

[u]
ψA

Ω , (6.6)
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in case the indices r and i are chosen within the limits 0 ≤ r < n − 1 , 1 ≤ i < n − r,
where n = ⌊N+1

2 ⌋.

Proof. From (3.18) and (2.12) we find that

hi(u) =
[u+ 1]

[u]
+ hi(−1) =

[u+ 1]

[u]
mod Ai,i , (6.7)

which implies formula (6.5). Relation (6.6) for the coefficient ψA
Ω then follows from (3.18).

�

Proof of Proposition 8. By applying (6.4) twice, first with the arguments {u, v}, and then
with the arguments {u, v} substituted by {u+ 1,−u}, we find:

Hi,i+r(u) = Hi,i+r(u+ v) +
[v]

[u][u+ v]
Hi+1,i+r(u+ 1)

+

r∑

k=1

[v]

[u+ k][u+ v + k]
Hi,i+k−1(u+ v)Hi+k+1,i+r(u+ k + 1)

= Hi,i+r(u+ v) +
[v]

[u][u+ v]
Hi+1,i+r(1)

−
[v]

[u][u+ v]

r−1∑

k=0

[u]

[u+ k + 1][k + 1]
Hi+1,i+k(1)Hi+k+2,i+r(u+ k + 2)

+
r∑

k=1

[v]

[u+ k][u+ v + k]
Hi,i+k−1(u+ v)Hi+k+1,i+r(u+ k + 1)

= Hi,i+r(u+ v) +
[v]

[u][u+ v]
Hi+1,i+r(1)

+

r∑

k=1

[v]

[u+ k]
Hi+k+1,i+r(u+ k + 1)

(
1

[u+ v + k]
Hi,i+k−1(u+ v) −

1

[u+ v][k]
Hi+1,i+k−1(1)

)
.

(6.8)

It lasts to notice that, by Lemma 3, the operators between parentheses in the last term of
(6.8) become c-numbers modulo Ai,i+r−1 and in fact cancel:

(
1

[u+ v + k]
Hi,i+k−1(u+ v) −

1

[u+ v][k]
Hi+1,i+k−1(1)

)

=

(
1

[u+ v + k]

[u+ v + k]

[u+ v]
−

1

[u+ v][k]

[k]

[1]

)
mod Ai,i+r−1

= 0 mod Ai,i+r−1 .

Hence, (6.8) implies (6.3). �

Consider a path α whose all local minima between i+ 1 and i+ 2r + 1 lie higher then
αi+1. For such paths Proposition 8 implies the following
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Corollary 3. Let α = (α0, . . . , αN ) be a Dyck path satisfying conditions a) and b) on
page 32. Assume additionally that α has no local minima at height αi+1 between i+1 and
i+ 2r + 1. Let further α− (respectively, α+1) denote the path obtained from α by raising
(resp., lowering) the height αi (resp., αi+1) by two, see Figure 2. Then for the coefficients
ψα, ψα− , ψα+1 defined by (4.2) we have:

hi(1)ψα = ψα− + ψα+1 .

Proof. As we noted before, the product hi(1)ψα contains the factor hi(1)Hi+1,i+r(1). Ap-
plying (6.3) and (6.7) for u = v = 1, we can transform this factor in the following way

hi(1)Hi+1,i+r(1) = hi(1)Hi+1,i+r(2) +
1

[2]
hi(1)Hi+2,i+r(1) mod Ai+1,i+r−1

= Hi,i+r(1) + Hi+2,i+r(1) mod Ai,i+r−1 . (6.9)

Upon substitution of this result back into hi(1)ψα the terms containing the expressions
Hi,i+r(1) and Hi+2,i+r(1) both assume the form of the ansatz (4.2). They correspond,

respectively, to the paths α− and α
+1. The terms from Ai,i+r−1 vanish due to the same

mechanism as in Figure 14. This calculation is graphically displayed in Figure 17. �

2
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1

1
α

=

1

2

3

4

+ 1
[2]

1

2

1

=

1

2

3

4

α− + 1

2

α+1

Figure 17. Diagrammatic presentation of the Corollary 3. The transfor-
mation (6.9) is displayed in details.

Consider now a path α which has exactly one local minimum between i+1 and i+2r+1 of
the same height as the minimum at i+1, see Figure 16. In this case the following Corollary
holds.

Corollary 4. Let α = (α0, . . . , αN ) be a Dyck path satisfying conditions a) and b) on page
32. Assume additionally that α has one local minimum placed at the point (i + 2p + 1),
0 < p < r, which has exactly the same height as the minimum at i + 1: αi+2p+1 = αi+1,
see Figure 16. Let further the paths α−, α+1 be defined as in Corollary 3, and denote by
α+2 the path obtained from α by raising the heights αi+1, . . . , αi+2p+1 by two, see Figure 2.
Then for the coefficients ψα, ψα− , ψα+1 and ψα+2 defined by (4.2) we have:

hi(1)ψα = ψα− + ψα+1 + ψα+2 . (6.10)
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Proof. We copy the transformation of hi(1)ψα from the proof of Corollary 3 till the end of
(6.9). As before, the term Hi,i+r(1) in the last line of (6.9) gives rise to the coefficient ψα−

in (6.10) whereas the term Ai,i+r−1 vanishes upon substitution into hi(1)ψα. This time
however the term Hi+2,i+r(1) when substituted into hi(1)ψα does not give an expression
fitting the ansatz (4.2). We continue its transformation using again (6.3) for u = p, v = 1,
and (6.5) for u = 1:

Hi+2,i+r(1) = Hi+2,i+p(1)Hi+p+1,i+r(p)

= Hi+2,i+p(1)
(
Hi+p+1,i+r(p+ 1) +

1

[p][p+ 1]
Hi+p+2,i+r(1)

)
mod Ai+p+1,i+r−1

= Hi+2,i+p(1)Hi+p+1,i+r(p+ 1) +
1

[p + 1]
Hi+p+2,i+r(1) mod Ai+2,i+r−1 . (6.11)

The first term in (6.11) upon substitution into hi(1)ψα gives rise to the coefficient ψα+1 ,
whereas the last term vanishes. It remains to consider the effect of the second term.

Let us introduce a further extension of the notation (6.2),

H i−s
i,i+r (u) := Hi,i+r(u)Hi−1,i+r−1(u+ 1) × · · · ×Hi−s,i+r−s(u+ s) ∀ r, s ≥ 0, (6.12)

H i−s
i,i−1 := H i−1

i,i+r := 1 .

GraphicallyH i−s
i,i+r (u) can be displayed as a rectangular block of tiles of a size (r+1)×(s+1)

with the bottom corner tile corresponding to hi(u). We also use the following shorthand
symbols for uphill and downhill strips (the case of block with either s = 0, or r = 0):

H i
i,i+r(u) := Hi,i+r(u) , H i−s

i,i (u) := H i−s
i (u) .

We now notice that in the assumptions of the Corollary the strip of tiles Hi+1,i+r(1) in

expression (4.2) for ψα is in fact multiplied from the left by the block of tilesH i+p+2
i+2p+1,i+p+r (1).

Therefore, we can continue the transformation of the second term in (6.11) by multiply-

ing it from the left by the term H i+p+2
i+2p+1,i+p+r (1). The transformation is essentially a

permutation of these two terms which makes use of the Yang-Baxter equation (2.18):

H i+p+2
i+2p+1,i+p+r (1)

(
1

[p+ 1]
Hi+p+2,i+r(1)

)

=
1

[p+ 1]
Hi+2p+2,i+p+r(1)H

i+p+2
i+2p+1,i+p+r−1(2)H

i+r+1
i+p+r (1)

=H i+p+2
i+2p+2,i+p+r (1) mod Ai+r+1,i+p+r . (6.13)

Here in the last line we evaluate factor H i+r+1
i+p+r (1) using (6.5). The transformation (6.13)

is illustrated in Figure 18.
Substitution of the result of (6.13) back into hi(1)ψα gives exactly the expression for

the coefficient ψα+2 . The whole calculation is graphically displayed in Figure 19. �

The general structure now is clear and we can formulate
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Figure 18. Diagrammatic presentation of the transformation (6.13) for
the case p = 4 and r = 7 (this situation occurs in the third line of the
calculation in Figure 19). Using the Yang-Baxter equation one moves the
strip Hi+p+2,i+r(1) down and right. The contents of the tiles in the block

H i+p+2
i+2p+2,i+p+r(1) are shifted cyclically in the uphill layers during the per-

mutation. The shaded downhill strip H i+r+1
i+p+r (1) equals [p + 1] modulo

Ai+r+1,i+p+r.

Proposition 9. Let α = (α0, . . . , αN ) be a Dyck path satisfying conditions a) and b)
on page 32. Assume additionally that α has K ≥ 1 local minima placed at the points
i+ 2pk + 1, 0 = p1 < · · · < pK < r, which have the same height h = αi+1 = αi+2pk+1 ∀k,
see Figure 2. Then for the coefficients ψα, ψα− , ψα+k , k = 1, . . . ,K, defined by (4.2) we
have:

hi(1)ψα = ψα− +

K∑

k=1

ψα+k ,

where α− and α+k are the Dyck paths defined in Figure 2.

For the proof of Proposition 9 we need a generalisation of the formula (6.3) for the case
of blocks (but now for v = 1 only):

Lemma 4. For generic values of u one has

H i−s
i,i+r (u) = H i−s

i,i+r (u+ 1) +
1

[u][u+ 1]
Hi+1,i+r(1)H

i−s
i−1(1)H i−s+1

i,i+r−1(u+ 2)

mod Ai−s,i+r−s−1 ⊕Ai+r−s+1,i+r . (6.14)

The graphical presentation of relation (6.14) given in Figure 20 is probably more clari-
fying.

Proof. We use induction on s. For s = 0 relation (6.14) reduces to (6.4). We now check it
for some s > 0 assuming it is valid for smaller values of s:

H i−s
i,i+r (u) = Hi,i+r(u)H

i−s
i−1,i+r−1(u+ 1)

=
(
Hi,i+r(u+ 1) +

1

[u][u+ 1]
Hi+1,i+r(1)

)
H i−s

i−1,i+r−1(u+ 1) mod Ai−s,i+r−s−1
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hi(1)ψα =
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Figure 19. Diagrammatic illustration for the proof of Corollary 4. The
path α is taken from Figure 16. Each time the transformation is applied to
the strips which are shown shaded on the pictures. The second line on the
Figure represents transformation (6.9). The third line corresponds to the
transformation (6.11). The shaded uphill strip in this line can be evaluated
as [4] (cf. with the last equality in (6.11)). The shaded downhill strip has
to be moved up and right (see Fig. 18) and then evaluated as [5].

= Hi,i+r(u+ 1)H i−s
i−1,i+r−1(u+ 2)

+
1

[u+ 1][u+ 2]

(
Hi,i+r(u+ 1)Hi,i+r−1(1)

)
H i−s

i−2(1)H i−s+1
i−1,i+r−2(u+ 3)

+
1

[u][u+ 1]
Hi+1,i+r(1)H

i−s
i−1,i+r−1(u+ 1) mod Ai−s,i+r−s−1 ⊕Ai+r−s+1,i+r−1

= H i−s+1
i,i+r−1(u+ 1)

+
1

[u][u+ 1]
Hi+1,i+r(1)

( [u]

[u+ 1]
H i−s

i−2(1) + H i−s
i−1(u+ 1)

)
H i−s+1

i,i+r−1(u+ 2)

mod Ai−s,i+r−s−1 ⊕Ai+r−s+1,i+r
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Figure 20. Diagrammatic presentation of relation (6.14). The colored
vertical lines on top of the tilted rectangles symbolize annihilator of the
terms Ai−s,i+r−s−1 and Ai+r−s+1,i+r. In the expressions for ψα (4.2) this
role is played by the coefficient ψA

Ω .

Here in the second line we used (6.3) for v = 1 and take into account the fact

Ai,I+r−1H
i−s

i−1,i+r−1(u+ 1) ⊂ Ai−s,i+r−s−1 .

When passing to the third line we used the induction assumption and then permuted two
terms in parentheses in the fourth line using the Yang-Baxter equation (2.18). The result
of this permutation contains the rightmost factor hi+r(u + 1) which can be evaluated as
[u + 1]/[u] modulo Ai+r. Finally, we notice that by obvious symmetry arguments the

mirror images of relations (6.3) are valid for the downhill strips Hj
i (u). Therefore, the

term taken in parentheses in the last line equals H i−s
i−1(1). �

Proof of Proposition 9. The simpler cases K = 1, 2 were already considered in Corollaries
3 and 4. In general the calculation of hi(1)ψα can be carried out in the following steps:

Step 1. Using the transformation (6.9) we extract the term ψα− from hi(1)ψα. The
residual term equals ψα+1 in case K = 1, see Corollary 3.

Step 2. In case K > 1 the residue needs further transformation. Namely, to fit the ansatz
(4.2) one has to rise by one the arguments in all tiles of the strip contained between the
uphill lines starting at height h = αi+1 at points i − 1 and i + 2p1 + 1 ≡ i + 1 and the
downhill lines starting at the same height h at points i + 2p2 + 1 and i + 2r + 1 (see the
dashed strip in the picture in the second line of Figure 19). Acting in this way we extract
the coefficient ψα+1 from the first step residue, see (6.11), and the rest, in case K = 2, can
be easily transformed to the form of ψα+2, see Figure 19.

Step 3. In case K > 2 the residual term of the second step does not fit the the ansatz (4.2)
and has to be further transformed. This time one has to rise by one the arguments in the
block of tiles contained between the uphill lines crossing the points i− 1 and i+2p2 +1 at
the height h and the downhill lines crossing the points i+2p3 +1 and i+2r+1 at the same
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Figure 21. The case K = 3, a typical diagram of the second step residue.
The term which needs further transformation is the shaded block of tiles.
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Figure 22. Transformation of the third step residue in case when the
second step residue is given by Figure 21. Using the Yang-Baxter equation
(2.18) shaded uphill/downhill strip can be moved up and left/right (see
explanation in Figure 18) and then evaluated with the use of (6.5). Since
K = 3 in this example, the third step residue equals ψα+3 .

height. An example of the second step residue is given in Figure 21. We can raise the
arguments in the block using the result of Lemma 4, see (6.14) and Figure 20. The first
term from the right hand side of (6.14) gives rise to the coefficient ψα+2 . The second term
is the third step residue which can be further simplified using the Yang-Baxter equation
(2.18) and the evaluation relation (6.5). In case K = 3 the result of the transformation
coincides with ψα+3 . For the example of Figure 21 the transformation is illustrated in
Figure 22.

From now on the consideration acquires its full generality and we continue the trans-
formation until it ends up at Step K. �

Up to now we have finished the proof of the bulk qKZ equation (3.19) for the coefficients
ψα whose corresponding Dyck paths α have a local maximum at i and a neighbouring local
minimum at i + 1. Consideration of the cases where α has a neighbouring local minima
at i− 1, or both at i− 1 and i+ 1 is a repetition of the same arguments.

It lasts to check the type A boundary qKZ relations (3.2) and (3.3). By Corollary 1 these
conditions are verified by the coefficient ψA

Ω of the maximal Dyck path. We then notice
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that none of the factors of the operator Hα (4.1) affect the coordinates x1 and xN and
hence commute with the boundary reflections π0 and πN , see (3.4) and(3.5). Therefore,
each of the coefficients ψα = Hαψ

A
Ω (4.2) also satisfies the conditions (3.2) and (3.3).

This completes the proof of Theorem 1.

6.2. Proof of Theorem 2. The proof is analogous to that of Theorem 1 for type A,
except that now we also have to make use of the reflection equation (2.20) for h̄0. Again,
following the preliminary analysis of the Section 3.3.1 we divide the proof of (3.1) into
two parts.

1. In case α does not have a local maximum at i we have to show that (6.1) is satisfied
for ψα given by (4.5). The working is identical to that in type A, see Section 6.1, except
for the case when hi(−1) acts on an uphill slope starting at the left boundary. In this
case we additionally use (2.20) to reflect h1(−1) at the boundary, see the illustration on
Figure 23.

v+2

−1

v v+2

v

−1

v+1 v+1

0

Figure 23. Reflection of h1(−1) at the origin. The first equality follows
from the reflection equation (2.20) and the second one is a property of ψB

Ω

(3.20): h1(−1)ψB
Ω = 0.

2. If α has a local maximum at i, then we need to prove that Theorem 2 implies (3.22).
Here again, the working is identical to that in type A except for the case where α has a
local minimum at i− 1 and has no lower local minima between 0 and i− 1. In this case,
(3.22) contains the term ψα+0 which originates from reflections at the left boundary. The
proof still follows basically the same lines as in type A although the calculations become
quite elaborate. Therefore we decided to collect the necessary technical tools in the Lemma
below and then to illustrate the idea of the proof on a few examples in pictures.

Let us introduce the following notation:

H0,i(u) := h̄0(u)H1,i(u+ 1) , H0
i (u) := H1

i (u) h̄0(u+ i) ,

T0,i(u) := H0,i(u) ×H0,i−1(u+ 2) × · · · ×H0,1(u+ 2i− 2) × h̄0(u+ 2i) .

Pictorially H0,i(u) and H0
i (u) can be displayed as uphill and downhill strips starting with

the half-tile at the left boundary, and T0,i(u) is a right triangle whose hypotenuse lies on
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1

iu+i

u+1

u

u+2

f u,( ω)

u+2 u+3

u+1

u+2

u+3

Figure 24. Diagrammatic presentation of (6.14). The coloured vertical
lines on top of the tilted triangles annihilate the term A1,i.

the left boundary vertical line. We also extend the domain of definition for h̄0(u) (4.4)
demanding that

h̄0(0) := s0 −
[ω]

2[ω + 1]
. (6.15)

For the newly introduced quantities the following analogues of equation (6.9) and Lemma4
hold

Lemma 5. One has

1. hi(1)H
0
i−1(1) = H0

i (1) + H0
i−2(1) + c0(i) modA1,i ∀ i = 1, 2, . . . , (6.16)

where c0(i) = 1 if i is odd, c0(i) = − [ω]
[ω+1] if i is even, and we assume H0

−1(1) = 0;

2. for nonnegative integers i and u

T0,i(u) = T0,i(u+ 1) + f(u, ω)H1,i(1)T0,i−1(u+ 2) , (6.17)

where 1

f(u, ω) =





−
[ω]

2[ω + 1]
if u = 0,

[p][p− ω]

[2p][2p + 1][ω + 1]
if u = 2p is even positive,

[p][p+ ω]

[2p − 1][2p][ω + 1]
if u = 2p − 1 is odd.

(6.18)

and we assume H1,0(1) = T0,−1(u) = 1.

Equation (6.17) is displayed graphically in Figure 24.

1In principle one can choose a regularisation for h̄0(0) which is different from (6.15), but then the
prescription for f(0, ω) should be changed correspondingly.
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1

2

3

1 1

2

3

4

1

2

α α α +0+1α
_

Figure 25. Diagrammatic presentation of relation (6.20). In the case
shown on Figure i = 3 and, hence, the coefficient in front of ψα+0 equals 1.

Proof. Equations (6.16) follow easily from (the mirror images of) (6.3), (6.5), and from
(4.4). Relations (6.17) can be proved by induction. The considerations are standard and
we just briefly comment on them.

For i = 0, (6.17) follows from (4.4). To check the induction step i→ i+ 1 one makes a
decomposition

T0,i+1(u) = h̄0(u)H1,i+1(u+ 1)T0,i(u+ 2)

and applies formulas (6.3), (4.4) and the induction assumption to rise consecutively the
contents by one of the factors H1,i+1(u+ 1), h̄0(u) and T0,i(u+ 2). Recollecting the (half-
)tiles in the resulting expressions with the help of the Yang-Baxter equation (2.18) and
the reflection equation (2.20), and using the evaluation formulas (6.5) and (4.4) together
with its consequence

h̄0(u)h̄0(u+ 2) = a h̄0(u+ 2) + b (for some numbers a and b),

one finally reproduces the term T0,i+1(u + 1) and a combination of terms H1,i+1(u +
1)T0,i(u + 2) and H2,i+1(1)T0,i(u + 2). The latter can be simplified to H1,i+1(1)T0,i(u +
2), thanks to the relations (6.4). The unwanted terms H2,i+1(1)H1,i(u + 3)T0,i−1(u + 4)
appearing at the intermediate steps cancel in the final expression.

We mention here that all manipulations with q-numbers, which one needs during the
transformation, can be easily done with the help of the following identities

[u+ k][v ± k] = [u][v] + [k][v ± (u+ k)] . (6.19)

�We now continue the proof of (3.22).
Consider the action of hi(1) on the Ballot path α which has a local minimum at i− 1

and all the local minima in between 0 and i−1 are higher then αi−1. In this case, applying
relation (6.16), we find

hi(1)ψα = ψα− + ψα+1 + ψα+0 , (6.20)

where the paths α−, α+0/1 are defined in Figure 3 and their corresponding coefficients are
given by (4.5). Note that, according to Lemma 5.1, in the case i = 1 the term ψα+1 should
be absent from the right hand side of (6.20). Altogether these prescriptions are identical
to those of (3.22). The transformation (6.20) is illustrated in Figure 25.

We now consider the case where the path α contains m ≥ 1 local minima between 0
and i− 1 which are of the same height as the minimum at i− 1. The proof can be carried
out in K = m + 2 steps (cf. the proof of Proposition 9). To explain the first three steps
we consider the case m = 1, i.e., a path α with the two local minima placed at i− 1 and
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i − 2p − 1, p > 0 : αi−2p−1 = αi−1. Examples of such paths are given in Figure 26. The

a) i odd and p = i−1

2
b) i even and p = i

2
− 1 c) i = 8, p = 2

1

2

3

4

5

1

3

2

1

2

3

4

5

1

2

3

4

6

2

1

2

3

4

5

6

7

8

1

22

33

4 4

55

6

7

9

Figure 26. Ballot paths α with two local minima of the same height, one
at i−1 and another one at i−2p−1. In these cases one calculates hi(1)ψα

in K = 3 steps.

calculation of hi(1)ψα for the path shown on Figure 26 c) is illustrated in Figures 27–30.

Step 1. Extraction of coefficient ψα− from hi(1)ψα, see Figure 27.
We use (6.9) to raise by one the contents in the shaded strip H1

i−1(1) on Figure 27. The
result is a sum of two terms. The second term is a residue of the first step which is to
be further transformed at the second step. We denote it by R1. Here we transform the
first term raising by one the content of its top half-tile h̄0(i) (shown shaded on Figure 27)
with the help of (6.17). This results in a sum of ψα− and a term proportional to ψα+0 ,
see the second line in Figure 27. The factor [9] in the coefficient of ψα+0 comes from the
evaluation of the top strip H1

i (1).

hi(1)ψα =

_ +1

8

5

4

2

1

6

7

22

1

3 3

4

5

4

6

1

α

1

2

322

1

33 4

44 5

5 6

6

8

7

8

1

1

22

23 3

3

4

44

5

5

6

6

8

αα

3

=8i

= ψα− + [9]
[4][4 − ω]

[8][9][ω + 1]
ψα+0 + R1

Figure 27. Extraction of the coefficient ψα− from the expression hi(1)ψα.

Step 2. Extraction of coefficient ψα+1 from the first step residue, see Figure 28.
Again, we use (6.9) to raise by one the contents in the shaded strip H1

i−p−1(p) on
Figure 28. The result is a sum of ψα+1 and a term which we continue transforming. Using
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ψα+1 +
1

[3]
R1 =

α +1

1

1

22

23 3

3

4

44

5

5

6

8

6

i−p−1 i−2 −1p

2 2

1

3 3

4 1

2

3

4

5

4

6

8

= ψα+1 +
[5]

[3]

( 1

[2]
−

[4][ω + 4]

[8][ω + 1]

)
ψα+0 + R2

Figure 28. Extraction of coefficient ψα+1 from R1.

2

4

36

1

4

5

2

1

5

2

4

3

4

2

6

2

4

6

5

1

4

3

2

2

1

5

44

3

2

6

Figure 29. Reflection of a strip at the boundary. Here we use the Yang-
Baxter equation (2.18) in the first and the last equalities and the reflection
equation (2.20) in the second equality. The shaded downhill strip equals
[3] modulo A1,2.

the definition of h̄0 (4.4) we lower the content of the top half-tile (shown shaded) from i
to i− 2p − 2 (from 8 to 2 in the particular case shown on Figure 28) :

h̄0(8) =
(

1
[2] −

[4][ω+4]
[8][ω+1]

)
+ h̄0(2) . (6.21)

The constant term resulting from this procedure gives a contribution proportional to ψα+0

,
see the second line of Figure 28. The factor [5] appearing in the coefficient of ψα+0 is due
to the evaluation of the top strip H1

4 (1) (in general one evaluates H1
i−p−2(1) → [i−p−1]).

Lowering of the content in the top half-tile allows us to reorder the (half-)tiles of the
last term in the first line of Figure 28. Namely, analogously to the case considered in
Figure 18 we can push the uphill strip Hi−2p−1,i−p−2(1) (shown shaded) up and left using
the Yang-Baxter equation until it touches the left boundary. Then we reflect the strip at
the boundary as shown on Figure 29, which is possible because we changed the content of
h̄0 from 8 to 2 in (6.21). Finally, after reflection, the strip can be evaluated, cancelling the
numeric factor in front of the picture. We call the result of this transformation a residue
of the second step and denote it by R2.
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= ψα+2 + [1−ω]
[2][3][ω+1]R2 = 1

22

332

3 4

4 4

5

6

α +2

6

5

4 2

1 4

3 3

2 2

1

= ψα+2 +
[1 − ω]

[2][ω + 1]
ψα+0

Figure 30. Extraction of coefficient ψα+2 from R2.

Step 3. Extraction of coefficient ψα+2 from the second step residue, see Figure 30.
We use (6.17), see also Figure 24 to increase the contents of the triangle T0,p(i− 2p− 2)

(shown shaded on the figure). The result is a sum of ψα+2 and a term which in fact is
proportional to ψα+0 . To prove this, one has to push up the downhill strip H1

i−2p−2(1)

(shown shaded on the figure) and then evaluate it in the same way as it was done in the
transformation (6.9), see Figure 18.

Finally, collecting the terms ψα+0 from all three steps we find

hi(1)ψα = ψα− + c0(i)ψα+0 + ψα+1 + ψα+2 , (6.22)

where c0(i) = − [ω]
[ω+1] for the particular case considered in Figures 27–30. This value holds

for all cases with i even, while c0(i) = 1 for all cases with i odd. In general, the coefficient
c0(i) can be calculated with the help of (6.19).

Equations (6.22) coincide with the prescriptions of (3.22) in case the path α contains
m = 1 local minimum between 0 and i − 1 of the same height as the minimum at i − 1.
Before we proceed to cases with m ≥ 2 let us comment on two particular cases with m = 1:
these are the cases a) and b) on Figure 26 where the local minimum of the height αi−1

appears at 0, or at 1. Similar exceptional cases appear for all values of m.
a) i odd and p = i−1

2 . In this case the residue R2 vanishes so that the calculation
of hi(1)ψα finishes in two steps. The term ψα+2 does not appear in (6.22) which is in
agreement with (3.22). The contributions to ψα+0 from the first two steps sum up to give
the correct value of the coefficient c0(i) = 1. The mechanism how the residue R2 vanishes
for the path shown on Figure 26 a) is explained in Figure 31.

b) i even and p = i
2 − 1. In this case, in the second step, the content of the top

half-tile has to be changed from i to i − 2p − 2 = 0. This is why we extended in (6.15)
the domain of definition for h̄(u) and derived (6.17) and (6.18) for the case u = 0. With
these extensions the calculation of hi(1)ψα goes the standard way.
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= [2]
[3] = 0R2 = 1

[3]

3

1

2

1

−1

1

−1

3

1

Figure 31. Vanishing of R2 in hi(1)ψα for the path α given by Fig-
ure 26 a). In the second step we already changed the content of the
top half-tile from i = 5 to i − 2p − 2 = −1. Now we apply the reflec-
tion equation (2.20) to move the shaded tile h1(2) up and evaluate it us-
ing (6.7). The two shaded half-tiles then meet together and annihilate:
h̄0(1)h̄0(−1) = s0(−a0) = 0.

hi(1)ψα =

1

11

2 2 2 2 2

1

3 3 33

4 4 4 4

555

66 6

77

88

9

10

α
ii i−2p

2
−2p

1
−1−1

= ψα− −
[ω]

[ω + 1]
ψα+0 + ψα+1 + R′

2

Figure 32. The result of the transformations described in Figures 27–30
in the case m ≥ 2. The path α has local minima of the same height at
points i − 2pk − 1, k = 1, . . . ,m, and at i − 1. In the particular example
shown here we have i = 10, m = 2, p1 = 2 and p2 = 4. The term R′

2 in the
right hand side comes in place of ψα+2 in Figure 30.

Consider now a path with m ≥ 2 local minima preceding the minimum at i − 1 which
all have the same height αi−1 (recall that we do not care about higher preceding minima
and do not allow lower ones). In this case the transformations of the third step described
earlier are not enough to extract the term ψα+2 and so we continue the transformation.
We explain this for the case of the path shown on Figure 32.

Continuation of the Step 3. As can be seen on Figure 32, the terms ψα− , ψα+0 and ψα+1

are already fixed. The term R′
2 displayed in Figure 33 appears in the place of ψα+2 and

we now continue its transformation. To extract the term ψα+2 we increase by one the
contents of the (half-)tiles in the shaded trapezium in the first equality on Figure 33. This
trapezium is a composition of a rectangle and a triangle and we consecutively use (6.14)
and (6.17) to increase their contents, see also Figures 20 and 24). As a result, besides ψα+0

we get two more terms whose pictures are shown in the second equality on Figure 33. Using
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= ψα+2 + 1
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i−p1−p −12

= ψα+2 +
[ω]

2[ω + 1]
χα+0 + R3

Figure 33. Extraction of ψα+2 from R′
2 in the case m ≥ 2.
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Figure 34. Definition of the term χα+0 and calculation of the third step
residue R3 in the case m = 2.

the by now standard procedures of lowering the content of the boundary half-tile (from
i− 2p1 − 1 to i− 2p2 − 2 in general, and from 5 to 0 in the specific example on Figure 33)
and pushing up, reflecting at the boundary and evaluating the strips of tiles, we extract
the third step residue R3 from the middle picture in Figure 33. All the other terms can
be reduced to the same form χα+0 . Both terms R3 and χα+0 are shown in Figure 34 (note
that χα+0 is composed of the same factors as ψα+0 but the contents may be different).

Step 4. Further transformation of R3 is identical to the calculation of R2, see Figure 30,
and the result, for the case m = 2, is presented in Figure 34. We obtain the term ψα+3

and the term χα+0 which cancels similar term in the preceding transformation (cf. the
second line in Figure 33 and the right hand side in Figure 34).

Collecting the terms in Figures 32–34 we eventually find that for the case m = 2 the
factorised formulas (4.5) indeed satisfy the type B qKZ equations in the bulk (3.22).
Consideration of the cases with m > 3 goes along the same lines.
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It lasts to check the type B boundary qKZ relation (3.24) (the boundary relation (3.3)
is valid due to the same arguments used in the proof of Theorem 1). Indeed, rewriting
(3.24) as

h̄0(1)ψα = ψα−0

one makes the assertion obvious.

This completes the proof of Theorem 2.

Appendix A. Factorised solutions for type B

A.1. Case N = 2. Here we have two paths, ΩB = and . From the preliminary
analysis we know that ψ is given by (3.20) and satisfies equation

− a1ψ = h1(−1)ψ = 0. (A.1)

Now we may apply the boundary generator to obtain the component function ψ , and
from (3.24) we find

s0ψ = ψ . (A.2)

Notice, that acting by h1(1) on ψ we can get back to ψ , see (3.22),

h1(1)ψ = ψ ,

which can be equivalently written as

h1(1)
(
s0 −

1

[2]

)
ψ = 0, (A.3)

where we used (A.1), (A.2) and relation (2.12). Equation (A.3) is the truncation condition
to be satisfied by ψ .

A.2. Case N = 3. In this case there are three paths: ΩB = , and .
As before, we start with the component function ψB

Ω = ψ given by (3.20) and satis-

fying relations

h1(−1)ψ = h2(−1)ψ = 0. (A.4)

Then we act with the boundary generator and obtain

s0ψ = ψ . (A.5)

Next, we apply h1(1) and find

h1(1)ψ = ψ + ψ . (A.6)

This can be rewritten to give the following expression cf. (A.3),

ψ = h1(1)
(
s0 −

1

[2]

)
ψ , (A.7)
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where we have used (A.4), (A.5) and (2.12). Finally, we act by operators s0 and h2(1) to
the rightmost term in (A.6) and obtain

s0ψ = 0,

h2(1)ψ = ψ − [ω]
[ω+1]ψ .

The latter relations can be rewritten as the truncation conditions on ψ :

s0h1(2)
(
s0 −

[ω+2]
[3][ω+1]

)
ψ = 0, (A.8)

h2(1)h1(2)
(
s0 −

[ω+2]
[3][ω+1]

)
ψ = 0,

where we used (A.4), (A.5), (A.6) and, again, (2.12) to find factorised expressions.

Analysing the factorised expressions for the component functions in the cases N = 2, 3
we see that a proper definition for the dashed boundary half-tile is

k = h̄0(k) := h0(k)|ν=ω+pk
= s0 −

[⌊k/2⌋] [ω + ⌊(k + 1)/2⌋]

[k][ω + 1]
,

where pk = k mod 2. Note that the Baxterised boundary element h̄0(u) is defined for
integer values of its spectral parameter u ∈ Z as only such values appear in our consider-
ations.

Using this notation, the expressions for the coefficients ψα and the truncation conditions
take a simple form. For example, formulas (A.5), (A.7), (A.8) read

ψ = h̄0(1)ψ , ψ = h1(1)h̄0(2)ψ , h̄0(1)h1(2)h̄0(3)ψ = 0.
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Appendix B. Type A solutions

Using the factorised expressions of Theorem 1, we have computed polynomial solutions
of the qKZ equation for type A from Proposition 4 in the limit xi → 0 up to N = 10.
These solutions are, surprisingly, polynomials in τ2 with positive coefficients, up to an
overall factor which is a power of τ . The complete solution is determined up to an overall
normalisation we have chosen so that

ψA
Ω = τ ⌊N/2⌋(⌊N/2⌋−1)/2 .

Let α = (α0, α1, . . . , αN ) ∈ DN,p be a Dyck path of length N whose minima lie on or
above height p̃−1. Then we define cα,p as the signed sum of boxes between α and Ω(N, p),

where the boxes at height p̃+h are assigned (−1)h. An example is given in the main text
in Figure 10. The explicit expression for cα,p is given by

cα,p =
(−1)p̃+1

2




⌊N/2⌋∑

i=1

(α2i − Ω2i(N, p)) −

⌊(N−1)/2⌋∑

i=0

(α2i+1 − Ω2i+1(N, p))


 .

We furthermore define the subset DN,p of Dyck paths of length N whose local minima
lie on or above height p̃ = ⌊(N − 1)/2⌋ − p, i.e.

DN,p = {α ∈ DN | αi ≥ min(Ωi, p̃)} .

These definitions allow us to define the partial sums

S±(N, p) =
∑

α∈DN,p

τ±cα,pψα,

for which we formulate some conjectures in the main text.

B.1. N = 4.

α ψα τ±cα,1

1 + τ2 1

τ τ±1

S−(4, 0) = τ S+(4, 0) = τ

S−(4, 1) = 2 + τ2 S+(4, 1) = 1 + 2τ2

B.2. N = 5.

α ψα τ±cα,2 τ±cα,1

τ2(2 + τ2) 1

τ3 τ±1

τ(2 + τ2) τ±1

1 + 2τ2 τ±2 1

τ τ±1 τ±1
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S−(5, 0) = τ S+(5, 0) = τ

S−(5, 1) = 2(1 + τ2) S+(5, 1) = 1 + 3τ2

S−(5, 2) = τ−2(1 + 5τ2 + 4τ4 + τ6) S+(5, 2) = τ2(6 + 5τ2)

B.3. N = 6.

α ψα τ±cα,2 τ±cα,1

1 + 5τ2 + 4τ4 + τ6 1

τ(2 + 2τ2 + τ4) τ±1

τ(1 + 3τ2 + τ4) τ±1

2τ2(1 + τ2) τ±2 1

τ3 τ±1 τ±1

S−(6, 0) = τ3 S+(6, 0) = τ3

S−(6, 1) = τ2(3 + 2τ2) S+(6, 1) = τ2(2 + 3τ2)

S−(6, 2) = 6 + 13τ2 + 6τ4 + τ6 S+(6, 2) = 1 + 8τ2 + 12τ4 + 5τ6

From now on we abbreviate polynomials of the form P (τ) = τp
∑r

k=0 akτ
2k by

P (τ) = τp(a0, a1, . . . , ar).

For example,
6τ2 + 13τ4 + 6τ6 + τ8 ≡ τ2(6, 13, 6, 1)
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B.4. N = 7.

α ψα τ±cα,3 τ±cα,2 τ±cα,1

τ3(6, 13, 6, 1) 1

τ4(5, 4, 1) τ±1

τ4(3, 4, 1) τ±1

τ2(6, 13, 6, 1) τ±1

τ5(3, 2) τ±2

τ6 τ±1

τ3(5, 3, 1) τ±2

τ(3, 11, 10, 2) τ±2

τ2(3, 5, 1) τ±1

(1, 8, 12, 5) τ±3 1

τ(2, 3, 3) τ±2 τ±1

τ(1, 6, 3) τ±2 τ±1

τ2(2, 3) τ±1 τ±2 1

τ3 τ±2 τ±1 τ±1

S−(7, 0) = τ3 S+(7, 0) = τ3

S−(7, 1) = τ2(3, 3) S+(7, 1) = τ2(2, 4)

S−(7, 2) = (6, 21, 18, 5) S+(7, 2) = (1, 11, 24, 14)

S−(7, 3) = τ−3(1, 14, 49, 62, 34, 9, 1) S+(7, 3) = τ3(24, 76, 56, 14)
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B.5. N = 8.

α ψα τ±cα,3 τ±cα,2 τ±cα,1

(1, 14, 49, 62, 34, 9, 1) 1

τ(3, 15, 29, 20, 7, 1) τ±1

τ(2, 15, 27, 19, 7, 1) τ±1

τ(1, 12, 28, 25, 8, 1) τ±1

τ2(6, 21, 18, 9, 2) τ±2

τ3(5, 5, 3, 1) τ±1

τ2(3, 9, 12, 5, 1) τ±2

τ2(2, 15, 24, 13, 2) τ±2

τ3(1, 6, 6, 1) τ±1

τ3(6, 21, 18, 5) τ±3 1

τ4(5, 6, 3) τ±2 τ±1

τ4(3, 8, 3) τ±2 τ±1

τ5(3, 3) τ±1 τ±2 1

τ6 τ±2 τ±1 τ±1

S−(8, 0) = τ6 S+(8, 0) = τ6

S−(8, 1) = τ5(4, 3) S+(8, 1) = τ5(3, 4)

S−(8, 2) = τ3(17, 39, 24, 5) S+(8, 2) = τ3(6, 29, 36, 14)

S−(8, 3) = (24, 136, 234, 176, 63, 12, 1) S+(8, 3) = (1, 20, 108, 219, 200, 84, 14)
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B.6. N = 9.

α ψα τ±cα,4

τ4(24, 136, 234, 176, 63, 12, 1) 1

τ5(28, 84, 94, 43, 10, 1) τ±1

τ5(20, 72, 84, 41, 10, 1) τ±1

τ5(12, 58, 74, 41, 10, 1) τ±1

τ3(24, 136, 234, 176, 63, 12, 1) τ±1

τ6(28, 65, 45, 15, 2) τ±2

τ6(14, 31, 23, 7, 1) τ±2

τ4(28, 84, 90, 40, 10, 1) τ±2

τ6(12, 41, 41, 16, 2) τ±2

τ4(20, 68, 74, 34, 9, 1) τ±2

τ2(12, 86, 208, 213, 103, 22, 2) τ±2

τ7(14, 13, 6, 1) τ±1

τ7(4, 10, 7, 1) τ±1

τ3(12, 62, 88, 51, 11, 1) τ±1
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α ψα τ±cα,4

τ7(17, 39, 24, 5) τ±3

τ5(28, 59, 33, 12, 2) τ±3

τ3(14, 56, 84, 54, 15, 2) τ±3

τ(4, 46, 160, 230, 154, 47, 5) τ±3

τ8(9, 9, 3) τ±2

τ8(6, 10, 3) τ±2

τ9(4, 3) τ±1

τ10 τ±2

τ6(14, 9, 4, 1) τ±2

τ4(14, 28, 25, 7, 1) τ±2

τ2(8, 40, 68, 61, 26, 3) τ±2

τ2(4, 38, 96, 84, 28, 3) τ±2

τ3(8, 40, 56, 27, 3) τ±1

τ4(4, 14, 9, 1) τ±2
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α ψα τ±cα,4 τ±cα,3 τ±cα,2 τ±cα,1

(1, 20, 108, 219, 200, 84, 14) τ±4 1

τ(3, 19, 58, 69, 38, 9) τ±3 τ±1

τ(2, 27, 67, 75, 47, 10) τ±3 τ±1

τ(1, 18, 75, 106, 51, 9) τ±3 τ±1

τ2(6, 29, 36, 30, 11) τ±3 τ±2

τ2(3, 13, 33, 21, 6) τ±2 τ±2

τ2(2, 27, 64, 51, 11) τ±2 τ±2

τ3(5, 7, 6, 4) τ±3 τ±1

τ3(1, 12, 17, 4) τ±3 τ±1

τ3(6, 29, 36, 14) τ±1 τ±3 1

τ4(5, 8, 6) τ±2 τ±2 τ±1

τ4(3, 12, 6) τ±2 τ±2 τ±1

τ5(3, 4) τ±3 τ±1 τ±2 1

τ6 τ±2 τ±2 τ±1 τ±1
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S−(9, 0) = τ6

S−(9, 1) = τ5(4, 4)

S−(9, 2) = τ3(17, 54, 48, 14)

S−(9, 3) = (24, 196, 520, 624, 372, 112, 14)

S−(9, 4) = τ−4(1, 30, 273, 1042, 2006, 2121, 1321, 501, 117, 16)

S+(0, 0) = τ6

S+(9, 1) = τ5(3, 5)

S+(9, 2) = τ3(6, 37, 60, 30)

S+(9, 3) = (1, 26, 189, 524, 660, 378, 84)

S+(9, 4) = τ4(120, 920, 2242, 2440, 1305, 360, 42)
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B.6.1. N = 10.

α ψα τ±cα,4

(1, 30, 273, 1042, 2006, 2121, 1321, 501, 117, 16, 1) 1

τ(4, 56, 294, 738, 977, 735, 327, 89, 14, 1) τ±1

τ(3, 49, 269, 683, 912, 691, 312, 87, 14, 1) τ±1

τ(2, 47, 267, 686, 915, 688, 313, 88, 14, 1) τ±1

τ(1, 28, 220, 669, 996, 820, 384, 101, 15, 1) τ±1

τ2(12, 116, 396, 684, 348, 117, 23, 2) τ±2

τ2(8, 60, 206, 350, 329, 176, 58, 11, 1) τ±2

τ2(4, 48, 210, 394, 403, 230, 72, 13, 1) τ±2

τ2(6, 89, 368, 665, 618, 342, 120, 24, 2) τ±2

τ2(3, 43, 184, 343, 349, 200, 64, 12, 1) τ±2

τ2(2, 47, 264, 632, 744, 469, 159, 27, 2) τ±2

τ3(14, 70, 151, 180, 111, 43, 10, 1) τ±1

τ3(5, 57, 156, 174, 111, 46, 11, 1) τ±1

τ3(1, 22, 102, 97, 172, 72, 13, 1) τ±1
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α ψα τ±cα,4

τ3(24, 196, 520, 624, 408, 174, 44, 5) τ±3

τ3(12, 92, 216, 276, 198, 76, 18, 2) τ±3

τ3(8, 60, 194, 286, 226, 94, 20, 2) τ±3

τ3(6, 89, 368, 649, 564, 256, 58, 5) τ±3

τ4(28, 112, 187, 140, 69, 21, 3) τ±2

τ4(20, 118, 189, 142, 71, 22, 3) τ±2

τ5(28, 84, 73, 42, 16, 3) τ±1

τ6(14, 14, 9, 4, 1) τ±2

τ4(14, 42, 64, 57, 25, 7, 1) τ±2

τ4(4, 24, 63, 70, 39, 9, 1) τ±2

τ4(5, 58, 166, 190, 111, 32, 3) τ±2

τ4(3, 42, 147, 206, 126, 33, 3) τ±2

τ5(3, 34, 90, 85, 31, 3) τ±1

τ6(1, 10, 20, 10, 1) τ±2
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α ψα τ±cα,4 τ±cα,3 τ±cα,2 τ±cα,1

τ4(24, 196, 520, 6224, 372, 112, 14) τ±4 1

τ5(28, 112, 191, 144, 55, 9) τ±3 τ±1

τ5(20, 122, 209, 162, 165, 10) τ±3 τ±1

τ5(12, 88, 192, 174, 64, 9) τ±3 τ±1

τ6(28, 90, 80, 48, 11) τ±3 τ±2

τ6(14, 45, 60, 29, 6) τ±2 τ±2

τ6(12, 71, 110, 63, 11) τ±2 τ±2

τ7(14, 18, 12, 4) τ±3 τ±1

τ7(4, 20, 20, 4) τ±3 τ±1

τ7(17, 54, 48, 14) τ±1 τ±3 1

τ8(9, 12, 6) τ±2 τ±2 τ±1

τ8(6, 15, 6) τ±2 τ±2 τ±1

τ9(4, 4) τ±3 τ±1 τ±2 1

τ10 τ±2 τ±2 τ±1 τ±1
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S−(10, 0) = τ10

S−(10, 1) = τ9(5, 4)

S−(10, 2) = τ7(36, 86, 60, 14)

S−(10, 3) = τ4(155, 811, 1490, 1306, 592, 140, 14)

S−(10, 4) = (120, 1400, 5754, 11584, 13071, 8900, 3805, 1044, 186, 20, 1)

S+(10, 0) = τ10

S+(10, 1) = τ9(4, 5)

S+(10, 2) = τ7(17, 69, 80, 30)

S+(10, 3) = τ4(24, 256, 914, 1496, 1230, 504, 84)

S+(10, 4) = (1, 40, 508, 2799, 7940, 12652, 12026, 6967, 2430, 480, 42)
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Appendix C. Type B solutions

Using the factorised expressions of Theorem 2, we have computed polynomial solutions
of the qKZ equation for type B from Proposition 6 in the limit xi → 0 up to N = 6. In
the following variables,

τ ′2 = 2 − τ = 2 + [2] = [2]2
q1/2 , a = −

[ω + 1]

[ω−δ
2 ][ω+δ

2 ]

∣∣∣∣∣
ω=−1/2

,

see also Remark 1, and up to an overall normalisation, these solutions become polynomials
with positive coefficients. We choose the normalisation such that

ψB
Ω = a⌊N/2⌋.

C.1. N = 2.

α ψα

1

a

C.2. N = 3.

α ψα

1 + τ ′2 + a

2

a

C.3. N = 4.

α ψα

5 + τ ′2 + a(2 + τ ′2)

a(3 + 2τ ′2 + τ ′4) + a2(2 + τ ′2)

2 + τ ′2

2a(2 + τ ′2) + 2a2

3a

a2
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C.4. N = 5.

α ψα

9 + 17τ ′2 + 6τ ′4 + τ ′6 + a(16 + 17τ ′2 + 3τ ′4) + a2(7 + 2τ ′2)

2 + 5τ ′2 + 3τ ′4 + τ ′6 + a(4 + 6τ ′2 + 2τ ′4) + a2(2 + τ ′2)

12 + 17τ ′2 + 4τ ′4 + a(12 + 5τ ′2 + τ ′4)

a(1 + τ ′2)(5 + 3τ ′2 + τ ′4) + a2(5 + 3τ ′2 + τ ′4)

24 + 8τ ′2 + τ ′4 + a(8 + 3τ ′2)

a(12 + 7τ ′2 + 2τ ′4) + 2a2(3 + τ ′2)

8 + 3τ ′2

3a(3 + τ ′2) + 3a2

4a

a2



66 JAN DE GIER AND PAVEL PYATOV

C.5. N = 6.

α ψα

149 + 107τ ′2 + 27τ ′4 + 3τ ′6 + a(126 + 131τ ′2 + 45τ ′4 + 9τ ′6 + τ ′8)

+a2(32 + 36τ ′2 + 9τ ′4 + τ ′6)

58 + 57τ ′2 + 14τ ′4 + τ ′6 + a(32 + 44τ ′2 + 21τ ′4 + 6τ ′6 + τ ′8)

+a2(1 + τ ′2)(8 + 4τ ′2 + τ ′4)

52 + 50τ ′2 + 21τ ′4 + 6τ ′6 + τ ′8 + a(32 + 36τ ′2 + 9τ ′4 + τ ′6)

2(20 + 24τ ′2 + 7τ ′4 + τ ′6) + a(1 + τ ′2)(8 + 4τ ′2 + τ ′4)

(1 + τ ′2)(8 + 4τ ′2 + τ ′4)

a(81 + 101τ ′2 + 70τ ′4 + 26τ ′6 + 7τ ′8 + τ ′10) + a2(94 + 127τ ′2 + 72τ ′4 + 17τ ′6 + 2τ ′8)

+a3(32 + 36τ ′2 + 9τ ′4 + τ ′6)

a(26 + 37τ ′2 + 25τ ′4 + 11τ ′6 + 4τ ′8 + τ ′10) + a2(12 + 20τ ′2 + 14τ ′4 + 5τ ′6 + τ ′8)

+a3(1 + τ ′2)(8 + 4τ ′2 + τ ′4)

a(72 + 104τ ′2 + 81τ ′4 + 25τ ′6 + 4τ ′8) + a2(84 + 107τ ′2 + 55τ ′4 + 9τ ′6)

+a3(2 + τ ′2)(12 + 5τ ′2)

a(39 + 58τ ′2 + 49τ ′4 + 10τ ′6) + a2(2 + τ ′2)(17 + 8τ ′2 + τ ′4)

a2(11 + 19τ ′2 + 19τ ′4 + 7τ ′6 + τ ′8) + a3(2 + τ ′2)(5 + 3τ ′2 + τ ′4)

a(104 + 128τ ′2 + 44τ ′4 + 9τ ′6 + τ ′8) + a2(104 + 92τ ′2 + 22τ ′4 + 2τ ′6)

+a3(32 + 11τ ′2 + τ ′4)

3a(1 + τ ′2)(8 + 4τ ′2 + τ ′4) + a2(3 + 2τ ′2)(8 + 3τ ′2) + a3(14 + 3τ)
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α ψα

a(84 + 78τ ′2 + 19τ ′4 + τ ′6) + a2(50 + 20τ ′2 + 3τ ′4)

2a2(2 + τ ′2)(7 + 4τ ′2 + τ ′4) + 2a3(24 + 6τ ′2 + 2τ ′4)

a(75 + 26τ ′2 + 3τ ′4) + 2a2(10 + 3τ ′2)

a2(31 + 15τ ′2 + 3τ ′4) + 3a3(4 + τ ′2)

2a(10 + 3τ ′2)

4a2(4 + τ ′2) + 4a3

5a2

a3
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