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MATRIX PROBLEMS, TRIANGULATED CATEGORIES

AND STABLE HOMOTOPY TYPES

YURIY A. DROZD

Abstract. We show how the matrix problems can be used in
studying triangulated categories. Then we apply the general tech-
nique to the classification of stable homotopy types of polyhedra,
find out the “representation types” of such problems and give a
description of stable homotopy types in finite and tame cases.
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The technique of matrix problems, especially, of bimodule categories,
has proved their efficiency in lots of problems from representation the-
ory, algebraic geometry, group theory and other domains of modern
algebra. During last years, mainly due to the works of Baues, Henn,
Hennes, and the author, it has found new applications in algebraic
topology, namely, in studying stable homotopy classes of polyhedra
(see [19], [8], [4]–[7], [16]). In the survey [15] the author has picked
out the background of this approach, which is based on the trianguled
structure of thew stable homotopy category. In this paper we show that
the same method can be used in general situation, when we construct
subcategories of a triangulated category from simpler ones (see Sec-
tion 1). Then we summarize what can be done using this technique for
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2 YURIY A. DROZD

the classification problem of stable homotopy classes. Namely, we con-
sider the subcategories Sn of the stable homotopy category consisting
of polyhedra having only cells of n consecutive dimensions. We classify
polyhedra from Sn for n ≤ 4 and show that for n > 4 this problem be-
comes wild in the sense of the representation theory of algebras. Then
we consider the subcategories Tn of Sn consisting of polyhedra with no
torsion in ontegral homologies. This time we classify polyhedra from
Tn for n ≤ 7 and show that for n > 7 their classification is also a wild
problem. In some sense, these results are “final,” though we are sure
that this technique will be useful for some other problems of algebraic
topology as well as for studying other triangulated categories.

Since the technical details of calculations are sometimes rather cum-
bersome and can be found in the previous papers, we usually omit
them, just outlining the ideas.

1. Matrix problems arising in triangulated categories

Let C be a triangulated category with the shift A 7→ SA, A and
B be two fully additive (but usually not triangulated) subcategories
of C . We denote by A † B the full subcategory of C consisting of all
objects C arising in triangles

(1.1) A
a
−→ B

b
−→ C

c
−→ SA with A ∈ A , B ∈ B.

We also denote by I the ideal of the category C consisting of all
morphisms γ : C → C ′ that factorizes both through B and through
SA , i.e. such that γ = γ′α = γ′′β, where α : C → SA, β : C → B,
where A ∈ A , B ∈ B.

On the other hand, we consider the A -B-bimodule BCA , which is
the restriction of the regular C -bimodule C (A, B) for A ∈ A , B ∈ B.
We often omit subscripts and denote this bimodule by C if it cannot
lead to misunderstanding. Recall that the bimodule category Bim(BCA )
has

⋃

A∈A
B∈B

C (A, B) as the set of objects, while the set of morphisms

Bim(a, a′), where a : A → B, a′ : A′ → B′, is defined as

{ (α, β) | α : A → A′, β : B → B′, βa = a′α } .

We denote by J the ideal of Bim(BCA ) consisting of all morphisms
(α, β) : a → a′ such that α factors through a and β factors through a′.

We define a functor F : Bim(BCA ) → (A † B)/I as follows. For
every morphism a : A → B, choose a triangle like (1.1) and set C = Fa.
If a′ : A′ → B′, C ′ = Fa′ and (α, β) ∈ Bim(a, a′), there is γ : C → C ′

such that the diagram

(1.2)

A
a

−−−→ B
b

−−−→ C
c

−−−→ SA
Sa

−−−→ SB

α





y

β





y

γ





y





y
Sα





y

Sβ

A′ a′

−−−→ B′ b′

−−−→ C ′ c′

−−−→ SA′ Sa′

−−−→ SB′
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commutes. Set F (α, β) = γ mod I . We must check that the latter
definition is consistent. Indeed, if γ′ : C → C ′ is another morphism
making diagram (1.2) commutative, g = γ − γ′, then gb = c′g = 0,
therefore there are f : SA → C ′ and h : C → B′ such that g = cf =
b′h, i.e. g ∈ I . Thus F is well-defined.

Suppose now that C (B, SA) = 0 for all A ∈ A , B ∈ B. In this
situation we define a functor G : A † B → Bim(BCA )/J as follows.
Let C ∈ A † B. Choose one triangle like (1.1) and set a = GC. If
GC ′ = a′, i.e. C ′ occur in the triangle

A′ a′

−→ B′ b′

−→ C ′ c′

−→ SA′ with A′ ∈ A , B′ ∈ B,

and γ : C → C ′, then c′γb = 0, hence γb = b′β for some β : B → B′.
Choose one of such triangles Since

B
b
−→ C

c
−→ SA

−Sa
−−→ SB

and

B′ b
−→

′

C ′ c
−→

′

SA′ −Sa′

−−−→ SB′

are also triangles, there is a morphism α : A → A′ that makes the dia-
gram (1.2) commutative, thus (α, β) ∈ Bim(a, a′). Set Gγ = (α, β) mod
J . If (α′, β ′) is another pair making (1.2) commutative, then (β −
β ′)b′ = 0, hence β − β ′ = a′f for some f : B → A′; in the same way
Sα − Sα′ = g(Sa), i.e. α − α′ = g′a for some g : SB → SA′ and
g′ : B → A′ such that Sg′ = g. Therefore (α − α′, β − β ′) ∈ J , so the
functor G is well-defined.

Theorem 1.1. Suppose that C (B, SA) = 0 for all A ∈ A , B ∈ B.
Then the functors F, G constructed above induce quasi-inverse func-
tors F̄ : Bim(BCA )/J → (A † B)/I and Ḡ : (A † B)/I →
Bim(BCA )/J . Thus (A †B)/I → Bim(BCA )/J . Moreover, I 2 =
0, therefore, the natural functor Π : (A † B) → (A † B)/I is an
epivalence.

Recall that an epivalence is a functor E : C1 → C2, which is

• full, i.e. all induced maps C1(X, Y ) → C2(EX, EY ) are surjec-
tive;

• dense, i.e. every object from C2 is isomorphic to EX for some
X ∈ C1;

• conservative, i.e. f ∈ C1(X, Y ) is invertible if and only if so is
Ef ∈ C2(EX, EY ).

(In [2] such functors are called detecting.) Note that then also

• X ≃ Y in C1 if and only if EX ≃ EY in C2;
• if C1 and C2 are additive, then an object X ∈ C1 is indecom-

posable (into a nontrivial direct sum) if and only if so is EX.

Proof. One immediately sees that F (J ) = 0 and G(I ) = 0, hence
F̄ and Ḡ are well-defined. Moreover, we have already seen that, given
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(α, β), the morphism γ is defined up to a summand from I , and given
γ, the pair (α, β) is defined up to a summand from J . It obviously
implies that F̄ Ḡ ≃ Id nolimits and ḠF̄ ≃ Id nolimits. If γ : C → C ′

and γ′ : C ′ → C ′′ are from I , then γ = gf for some f : C → B and
g : B → C ′, where B ∈ B, while γ′ = g′f ′ for some f ′ : C ′ → SA
and g′ : A → C ′′, where A ∈ A . Then γ′γ = g′f ′gf = 0, since
f ′g ∈ C (B, SA). Thus I 2 = 0 and, therefore, Π is an epivalence. �

Corollary 1.2. Under conditions of Theorem 1.1, let V be a subbi-
module of BCA such that f1af2 = 0 whenever a ∈ V , fi ∈ C (Bi, Ai)
with Ai ∈ A , Bi ∈ B (i = 1, 2). Denote by A †V B the full subcat-
egory of A † B consisting of all objects C arising in triangles (1.1)
with a ∈ V , IV = I ∩ (A †V B), JV = J ∩ Bim(V ). Then the
functor F and G constructed above induce quasi-inverse functors F̄ :
Bim(V )/J → (A †V B)/IV and Ḡ : (A †V B)/I → Bim(V )/JV .
Thus (A †V B)/I ≃ Bim(V )/JV . Moreover, I 2

V = 0 and J 2
V =

0, therefore, the natural functors (A †V B) → (A †V B)/IV and
Bim(V ) → Bim(V )/J 2

V are epivalences. In particular, there is a one-
to-one correspondences between isomorphism classes of objects and of
indecomposable objects from A †V B and Bim(V ).

2. Stable homotopy category

In this paper the word “polyhedron” is used as a synonym for“finite
cell (or CW) complex”. We denote by Hot the category of punc-
tured topological spaces with homotopy classes of continuous maps
as morphisms and by CW its full subcategory consisting of polyhe-
dra. We denote by CX the cone over the space X, i.e. the factor
space X × I/X × 1, I = [0, 1] being the unit interval. For a map
f : X → Y we denote by Cf the cone of this map, i.e. the factor space
(Y ⊔ CX)/ ∼, where the equivalence relation ∼ is given by the rule
f(x) ∼ (x, 0). Let also SX be the suspension of X, i.e. the factor
space CX/(X × 0). This operation induces a functor S : Hot → Hot.
Note that for every X the space SX is an H-cogroup and the n-fold
suspension SnX is a commutative H-cogroup for n ≥ 2 [23, 2.21 –
2.26]. Therefore, Hot(SnX, Y ) is a group, commutative for n ≥ 2.
The natural maps Hot(SnX, SnY ) → Hot(Sn+1X, Sn+1Y ) are group
homomorphisms. Set

Hos(X, Y ) = lim
−→

n

Hot(SnX, SnY ).

It is a group called the group of stable maps from X to Y . Thus
we get the stable homotopy category Hos and its full subcategory S
consisting of polyhedra. We also denote by CF and T respectively the
full subcategories of CW and of S consisting of torsion free polyhedra
X, i.e. such that all integral homology groups Hk(X) = Hk(X, Z) are
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torsion free. The groups Hos(Sn, X) are called the stable homotopy
groups of the space X and denoted by πS

n (X).
The category Hos is additive, with the bouquet (or wedge) X ∨ Y

playing the role of direct sum. Moreover, Hos is fully additive, i.e. ev-
ery idempotent in it splits [12, Theorem 4.8]. The suspension induces a
functor, which we also denote by S : Hos → Hos. Obviously, it is fully
faithful. Thus we can “supplement” it so that S becomes an equiva-
lence. To do it, we consider formal “imaginary spaces” SnX with n < 0
setting, for n < 0 or m < 0, Hos(SnX, SmY ) = Hos(Sn+kX, Sm+kY ),
where k = −min(n, m). Then we consider formal bouquets

∨r

i=1 Xi,
where each Xi is either a “real” or an “imaginary” space, and de-
fine Hos(

∨s
j=1 Yj,

∨r
i=1 Xi) as the set of r × s matrices (fij) with fij ∈

Hos(Yj , Xi) (see [12] for details). As a result we get the category (also
denoted by Hos), where S is an auto-equivalence.

In fact, the new category is a triangulated category. The triangles
in it are the cofibration sequences, i.e. those isomorphic to the cone
sequences

X
f
−→ Y

g
−→ Cf

h
−→ SX,

where g is the natural embedding Y → Cf and h is the natural sur-
jection Cf → SX ≃ Cf/Y [22]. Note that in the stable category Hos

they coincide with the fibration sequences [12], though we do not use
this fact.

We denote by CWk
n the full subcategory of CW consisting of (n− 1)-

connected cell complexes of dimension at most n+k. If X ∈ CWk
n, one

can suppose that its (n−1)-th skeleton Xn−1 (the “(n−1)-dimensional
part” of X) consist of a unique point and X has no cells of dimensions
greater than n + k. Following Baues, we describe such a cell complex
using its gluing (or attachment) diagram, which looks like (for n =
7, k = 6)

(2.1)

13 •

6

��
��
��
��

��
��
��
��

•

2

��
��
��
��
��
��
��

12 •

8

**
**

**
**

**
**

**
**

•

��
��
��
��
��
��
��

11 •

2

**
**

**
**

**
**

**
**

•

1

**
**

**
**

**
**

**
**

•

3

��
��
��
��

��
��
��
��

10 • •

9 • • •

8 •

7 • • •

In this diagram each bullet on the level m corresponds to an m-dimensional
cell, i.e. to a ball Bm glued to the (m− 1)-dimensional skeleton Xm−1

by a map of its boundary f : Sm−1 → Xm−1. The lines between this
bullet and the lower ones describe the nonzero components of the map
f . If there are more than one nonzero map between Sm−1 and a smaller
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Sl (l < m), these lines carry some marks precising the corresponding
maps. Especially, in our example the groups Hos(Sl+3, Sl) are cyclic of
order 24, so we put the marks that show, which multiple of the genera-
tor is used for this gluing. There are no marks on other lines, since the
groups Hos(Sl+2, Sl) are of order 2, so only have one nonzero element.

Every polyhedron from S decomposes into a direct sum of indecom-
posable ones. Note that such a decomposition is far from being unique
(see [12, 4.2] for examples). Nevertheless, a description of indecompos-
able polyhedra in S can be a good first step towards the classification
problem. Moreover, if the endomorphism ring Es(Y ) = Hos(Y, Y ) is
local and Y ∨ Y ′ ≃

⊕

i Yi, there is an index i such that Yi ≃ Y ∨ Y ′′

[1, Lemma I.3.5] Hence, in all decompositions of a polyhedron X into
bouquets of indecomposables the multiplicity of Y is the same. An-
other approach gives the notion of congruence. Namely, we say that
two polyhedra X, Y are congruent if there is a polyhedron Z such
that X ∨ Z ≃ Y ∨ Z. One can show, following [21] or [13], that an
equivalent condition is that the images of X and Y in all localiza-
tions Sp of the stable homotopy category are isomorphic. Here Sp (p
is a prime integer) is the category whose objects are polyhedra, but
Hosp(X, Y ) = Hos(X, Y ) ⊗ Zp, where Zp is the ring of p-adique inte-
gers. (The same notion is obtained if we replace Zp by the subring
{ a/b | a, b ∈ Z, p ∤ b } of the rational numbers.) We call the classes
of congruence genera, like they do in the theory of integral represen-
tations. Though genera satisfy the cancellation property (in fact, by
definition), their decomposition into bouquets of indecomposable is not
unique too (see the first of the cited examples from [12]).

Recall that due to the Generalized Freudenthal Theorem [12, The-
orem 1.21] there is no need to go up to infinity in defining Hos(X, Y )
if we deal with polyhedra. Namely, if Y is (n − 1)-connected and
dim X ≤ m, then the map Hot(X, Y ) → Hot(SX, SY ) is bijective if
m < 2n − 1 and surjective if m = 2n − 1. It implies that the map
Hot(SkX, SkY ) → Hos(X, Y ) is bijective for k > m − 2n + 1 and sur-
jective for k = m − 2n + 1. In particular, if Y is (n − 1)-connected,
πS

m(Y ) ≃ π2(m−n+1)(S
m−n+2Y ). Moreover, on the subcategory of Hot

consisting of simply connected spaces the suspension functor is conser-
vative. Therefore, the induced functor CWk

n → CWk
n+1 is an equivalence

for n > k +1 and an epivalence for n = k+1. Denote by Sn the image
in S of the category CWn−1

n . The polyhedra from Sn can only have
cells on n consecutive levels (from n-th up to (2n − 1)-th) and every
polyhedra having cells on n consecutive levels is isomorphic in S to
SmX for some integer m and some X ∈ Sn. We also denote by Tn the
full subcategory of Sn consisting of torsion free polyhedra.

Definition 2.1 (cf. [3]). An atom is an indecomposable object A from
Sn, which does not belong to S(Sn−1) ∪ S2(Sn−1). (In other words,
any polyhedron isomorphic to A in S must have cells of dimensions n
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and 2n − 1.) If A is an atom, all polyhedra of the sort SmA are called
suspended atoms.

This definition immediately implies that every polyhedron is isomor-
phic in S to a bouquet of suspended atoms, though, as we have men-
tioned, such a decomposition is not unique. Note that, unlike Baues,
we consider S1 as an atom (a unique atom in S1), hence all spheres are
considered as suspended atoms. Note also that this definition implies
that all atoms are of odd dimensions: an atom from Sn is of dimension
2n − 1.

To clarify the structure of Sn we use the technique from Section 1.
Namely, choose an integer m such that 0 ≤ m < n − 1 and set

A = An,m = S2m+1Sn−m−1,

B = Bn,m = Sn−m−1Sm+1,

Sn,m =Bn,m
SAn,m

,

In,m = { f : X → Y |X, Y ∈ Sn, f factors both

through B and through SA },

Jn,m = { (α, β) ∈ Bim(a, a′) | a, a′ ∈ Sn,m,

α factors through a and β factors through a′}.

(2.2)

Then polyhedra from A only have cells in dimensions from n + m up
to n − m − 2, while those from B only have cell in dimensions from n
up to n+m. If C ∈ Sn, its (n+m)-th skeleton B belongs to B, while
the factor space C/B belongs to SA , i.e. C/B ≃ SA, A ∈ A . Then
C ∈ A † B, since A → B → C → C/B ≃ A is a cofibration sequence.
On the other hand, any object from A † B obviously belongs to Sn.
So we have proved

Theorem 2.2. Sn ≃ An,m†Bn,m. Thus Sn/In,m ≃ Bim(Sn,m)/Jn,m.
Moreover, I 2

n,m = 0.

To consider torsion free polyhedra, we set

A 0 = A 0
n,m = S2m+1Tn−m−1,

B0 = B0
n,m = Sn−m−1Tm+1,

S 0 = S 0
n,m = { a ∈ Sn,m | Hn+m(a) = 0 } ,

I 0
n,m = In,m ∩ (A 0 †S 0 B0),

J 0
n,m = Jn,m ∩ Bim(S 0).

(2.3)

To get an analogue of Theorem 2.2 we need the following lemma.

Lemma 2.3. Let f ∈ Hos(A, B), where A and B are torsion free
polyhedra, A is (m − 1)-connected, dim B ≤ m and Cf is also torsion
free. There are decompositions A ≃ C⊕A′, B ≃ C⊕B′ such that, with
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respect to this decomposition, f =

(

Id nolimits 0
0 g

)

with Hm(g) = 0

and Cf ≃ Cg.

Proof. Note first that if A = kSm, B = lSm are bouquets of m-
dimensional spheres, then Hm(A) = mZ, Hm(B) = lZ, and the natural
map Hos(A, B) → Hom nolimits(Hm(A), Hm(B)) is an isomorphism.
In particular, every decomposition of Hm(A) arises from a decompo-
sition of A, and the same is true for B. In this case Hm(f), or, the
same, f is actually an integer matrix and there are decompositions
A ≃ C ⊕ A′, B ≃ C ⊕ B′ (all summands are, of course, also bouquets

of spheres) such that, with respect to them, f =

(

Id nolimits 0
0 d

)

,

where d : A′ → B′ can be presented by diagonal matrix without unit
components.

In general case, the calculation of homologies of cell spaces from [23,
Chapter 10] shows that the embedding α : Am → A induces a surjection
Hm(Am) → Hm(A), while the surjection β : B → B̃ = B/Bm−1 induces

an embedding Hm(B) → Hm(B̃) with torsion free cokernel. Therefore,
there are decompositions Am ≃ A1 ⊕ A0, B̃ ≃ B1 ⊕ B0 such that the
restriction of Hm(α) onto A1 is an isomorphism, and that onto A0 is 0,
while Hm(f) induces an isomorphism Hm(B) → im nolimitsHm(β) =
Hm(B1). Denote by α1 : A1 → A and β1 : B → B1 the corre-
sponding components of α and β. As above, there are decompositions
A1 ≃ C ⊕A0, B1 ≃ C ⊕B0 such that, with respect to them, the mor-

phism β1fα1 =

(

Id nolimits 0
0 d

)

, where d can be presented by diago-

nal matrix without unit components. Denote by ι : C → A1 the natural

embedding (presented by the matrix

(

Id nolimits
0

)

) and by π : B1 →

C the natural projection (presented by the matrix
(

Id nolimits 0
)

).
Then πβ1fα1ι = Id nolimits, so B ≃ C ⊕ B′, A ≃ C ⊕ A′, so that,

with respect to these decompositions, f =

(

Id nolimits 0
0 g

)

. Then

Cf ≃ Cg and d = β0gα0, where α0 : A0 → A′ and β0 : B′ → B0.
Note that α0 and β0 also induce isomorphisms of the m-th homol-
ogy groups, so Coker nolimitsHm(g) ≃ Coker nolimitsHm(d). Since
this cokernel embeds in Hm(Cg), it is torsion free. Therefore, d = 0,
whence Hm(g) = 0. �

Theorem 2.4. Tn ≃ A 0
n,m†S 0B0

n,m. Thus Tn/I 0
n,m ≃ Bim(S 0

n,m)/J 0
n,m.

Moreover, (I 0
n,m)2 = (J 0

n,m)2 = 0, so this equivalence induces one-
to-one correspondences between isomorphism classes of objects and of
indecomposable objects in Tn and in Bim(S 0

n,m).
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Proof. Let C ∈ Tn, B = Cn+m, SA ≃ C/B. The triangle

(2.4) A
a
−→ B

b
−→ C

c
−→ SA

gives rise to the exact sequence of homologies

· · · → Hk(A)
Hk(a)
−−−→ Hk(B)

Hk(b)
−−−→ Hk(C)

Hk(c)
−−−→ Hk(SA) ≃

≃ Hk−1(A)
Hk−1(a)
−−−−→ Hk−1(B)

Hk−1(b)
−−−−→ Hk−1(C) → . . .

If k < n+m, then Hk(A) = Hk−1(A) = 0, so Hk(B) ≃ Hk(C) is torsion
free. If k > n + m, we get in the same way that Hk(A) ≃ Hk+1(C) is
also torsion free. Let now k = n + m, then we get the exact sequence

0 → Hn+m+1(C) → Hn+m(A)
Hn+m(a)
−−−−−→ Hn+m(B) → Hn+m(C) → 0.

Note that Hn+m(B) is always torsion free, since B contains no cells of
dimensions bigger than n + m, hence B ∈ T . Therefore, Hn+m(A) is
torsion free too, so A ∈ T . Moreover, Coker nolimitsHn+m(a) is also
torsion free. As both Hn+m(A) and Hn+m(B) are free, it means that
Hn+m(A) ≃ M ⊕ M ′, Hn+m(B) ≃ M ⊕ M ′′ so that Hn+m(a)
induces isomorphism M → M and is zero on M ′. By Lemma 2.3, there
are decompositions A ≃ A0 ∨A′, B ≃ A0 ∨B′ such that, with respect

to them, a =

(

Id nolimits 0
0 a′

)

, where a′ ∈ S 0. Then Ca′ ≃ Ca ≃ C,

so C ∈ A 0 †S 0 B0. On the other hand, if C ∈ A 0 †S 0 B0, i.e. belongs
to a triangle (2.4) with A ∈ A 0, B ∈ B0 and Hn+m(a) = 0, the exact
sequence of homologies implies that C ∈ Tn.

To prove the remaining assertions, it is enough to show that uav = 0
for every a ∈ S 0(A, B), v : B′ → A, u : B → A′, where A, A′ ∈
A 0, B, B′ ∈ B0 (see Corollary 1.2). Since Hn+m(a) = 0, the induced
map Am+n → B/Bm+n−1 is zero. On the other hand, S (B′, A/Am+n) =
0 = S ((B′)m+n−1, Am+n), so the map v : B′ → A factors through a
map B′/(B′)m+n−1 → Am+n. Since the same holds for u, it implies
that uav = 0. �

We shall also use the following obvious lemma.

Lemma 2.5. Let X ∈ Sn, Hi = Hi(X). If X is decomposable, there
are decompositions Hi = H ′

i⊕H
′′

i and indices j, k such that both H ′

j 6= 0
and H ′′

k 6= 0.
(Note also that Hi(X) = 0 for i < n or i > 2n − 1.)

3. Discrete case: Whitehead–Chang Theorem

We apply now Theorem 2.2 to polyhedra from Sn for small n. First,
we recall some values of stable homotopy groups [20, Sections XI.15–
16]:

• πS
n+1(S

n) ≃ Z/2, the generator being the (suspended) Hopf map
η = 2n−1h2, where h2 is the Hopf fibration S3 → S2;



10 YURIY A. DROZD

• πS
n+2(S

n) ≃ Z/2, the generator being the double Hopf map η2,
i.e. the composition of Hopf maps Sn+2 → Sn+1 → Sn;

• πS
n+3(S

n) ≃ Z/24, the generator being ν = Sn−4h4, where h4

is the Hopf fibration S7 → S4. Moreover, the composition
η3 : Sn+3 → Sn+2 → Sn+1 → Sn equals 12ν.

If n = 1, the only atom in S1 is S1, and every polyhedron is a
bouquet of several copies of S1. If n = 2, S2 = A2,0 † B2,0, and
A2,0 = B2,0 = SS1. Thus every polyhedron C from S2 is isomorphic to
the cone of a map a : kS2 → lS2.Since Hos(S2, S2) = Z, the map a can
be considered as a matrix (aij) ∈ Mat nolimits(l×k, Z). If a′ is another
object from C2,1, also considered as a matrix from Mat nolimits(l′ ×
k′, Z), a morphism a → a′ in Bim(C2,1) is given by a pair of matrices
α ∈ Matnolimits(k′ × k, Z), β ∈ Mat nolimits(l′ × l, Z) such that
a′α = βa. Especially, this morphism is an isomorphism if and only if
both α and β are invertible. So the well-known Smith Theorem implies
that every object a ∈ C2,1 is isomorphic to one presented by a diagonal
matrix diag nolimits (q1, q2, . . . , qr). Hence, every polyhedron from S2

is isomorphic to a bouquet of cones
∨

i Cqi, where we identify an integer
q with the corresponding map S2 → S2. Moreover, if q = uv, where
gcd(u, v) = 1, then

Cq ≃ C

(

1 0
0 q

)

≃ C

(

u 0
0 v

)

≃ Cu ∨ Cv.

Therefore, Cq can only be indecomposable if q = ps, where p is prime.
On the other hand, the exact sequence of homologies arising from the
triangle

(3.1) S2 q
−→ S2 −→ M3(q) −→ S3

that H2(Cq) ≃ Z/q and H3(Cq) = 0. Hence, Lemma 2.5 implies that
Cq is indecomposable. Therefore, the atoms in S2 are just Cq for
q = ps with a prime p. These atoms are denoted by M3(q) and their
suspensions SkM3(q) by Mk+3(q). The atoms and suspended atoms
Md(q) are called Moore spaces1 [12]. We also write Md

s instead of
Md(2s) (these atoms play a special role later).

We can calculate the groups Hos(M3(q), M3(q′)). Since πS
3 (S2) ≃

Z/2 [20, Theorem 15.1], the exact sequences for the functor Hos arising
from the triangles (3.1) for q and q′ imply that

Hos(S2, M3(q)) ≃ Hos(M3(q), S3) ≃ Z/q,

Hos(S3, M3(q)) ≃ Hos(M3(q), S2) ≃

{

Z/2 if q is even,

0 if q is odd,

Hos(M3(q), M3(q′)) ≃ Z/(q, q′) if q or q′ is odd,

1In [20, Section XI.10] they are denoted by P
d
q and called pseudo-projective

spaces.
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and there is an exact sequence

0 → Z/2 → Hos(M3
s , M3

r ) → Z/2m → 0, where m = min(r, s).

(3.2)

Note that the endomorphism rings Es(M3(q)) are finite, hence, local.
These considerations immediately imply the description of polyhedra
from S2.

Theorem 3.1. Every polyhedron from S2 uniquely (up to permutation
of summands) decomposes into a bouquet of spheres S2, S3 and Moore
atoms M3(q).

We also need the following fact.

Proposition 3.2.

πS
4 (M3(q)) ≃











0 if q is odd,

Z/4 if q = 2,

Z/2 ⊕ Z/2 if q = 2s, s > 1.

Proof. Recall that πS
4 (S3) ≃ πS

4 (S2) ≃ Z/2 [20, Theorems 15.1, 15.2].
Therefore, the exact sequence for πS

4 arising from (3.1) shows that
πS

4 (M3(q)) = 0 for q odd and, for q = 2s, there is an exact sequence

0 → Z/2 → πS
4 (M3

s ) → Z/2 → 0.

Note that πS
4 (M3

1 ) ≃ π6(M
5
1 ), so [20, Lemma 10.2] implies that it em-

beds into π6(S
3) ≃ Z/12 [20, Theorem 16.1]. Hence, πS

4 (M3
1 ) ≃ Z/4.

For r > 1 consider the commutative diagram of triangles

(3.3)

S2 2
−−−→ S2 −−−→ M3

1 −−−→ S3

1





y 2r−1





y





y
1





y

S2 2r

−−−→ S2 −−−→ M3
s −−−→ S3,

It induces the commutative diagram with exact rows

0 −−−→ Z/2 −−−→ πS
4 (M3

1 ) −−−→ Z/2 −−−→ 0

0





y





y





y
1

0 −−−→ Z/2 −−−→ πS
4 (M3

s ) −−−→ Z/2 −−−→ 0,

which shows that the second row is the pushdown of the first one along
zero map, hence, it splits. �

Proposition 3.3.

Hos(Md
s , Md

r ) ≃

{

Z/4 if r = s = 1,

Z/2 ⊕ Z/2m otherwise, where m = min(r, s).
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Proof. Obviously, we may suppose that m = 3. Since πS
4 (M3

1 ) ≃
Z/4 is a module over the ring Hos(M3

1 , M3
1 ), 2 Hos(M3

1 , M3
1 ) 6= 0,

hence, Hos(M3
1 , M3

1 ) ≃ Z/4. On the other hand, applying the func-
tor Hos( , M3

1 ) to the diagram (3.3) with s > 1, we get a commutative
diagram with exact rows

0 −−−→ Z/2 −−−→ Hos(M3
1 , M3

1 ) −−−→ Z/2 −−−→ 0

1

x





x





x




0

0 −−−→ Z/2 −−−→ Hos(M3
s , M3

1 ) −−−→ Z/2 −−−→ 0.

Thus its second row is the pull-back of the first one along the zero map,
hence, it splits. The dual consideration shows that the sequence (3.2)
for r > 1 can be obtained as a pushdown of the sequence for r = 1,
hence, it splits too. �

Note that the latter decomposition in this statement is that of groups.
Taking into account the multiplication, it is convenient to present mor-

phisms Md
s → Md

r as triangular matrices

(

a b
0 c

)

, with a ∈ Z/2r, b ∈

Z/2, c ∈ Z/2s, 2s−ma ≡ 2r−mc mod 2µ, where m = min(s, r), µ =
max(s, r). The product of morphisms correspond then to the usual
product of matrices, while the sum of morphisms correspond to the
usual sum of matrices, with the only exception, when s = r = 1: then
we must add matrices as follows:

(

a b
0 a

)

+

(

a′ b′

0 c′

)

=

(

a + a′ b + b′ + aa′

0 a + a′

)

.

Let now n = 3, m = 1, then S3 = A3,1 † B3,1, where A3,1 = S3S1

and B3,1 = SS2. Hence, polyhedra from A3,1 are just bouquets of
spheres S4, while those from B are bouquets of spheres S4, S3 and
Moore spaces M4(q). For convenience, we set M4

0 = S4 and M4
∞

= S3

and order the set of indices by the rule 1 < 2 < · · · < ∞ < 0. As we
have seen, Hos(S4, M4(q)) = 0 for q odd, Hos(S4, M4

r ) = Hr ≃ Z/2 for
r 6= 0 and Hos(S4, S4) = H0 ≃ Z. Therefore, a map a : A → B, where
A ∈ A , B ∈ B can be presented as a block matrix

(3.4) a =













a0

a∞

...
a2

a1













,

where as are matrices over Hs. One easily sees that if ηs is a generator
of Hs and βrs : M4

s → M4
r , then βrsηs = 0 if r > s, while for r ≤ s the
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map βrs can be so chosen that βrsηs = ηr. Set

Hrs =











0 if r > s,

Z/2 if 0 6= r ≤ s,

Z if s = r = 0.

Therefor two matrices a, a′ of the form (3.4) define isomorphic objects
from Bim(S3,1) if and only if there is an invertible integral matrix α
and an invertible block matrix β = βrs, where βrs is a matrix over Hrs,
such that a′ = βaα−1. Then simple considerations show that every
object from Bim(S3,1) decomposes into a direct sum of objects given

by the 1×1 matrices q ∈ H0, ηr ∈ Hr, r 6= 0 and

(

2s

ηr

)

∈ H0⊕Hr, r 6=

0, s > 0. The first case correspond to the Moore space M5(q), while the
second and the third cases define new polyhedra, respectively, C5(η),
C5(2rη), C5(η2s) and C5(2rη2s), given by the gluing diagrams

5 • •

}}
}}

}}
}}

}}
}} •

}}
}}

}}
}}

}}
}} •

www
ww

ww
ww

ww
ww

w

4 • • • •

3 • • • •

C5(η) C5(2rη) C5(η2s) C5(2rη2s)

(The words in brackets show the corresponding gluings.)
To find endomorphisms of these atoms, note that there are triangles

S3 ∨ S4 (2r η)
−−−→ S3 → C5(2rη) → S4 ∨ S5,(3.5)

S4

0

@

η
2s

1

A

−−−→ S3 ∨ S4 → C5(η2s) → S5,(3.6)

S3 ∨ S4

0

@

2r η
0 2s

1

A

−−−−−−−→→ C5(2rη2s) → S3 ∨ S4.(3.7)

By Theorem 1.1, Es(C5(2rη)), up to an ideal I such that I2 = 0, is
isomorphic to the endomorphism ring of the map f = (2r η) in the
category Bim(S )/J . An endomorphism of f in Bim(S ) is a pair

(α, β), where α =

(

a bη
0 c

)

(a, c ∈ Z, b ∈ Z/2), β ∈ Z, such that

βf = fα, i.e. β = a ≡ c mod 2. Moreover, one easily sees that

J consists of the pairs with the first component

(

2rx xη
0 0

)

, whence

Es(C5(2rη))/I2 is isomorphic to the subring of Z/2r+1 ⊕ Z consist-
ing of all pairs (a, c) with a ≡ c mod 2. This ring has no nontriv-
ial idempotent, hence, C5(2rη) is indeed indecomposable, hence, an
atom. Moreover, using the triangle (3.5), one can see that I ≃ Z/2 and
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Es(C5(2rη)) is isomorphic to the ring of triangular matrices

(

a b
0 c

)

,

where a ∈ Z/2r+1, b ∈ Z/2, c ∈ Z, a ≡ c mod 2. The same re-
sult for Es(C5(η2r)) follows from the triangle (3.6). Finally, one gets
from the triangle (3.7) that Es(C5(2rη2s)) is isomorphic to the ring

of triangular matrices

(

a b
0 c

)

, where a ∈ Z/2r, b ∈ Z/2, c ∈ Z/2s,

a ≡ c mod 2. Therefore these polyhedra are also atoms. They are
called Chang atoms Moreover, the last ring is local, thus the multi-
plicity of C5(2rη2s) (as well as of any its shift) in a decomposition of
a polyhedron into a bouquet of indecomposables is the same for all
such decompositions. Note that the same is true for suspended atoms
Md(q). On the other hand, the triangles (3.5) and (3.6) imply that
H3(C

5(2rη) ≃ H4(C
5(η2r) ≃ Z/2r, while other homologies of these

spaces are zero. Altogether, it gives the following description of the
category S3.

Theorem 3.4 (Whitehead–Chang, [25, 11]). Any polyhedron from S3

uniquely (up to permutation of summands) decomposes into a bouquet
of spheres S3, S4, S5, suspended Moore atoms M4(q), M5(q) and Chang
atoms C5(η), C5(2rη), C5(η2s) and C5(2rη2s).

Using terms from the representation theory, one can say that the
categories Sn, n ≤ 3, are discrete (or essentially finite). In this con-
text it means that there are only finitely many isomorphism classes
of polyhedra in Sn with a prescribed exponent of the torsion part of
homologies. (So it looks similar to the description of finitely generated
abelian groups.)

4. Tame case: Baues–Hennes Theorem

We study now the category S4. By Theorem 2.2, S4 = A † B,
where A = S3S2, B = S2S2. By Theorem 3.1, every polyhedron
from A (from B) is a bouquet of spheres S5, S6 and Moore atoms
M6(q) (respectively, S4, S5 and M5(q)). We have already calculated
morphisms between indecomposables in S2. Just in the same way one
calculates morphisms from the objects of S3S2 and those of S2S2. We
omit the details, which are standard; the result is presented in Table 1.
Actually, the groups Hos(M6

s , M5
r ) can be naturally considered as the

groups of upper triangular matrices

(

a b
0 c

)

over Z/2 with b = 0 if

s = r = 1. Again the sum of morphisms correspond to the usual sum
of matrices, with the exceptions for s > 1, r = 1 and s = 1, r > 1, when
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Table 1.

S5 S6 M6
1 M6

s (s > 1)

S4 Z/2 Z/2 Z/4 Z/2 ⊕ Z/2

S5 Z Z/2 Z/2 Z/2

M5
1 Z/2 Z/4 Z/2 ⊕ Z/2 Z/4 ⊕ Z/2

M5
r (r > 1) Z/2 Z/2 ⊕ Z/2 Z/2 ⊕ Z/4 Z/2 ⊕ Z/2 ⊕ Z/2

the sum of matrices must be twisted as follows:
(

a b
0 c

)

+

(

a′ b′

0 c′

)

=

(

a + a′ b + b′ + aa′

0 c + c′

)

if s > 1, r = 1,

(

a b
0 c

)

+

(

a′ b′

0 c′

)

=

(

a + a′ b + b′ + cc′′

0 c + c′

)

if s = 1, r > 1.

The multiplication of elements from Hos(M6
s , M5

r ) by morphisms be-
tween objects from A and B (also presented by triangular matrices as
in Section 3) correspond to the usual product of matrices. Therefore,
a morphism A → B can be naturally considered as a block matrix
presented in Table 2. In this table a symbol 2 (∞) shows that the

Table 2.

x





































































































(1) (2) (3) . . . . . . (3) (2) (1)

(1) 2 2 2 . . . 2 2 . . . 2 2 0

(2) 2 2 2 . . . 2 2 . . . 2 2 2
(3) 2 2 2 . . . 2 2 . . . 2 2 2

...
...

...
. . .

...
...

. . .
...

...
...

2 2 2 . . . 2 2 . . . 2 2 2

0 0 0 . . . ∞ 2 . . . 2 2 2
...

...
...

. . .
...

...
. . .

...
...

...
(3) 0 0 0 . . . 0 2 . . . 2 2 2
(2) 0 0 0 . . . 0 2 . . . 2 2 2
(1) 0 0 0 . . . 0 2 . . . 2 2 2













































−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

corresponding block has values from Z/2 (respectively, from Z). Zeros
show that the corresponding block is always zero. Arrows on the left
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and below symbolize the action of morphisms between the objects from
A and B respectively. The labels (1), (2), . . . (or (1), (2), . . .) show that
the corresponding horizontal (respectively, vertical) stripes are of the
same size and we must use the same elementary transformations in
both of them. These stripes correspond to Md

r with the same d and
r. Note that there are 2 horizontal and 2 vertical stripes without such
labels. They correspond to spheres Sd.

This matrix problem is a slight variation of a well-known one, namely,
representations of bunches of chains (see [9] or [10, Appendix B]). It im-
plies a description of indecomposable objects in the category Bim(S4,2),
hence, in S4. We call them strings and bands, as it is usual in the rep-
resentation theory of algebras. Not providing details (see [15]), we just
present the corresponding attachment diagrams (Table 3). It is conve-
nient to distinguish two types of strings: usual and decorated ; I hope
that the pictures show the difference. “Decorations” (one for each
string) are shown with double lines. We omit integers precising the
degrees of “vertical” attachments, as well as one precising the “long”
attachment in a decorated strings of the first kind; they can be arbi-
trary and differ for different attachments. Certainly, each diagram is
actually finite: it starts at any place on the left and stops at any place
on the right.

Multiple bullets in the case of bands symbolize not a unique cell but
several (say m) copies of it (the same for each ball). All attachments
except the one marked by the wavy line are “natural”: the first copy of
an upper cell is attached to the first copy of a lower one, the second to
the second, etc. The attachment marked by the wavy line is “twisted”
by an invertible Frobenius matrix Φ of size m × m over the field Z/2
with the characteristic polynomial f(x), which must be a power of
an irreducible one and such that f(0) 6= 0. For instance, if f(x) =

x3 + x + 1, i.e. m = 3 and Φ =





0 0 1
1 0 0
0 1 1



, this attachment is:

6 •

$$HHHHHHHHHHHHHH •

$$HHHHHHHHHHHHHH •

uujjjjjjjjjjjjjjjjjjjjjjjj

��4 • • •

One can check that all strings and bands are indecomposable and
pairwise non-isomorphic. Note also that all atoms from S4 are p-
primary (2-primary, except Moore atoms Md(pr) with odd p, which
are p-primary). Therefore, we have the uniqueness of decomposition
of spaces from S4 into bouquets of suspended atoms. So we get the
following result. We call strings and bands Baues atoms.
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Table 3.

usual strings

7 • • •

6 •

77
77

77
77

77
77

77
77 •

77
77

77
77

77
77

77
77 •

CC
CC

CC
CC

CC

· · ·

5 •

���������������� •

���������������� •

����������������

· · ·

4 •

CCCCCCCCCC • •

decorated strings

7 •

77
77

77
77

77
77

77
77 •

77
77

77
77

77
77

77
77 • •

6 •

{{
{{

{{
{{

{{ •

��
��

��
��

��
��

��
�� •

77
77

77
77

77
77

77
77 •

CC
CC

CC
CC

CC

5 • • •

����������������

· · · · · ·

4 • •

���������������������

��������������������� •

and

7 •

77
77

77
77

77
77

77
77 •

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�� •

��
��

��
��

��
��

��
��

· · ·

6 •

��
��

��
��

��
��

��
��

•

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�� •

77
77

77
77

77
77

77
77 •

CC
CC

CC
CC

CC

5 •

CCCCCCCCC • • •

· · ·

4 • • •

bands

7 • • • • • • • • •

6 • • •

77
77

77
77

77
77

77
77 • • •

III
III • • •

· · ·

5 • • •

����������������
• • •

����������������
• • •

����������������

4 • • •

Φ3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s

3s3s3s3s3s3s

• • • • • •

JJJJJJJJJJJ

Theorem 4.1 (Baues–Hennes [8]). Any polyhedron from S4 decom-
poses uniquely into a bouquet of spheres, suspended Moore atoms, sus-
pended Chang atoms and Baues atoms.
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In Section 7 we shall see that actually S4 is the last case where
a “good” description of polyhedra is possible. Starting from S5 this
problem becomes wild.

5. Torsion free polyhedra. Finite case

Consider now torsion free case. Note that if all Hk(X) are torsion
free, the attachment diagram cannot contain “Moore fragments”

•
•

In particular, among the atoms from Sections 3 and 4 only Chang
atom C5 = C5(η) and the double Chang atom C7

2 = C7(η2) with the
attachment diagram

7 •

6

5

4 •

are torsion free. Therefore, if we set in Theorem 2.4 n = 5, m = 4,
the category A 0 consists of bouquets of spheres S8 and the cate-
gory B0 consists of bouquets of spheres Sd (5 ≤ d ≤ 8), suspended
Chang atoms C7, C8 and suspended double Chang atoms C8

2 . Obvi-
ously, S 0(S8, S8) = 0. Easy calculation give the following values of
the groups Γ(B) = S 0(S8, B) for atoms B from B0:

B S5 S6 S7 C7 C8 C8
2

Γ Z/24 Z/2 Z/2 Z/12 0 Z/12

Morphisms of these spaces induce monomorphisms Γ(S7) → Γ(C7) →
Γ(S5) and Γ(S6) → Γ(S5), epimorphism Γ(S5) → Γ(C8

2), and isomor-
phisms Γ(S7) → Γ(S6) and Γ(S7) → Γ(S6). Thus, an object from
Bim(S 0

5,4) can be presented by a block matrix as in Table 4. Here in-
side each blocks we have written the groups, wherefrom the coefficients
of this block are. The arrows show the allowed transformation between
blocks. An integer k in the arrows point out that, when we perform this
transformation, the row must be multiplied by k. (No integer means
that k = 1.) For instance, we can add the rows of the third matrix
multiplied by 2 to the rows of the first one. Certainly, compositions of
these transformations are also allowed. Thus, for instance, we can add
the rows of the third matrix multiplied by 2 to the rows of the second
one too. The arising matrix problem is rather simple. It is of finite
type, and Table 6 shows the attachment diagrams of the corresponding
atoms from T5. We call them A-atoms of the 1st kind. The integer v
show, which multiple of the generator of the group πS

8 (S5) ≃ Z/24 is
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Table 4.

��

Z/24

��

Z/12

Z/12

2

OO

��

Z/2

6

OO

Z/2

12

RR

Table 5.

9 • •

��
��
��
��
��
��
��
��
� •

��
��
��
��
��
��
��
��
��

•

��
��
��
��
��
��
��
��
� •

��
��
��
��
��
��
��
��
��

8 •

7 • •

6 •

5 • • • • •

A(v) A(ηv) A(η2v) A(vη) A(vη2)

9 •

��
��
��
��
��
��
��
��
��

•

��
��
��
��
��
��
��
��
��

•

��
��
��
��
��
��
��
��
��

•

��
��
��
��
��
��
��
��
��

8 • •

7 • • • •

6 • •

5 • • • •

A(η2vη) A(η2vη2) A(ηvη) A(ηvη2)

used for the “long” attachment. Actually, 1 ≤ v ≤ 12 in the case of
A(v), 1 ≤ v ≤ 3 in the case of A(ηvη), 1 ≤ v ≤ 6 in all other cases.

So we have got a description of polyhedra from T5.

Theorem 5.1 (Baues–Drozd [4]). Every polyhedron from T5 is a bou-
quet of spheres, suspended Chang and double Chang atoms, and the
A-atoms of the first kind.
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Note that this time the decomposition is not unique; even the can-
cellation law does not hold. For instance, A(3)⊕S5 ≃ A(9)⊕S5 [4, 15];
see ibidem more on decomposition laws.

Analogous is the case of T6, when we take m = 4. We omit details,
just schematically presenting the arising matrix problem in Table 6.
The dashed line from the 4th to the 6th level show the transforma-
tion that only acts on the left-hand column (on Z/2 components).
The resulting list of atoms (their attachment diagrams) see in the

Table 6.

��

Z/24 0

��

Z/12 0

Z/12 0

2

OO

��

��

�
�
�
�

$
'
*

Z/2 Z/2

6

OO

_

6

��

12

��

0 Z/2

��

Z/2 Z/24

12

OO

0 Z/12

2

OO

Table 7. We call them A-atoms of the second kind. The integers
v and w show, as above, the multiple of generator, respectively, of
πS

9 (S6) and πS
10(S

7) used for the corresponding attachments. In all
cases v, w ∈ { 1, 2, 3, 4, 5, 6 }.

So we have got a description of polyhedra from T6.

Theorem 5.2 (Baues–Drozd [7]). Every polyhedron from T6 is a bou-
quet of spheres, suspended Chang and double Chang atoms, suspended
A-atoms of the first kind and A-atoms of the second kind.

In the next section we shall use the values of Hos-groups between
Chang atoms and spheres. To deal with the Chang atom C5 we apply
the bifunctor Hos to the cofibration sequence

(5.1) S4 η
−→ S3 → C5 → S5 η

−→ S4.
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Table 7.
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9 • • •

8 • • •

7 • • • • •

6 • • • • •

A(vη2w) A(ηvη2wη) A(η2vη2wη2) A(vη2wη) A(ηvη2w)

11 •
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� •
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� •
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9 • • •

8 • • •

7 • • • •

6 • • • •

A(vη2wη2) A(η2vη2w) A(η2vη2wη) A(ηvη2wη2)

It gives the commutative diagram with exact rows and columns (we
write here (X, Y ) instead of Hos(X, Y ) )

Z −−−→ Z/2 −−−→ (C5, S4) −−−→ 0 −−−→ Z




y





y





y





y





y

Z/2 −−−→ Z/2 −−−→ (C5, S4) −−−→ Z −−−→ Z/2




y





y





y





y





y

(S4, C5) −−−→ (S5, C5) −−−→ (C5, C5) −−−→ (S3, C5) −−−→ (S4, C5)




y





y





y





y





y

0 −−−→ Z −−−→ (C5, S5) −−−→ 0 −−−→ 0




y





y





y





y





y

Z −−−→ Z/2 −−−→ (C5, S4) −−−→ 0 −−−→ Z,
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where all maps Z → Z/2 are surjective and all maps Z/2 → Z/2 are
bijective. It gives the following values of Hos-groups:

Hos(C5, S4) = Hos(S4, C5) = 0

Hos(S3, C5) = Hos(C5, S5) = Z,

Hos(C5, S3) = Hos(S5, C5) = 2Z,

Hos(C5, C5) = D,

where D (the “dyad”) is the subrings of Z × Z consisting of all pairs
(a, b) with a ≡ b mod 2.

Similar observations applied to the suspended versions of the se-
quence (5.1) and the cofibration sequence

S6 η2

−→ S4 → C7
2 → S7 η2

−→ S5

give Table 8 of the values Hos(X, Y ) for suspended atoms from T4. In

Table 8.

S4 C7
2 : 4 7 C6 : 4 6 S5 C7 : 5 7 S6 S7

S4 Z 2Z Z/12 2Z 0 Z/2 0 Z/12 Z/2 Z/24

C7
2 : 4 Z Z= Z/12 2Z 0 Z/2 0 Z/12 0 Z/12

7 0 0 Z= 0 0 0 0 Z 0 2Z

C6 : 4 Z Z Z/12 Z= 0 0 0 Z/12 0 2Z

6 0 0 0 0 Z= 0 0 0 2Z 0

S5 0 0 0 0 0 Z 2Z 0 Z/2 Z/2

C7 : 5 0 0 0 0 0 Z Z= 0 0 0

7 0 0 2Z 0 0 0 0 Z= 0 2Z

S6 0 0 Z/2 0 Z 0 0 0 Z Z/2

S7 0 0 Z 0 0 0 0 Z 0 Z

this table the Hos-groups for suspended Chang atoms are presented in
matrix form, emphasizing which components have come from the cells
of given dimensions. The superscripts = show that the diagonal parts
of the corresponding matrices are with entries not from Z×Z, but from
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D. For instance, Es(C7
2) is presented as the ring of triangular matrices

(

a b
0 c

)

, where a, c ∈ Z, a ≡ c mod 2, b ∈ Z/12. Under such presen-

tation the multiplication of morphisms turns into the multiplication of
matrices.

6. Torsion free polyhedra. Tame case

The category T7 is more complicated. To describe it, we use The-
orem 2.4 with n = 7, m = 3. Then A 0 consists of the bouquets of
spheres Sd (10 ≤ d ≤ 12) and suspended Chang atoms C12, while B0

consists of bouquets of spheres Sd (7 ≤ d ≤ 10) suspended Chang
atoms C9, C10 and suspended double Chang atoms C10

2 . The calcu-
lations similar to those of the end of preceding section give Table 9
of the values of groups S 0(X, Y ) for the suspended atoms X ∈ A 0

and Y ∈ B0, also presented in matrix form. The superscripts ∗ show

Table 9.

S10 S11 S12 C12 : 10 12

S7 Z/24 0 0 Z/24 0

C10
2 : 7 0 0 Z/2 Z/24∗ 0

10 0 0 Z/2 0 Z/2∗

C9 : 7 Z/12 0 0 Z/24∗ 0

9 0 0 Z/24 0 Z/2∗

S8 Z/2 Z/24 0 0 0

C10 : 8 0 Z/12 0 0 0

10 0 0 0 0 0

S9 Z/2 Z/2 Z/24 0 Z/12

S10 0 Z/2 Z/2 0 0

that in the corresponding groups we identify the elements of order 2.
So actually, these values are isomorphic to Z/24, but it is convenient
to consider them as (Z/24 ⊕ Z/2)/(12, 1). Then again the action of
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morphisms from A 0 and B0, as presented in Table 8 (or, rather, its
suspended version) turns into the multiplication of matrices. Again we
obtain a bimodule problem close to that of bunches of chains, espe-
cially, in its “decorated” version (see [17]). To present the answer (for
details see [16]), we introduce the following notations and definitions.

Definition 6.1. (1) We consider chains Ek and Fk (1 ≤ k ≤):

E1 = { e1 < e2 < e4 } , F1 = { f4 < f1 } ,

E2 = { e5 < e9 } , F2 = { f3 < f5 } ,

E3 = { e6 < e7 } , F3 = { f2 } ,

E4 = { e3 < e10 < e′9 < e′6 } , F4 = { f ′

1 < f ′

2 < f ′

3 } .

Actually, the elements ei (fj) correspond to the rows (columns)

of Table 9, while the relations
c

− correspond to the elements of
the groups C 0(A, B). We need extra elements e′i and f ′

j since
the entries Z/2 in this table behave in a different way than the
other ones.

We set E =
⋃4

i=1 Ei, F =
⋃4

i=1 Fi, X = E ∪ F. x ≈ y means
that x and y belong to the same set Ei or Fi.

(2) We define symmetric relations ∼ and − on X setting x − y
if x ∈ Ei, y ∈ Fi or vice versa; ei ∼ e′i(i ∈ { 6, 9 } , fj ∼

f ′

j (1 ≤ j ≤ 3). We also define the symmetric relations
c

−,

where c ∈ { 1, 2, 3, 4, 6 }, setting ei

c

− fj if ei − fj and the (ij)-
th entry in Table 9 is Z/m with c | m. We denote by R the set

of all relations {∼,
c

−} and by v(c) the biggest d such that 2d

divides c.
(3) We define a word as a sequence w = x1r2x2r3 . . . rlxl where

xi ∈ X, ri ∈ R such that
(a) xk−1rkxk in X for each 1 < k ≤ l;

(b) if rk =∼, then rk+1 =
c

− and vice versa;

(c) if r2 =
c

− (respectively, rl =
c

−), there is no element y ∈ X

such that x1 ∼ y (respectively, xl ∼ y);

(d) if rk =
c

− with v(c) = 1, then either 2 < k < l, or k =
2, x1 = e1, or k = l, xl = x1;
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(e) if r =
c

− with v(c) = 2, then r can only occur in the follow-
ing words or their reverse:

e4 ∼ e5rf3 ∼ . . . (of any length),

e1rf4 ∼ f5, e3 ∼ e2rf4 ∼ f5,

. . .
c′

− e4 ∼ e5rf3 ∼ . . . (of any length),

e1rf4 ∼ f5

c′

− . . . (of any length),

e3 ∼ e2rf4 ∼ f5

c′

− . . . (of any length),

e1rf4 ∼ f5

c′

− . . . (of any length),

e1rf1 ∼ f ′

1, e′6 ∼ e6rf2 ∼ f ′

2, e′9 ∼ e9rf3 ∼ f ′

3,

where c′ ≡ 0 (mod 3);

(f) if w contains a subword ei

c

− fj, c ∈ { 3, 9 } or its re-

verse, it does not contain any subword ei′
c′

− fj′, c′ 6≡ 0
(mod 3), ei ≈ ei′ (equivalently, fj ≈ fj′) or its reverse.

Here the reverse to the word w is the word w∗ = xlrlxl−1 . . . x2r2x1.
We call l the length of the word w.

(4) We define a cycle as a pair z = (w, r1), where w is a word such

that r2 = rl =∼ and rk 6=
c

− with v(c) = 2, while r1 =
c

− with
v(c) 6= 2 and xlr1x1 in X. For such a cycle we set xql+k = xk

and rql+k = rk for any q and 1 ≤ k ≤ l.
(5) The m-th shift of the cycle z = (w, r1) is defined as the cycle

z(m) = (w(m), r2m+1), where w(m) = x2m+1r2m+2x2m+2 . . . r2mx2m.
(6) A cycle (w, r1) is called periodic if w is of the form w = vr1vr1 . . . r1v

for a shorter cycle (v, r1).
(7) We call two words, w and w′ = x1r

′

2x2r
′

3 . . . r′lxl (with the same
xk), elementary congruent if there are two indices k1, k2 such
that

rk1
=

3c

−, rk2
=

d

− for some c 6= 3, d 6= 3,

r′k1
=

c

−, r′k2
=

3d

−,

r′k = rk for k /∈ { k1, k2 } ,

xk1
≈ xk2

or xk1
≈ xk2−1.

(8) We call two words w, w′ congruent and write w ≡ w′ if there
is a sequence of words w = w1, w2, . . . , wn = w such that wk

and wk+1 are elementary congruent for 1 ≤ k < n. We call two
cycles z = (w, r1) and z′ = (w′, r′1) congruent and write z ≡ z′

if w′ ≡ z and r′1 = r1.
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We recall that two polyhedra X, Y are called congruent if X ∨ Z ≃
Y ∨ Z for some polyhedron Z. Then we write X ≡ Y .

Theorem 6.2. (1) Every word w defines an indecomposable poly-
hedron P (w) from T7, called string polyhedron.

(2) Let π(t) 6= t be an irreducible polynomial over the field Z/2.
Every triple (z, π(t), m), where is a non-periodic cycle and m ∈
N, defines an indecomposable polyhedron P (z, π, m) from T7,
called band polyhedron.

(3) Every indecomposable polyhedron from T7 is congruent either
to a string or to a band one.

(4) P (w) ≡ P (w′) if and only if either w′ ≡ w or w′ ≡ w∗.
(5) P (z, π(t), m) ≡ P (z′, π′(t), m) if and only if m = m′ and one

of the following possibilities hold:
(a) π′(t) = π(t) and either z′ ≡ z(k) with k even or z′ = z∗(k)

with k odd;
(b) π′(t) = tdπ(1/t), where d = deg π, and either z′ = z(k) with

k odd or z′ = z∗(k) with k even.
(6) Neither string polyhedron is congruent to a band one.
(7)

The cofibration sequence

A
f
−→ B → Cf → SA, A ∈ A 0, B ∈ B0,

and the attachment diagram of a string polyhedron P (w) is constructed
as follows.

(1) The indecomposable summands of A correspond to the follow-
ing subwords of w (or their reverse):

S10 to f1 ∼ f ′

1,

S11 to f2 ∼ f ′

2,

S12 to f3 ∼ f ′

3,

C12 to f4 ∼ f5.

(2) The indecomposable summands of B correspond to the follow-
ing subwords of w (or their reverse):

S7 to e1,

C10
2 to e2 ∼ e3,

C9 to e4 ∼ e5,

S8 to e6 ∼ e′6,

C10 to e7,

S9 to e9 ∼ e′9,

S10 to e10.
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(3) The attachments correspond to the subwords ei

c

− fj (or their
reverse). Namely, such an attachment starts at the f -end of
the corresponding subword and ends at its e-end; the number c
shows which multiple of the generator of the (ij)-th group from
Table 9 must be taken.

For instance, if

w = e10

1
− f ′

2 ∼ f2

8
− e6 ∼ e′6

1
− f ′

1 ∼ f1

2
− e4

∼ e5

6
− f5 ∼ f4

1
− e2 ∼ e3

1
− f ′

3 ∼ f3

2
− e5

∼ e4

3
− f1 ∼ f ′

1

1
− e′9 ∼ e9

12
− f3 ∼ f ′

3,

the polyhedron P (w) has the attachment diagram

13 •
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•
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��
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8
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**

11 •

2
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**

**
**

**
**

**
**

•

1

**
**

**
**

**
**

**
**

•

3

��
��
��
��

��
��
��
��

10 • •

9 • • •

8 •

7 • • •

Let now P (z, π(t), m) be a band polyhedron. Replacing w by w∗,
we may suppose that x1 ∈ E, xn ∈ F. Let also Φ be the Frobenius
matrix with the characteristic polynomial π(t)m. Then the cofibration
sequence and the attachment diagram are constructed as follows.

(1) Do the construction as above for the word w.
(2) Replace every summand Aj of A and every summand Bi of B

by m copies of it, Aj1, . . . , Ajm and Bi1, . . . , Bim.

(3) If there was an attachment Aj
c
−→ Bi, replace it by the attach-

ments Ajk
c
−→ Bik (1 ≤ k ≤ m).

(4) If Aj is the last summand of A, Bi is the first summand of B

and r1 =
c

−, add new attachments Ajk
c
−→ Bil in all cases, when

the (lk)-th coefficient of the matrix Φ is nonzero.

For instance, consider the band polyhedron P (z, t2 + t + 1, 3) z =

(w,
1
−), where

w = e2 ∼ e3

1
− f ′

3 ∼ f3

2
− e9 ∼ e′9

1
− f ′

1 ∼ f1

3
− e4 ∼ e5

6
− f5 ∼ f4.
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Then the attachment diagram is

13 • • ••

2
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7
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77
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7

• • ••
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�

12

11 • • ••

3
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7
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77

7
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77
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77

7

77
77

77
77

7

• • ••

10 • • ••

9 • • •• • • ••

8

7 • • ••

1

-m -m .n .n /o /o 0p 0p 1q 1q 2r 3s 3s 4t 5u

8x 8x
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:z
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• • ••

Here the double lines show the attachments like

• • • •

• • • •
while the wavy line shows the attachment

•
JJJJJJ •

JJJJJJ •
JJJJJJ •

tttttt
fffffffffffffff

• • • •
ruled by the Frobenius matrix with the characteristic polynomial π(t)2 =
t4 + t2 + 1, namely,









0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0









.

7. Wild cases

Since we are dealing with additive categories that are not categories
over a filed, we have to precise the notion of wildness. The following
one seems to work in all known cases.

Definition 7.1. We call an additive category C wild if, there is a
field k such that for every finitely generated k-algebra Λ there is a full
subcategory CΛ ⊆ S and an epivalence CΛ → Λ-mod (the category of
Λ-modules that are finite dimensional over k).

One can see that for algebras over a field this definition is equivalent
to the usual one (see, for instance [14]). One can also easily show that
if a category D is wild and there is an epivalence C ′ → D for a full
subcategory C ′ ⊆ C , then C is wild as well.

Now we present the results on wildness of categories Sn and Tn.

Theorem 7.2 (Baues [6]). If n > 4, the category Sn is wild.

Proof. Obviously, one only has to prove the claim for n = 5. The
category S5 contains the full subcategory C = A †B, where A consists
of bouquets of suspended Moore atom A = M6(2) and B consists of
bouquets of suspended Moore atoms B = M8(2).Let V = A SB. Since
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Hos(B, A) = 0, Corollary 1.2 is applicable. Moreover, the ideal J in
this case is zero, so C /I ≃ Bim(V ) with I 2 = 0, hence, the natural
functor C → Bim(V ) is an epivalence.

Consider the cofibration sequence

(7.1) S7 2
−→ S7 → A → S8 2

−→ S8.

Apply to it the functors Hos( , S6) and Hos( , S5). Taking into account
the Hopf map η : S6 → S5 we get the commutative diagram with exact
rows

0 −−−→ Z/2 −−−→ Hos(A, S6) −−−→ Z/2 −−−→ 0

η∗





y





y





y

≀

0 −−−→ Z/2 −−−→ Hos(A, S5) −−−→ Z/2 −−−→ 0 .

Since η3 = 4ν, where ν is the element of order 8 in Hos(S8, S5), the map
η∗ in this diagram is zero, therefore, the lower exact sequence splits and
Hos(A, S5) ≃ Z/2 ⊕ Z/2.Quite similarly, one shows that Hos(S8, B) ≃
Z/2 ⊕ Z/2. Now apply the functors Hos( , S5) and Hos( , B) to the
exact sequence (7.1) and take into account the map S5 → B form
the definition of B = M6(2). Since Hos(S7, B) ≃ Z/2, we get the
commutative diagram with exact rows

0 −−−→ Z/2 −−−→ Hos(A, S5) −−−→ Z/2 −−−→ 0




y





y





y

≀

0 −−−→ Z/2 ⊕ Z/2 −−−→ Hos(A, B) −−−→ Z/2 −−−→ 0 .

We know that the upper row of this diagram splits. Hence, the lower
row splits too, so Hos(A, B) ≃ (Z/2)3. Recall that Es(A) ≃ Es(B) ≃
Z/4 (Proposition 3.3). Hence, there is an epivalence Bim(V ) → Λ-mod,
where Λ is the path algebra of the quiver •

((//66 • over the field Z/2.
The latter is well-known to be wild, therefore, so is also S5. �

Theorem 7.3 ([16]). The category Tn is wild for n > 7.

Proof. Again we only have to prove it for n = 8. The category T8 con-
tains the full subcategory C = A †V B, where A consists of bouquets
of Chang atoms C142 and B consists of bouquets of spheres §8 and
S11, and V = BS 0

8,3A . Moreover, I 0
8,3 ∩ Bim V = 0, so there is an

epivalence C → Bim(V ). Consider the cofibration sequence

S13 η2

−→ S11 → C14
2 → S14 → S12

and apply to it the functor Hos( , S11). We get the exact sequence

Z/2
(η2)∗

−−−→ Z/24 → Hos(C14
2 , S11) → Z → Z/2,
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wherefrom S 0(C14
2 , S11) ≃ Z/12. Moreover, there is a commutative

diagram of cofibration sequences

S13 η
−−−→ S12 −−−→ C14 −−−→ S14 η

−−−→ S13

Id nolimits





y

η





y





y





y
Id nolimits





y

η

S13 η2

−−−→ S11 −−−→ C14
2 −−−→ S14 −−−→

η2
S12 .

Applying the functor Hos( , S8), we get the commutative diagram with
exact rows

0 −−−→ Z/2 −−−→ Hos(C14
2 , S8) −−−→ Z/24 −−−→ 0





y





y





y

0 −−−→ Z/2 −−−→ Hos(C14, S8) −−−→ 0 −−−→ 0 .

(Recall that πS
d+4(S

d) = πS
d+5(S

d) = 0 and πS
d+6(S

d) = Z/2 [24]).
Therefore, S 0(C14

2 , S8) ≃ Z/24 ⊕ Z/2. So we present maps a ∈
V (A, B), where A ∈ A , B ∈ B, as block-triangular matrices

a =

(

a1 a2

0 a3

)

,

where a1 is with the coefficients from Z/24, a2 is with coefficients from
Z/2 and a3 with coefficients from Z/12. On the other hand, maps
α : A → A′, where A, A′ ∈ A , and β : B → B′, where B, B′ ∈ B can
be presented by block- triangular matrices

α =

(

α1 α2

0 α3

)

and β =

(

β1 β2

0 β3

)

,

where α2 has coefficients from Z/12, β2 has coefficients from Z/24,
other blocks have components from Z and α1 ≡ α3 mod 2.

We consider the full subcategory C ⊂ Bim(V ) consisting of all maps
a such that the corresponding blocks a1, a2, a3 are of the form

a1 =

(

6I 0 0
0 12 0

)

, a2 =

(

0 I 0
0 0 u

)

a3 =
(

6v1 6v2 0
)

,

where the entries I stand for identity matrices (not necessary of the
same dimensions) and u, v1, v2 are arbitrary matrices with coefficients
from Z/2 of proper sizes. We write a = a(u, v1, v2). One can verify
that if (α, β) is a morphism a(u, v1, v2) → a(u′, v′

1, v
′

2), there are inte-
gral matrices γ1, γ2, γ3 such that viγ1 = γ2vi (i = 1, 2) and uγ3 = γ1u.
Conversely, any given triple γ1, γ2, γ3 with these properties can be ac-
complished to a morphism a(u, v1, v2) → a(u′, v′

1, v
′

2). It gives rise to
an epivalence C → Λ-mod, where Λ is the path algebra of the quiver
• // •

((
66 • . It is known to be wild. Therefore, T8 is wild as

well. �
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