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Abstract

Surface operators in gauge theory are analogous to Wilson and ’t Hooft line operators ex-

cept that they are supported on a two-dimensional surface rather than a one-dimensional

curve. In a previous paper, we constructed a certain class of half-BPS surface operators

in N = 4 super Yang-Mills theory, and determined how they transform under S-duality.

Those surface operators depend on a relatively large number of freely adjustable param-

eters. In the present paper, we consider the opposite case of half-BPS surface operators

that are “rigid” in the sense that they do not depend on any parameters at all. We present

some simple constructions of rigid half-BPS surface operators and attempt to determine

how they transform under duality. This attempt is only partially successful, suggesting

that our constructions are not the whole story. The partial match suggests interesting con-

nections with quantization. We discuss some possible refinements and some string theory

constructions which might lead to a more complete picture.
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1. Introduction

The familiar examples of non-local operators in four-dimensional gauge theory include

line operators, such as Wilson and ’t Hooft operators, supported on a one-dimensional curve

L in the space-time manifold M . While a Wilson operator labeled by a representation R of
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the gauge group G can be defined by modifying the measure in the path integral, namely

by inserting a factor

WR(L) = TrR HolL(A) = TrR

(
P exp

∮

L

A

)
, (1.1)

an ’t Hooft operator is defined by modifying the space of fields over which one performs

the path integral.

Similarly, a surface operator in four-dimensional gauge theory is an operator supported

on a two-dimensional submanifold D ⊂ M in the space-time manifold M . Although in

this paper we mainly take M = R4 and D = R2, the constructions are local and one might

consider more general space-time four-manifolds M and embedded surfaces D. In general,

surface operators do not admit a simple “electric” description analogous to the definition

of Wilson lines, and should be defined, like ’t Hooft operators, by modifying the domain

of integration in the path integral, that is by requiring the gauge field A (and, possibly,

other fields) to have prescribed singularities along D.

Four-dimensional gauge theories admit surface operators, and in the supersymmetric

case, they often admit supersymmetric surface operators, that is, surface operators that

preserve some of the supersymmetry. In this paper, we consider N = 4 super Yang-

Mills theory in four dimensions, the maximally supersymmetric case. This theory has

many remarkable properties, including electric-magnetic duality, and has been extensively

studied in the context of string dualities, in particular in the AdS/CFT correspondence

[1]. It also has a rich spectrum of non-local operators, including supersymmetric Wilson

and ’t Hooft operators which play an important role in many applications, as well as

supersymmetric surface operators and domain walls.

A half-supersymmetric or half-BPS Wilson operator is determined by discrete data,

namely the choice of a representation of the gauge group G. Similarly, a half-BPS ’t

Hooft operator is determined by discrete data. In contrast, the half-BPS surface operators

that we constructed in previous work [2] depend on freely adjustable parameters, typically

quite a few of them. Much of their interest actually comes from the dependence on these

parameters.

As will become clear, the problem of describing all half-BPS surface operators in N = 4

super Yang-Mills theory is rather involved. In this paper, we will consider the opposite

case from what was considered in [2]: surface operators that depend on no continuously

variable parameters at all. We call these rigid surface operators.
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It is purely for simplicity that we consider only maximally supersymmetric or half-

BPS surface operators. In the case of line operators, in addition to the half-BPS Wilson

and ’t Hooft operators, there are many more 1
4 -BPS line operators; their analysis is very

interesting but is much more complex than the half-BPS case, as shown in [3]. Surface

operators with reduced supersymmetry are probably also interesting, but harder to study.

In addition to being rigid, the surface operators that we consider here are in a cer-

tain sense minimal or irreducible. They do not have any extra fields supported on the

surface. This notion is clarified in section 3.5; in the meanwhile, we simply remark that

our surface operators are related to individual orbits of the gauge group G (or rather its

complexification), and this leads to minimality.

Finally, rigid surface operators are probably automatically conformally invariant.

They must be scale-invariant, or a scale transformation would introduce a free parame-

ter. In local quantum field theory, scale invariance usually implies conformally invariance.

Our constructions will be manifestly conformally invariant at the classical level. Quantum

conformal invariance can probably be argued along the lines of [4], and is manifest for

some of our surface operators in the string theory construction of section 8. N = 4 super

Yang-Mills theory also has (non-rigid) half-BPS surface operators that are not conformally

invariant [5].

Organization Of The Paper

In section 2, after a brief review of the surface operators considered in [2], we describe

two constructions of rigid surface operators. Some further refinements leading to additional

rigid surface operators are described in section 3.

S-duality must transform rigid surface operators of N = 4 super Yang-Mills theory

with gauge group G to similar operators in the same theory with the dual gauge group LG.

Aiming to understand this, we describe in section 4 some properties of surface operators

that are computable and should be invariant under electric-magnetic duality or should

transform in a known way.

In section 5, we attempt to use this information to determine, in examples, how our

surface operators transform under duality. In doing this, we concentrate on orthogonal

and symplectic gauge groups of small rank. A simple example involving unitary groups is

also discussed in section 3.4. We omit exceptional groups, which are more complicated.

It is especially interesting to consider the dual pairs of groups G = SO(2n + 1) and
LG = Sp(2n), whose Lie algebras are not isomorphic. In carrying out this analysis, we do
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find some interesting examples of what appear to be dual pairs of surface operators, but we

are not able to get a complete duality conjecture. It is quite likely that our constructions

of rigid surface operators are in need of some further refinement. There may be a relation

to the construction in .

The remainder of the paper is devoted to some attempts at a more systematic un-

derstanding. In section 6, we try to be more systematic, at least for certain families of

rigid surface operators, in orthogonal and symplectic gauge groups of any rank. In section

6.1, we argue that the mathematical theory of special unipotent conjugacy classes [6,7]

provides the right framework for a duality conjecture for a certain family of surface oper-

ators. In section 6.2, we make analogous proposals for other families of surface operators.

This discussion is somewhat similar to a relation between conjugacy classes defined in [8],

section 13.3. In section 7, we make a general conjecture about how the conjugacy class

associated with a rigid surface operator transforms under duality. Finally, in section 8, we

describe string theory constructions of some of the rigid surface operators of section 2.

The paper contains two appendices. In Appendix A, we describe rigid nilpotent orbits

for exceptional groups which, together with the material of section 2, can be used to

study rigid surface operators in super Yang-Mills theories with exceptional gauge groups.

In Appendix B, we review the root systems and matrix realizations of the Lie algebras

so(2N + 1) and sp(2N). In particular, we identify the invariant polynomials of the Higgs

field in dual theories with gauge groups G = SO(2n+ 1) and LG = Sp(2n) which play an

important role in identifying dual pairs of rigid surface operators.

2. Rigid Surface Operators

2.1. Review

To keep this paper self-contained, we begin with a brief review of the surface operators

constructed in [2]. We consider N = 4 super Yang-Mills theory on R4, with coordinates

x0, x1, x2, x3. The support D of the surface operator will be a copy of R2 at x2 = x3 = 0.

The supersymmetry preserved by the surface operator is (4, 4) supersymmetry in the two-

dimensional sense. We recall that the vector multiplet of (4, 4) supersymmetry in two

dimensions consists of a gauge field and four scalars in the adjoint representation (plus

fermions). Accordingly, components A0, A1 of the four-dimensional gauge field plus four

of the six scalars of N = 4 super Yang-Mills theory transform in a vector multiplet of

two-dimensional (4, 4) supersymmetry. The “normal” components A2 and A3 of the gauge
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field transform in a hypermultiplet of the unbroken supersymmetry, along with two of the

scalars. It is convenient to denote those two scalars as φ2 and φ3.

Surface operators were defined in [2] by postulating a suitable singular behavior of the

hypermultiplets, that is the fields A2, A3, φ2, φ3, at x2 = x3 = 0. Of course, the singularity

must be chosen to be compatible with supersymmetry. The condition for supersymmetry

is that A = A2dx
2 + A3dx

3 and φ = φ2dx
2 + φ3dx

3 must obey certain equations that are

known as Hitchin’s equations [9]. Hitchin’s equations are equations in the x2 − x3 plane

that can be written as follows:

FA − φ ∧ φ = 0

dAφ = 0, dA ⋆ φ = 0.
(2.1)

Originally, these equations were obtained in [9] as the dimensional reduction of the self-

dual Yang-Mills equations from four to two dimensions; φ simply arises as the components

of the gauge field in the two hidden dimensions. (This approach is natural if one considers

N = 4 super Yang-Mills theory to arise by dimensional reduction from ten dimensions.)

This interpretation of Hitchin’s equations makes it clear they are associated with unbroken

supersymmetry.

To define a supersymmetric surface operator, one picks a solution of Hitchin’s equa-

tions with a singularity along D, and one requires that quantization of N = 4 super

Yang-Mills theory should be carried out for fields with precisely this kind of singularity.

For the surface operator to be superconformal, the singularity must be scale-invariant. In

addition, it is natural to look for surface operators that are invariant under rotations of the

x2 − x3 plane. If we set x2 + ix3 = reiθ, then the most general possible rotation-invariant

ansatz is

A = a(r)dθ + f(r)
dr

r

φ = b(r)
dr

r
− c(r)dθ.

(2.2)

Setting f(r) = 0 by a gauge transformation and introducing a new variable s = − ln r, we

can write the supersymmetry equations (2.1) in the form of Nahm’s equations:

da

ds
= [b, c]

db

ds
= [c, a]

dc

ds
= [a, b].

(2.3)
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A conformally invariant solution is invariant under scalings of r and therefore is indepen-

dent of s. (As we discuss later, solutions that are not quite conformally invariant can

also be used to construct conformally invariant surface operators.) So the most general

conformally invariant solution is obtained by setting a, b, c to constant elements α, β, γ of

the Lie algebra g of G. The equations imply that α, β, and γ must commute, so we can

conjugate them to the Lie algebra t of a maximal torus T of G. The resulting singular

solution of Hitchin’s equations then takes the simple form

A = αdθ

φ = β
dr

r
− γ dθ.

(2.4)

Hitchin’s equations with a singularity of this form were first studied mathematically in

[10].

Roughly speaking, surface operators were defined in [2] by requiring that the fields

have a singularity of this kind, with specified values1 of α, β, and γ. More exactly, to study

N = 4 super Yang-Mills theory in the presence of the surface operator, one performs the

path integral (or one quantizes) in a space of fields that take the form given in eqn. (2.4)

modulo terms that are less singular than 1/r.

There are two important caveats. First, it turns out that one can add an additional

parameter η, also t-valued. η is a sort of two-dimensional theta angle and plays an im-

portant role because it transforms into α under duality. (For rigid surface operators, η at

most has only a discrete analog.) Second, to quantize in the presence of the singularity

described in (2.4), one should divide only by gauge transformations that, along the locus

D of the singularity, take values in the subgroup of G that commutes with α, β, and γ

(and η). Generically, this subgroup is the maximal torus T. But in general, it may be any

subgroup L of G that contains T. Such a subgroup is called a Levi subgroup. In studying

a surface operator of this type, we regard the choice of L as part of the definition. Having

chosen L, we pick α, β, γ, and η to be an L-regular quadruple, meaning that the subgroup

of G that commutes with all four of them is precisely L. Then, to calculate Yang-Mills

observables in the presence of the surface operator, we perform a path integral over fields

with the indicated type of singularity, dividing by gauge transformations that along D are

L-valued. This gives a surface operator that varies smoothly with α, β, γ, η as long as those

1 If instead of specifying the values of α, β, and γ, we treat them as dynamical fields, we get

a non-minimal surface operator, in the sense of section 3.5.
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parameters form an L-regular quadruple. But when the parameters are varied so that the

unbroken group becomes a larger group L′, a singularity emerges. In a sense, the residue of

this singularity is a surface operator that can be constructed in the same way, but starting

with L′ rather than L. One of the main ideas in [2] was to study the monodromies in the

space of L-regular parameters.

2.2. Limit For α, β, γ → 0

As a preliminary to discussing rigid surface operators, we will consider what happens

to the above construction in the limit that α, β, γ → 0. To keep things simple, we begin

with the case G = SU(2). For more detail on the following, see [2], section 3.3.

The naive idea is that the singularity of A and φ is linear in α, β, and γ, so that if we

set α, β, γ to zero, there is no singularity and no surface operator. However, as we have

already noted, the definition of the surface operator is that A and φ have singularities

proportional to α, β, γ modulo terms that are less singular than 1/r. Generically, for

α, β, γ → 0, we should not conclude that A and φ are nonsingular, but only that they

are less singular than 1/r. In fact, Hitchin’s equations do have a rotationally symmetric

solution that is singular at r = 0 but less singular than 1/r. The Nahm equations (2.3)

are solved with

a = − t1
s+ 1/f

, b = − t2
s+ 1/f

, c = − t3
s+ 1/f

(2.5)

where t1, t2, and t3 are elements of the Lie algebra g, which satisfy the usual su(2) commu-

tation relations, [t1, t2] = t3, etc. Moreover, f is an arbitrary non-negative constant. Since

we are taking G = SU(2), the matrices ti, if nonzero, correspond to the two-dimensional

representation of SU(2).

Because of the factor of −1/s = 1/ ln r, this solution is less singular at r = 0 than

the solutions considered before in which a, b, c are set to commuting constants α, β, γ. A

surface operator with nonzero α, β, γ converges for α, β, γ → 0 to one that is characterized

by the statement that the singularity at r = 0 looks like the solution of eqn. (2.5), for some

f . (We also allow the limiting case f = 0, in which there is no singularity.) Any choice of f

would spoil conformal invariance. But it is not natural to make a choice of f , because the

derivative of A and φ with respect to f is square-integrable. So the surface operator that

we get from the ansatz (2.5), with f allowed to fluctuate, is actually conformally invariant.
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A convenient way to describe this surface operator is to say that the fields behave

near r = 0 as

A =
t1 dθ

ln r
+ . . .

φ =
t2 dr

r ln r
− t3 dθ

ln r
+ . . . ,

(2.6)

where the ellipses refer to terms that are less singular (at most of order 1/r ln2 r) at r = 0.

Concretely, a generic field with the singularity determined by α, β, γ has (in a basis in

which α, β, γ are diagonal) off-diagonal terms that are singular, but less singular than 1/r.

For α, β, γ → 0, a sequence of such solutions can converge to the one given in eqn. (2.5).

Such a sequence can also converge to a non-singular solution (corresponding to f = 0),

but that is non-generic.

The Monodromy

The following considerations give a useful picture of what is happening. The complex-

valued flat connection A = A+ iφ is invariant under part of the supersymmetry preserved

by the surface operator. Hence the conjugacy class of the monodromy

U = P exp

(
−

∫

ℓ

A
)

(2.7)

is a supersymmetric observable. Here ℓ is a contour surrounding the singularity. Hitchin’s

equations imply that the curvature of A, namely F = dA + A ∧ A, is equal to zero.

So if Hitchin’s equations are obeyed, then the conjugacy class of U is invariant under

deformations of ℓ. Of course, U is an element of GC, the complexification of G.

In general, in quantum theory, the fields fluctuate and Hitchin’s equations are only

obeyed near the singularity (where they are imposed as a boundary condition). However,

the conjugacy class of U is independent of ℓ as an observable in a suitable chiral algebra,

defined using some of the supersymmetries, since F vanishes in that chiral algebra. Alter-

natively, one can simply define the conjugacy class of U for the limiting case that ℓ is a

small loop surrounding the singularity.

So let us compute the conjugacy class of U for the surface operators that were described

above. For a generic surface operator with parameters α, β, γ, we set ξ = α − iγ. Then

A = ξdθ, and the monodromy is hence

U = exp(−2πξ). (2.8)

8



This is independent of the choice of ℓ.

On the other hand, for the solution (2.5), we find A = −dθ(t1 − it3)/(s+ 1/f). If we

take ℓ to be the circle s = s1, the monodromy comes out to be

U ′ = exp(−2π(t1 − it3)/(s1 + 1/f)). (2.9)

At first sight, it is not obvious that the conjugacy class of U ′ is independent of s1, as it

should be. What saves the day is that t1 − it3 is nilpotent, because of the commutation

relation

[it2, t1 − it3] = t1 − it3. (2.10)

In a form of the two-dimensional representation of SU(2), with t2 being diagonal, t1 − it3

is lower triangular. Thus U ′ takes the form

U ′ =

(
1 0
w 1

)
, (2.11)

for some w.

The conjugacy class of U ′ is independent of w, as long as w is nonzero, because w can

be changed by conjugating U ′ by a diagonal matrix. Now let us reconsider the monodromy

(2.8) of the surface operator with α, γ 6= 0. If ξ 6= 0, then ξ can be diagonalized with

eigenvalues ±ξ0. U can also be diagonalized, with eigenvalues exp(±2πξ0):

U =

(
exp(−2πξ0) 0

0 exp(2πξ0)

)
. (2.12)

As long as ξ0 6= 0, this matrix is conjugate to

Uw =

(
exp(−2πξ0) 0

w exp(2πξ0)

)
, (2.13)

so it does not matter if w is zero or not. In fact, U can be transformed to Uw by conjugation

by a lower triangular matrix (
1 0
∗ 1

)
. (2.14)

But if ξ0 = 0, then of course, the conjugacy class of Uw does depend on whether w vanishes

or not.

Let Cξ be the conjugacy class in SL(2,C) that contains the element U = exp(−2πξ),

with generic ξ. Then Cξ is of complex dimension two. Indeed, U commutes only with a

one-parameter subgroup of diagonal matrices, so its orbit in the three-dimensional group

9



SL(2,C) is two-dimensional. Similarly, the lower triangular matrix U ′ commutes only

with the one-parameter group of lower-triangular matrices, so it lies in a two-dimensional

conjugacy class C′. The limit of the conjugacy class Cξ for ξ → 0 is C′ (or more precisely its

closure, as we note in a moment). It is not the conjugacy class C0 of the identity element

of SL(2,C), as we would expect if we naively set ξ0 = 0 in the expression (2.13) for U .

In fact, the conjugacy class Cξ can be defined by the equation

TrU = exp(−2πξ0) + exp(2πξ0). (2.15)

The limit of this equation for ξ0 = 0 is

TrU = 2, (2.16)

which is obeyed by U ′. In fact, the equation TrU = 2 defines a union of two conjugacy

classes: one conjugacy class C′ that contains U ′, and a second class C0 that consists of a

single element, the identity element of SL(2,C).

This gives us a new perspective on why the surface operator defined by generic values

of α, β, γ can have for a limit the surface operator associated with the solution (2.5) of

Nahm’s equations. The former surface operator is associated with monodromy in the class

Cξ. The latter one is associated with monodromy that is generically in the class C′, but

can also be in the class C0, corresponding to trivial monodromy, in the special case f = 0.

The limit of Cξ for ξ → 0 is the union of C′ and C0. This is why the limit of the generic

surface operator can be the one associated with Nahm’s equations.

The conjugacy class C′ is not closed in SL(2,C), because the matrix U ′ of eqn. (2.11)

jumps from being in the class C′ to the class C0 when w becomes 0. The closure of C′

therefore includes the point C0. When we say that the monodromy associated with a given

surface operator is in the conjugacy class C′, we will always mean that it is generically in

that conjugacy class and in general is in the closure of the stated conjugacy class.

An element of a complex Lie group – SL(2,C) in our example – is called semisimple if it

can be diagonalized (or conjugated to a maximal torus). As in our example, the conjugacy

class of a semisimple element is always closed. We call this a semisimple conjugacy class.

By contrast, an element U is called unipotent if, in any finite-dimensional representation,

it takes the form U = exp(n), where n is nilpotent. In our above example, U ′ is unipotent.

The conjugacy class of a unipotent element is called a unipotent conjugacy class. As in our

above example, a unipotent class of positive dimension is never closed; its closure always

10



contains the class C0 of the identity element of GC. In general, for a group of higher rank,

the closure of a unipotent conjugacy class is a union of many (but only finitely many)

conjugacy classes.

If a surface operator is associated with a semisimple or unipotent conjugacy class, we

call it a semisimple or unipotent surface operator.

Counting Dimensions

In our above example, the conjugacy class C0 consists of a single point, while C′ has

complex dimension 2 or real dimension 4. Let us understand this from the point of view of

Hitchin’s equations. To get trivial monodromy, we must set f = 0 in (2.5). This involves

adjusting one real parameter. In addition, at f = 0, the solution reduces to A = φ = 0,

which is invariant under global SU(2) gauge rotations. In fixing the gauge invariance,

one is then free to make global SU(2) gauge rotations on the other fields, away from the

support of the surface operator. As the real dimension of SU(2) is 3, the real codimension

of the locus (in a family of solutions of Hitchin’s equations, or a family of fields in the path

integral) at which the monodromy is trivial rather than being conjugate to U ′ is 1+3 = 4.

Now suppose that we compactify N = 4 super Yang-Mills theory from four dimensions

to two dimensions on a Riemann surface C, the four-manifold being then R
2 × C. It

is possible to make a topological twist so that supersymmetry is preserved; Hitchin’s

equations for the pair (A, φ) are the condition for unbroken supersymmetry [11]. Let MH

be the moduli space of solutions of Hitchin’s equations. It is a hyper-Kahler manifold.

In one complex structure, it parametrizes, up to conjugation, homomorphisms from the

fundamental group of C to GC, the complexification of G. Concretely, if C has genus g,

and Vi, Wj , i, j = 1, . . . , g are the monodromies around a complete set of A-cycles and

B-cycles, then such a flat connection corresponds to a solution of the equation

V1W1V1
−1W1

−1 · · ·VgWgVg
−1Wg

−1 = 1, (2.17)

modulo conjugation by an element of G. The complex dimension of the solution space

is thus 2(g − 1)dimG. (The coefficient of dimG is obtained by counting the 2g group

elements Vi and Wj , and subtracting 1 for the equation and 1 for dividing by conjugation.)

Now include a surface operator, supported on D = R2 × p for p a point in C. We

suppose that the surface operator is associated with a conjugacy class C, which in our
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above examples is Cξ or C′. Let n be the complex dimension of C. The equation for the

monodromies becomes

V1W1V1
−1W1

−1 · · ·VgWgVg
−1Wg

−1 = U, (2.18)

where U may be any element of the class C (or in general of its closure). Since U takes values

in an n-dimensional space, the dimension of the moduli space becomes 2(g− 1)dimG+ n.

For instance, if C′ is the unipotent conjugacy class described above, then n = 2 and

including the surface operator increases the complex dimension of the moduli space by 2.

More General Conjugacy Classes

For G = SU(2), the unipotent surface operator that we have described above is not

essentially new, in the sense that it is the limit of a semisimple surface operator with

parameters α, β, γ as the parameters go to zero. However, the same construction can be

applied for other groups G and in general does give essentially new surface operators. In

fact, the construction that we have explained above can be directly adapted to give a

surface operator for any unipotent conjugacy class C ⊂ GC.

Unipotent elements U of GC correspond naturally to nilpotent elements n of the Lie

algebra gC of GC, via U = exp(n). It is convenient to think in terms of the Lie algebra. A

natural source of nilpotent elements of GC comes by picking an embedding of Lie algebras

ρ : sl(2,C) → gC. Then the raising (or lowering) operator for this embedding gives us a

nilpotent element n ∈ gC.

Conversely, the Jacobson-Morozov theorem states that every nilpotent element n ∈
gC is the raising operator for some sl(2,C) embedding. In fact, up to conjugacy, every

nilpotent element is the raising operator of some unitary embedding

ρ : su(2) → g (2.19)

of the real Lie algebra of SU(2) to that of the compact form of G. We pause to explain

this theorem for G = SU(N). (A similar verification can be made for the other classical

groups SO(N) and Sp(2N).) Every nilpotent element n of sl(N,C) can be put in Jordan

canonical form. In this form, n is block diagonal with off-diagonal blocks vanishing, as

shown here 


∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ 0
0 0 0 ∗ ∗ 0
0 0 0 0 0 ∗



. (2.20)
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In this examples, the blocks have sizes λ1 = 3, λ2 = 2, λ3 = 1. Moreover, in Jordan

canonical form, each diagonal block is a “principal nilpotent element” with 1’s just above

the main diagonal and all other matrix elements vanishing:

n =




0 1 0 0 · · · 0
0 0 1 0 · · · 0

. . .

0 0 0 0 · · · 1
0 0 0 0 · · · 0



. (2.21)

In general, the sizes of the blocks are λ1, λ2, . . . , λk, where λ1 + λ2 + . . . + λk = N , and

we may as well assume λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λk. On the other hand, up to isomorphism,

there is one irreducible representation of SU(2) for each positive integer dimension. If we

choose the SU(2) embedding that corresponds to the decomposition N = λ1+λ2+. . .+λk,

then the raising operator is conjugate to a matrix in Jordan canonical form with blocks of

the indicated size.

An important special case is the case that ρ : su(2) → su(N) is an irreducible repre-

sentation. Then its raising operator is simply an N ×N matrix of the form in (2.21), up

to conjugacy. Such an element is called a principal nilpotent element of su(N).

Now it is clear how to make a surface operator associated with any unipotent conjugacy

class C ⊂ GC. We pick an SU(2) embedding ρ : su(2) → g, and define the surface operator

using eqn. (2.5), where t1, t2, and t3 are now the images of the standard SU(2) generators

under the chosen embedding.

The classification of su(2) embeddings in su(N) has a close analog for orthogonal and

symplectic groups. We need only to know a few facts. Irreducible representations of su(2)

are real or pseudoreal according to whether their dimension is odd or even. (A real rep-

resentation admits an invariant symmetric bilinear form, and a pseudoreal one admits an

invariant antisymmetric bilinear form.) In addition, if R is a real or pseudoreal represen-

tation (it admits an invariant quadratic form that is either symmetric or antisymmetric),

then the direct sum R⊕R can be endowed with an invariant quadratic form that is either

symmetric or antisymmetric, as one prefers.

A homomorphism ρ : su(2) → so(N) is the same as an N -dimensional real representa-

tion of su(2), or in other words an N -dimensional representation that admits an invariant

symmetric form. If ρ is given by a decomposition N = λ1 + λ2 + . . .+ λk, then the condi-

tion, in view of the facts cited in the last paragraph, is that the λi each either are odd or

occur with even multiplicity.
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A homomorphism ρ : su(2) → sp(2N) is the same as a 2N -dimensional pseudoreal

representation of su(2). If ρ is given by a decomposition N = λ1 + λ2 + . . .+ λk, then the

condition is that the λi either are even or occur with even multiplicity.

A decomposition N = λ1 + λ2 + . . . + λk is called a partition of N , and the λi are

called parts. To summarize the above, for G of type A, B, C, or D, we have the following

classification of nilpotent orbits in terms of partitions (see e.g. [12], section 5):

(AN ) : partitions of N + 1,
∑
λi = N + 1;

(BN ) : partitions of 2N + 1,
∑
λi = 2N + 1, with a constraint that the multiplicity of every

even part λi is even;

(CN ) : partitions of 2N ,
∑
λi = 2N , with a constraint that the multiplicity of every odd part

λi is even;

(DN ) : partitions of 2N ,
∑
λi = 2N , with a constraint that the multiplicity of every even

part λi is even. (Moreover, though this will not be important in the present paper,

partitions with all λi even correspond to two nilpotent orbits.)

In what follows, we denote the nilpotent orbit associated with a partition λ by cλ, and the

corresponding unipotent conjugacy class by Cλ.

2.3. Searching For Rigid Surface Operators

For any G and any ρ : su(2) → g, the above construction gives a surface operator.

But generically it is not rigid. For example, GC = SL(N,C) has no rigid conjugacy classes

at all, except the central elements. Surface operators associated with central classes have

been considered in [2] and will be described in section 4.3. They are rigid, but they are not

good illustrations of the ideas of the present paper as they are too special. Let us explain

why SL(N,C) has no other rigid conjugacy classes.

We consider first the semisimple case. Consider a semisimple element of SL(N,C),

say U = diag(u1, u2, . . . , uN ), with ui ∈ C∗. Now let us try to vary the ui in such a way

that the conjugacy class CU containing U varies smoothly. In doing this, we must preserve

the condition

u1u2 · · ·uN = 1, (2.22)

so as to remain in SL(N,C). Also, regardless of whether ui = uj or ui 6= uj for some

i, j, when we vary the ui, we want to preserve these conditions, so that the subgroup of

SL(N,C) that commutes with U does not jump. As long as U is not central, so that the ui
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are not all equal, these conditions allow us to vary at least one parameter. So semisimple

conjugacy classes in SU(N) are never rigid.

Now let us consider unipotent conjugacy classes. The basic case in a sense is the

principal unipotent conjugacy class. This is the class of an element U = exp(n) (or equally

well U = 1 + n), where n is a principal nilpotent element of the Lie algebra, of the form

in (2.21). For GC = SL(2,C), we have seen in detail that this conjugacy class is the

limit of a semisimple conjugacy class TrU = exp(−2πξ0) + exp(2πξ0) for ξ0 → 0. So this

conjugacy class is not rigid. Similarly, for any N , a principal nilpotent element (2.21) can

be deformed to the following family:

ñ =




0 1 0 0 · · · 0
0 0 1 0 · · · 0

. . .

0 0 0 0 · · · 1
aN aN−1 aN−2 aN−3 · · · 0



. (2.23)

(The lower right matrix element of ñ is set to zero to ensure that Tr ñ = 0.) Any element

of sl(N,C) of this form is regular, meaning that the subgroup of SL(N,C) that commutes

with ñ has complex dimension n− 1 (the dimension of a maximal torus). The coefficients

ak can be interpreted as Tr ñk, k = 2, . . . , N , the Casimir invariants of this group. A

generic regular conjugacy class in the Lie algebra is specified by giving the values of the

Casimir invariants; the regular nilpotent element of eqn. (2.21) is what we get (generically)

if we set the Casimir invariants to zero. The deformation from U = exp(n) to Ũ = exp(ñ)

shows that the conjugacy class of U is not rigid and in fact it can be deformed to a generic

regular semisimple conjugacy class. This means that, just as we explained in detail for

SU(2), a surface operator constructed using an irreducible embedding ρ : su(2) → su(N)

is a limit for α, β, γ → 0 of the surface operator constructed with the general ansatz (2.4).

In general, any element of SL(N,C) can be put in the block-diagonal form




∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ 0
0 0 0 ∗ ∗ 0
0 0 0 0 0 ∗




(2.24)

where now each diagonal block, say of size k × k, is the product of a scalar “eigenvalue”

u ∈ C∗ and a principal unipotent element of GL(k,C). Such a conjugacy class is not rigid
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if k > 1 (for any block), since then we can make in that block the argument of the last

paragraph. If the blocks are all 1× 1 blocks, we are back in the case, treated first, that U

is diagonalizable.

To summarize, we have shown that there are no noncentral rigid conjugacy classes in

SL(N,C). To find rigid (noncentral) surface operators, we will have to look farther.

Some Examples

However, complex semisimple Lie groups other than SL(N,C) do have rigid surface

operators.

Let us first give some simple examples. For G = Sp(2N), we consider the su(2)

embedding corresponding to the decomposition

2N = 2 + 1 + 1 + . . .+ 1. (2.25)

The corresponding partition is λ = [2, 1, 1, . . . , 1] which we also write as λ = [2, 12N−2].

The Lie algebra of Sp(2N) consists of symmetric matrices nij . The raising operator of

an su(2) embedding associated to the decomposition (2.25) is a rank 1 matrix of the form

nij = bibj , for some vector bi. The conjugacy class Cn of an element U = exp(n) for such

a n is parametrized by b up to b → −b, and so has complex dimension 2N . Indeed, its

closure (obtained by allowing b = 0) is simply

Cn = C
2N/Z2. (2.26)

Not coincidentally, this is a hyper-Kahler orbifold. The orbit of any element of a complex

semisimple Lie algebra is always hyper-Kahler, as it can be realized as a moduli space of

solutions of Nahm’s equations [13].

The conjugacy class Cn is rigid, if N > 1, simply because it has the smallest di-

mension of any non-central conjugacy class in GC = Sp(2N,C). To see that Cn cannot

be deformed to a semisimple conjugacy class, note that a non-central semisimple con-

jugacy class in Sp(2N,C) of smallest dimension is the conjugacy class of the element

diag(u, u−1, 1, 1, . . . , 1). A small calculation shows that the conjugacy class of this element

is of complex dimension 2(2N − 1), and this exceeds 2N if N > 1.

For N = 1, the conjugacy class Cn is equivalent to the regular unipotent conjugacy

class in SL(2,C) that we analyzed earlier, and is not rigid. This is related to the fact that

for N = 1, the hyper-Kahler orbifold in eqn. (2.26) can be blown up or deformed (while

for N > 1, this hyper-Kahler singularity has no moduli).
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For G = SO(N), an example of a rigid unipotent conjugacy class can be constructed

similarly. The Lie algebra so(N) consists of antisymmetric matrices aij . A minimal

(nonzero) nilpotent element of the Lie algebra so(N) corresponds to the decomposition

N = 2+2+1+1+ . . .+1. An element of the Lie algebra corresponding to such a decompo-

sition takes the form aij = bicj−bjci, where b and c are vectors obeying b·b = b·c = c·c = 0

(and modulo an action of SL(2,C) on the pair b, c). The conjugacy class Ca of exp(a) has

dimension 2N − 6. For N > 4, this is the least dimension of any non-central conjugacy

class in SO(N,C), so again this is a rigid conjugacy class.

Rigid unipotent conjugacy classes or rigid nilpotent orbits also exist in exceptional

groups (see Appendix A). A (noncentral) unipotent conjugacy class of minimal dimension

in a complex semisimple Lie group is always rigid, except for AN . In the table, we indicate

the dimensions of these minimal conjugacy classes.

Type AN BN CN DN E6 E7 E8 G2 F4

dim(Cmin) 2N 4N − 4 2N 4N − 6 22 34 58 6 16

Computing The Dimension Of A Unipotent Orbit

As in the examples just described, it is convenient to be able to compute the dimension

of a unipotent conjugacy class in GC, or equivalently of a nilpotent orbit in gC. So we pause

to explain how to do this.

Let d be the complex dimension of GC, and let s be the complex dimension of the

subgroup Gn
C
⊂ GC of elements that commute with a given n ∈ gC. The dimension of the

orbit of n (or of exp(n)) is d− s. So it suffices to compute s.

The element n is the raising operator for some embedding ρ : su(2) → g. We decom-

pose g in irreducible representations Ri of su(2):

g = ⊕si=1Ri. (2.27)

The subspace of g that commutes with the raising operator n is precisely the space of

highest weight vectors for the action of su(2). Each irreducible summand Ri has a one-

dimensional space of highest weight vectors. So the subspace of g that commutes with n

is of dimension equal to s, the number of summands in (2.27).
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For example, one can use this method to compute the dimensions of the minimal

unipotent conjugacy classes in SO(N,C) or Sp(2N,C). We leave this to the reader. For

another important example, we re-examine the regular unipotent orbit of SL(N,C). This

corresponds to an irreducible N -dimensional representation of su(2), and the summands

in (2.27) are of dimension 3, 5, 7, . . . , 2N − 1. There are N − 1 summands. This shows

that the subgroup of SL(N,C) that commutes with a principal unipotent element has

dimension N − 1. (Indeed, for n as in (2.21), this subgroup is generated by the matrices

n, n2, . . . , nN−1.) The number N − 1 equals the dimension of the maximal torus, showing

that a principal unipotent orbit has the same dimension as a generic semisimple orbit (to

which it can be deformed, as we have already discussed).

Strongly Rigid Orbits In Orthogonal And Symplectic Groups

We will now introduce some useful terminology. We will say that an orbit in a Lie

algebra (resp. a conjugacy class in a group) is strongly rigid if its dimension is less than

the dimension of any nearby orbit (resp. conjugacy class). Strongly rigid orbits are rigid

in a very robust way. For suitable G, there are also rigid conjugacy classes that are not

strongly rigid; this more delicate phenomenon is described momentarily.

A nilpotent element n ∈ gC is strongly rigid if and only if the corresponding unipotent

group element U = exp(n) is strongly rigid. So as long as we focus on unipotent conjugacy

classes, we can equally well work in the group or the Lie algebra.

An equivalent definition is that U ∈ GC (or n ∈ gC) is strongly rigid if the dimension

of its centralizer is greater than the dimension of the centralizer of any nearby element of

GC (or of gC). In due course, we will also consider a weaker notion that applies to group

elements (but not to elements of a Lie algebra): U ∈ GC is rigid (but not strongly rigid) if

its centralizer includes as a proper subgroup the centralizer of any nearby element of GC.

Thus any nearby element has a centralizer that is strictly smaller than that of U . (We also

use the term weakly rigid to describe an element that is rigid but not strongly rigid.) For

unipotent orbits, there is no difference between rigid and strongly rigid.

At the end of section 2.2, we explained how to classify unipotent orbits in SO(N) or

Sp(2N) in terms of partitions. For a unipotent orbit to be strongly rigid, the partition

must obey two conditions. We here explain why the conditions are necessary, referring to

[12], section 7.3, for a proof that they are sufficient.

The first condition reflects the fact that the identity orbit of SO(2) is not rigid. Indeed,

SO(2) is abelian, so every orbit consists of only one point. The identity orbit is rigid in

any other orthogonal or symplectic group.
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Let us begin with G = SO(N). Consider a partition N = λ1 + λ2 + . . .+ λk in which

one of the parts, say λ∗, occurs with multiplicity r > 1. Let ρ : su(2) → so(N) be a

corresponding homomorphism. The subgroup of G that commutes with ρ and acts only on

the summands of dimension λ∗ is G∗ = SO(r) if λ∗ is odd, and G∗ = Sp(r) if λ∗ is even.

(We recall that if λ∗ is even, then r is always also even.) Let n be the raising operator of ρ

and U = exp(n) the corresponding unipotent element. If λ∗ = 2 and r = 2, then because

of the exceptional property of SO(2) just noted, we can modify U by multiplying it by an

element of G∗, without changing the dimension of its orbit.

So a partition of N in which an odd part occurs with multiplicity 2 does not lead

to a strongly rigid orbit in SO(N). For example, for G = SO(9), the orbit labeled by

the partition λ = [3, 2, 2, 1, 1] is not strongly rigid, since the odd number 1 appears with

multiplicity 2. The same reasoning shows that a partition of 2N in which an even part

occurs with multiplicity 2 does not lead to a strongly rigid orbit in Sp(2N).

Now we consider the second constraint required in order for a unipotent orbit to be

rigid. In terms of partitions, this constraint occurs if there are gaps in the sequence of the

λi. To be precise, arranging the λi so that λ1 ≥ λ2 ≥ . . . ≥ λk, the condition is that all

positive integers that are less than λ1 do occur in this sequence with positive multiplicity.

A partition with a gap does not lead to a strongly rigid orbit. We will discuss the case

that the gap separates two parts λj , λj+1 with λj ≥ λj+1 + 2. (The other case with a gap

is the case that λk ≥ 2; it can be treated similarly, replacing the numbers λj and λj+1 in

the following construction with λk and 0.) For odd λj , λj+1, a deformation showing that

such an orbit is not strongly rigid can be constructed in a subspace involving only the two

blocks of size λj and λj+1, as shown here for λj = 3, λj+1 = 1:




∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗


 . (2.28)

So we can replace N by N ′ = λj + λj+1 and SO(N) by SO(N ′). (If λj and λj+1 are not

odd, the corresponding blocks occur with multiplicity at least 2 and we have to keep 2

blocks of the relevant dimension in making the construction of the next paragraph.)

So we are reduced to the case that G = SO(N) with a decomposition N = m +m′,

with m ≥ m′ + 2. We write U ′ for a unipotent element of SO(N) associated with this

embedding. It is the product of principal unipotent elements in the two blocks. (Each is

associated with irreducible su(2) embedding in that block.) The conjugacy class of U ′ can
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be deformed to a non-unipotent (but also not semisimple) conjugacy class of the following

type. We consider an SO(N) matrix U that is the direct sum of three blocks: a generic

semisimple 2 × 2 block, a principal unipotent (m − 2) × (m − 2) block, and a principal

unipotent m′ ×m′ block. Thus U looks something like

U =




∗ ∗ 0 0
∗ ∗ 0 0
0 0 × 0
0 0 0 ×


 , (2.29)

where the upper left 2 × 2 block is a generic element of SO(2)

(
a b
−b a

)
, a2 + b2 = 1, (2.30)

and the diagonal elements denoted × in eqn. (2.29) represent principal unipotent elements

of SO(m − 2) and SO(m′), respectively. A family of matrices conjugate to U for some

a, b can as a → 1, b → 0 approach U ′. This is very similar to the relation between (2.11)

and (2.8) in the SL(2,C) example that we studied in detail (and in fact, if we set m = 3,

m′ = 1, and use the fact that SL(2,C) is a double cover of SO(3,C), the previous example

becomes a special case of the present discussion). The conjugacy class of U has the same

dimension as that of U ′, as one can verify by computing the dimension of the subgroups

of SO(N) that commute with U or U ′, using the method2 of eqn. (2.27).

The conditions that we have just described, taken together, completely characterize

rigid nilpotent orbits for orthogonal and symplectic gauge groups ([12], section 7.3). In

the following table, we list the rigid nilpotent orbits in classical groups of small rank. In

the table, a partition corresponding to a decomposition N = λ1 + λ2 + . . .+ λk is denoted

simply [λ1, λ2, . . . , λk]. In the table, we do not include the orbit of the identity element,

though it is rigid for all G. (It corresponds to the partition [1, 1, . . . , 1].)

2 To be more exact, one can use this method to compute the dimension of the centralizer of

U ′ of equivalently the dimension of its conjugacy class. The dimension of the centralizer of U

equals the sum of 1 – coming from the fact that U commutes with an SO(2) that is embedded as

the upper left block in SO(N) – plus the dimension of the conjugacy class of a unipotent element

of SO(N − 2) associated with the decomposition N − 2 = (m − 2) + m′. This dimension can be

computed using eqn. (2.27), and finally one shows that U and U ′ have centralizers of the same

dimension.
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G rigid nilpotent orbit cλ dim(cλ)

B2 [2, 2, 1] 4

C2 [2, 1, 1] 4

B3 [2, 2, 1, 1, 1] 8

C3 [2, 1, 1, 1, 1] 6

B4 [24, 1] 16

[2, 2, 15] 12

C4 [2, 2, 2, 1, 1] 18

[2, 16] 8

D4 [3, 2, 2, 1] 16

[2, 2, 14] 10

. . . . . . . . .

2.4. Strongly Rigid Semisimple Orbits

For what we have just described, it is equivalent to consider a nilpotent element n of

the Lie algebra gC or a unipotent element U = exp(n) of the group GC. Indeed, n is a

strongly rigid element of the Lie algebra if and only if U is a strongly rigid element of the

group.

A strongly rigid element n ∈ gC is always nilpotent, for the following reason. First of

all, if t is a non-zero complex number, n and tn always have orbits of the same dimension.

On the other hand, if n is not nilpotent, it has nonzero Casimir invariants, which differ

from those of tn (if t is close to but not equal to 1), showing that tn is not conjugate to

n. So the orbit of n, if n is not nilpotent, can always be deformed to a nearby orbit of the

same dimension, namely the orbit of tn.

However, it is possible for a semisimple conjugacy class in the group G or GC (as

opposed to an orbit in the Lie algebra) to be strongly rigid. This does not occur for

G = SU(N), as we explained in section 2.3. But if G is any other simple Lie group, there

are strongly rigid semisimple conjugacy classes in G. For example, for G = SO(N), a

strongly rigid conjugacy class contains an element of the form

Si = diag
(

+ 1,+1 . . . ,+1,−1,−1, . . . ,−1,−1︸ ︷︷ ︸
2i

)
(2.31)
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where the subscript i refers to the total number of pairs of −1’s, and we require i > 1. The

subgroup GSi of SO(N) that commutes with Si is a double cover of SO(N −2i)×SO(2i).

The double cover in question might be denoted as S(O(N − 2i) × O(2i)). Indeed, Si

commutes with a block diagonal matrix

(
A 0
0 B

)
, (2.32)

where A ∈ O(2i), B ∈ O(N − 2i); and such a matrix is in SO(N) if detA detB = 1.

For i > 1, the conjugacy class of Si is strongly rigid, since perturbing the eigenvalues

of Si away from ±1 causes the dimension of the centralizer to become smaller. After such

a perturbation, the orthogonal groups SO(N − 2i) and SO(2i) are replaced by unitary

groups or products of unitary and orthogonal groups of lower dimension.

The case i = 1 is special, because SO(2) is abelian. We do not change the dimension

of the conjugacy class of S1 if we deform it so that the lower right 2 × 2 block changes

from diag(−1,−1) to a generic element

(
a b
−b a

)
, a2 + b2 = 1 (2.33)

of SO(2). Hence, the conjugacy class of S1 is not strongly rigid. It actually is our first

example of a group element that is weakly rigid but not strongly rigid. If we deform the

lower right block of S1 as in (2.33), its centralizer is reduced from S(O(N − 2) ×O(2)) to

SO(N − 2)× SO(2). The centralizer of the nearby conjugacy class is smaller, but has the

same dimension. It is of index 2 in the centralizer of S1. We discuss this more fully in

section 3.

There is a similar story for G = Sp(2N). A rigid element is again conjugate to the

element Si of eqn. (2.31). For Si to be non-central, we need 1 ≤ i ≤ N − 1. Again, if we

deform Si so that its eigenvalues are not ±1, then the dimension of its centralizer becomes

less and the dimension of its conjugacy class increases. So these elements are strongly

rigid.

It is not hard to show that these are the only rigid semisimple elements in SO(N) or

Sp(2N). If S has a pair of eigenvalues u, u−1 that do not equal 1 or −1, then one can vary

u without changing the centralizer of S. (If there are several eigenvalue pairs all equal to

u, u−1, then one must vary these pairs while preserving their equality.)

As one can see in the above examples, if S is a rigid semisimple element of G, then

the subgroup GS of G that commutes with S has the same rank as G, though of course its
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dimension is smaller (unless S is central). A further study of the above examples shows that

the Dynkin diagram of GS can always be obtained from the extended Dynkin diagram of

G by removing one node. (Extended Dynkin diagrams of the simple Lie groups are shown

in the figure below.) Finally, the order of S in the adjoint form of G divides the Coxeter

label (or Kac number) of the omitted node. For the orthogonal and symplectic groups that

are our main examples, this merely means that S is of order 2, since the relevant labels

equal 2.
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1

1
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1

3 2 1

2

1 2 3 4

2 4 6 5 4 3 2 1

3

1 2 3 4 2

1 2 3

Fig. 1: Extended Dynkin diagrams for semisimple Lie algebras with Coxeter labels

ai (we set a0 = 1).

In the general theory of rigid semisimple orbits, it is shown that all of these statements

hold for any G. Indeed, let Λrt be the root lattice of G, Λ+
rt ⊂ Λrt the set of positive roots,

and ∆ = {α1, . . . , αr} ⊂ Λ+
rt the corresponding set of simple roots. Furthermore, let

θ =
r∑

i=1

aiαr (2.34)
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be the highest root in Λ+
rt. The coefficients ai are the Coxeter labels (or Kac numbers).

We denote α0 = −θ and ∆ = ∆ ∪ α0. A proper subset of simple roots, Θ ⊂ ∆, defines

a parabolic subgroup P(Θ) ⊂ GC with the Levi subgroup L(Θ), which will be identified

with the centralizer GS of a semisimple element S in G. We remind that every parabolic

subalgebra p has a direct sum decomposition

p = l ⊕ n (2.35)

called Levi decomposition, where l is the Levi factor and n the nilpotent radical of p.

Specifically, in our case, the parabolic subalgebra p(Θ) associated with the subset of simple

roots Θ is generated by t and all the root spaces gα such that α ∈ ∆ or −α ∈ Θ. Similarly,

the Levi subalgebra l(Θ) corresponding to L(Θ) is

l(Θ) = t ⊕
∑

α∈ΛΘ

gα (2.36)

where ΛΘ denotes the subroot system generated by Θ. We note that, since elements of ∆

correspond to nodes of the extended Dynkin diagram of G, we can think of Θ as a subset

of nodes of the extended Dynkin diagram.

Since we are interested in rigid surface operators, the centralizer

GS = L(Θ)

must be of the same rank as G. In other words, Θ must be a proper subset of ∆ obtained

by removing a single node; we denote such subsets Θi, i = 1, . . . , r,

Θi = ∆ \ {αi} (2.37)

Every such subset of simple roots Θi ⊂ ∆, corresponds to (the conjugacy class of) a rigid

semisimple element Si in the simply-connected form of G (that is G = Gsc). Generalization

to other forms of G (e.g. to the adjoint form G = Gad) will be discussed below.

Specifically, we define S0 = 1 and Si for i = 1, . . . , r as follows (see e.g. [14])

Si = exp(2πiω∨
i /ai) (2.38)

where ω∨
i ∈ T are the fundamental coweights defined by

〈αi, ω∨
j 〉 = δij (2.39)
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One important consequence of the fact that rigid semisimple elements are of finite order

(the order being a divisor of one of the Coxeter labels) is that any rigid semisimple element

of GC can actually be conjugated to the compact group G. This is important in the context

of N = 4 super Yang-Mills theory, since only G and not GC is a group of gauge symmetries

in this theory.

We described rigid semisimple elements assuming that G is simply-connected. Now

we wish to relax this assumption and, in particular, to describe rigid semisimple elements

when G is of the adjoint type. Note, that in the construction of rigid semisimple elements

in the simply-connected form of G we found rigid elements Si for every choice of the

proper subset Θi ⊂ ∆, where index i runs from 0 to r, not taking account symmetries of

the Dynkin diagram.

Type AN BN , CN , E7 D2N D2N+1 E6 E8, F4, G2

Z(Gsc) ZN+1 Z2 Z2 × Z2 Z4 Z3 1

The center Z(Gsc) of the universal cover Gsc acts on the extended Dynkin diagram,

therefore, relating some of the nodes which give rise to the same conjugacy classes of rigid

semisimple elements. Hence, if we wish to consider, say, the adjoint form of G, we need to

divide by the action of Z(Gsc) and to take only one conjugacy class for every orbit of the

Z(Gsc)-action on the nodes of the Dynkin diagram. This leads to a similar classification of

rigid semisimple elements (and their conjugacy classes) for the adjoint form of G, except

that now the index i that labels proper subsets Θi ⊂ ∆ runs only over the subset of the

nodes of the Dynkin diagram not identified by Z(Gsc):

(AN ) : i = 0

(BN ) : 0 ≤ i ≤ N − 1

(CN ) : 0 ≤ i ≤
[N

2

]

(DN ) : 0 ≤ i ≤
[N

2

]
− 1

(E6) : 0 ≤ i ≤ 2

(E7) : 0 ≤ i ≤ 4

(E8, F4, G2) : 0 ≤ i ≤ r

(2.40)
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For example, in type A the center Z(Gsc) acts by “rotating” the nodes of the extended

Dynkin diagram, in types B and C it acts by “reflection” with respect to the horizontal

(resp. vertical) axis, etc.

Rigid Semisimple Surface Operators

Now we will explain why rigid semisimple surface operators are relevant for our pur-

poses.

We will describe a gauge theory singularity in real codimension 2 associated with a

rigid semisimple element of G. In the notation of section 2.1, we take the singularity to be

at x2 = x3 = 0, and we use polar coordinates x2 + ix3 = reiθ.

In the absence of any singularity, an adjoint-valued field on the x2 − x3 plane (for

fixed values of the other coordinates x0, x1, which we suppress) can be represented by an

adjoint-valued function Φ(r, θ) that obeys Φ(r, θ + 2π) = Φ(r, θ). If S is any element of

the gauge group G, we can modify this condition to

Φ(r, θ + 2π) = SΦ(r, θ)S−1. (2.41)

Since G is a symmetry group of N = 4 super Yang-Mills theory, it makes sense to formulate

N = 4 super Yang-Mills theory for fields that have this sort of behavior, near a codimension

two surface D in spacetime.

Of course, if we impose this condition, then along D, we should divide only by gauge

transformations that commute with S. This recipe gives a surface operator that makes

sense for any S ∈ G. It varies smoothly as long as the centralizer GS of S in G does not

change. To get a rigid surface operator, we must pick S to be rigid, meaning that GS

jumps if S is changed at all.

Let us compare the surface operator obtained in this description to the type of sur-

face operator that we considered in [2]. There, as in eqn. (2.4), we considered a gauge

singularity of the form A = αdθ. (For the present purposes, we set β = γ = η = 0.) One

quantizes N = 4 super Yang-Mills theory for fields with this type of singularity, dividing

by gauge transformations that at z = 0 are valued in Gα, the centralizer of α in G. Let us

call this type of surface operator a generic one.

A generic surface operator behaves well as α is varied as long as the centralizer of

α is the same as the centralizer of the monodromy S = exp(−2πα). We are precisely

in the situation in which this is not the case, for if S is strongly rigid (and noncentral)

then the centralizer of S is strictly larger than the centralizer of any α ∈ g such that
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S = exp(−2πα). (Likewise, if S is rigid, then invariance under GS does not allow the

introduction of any continuous parameters analogous to β, γ, η.)

The rigid surface operator with monodromy a rigid semisimple element S ∈ G is

therefore not quite a special case of the generic construction in [2]. But it is a close

cousin, somewhat similar to the construction in [2] of surface operators associated with

Levi subgroups L that are strictly larger than T.

2.5. Combining The Two Constructions

So far we have constructed rigid surface operators whose monodromy is a rigid ele-

ment of GC that is either unipotent or semisimple. The former construction used Nahm’s

equations and the latter one was done by fiat in eqn. (2.41). Actually, we can combine

the two constructions and construct a rigid surface operator whose monodromy is in any

rigid conjugacy class of GC, not necessarily semisimple or unipotent.

We need to know a few facts. To being with, any element V ∈ GC can be written as

V = SU , where S is semisimple, U is unipotent, and S commutes with U . Moreover, let

GS
C

be the centralizer of S in GC, so U ∈ GS
C
. Then the condition for V = SU to be rigid

(or strongly rigid) in GC is that S must be rigid (or strongly rigid) in GC and U must be

rigid in GS
C
.

To construct a surface operator with monodromy V = SU , we combine the two

constructions as follows. First we require that near r = 0, all fields of N = 4 super

Yang-Mills theory obey Φ(r, θ + 2π) = SΦ(r, θ)S−1, as in (2.41). Second, we also pick a

homomorphism ρ : su(2) → gS (here gS is the Lie algebra of GS) and we require that the

fields have a singularity near r = 0 that is given by the familiar solution (2.6) of Nahm’s

equations:

A =
t1 dθ

ln r
+ . . .

φ =
t2 dr

r ln r
− t3 dθ

ln r
+ . . . ,

(2.42)

where the ellipses denote terms that are less singular at r = 0. Because ρ commutes with

S, this condition on the fields is compatible with (2.41). The combined condition defines

a surface operator with the monodromy

V = SU. (2.43)

There is no need here for V to be rigid. For every conjugacy class in GC, a construction

along these lines gives a surface operator of monodromy V . However, for generic V , this
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surface operator is simply equivalent to a special case of the generic surface operators

constructed in [2] and reviewed in section 2.1. For certain well-chosen V , the construction

gives something new. The case that is most novel, or at least most different from what

was already considered in [2], is the case that V is rigid.

As we explained in the previous subsection, strongly rigid semisimple elements corre-

spond to proper subsets of simple roots. For every such subset Θi ⊂ ∆, the corresponding

Levi subgroup L(Θi) is precisely the centralizer GSi of the semisimple element Si. In the

case of orthogonal and symplectic groups, the Levi subgroup L(Θi) is always a product of

two factors,

L(Θi) = L
′ × L

′′ (2.44)

where to avoid having to specify exceptions we allow the case that L
′ or L

′′ is trivial and

the other is equal to G. (This happens if Θ0 is obtained by omitting the extended root,

leaving the original Dynkin diagram of G. Thus Θ0 = ∆ and L(Θ0) = G. We think of the

Dynkin diagram of G as the union of itself with an empty Dynkin diagram. We simply

include this case in our notation as the case that the product of groups is L(Θ0) = 1×G.

This is precisely the case of a unipotent conjugacy class.) We denote by l(Θi) = l′⊕ l′′ the

Lie algebra of L(Θi).

After picking S, the construction of strongly rigid surface operators with monodromy

V = SU also requires a choice of a rigid unipotent U ∈ GSi

C
or, in view of eqn. (2.44), a

pair of rigid nilpotent orbits c′ and c′′ in l′
C

and l′′
C
, respectively. A complete classification

of rigid nilpotent orbits for classical groups was described in section 2.2. For such groups,

nilpotent orbits are labeled by partitions. Therefore, in such cases we can use a pair

of partitions (λ′, λ′′) to label nilpotent orbits in l′
C
⊕ l′′

C
. To summarize, strongly rigid

conjugacy classes in GC are labeled by the choice of a root system Θi ⊂ ∆ and a rigid

nilpotent orbit in each factor of l(Θi); in classical types A, B, C, and D we can naturally

label such rigid conjugacy classes by a pair of partitions,

CΘi

(λ′,λ′′) ⊂ GC (2.45)

For instance, in section 5 we consider many examples of dual pairs of rigid surface

operators in theories with gauge groups G = Sp(2N) and LG = SO(2N+1). Strongly rigid

semisimple conjugacy classes in these theories are labeled by a choice of node i = 0, 1, . . . , N
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that defines the root system Θi ⊂ ∆ and a pair of partitions (λ′, λ′′). Omitting the i-th

node from the extended Dynkin diagram of BN gives the root system of type

Di ×BN−i (2.46)

that we already described explicitly in eqn. (2.32). Hence, in the case ofBN both partitions

λ′ and λ′′ are orthogonal. Similarly, omitting the i-th node from the extended Dynkin

diagram of CN gives the root system of type

Ci × CN−i (2.47)

and the corresponding partitions λ′ and λ′′ are symplectic. One of the factors can be

absent, in which case the corresponding partition is empty. This is the case of a rigid

unipotent conjugacy class.

3. Alternative Point of View

We begin this section by proposing an alternative point of view about the surface

operators constructed in [2] and reviewed in section 2. In fact, we will take an “electric”

viewpoint in which a surface operator is constructed not by postulating a singularity (the

“magnetic” point of view) but by introducing additional variables.

With this as our starting point, we will then describe some constructions of rigid

surface operators that are more delicate than those of section 2. This will also lead to our

first duality conjecture.

3.1. Coupling To Sigma Models

We simply couple four-dimensional super Yang-Mills theory to hypermultiplets that

are supported on a two-manifold D that is to be the support of our surface operator.

The hypermultiplets parametrize a hyper-Kahler manifold Q with G action, so that the

supersymmetric sigma model with target Q can be coupled to supersymmetric Yang-Mills

theory with gauge group G. Of course, the gauge theory is defined on all of R4, with

coordinates x0, x1, x2, x3, while the sigma model is defined on the two-dimensional subspace

x2 = x3 = 0.

Hitchin’s equations
FA − φ ∧ φ = 0

dAφ = 0, dA ⋆ φ = 0
(3.1)
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assert the vanishing of the moment map for the fields A, φ (regarded as in section 2.1 as

hypermultiplets in a two-dimensional sense). This being so, it is straightforward to include

a Q-valued hypermultiplet supported at the origin of the x2−x3 plane. Let ~µ = (µl, µ2, µ3)

be the hyper-Kahler moment map for the action of G on the hyper-Kahler manifold Q.

Then the components of ~µ appear as delta function contributions in Hitchin’s equations,

which can be written in the form

Fzz − [ϕ, ϕ] = 2πδ2(~x)µ1

∂Aϕ = πδ2(~x)(µ2 + iµ3).
(3.2)

where φ = ϕdz + ϕdz, and δ2(~x) is a delta function supported at z = x2 + ix3 = 0; the

precise numerical factors multiplying the delta functions on the right hand side depends on

a choice of normalization of the hyper-Kahler metric on Q. The labeling of the components

of ~µ as (µ1, µ2, µ3) depends on a choice3 that is made when the supersymmetric sigma

model of target space Q is coupled to the gauge theory.

To decide whether this construction makes sense, we will explore the solutions of

Hitchin’s equations with the indicated delta function source terms. If there are no reason-

able classical solutions, we surmise that the sigma model with target Q cannot be coupled

to the four-dimensional gauge theory. We will see that for suitable Q, there are reasonable

classical solutions.

Since the delta function “source” term in eqn. (3.2) is rotation-invariant, it is reason-

able to look for a rotation-invariant solution. So away from r = 0, we simply make the

familiar rotation-invariant ansatz

A = a(r)dθ + f(r)
dr

r

φ = b(r)
dr

r
− c(r)dθ.

(3.3)

3 The space of pairs A(x2, x3), φ(x2, x3) is an infinite-dimensional hyper-Kahler manifold W,

with three independent complex structures. Likewise, Q is a finite-dimensional hyper-Kahler

manifold. In constructing the coupling of N = 4 super Yang-Mills theory to the sigma model with

target Q, one can use any hyper-Kahler structure on the product W ×Q. To endow this product

with a hyper-Kahler structure, one needs to pick a way of “aligning” the complex structures on

the two factors. A choice of such an alignment is equivalent to a choice of what we mean by the

components µ1, µ2, µ3 of ~µ.
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And, just as in section 2.1, this leads to Nahm’s equations (2.3):

da

ds
= [b, c]

db

ds
= [c, a]

dc

ds
= [a, b]

(3.4)

away from r = 0. What do the delta functions in eqn. (3.2) mean? Suppose that a(r) has

a limit for r → 0 and call this limit α. Then A ∼ αdθ for r → 0. A connection of this

form is flat away from r = 0, but has delta function curvature 2παδ2(x). Similarly, if the

functions b(r) or c(r) have nonzero limits for r → 0, this gives delta function contributions

in Hitchin’s equations. So it is reasonable to interpret the delta functions source terms

in Hitchin’s equations to mean that we want a solution of Nahm’s equations that has the

property that the functions a, b, c have limits for r → 0, and moreover

lim
r→0

(a, b, c) = (µ1, µ2, µ3). (3.5)

This is a very strong condition for the following reason. First of all, r → 0 corresponds

to s→ ∞, so in taking this limit, we need to solve Nahm’s equations on an infinite interval.

For a, b, c to have limits for s→ ∞, their derivatives with respect to s must vanish in this

limit, and then Nahm’s equations imply that the limiting values of a, b, c must commute.

On the other hand, for a generic Q and a generic point p ∈ Q, the components µ1, µ2, µ3

are completely generic elements of the Lie algebra g, and there is no reason at all for them

to commute.

We conclude that the coupling of the sigma model with target Q to the gauge theory

only makes sense if there are points in Q such that the components of ~µ commute. More-

over, in a sense, these are the only allowed points in the combined system. Actually, this

statement will eventually need some refinement.

3.2. An Example

To test whether this is the right point of view, we would like to give some interesting

examples of hyper-Kahler manifolds that according to this criterion can be coupled in the

above sense to N = 4 super Yang-Mills theory.

The half-BPS surface operators constructed in [2] and reviewed in section 2.1 depend

on the choice of a commuting triple α, β, γ ∈ t ⊂ g. We would like to reinterpret these
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surface operators as arising from the coupling of N = 4 super Yang-Mills theory to a sigma

model with some hyper-Kahler target manifold Qα,β,γ. Such a statement was considered

as an approximation in [2], but we will re-interpret it here as an exact statement. (The

parameter η will then further arise as a theta-like angle in the sigma model with this target,

rather as in section 6 of [2].)

We would like Qα,β,γ to have the following two properties:

(1) For any triple (a, b, c) = g(α, β, γ)g−1 that is conjugate to (α, β, γ), with g an

element of G, there is a point in Qα,β,γ with ~µ = (a, b, c).

(2) Conversely, any point p ∈ Qα,β,γ such that the components of ~µ(p) commute is of

this type, for some g ∈ G.

Remarkably, Kronheimer [15] has constructed a family of hyper-Kahler manifolds

Qα,β,γ with precisely these properties. These manifolds are constructed as solution spaces

of Nahm’s equations on the half-line s ≥ 0 for three g-valued fields X1, X2, X3:

dXi

ds
+ [Xi+1, Xi−1] = 0, i = 1, 2, 3. (3.6)

The equations are to be solved on the half-line s ≥ 0 with the condition that for s → ∞,

~X(s) has a limit which is conjugate to (α, β, γ). Moreover, the hyper-Kahler moment map

turns out to be

~µ = (X1(0), X2(0), X3(0)). (3.7)

Given these facts, it is almost a tautology to see that properties (1) and (2) are satisfied.

If (a, b, c) is any commuting triple that is conjugate to (α, β, γ), then the constant solution

of Nahm’s equations with (X1(s), X2(s), X3(s)) = (a, b, c) obeys Kronheimer’s boundary

conditions and defines a point p ∈ Qα,β,γ . In view of (3.7), this point obeys ~µ(p) = (a, b, c),

as required to satisfy condition (1). In condition (2), we are given a point p such that the

components of ~µ commute. According to (3.7), it follows that the initial dataX1(0), X2(0),

X3(0) in Nahm’s equations commute. For such commutative initial data, the solution of

Nahm’s equations is independent of s (the solution is unique, since the equations are first

order, and an s-independent set of commuting matrices does obey the equations). The

boundary conditions for s→ ∞ are then obeyed only if X1(0), X2(0), X3(0) are conjugate

to α, β, γ. This demonstrates that condition (2) is satisfied.

We conclude that the coupling of four-dimensional super Yang-Mills theory to a sigma

model with target Qα,β,γ gives the same singular behavior for the two-dimensional fields

A, φ as the surface operator constructed in [2] with the same parameters. So we claim that
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the surface operator can be obtained by coupling the gauge theory to the sigma model.

As we have seen, this statement depends crucially on the fact that the coupling of the

gauge theory to a hyper-Kahler manifold Q singles out the “good” points in Q at which

the components of ~µ commute.

The example that we have just analyzed is related to orbits of semisimple elements in

complex Lie algebras. Indeed, Kronheimer shows [15] that, in one of its complex structures,

Qα,β,γ is the orbit in gC of ξ = α − iγ, assuming that ξ is regular. (Otherwise, Qα,β,γ is

in general a blowup of this orbit, depending on β.) Our next example is similarly related

to nilpotent orbits in complex Lie algebras, but we will approach it in a more direct way.

3.3. Another Example

We take G = SU(2), and we will consider a very simple example of a hyper-Kahler

manifold with the action of G. In fact, we will consider a pair of closely related examples.

One example is Y = R4, a flat hyper-Kahler manifold with a natural action of SU(2). We

can think of this example as consisting of a single hypermultiplet4 in the representation of

SU(2) that has complex dimension two. The second example is Y ′ = R4/Z2.

Y is such a simple hyper-Kahler manifold that one might hope that the coupling

to Y will make sense if any couplings of N = 4 super Yang-Mills to a two-dimensional

hypermultiplet make sense. The sigma model with target Y ′ is an orbifold of the sigma

model with target Y , and so its coupling should make sense if that of the first one does.

Y = R4 is completely rigid as a hyper-Kahler manifold; R4 has no hyper-Kahler

moduli that preserve its flat structure at infinity. So if the coupling to Y makes sense, this

really should give us a rigid surface operator.

By contrast, Y ′ has hyper-Kahler moduli – it has a singularity at the origin that can

be deformed or resolved. So coupling to Y ′ should not give a rigid surface operator.

It is useful to parametrize Y by four fields yaȧ, a, ȧ = 1, 2, where the SU(2) gauge

group acts on the first index and a second SU(2), which rotates the three complex struc-

tures of Y , acts on the second. We call the second group SU(2)′. The reality condition

obeyed by yaȧ is yaȧ = ǫabǫȧḃy
bḃ. An expectation value of y breaks SU(2) × SU(2)′ to

a diagonal subgroup that we call SU(2)′′. The moment map at a given value of y is,

4 Sometimes this object is called a half-hypermultiplet.
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of course, SU(2)′′-invariant. This ensures that, up to conjugation by the original SU(2)

group of gauge transformations, we can write the moment map as

~µ = h~t, (3.8)

where h = |y|2 and ~t are the 2 × 2 Pauli sigma matrices. (The point is that this formula

is invariant under conjugation by an element of SU(2) together with an SU(2)′ rotation

acting on the vector ~µ. A possible multiplicative constant in (3.8) has been eliminated by

a choice of normalization of the flat hyper-Kahler metric of Y .)

The components of ~t do not commute with each other, so if we take literally the idea

that we must restrict to points in Y or Y ′ for which the components of ~µ commute with

each other, we must set h = 0. This implies that yaȧ = ~µ = 0, so it means that the

solutions of Hitchin’s equations have no singularity at r = 0, and are the same as if there

were no surface operator at all.

This conclusion does not seem sensible; it seems that including the hypermultiplet

should give a surface operator that is different from the trivial one without the hypermul-

tiplet. What we think is wrong is that although the condition that the components of ~µ

should commute with each other is only satisfied at yaȧ = 0, this is a singular point on the

moduli space (of points at which the components commute) since the components of ~µ are

all quadratic in y. Because of this singularity, a proper analysis is more delicate, and we

will only give a heuristic argument.

In trying to obey the conditions that (a, b, c) → ~µ for s → ∞ and that a, b, c should

commute with each other, we are driven to take a, b, c to zero for large s. If a, b, c had

nonzero limits for s → ∞, we would get a solution of Hitchin’s equations with a 1/r

singularity at r = 0. The fact that a, b, c are driven to zero means that instead the

singularity is milder than 1/r. We have already encountered this situation in section 2.2

(it is described much more fully in [2], section 3.3), and in that context the right answer

is the following solution of Nahm’s equations in which a, b, c vanish for s→ ∞:

a = − t1
s+ 1/f

, b = − t2
s+ 1/f

, c = − t3
s+ 1/f

. (3.9)

We see that a, b, c vanish for s→ ∞, but in fact they are proportional to a multiple of the

matrices ~t; the multiple vanishes for s→ ∞.

Our proposal is that the coupling to the hypermultiplet Y or Y ′ leads to this type of

solution of Hitchin’s equation, up to conjugation. Thus, instead of simply claiming that
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a, b, c vanish at s→ ∞, so as to commute and equal the hyper-Kahler moment map of Y or

Y ′, we claim that generically they vanish in this logarithmic fashion, and are proportional

to an (asymptotically vanishing) multiple of the matrices ~t.

So far it does not matter very much if the hypermultiplet parametrizes Y or Y ′. Now

let us consider Y ′ more carefully. In section 2.2, we analyzed a surface operator described

by the singularity in (3.9). We showed that its monodromy is generically an element of

the regular unipotent conjugacy class C′ of SL(2,C), and is always an element of the

closure C
′
of this class. As explained in (2.16), C

′
is defined by the equation TrU = 2, for

U ∈ SL(2,C). Explicitly, to obey TrU = 2, we write

U =

(
1 + a b
c 1 − a

)
, (3.10)

and then the condition detU = 1 (for U ∈ SL(2,C)) gives

a2 + bc = 0. (3.11)

This is a standard description of the A1 singularity, and defines the complex manifold

C2/Z2. This complex manifold can of course be endowed with an SU(2)-invariant hyper-

Kahler structure, whereupon it becomes Y ′ = R4/Z2.

It is possibly better to carry out this analysis for a nilpotent vector n ∈ sl(2), rather

than a unipotent element U ∈ SL(2,C). If we define n to be a traceless 2 × 2 matrix

n =

(
a b
c −a

)
, (3.12)

then the condition detn = 0 (ensuring that n is nilpotent), gives again a2 + bc = 0. Of

course, one can map this to the conclusion of the last paragraph by setting U = exp(n) =

1 + n.

Our proposal for interpreting this result is the following. Let C be a unipotent con-

jugacy class in GC (equivalently, a nilpotent orbit in gC) and let C be its closure. From

this data, we can proceed in either of two ways to define a surface operator. To the given

unipotent orbit, we can associate an su(2) embedding ρ : su(2) → g, and to this we asso-

ciate a unipotent surface operator as in section 2.2. Alternatively, following [13], we can

use Nahm’s equations to endow C with a hyper-Kahler structure. Then we can define a

surface operator by coupling N = 4 super Yang-Mills theory to a sigma model with target

C. Our proposal is that the two surface operators made in this way are equivalent.
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At least for our example with SU(2), we can justify this conclusion as follows. For G =

SU(2), the hyper-Kahler manifold Qα,β,γ is the Eguchi-Hansen ALE manifold, asymptotic

at infinity to R
4/Z2. For α, β, γ → 0, one gets the blowdown of the Eguchi-Hansen

manifold, namely Y ′ = R
4/Z2. We have already proposed that coupling to the sigma

model of Qα,β,γ introduces the surface operator characterized by given α, β, γ. So coupling

to the sigma model of Y ′ should give the limit for α, β, γ → 0 of the surface operator of

generic α, β, γ. As we explained in section 2.2, this limit is the surface operator associated

to the regular unipotent conjugacy class.

Cover Of A Unipotent Orbit

The surface operator associated with Y ′ is not rigid because Y ′ has hyper-Kahler

moduli. By the same token, the surface operator associated to Y = R4 should be rigid,

since Y has no moduli.

We can formulate what is happening as follows. Y ′ is associated to the regular unipo-

tent conjugacy class C′, which topologically is R4/Z2 with the origin omitted. (The origin

corresponds to U = 1, or n = 0.) So C′ has fundamental group Z2. And Y ′ has the same

fundamental group in the orbifold sense. As a result, it is possible to take a double cover

of C′ or (after taking the closure) Y ′, giving us Y = R4.

Y ′ can also be deformed to regular semisimple conjugacy classes in gC, and these are

simply-connected. For G = SU(2), we can be very explicit about this. Going back to

(3.12), if we deform the nilpotent orbit detn = 0 to a semisimple orbit detn = µ, we get

the equation a2 + bc = µ, which defines a smooth and simply-connected manifold. That

manifold is a deformation of the A1 singularity; as a hyper-Kahler deformation of Y ′, it

is the Eguchi-Hansen ALE hyper-Kahler manifold. More generally, a regular semisimple

conjugacy class in GC is simply-connected for any G. So although C′ can be deformed to

neighboring conjugacy classes and therefore is not rigid, the fact that C′ has a fundamental

group that the neighboring conjugacy classes lack means that C′ has a cover that actually

is rigid.

From our viewpoint of section 2, with surface operators constructed via singularities,

it is not immediately apparent that covers of conjugacy classes give new surface operators.

From our present viewpoint in which unipotent surface operators are derived by coupling

to sigma models, this does seem obvious.

Semisimple Surface Operators
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However, this reasoning does not apply directly to semisimple surface operators (or

any surface operators whose monodromy is not unipotent). The reason for this is simply

that the conjugacy class CS of a semisimple element of GC is typically not hyper-Kahler,

or even complex symplectic.5 So the semisimple surface operators of section 2.4 cannot be

constructed by coupling the four-dimensional gauge theory to a sigma model. Nevertheless,

it is possible to construct surface operators associated with covers of orbits. We explain

an example in section 3.4.

Though rigid semisimple conjugacy classes are typically not hyper-Kahler, surface

operators associated with them rather magically preserve all supersymmetry and therefore

preserve the hyper-Kahler nature of the moduli space of solutions of Hitchin’s equations.

3.4. Rigid Surface Operator For The Dual Group

Coupling to the sigma model with target space Y = R4 gives an example of a rigid

surface operator for G = SU(2). It is the only one we know of if one requires some

minimality (see section 3.5). Interestingly, this surface operator does not make sense for

the dual group LG = SO(3), since the center of SU(2) acts nontrivially on Y , as a result

of which Y cannot be regarded as a space with SO(3) action.

Therefore, we must find a rigid surface operator for LG = SO(3) that has no simple

counterpart for SU(2). Happily, we can find one by thinking carefully about an example

that arose in section 2.4. Let S be the element of SO(3)

S =




1 0 0
0 −1 0
0 0 −1


 . (3.13)

The centralizer of S is the group O(2), generated by an SO(2) subgroup, whose typical

element is

S̃ =




1 0 0
0 a b
0 −b a


 , a2 + b2 = 1, (3.14)

5 This can be illustrated by considering the rigid conjugacy classes that were important

in section 2.4. For example, in SO(2n + 1, C), consider the orbit of the element S =

diag(1,−1,−1, . . . ,−1), with precisely a single 1. Such an element is a reflection with respect

to a unit vector b, which is uniquely determined up to sign; the space C of such b’s is a complexifi-

cation of RP
2n, equivalent topologically to T ∗

RP
2n. This space does not admit an SO(2n+1,C)-

invariant complex symplectic structure, as one can show by considering the stabilizer of a point

in C and its action on the tangent space. So there is certainly no SO(2n + 1, C)-invariant hyper-

Kahler structure.
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together with

R =




−1 0 0
0 −1 0
0 0 1


 . (3.15)

The orbit of S is not strongly rigid, since S can be deformed to a nearby element, namely S̃

(with b and a−1 small) whose centralizer has the same dimension. However, the centralizer

of S̃ is a proper subgroup of that of S. The centralizer of S̃ is SO(2), since S̃ does not

commute with R, while the centralizer of S is O(2).

The result of this is that the orbit of S is rigid in a weaker sense. It cannot be deformed

to a nearby orbit, such as the orbit of S̃. One would have to replace the orbit of S by a

double cover before it could be so deformed.

Of course, we can describe the orbits explicitly. The orbit of S in the compact group

SO(3) is SO(3)/O(2) = RP
2. This has fundamental group Z2 (reflecting the fact that

O(2) has two components) and its double cover S2 = SO(3)/SO(2) is the orbit of S̃. The

orbits in the complex Lie group SO(3,C) are topologically the cotangent bundles of RP
2

and S2, respectively.

We can lift S to SU(2); it becomes

S′ = ±
(

0 i
−i 0

)
. (3.16)

The centralizer of S′ is U(1), which is the same as the centralizer of a generic semisimple

element of SL(2,C), so a surface operator with monodromy S′ is not rigid. That is why this

construction gives a rigid surface operator for SO(3) that has no counterpart for SU(2).

A Duality Conjecture

We can now state our first duality conjecture. We propose that the two rigid surface

operators that we have found are dual to each other.6 For SU(2), we have the rigid surface

operator associated with Y , the double cover of a regular unipotent orbit, and for SO(3),

we have the rigid surface operator associated to the orbit of S.

The two surface operators are candidates for being dual to each other because the

two orbits are both of complex dimension 2. The significance of this is as follows. When

N = 4 super Yang-Mills is compactified on a product of Riemann surfaces Σ × C, the

6 They may be the only non-trivial rigid surface operators for SU(2) and SO(3) that are

minimal in a certain sense; see section 3.5.
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moduli space of solutions MH(C) of solutions of Hitchin’s equations on C becomes the

target space of an effective sigma model defined on Σ. As we explained in eqn. (2.18),

including a surface operator associated with an orbit of complex dimension n (the support

of the surface operator being Σ × p, for p a point in C) has the effect of increasing the

dimension of MH(C) by n. In sigma models with hyper-Kahler target space, the dimension

of the target space is an invariant under all dualities. (For example, it is proportional to

the central charge.) So the number n must be duality-invariant.

The proposed dual pair for SU(2) and SO(3) are related in the following elegant way.

The rigid surface operator for SU(2) has been rigidified by taking the double cover of an

orbit associated to a non-rigid surface operator. Conversely, for SO(3) the rigid surface

operator can be “derigidified” by taking a double cover, as we explain next.

Taking A Cover Of A Semisimple Orbit

A basic idea in section 3.3 was that it is possible to define a surface operator associated

with a cover of a unipotent orbit. Now we would like to explain how to define a surface

operator associated to a cover of a semisimple orbit. (We cannot use the same approach

as before because semisimple surface operators do not arise by coupling to sigma models.)

We illustrate the idea in the context of the orbit of the element S ∈ SO(3).

We recall that the basic idea of the construction of a semisimple surface operator with

monodromy S is simply that near a two-manifold D, all fields have a monodromy

Φ(r, θ + 2π) = SΦ(r, θ)S−1. (3.17)

Now we simply modify the definition by saying that we are given the following additional

data along D: a normalized eigenvector v of the monodromy, that is a vector v in the three-

dimensional representation of SO(3) that obeys Sv = v and is normalized to (v, v) = 1.

For given S, there are two choices of v. The two choices are exchanged by the SO(3)

element R, so making a choice eliminates the invariance under R. This has the effect of

replacing the orbit of S with its double cover.

Including the choice of v as part of the definition of a surface operator gives us a new

surface operator. In general, this may give new rigid surface operators; we will see examples

in section 5. In the present case, however, taking the double cover gives a non-rigid surface

operator. It eliminates the discrete symmetry that prevents us from deforming S to the

more generic element S̃ of eqn. (3.14). The surface operator associated with the double

cover of the orbit of S is the limit as S̃ → S of a surface operator with monodromy S̃.
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Equivalently, it can be obtained from a generic surface operator with parameters α, β, γ by

taking β, γ → 0 and taking α to a value such that S is equal to the monodromy exp(−2πα).

We have explained this procedure in a special case, but the procedure is general. Part

of the definition of a semisimple surface operator with monodromy S is that along the

support D of the surface operator, the structure group of the gauge group is reduced to

GS , the centralizer of S. The case that the orbit of S is not simply-connected is the case

that GS is not connected but has several components. In this case, we can define a new

surface operator by reducing the structure group along D not to GS but to a subgroup

of the same dimension that is a union of some of the components of GS . Such subgroups

correspond to the possible covers of the orbit of S.

3.5. Minimal Surface Operators

Once we construct surface operators as in section 3.1, by coupling to sigma models

defined on a surface, we want to impose some condition of minimality or the problem

becomes too open-ended. The reason for this is that there are many hyper-Kahler manifolds

Q with G action. We do not, for example, want to allow Q → Q × Q′ where Q′ is some

hyper-Kahler manifold with a trivial action of G.

For another example, the hyper-Kahler manifolds Qα,β,γ that were described in section

3.1 deserve to be considered minimal because the locus of “good” points at which the

components of ~µ commute is a homogeneous space for the compact gauge group G. This led

in our analysis to a surface operator with definite values of the surface operator parameters

α, β, and γ. If one replaces Qα,β,γ with a generic hyper-Kahler manifold with G action,

the locus of “good” points will not be a homogeneous space for G and α, β, γ will not have

definite values. The effect of this will be somewhat like promoting α, β, γ from coupling

constants to fields. Although this might give an interesting model, it is not what we

want to study in the present paper. For studying gauge theory with gauge group G, it

is reasonable to think that the basic case is the “irreducible surface operator” or “surface

eigen-operator” in which α, β, γ take definite values.

In some sense, we want our surface operators to obey a condition of minimality. We

do not exactly know the right technical notion of minimality, but an approximation to it

is that a minimal surface operator has the following property. Let x be a point in the

support D of a surface operator. Then any chiral operator O(x) that can be defined at

x is the limit of a “bulk” chiral operator O(x′) (x′ is a point not in D) for x′ → x. The
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notion of a “chiral operator” depends on the choice of a subalgebra of the supersymmetry

algebra of N = 4 super Yang-Mills theory, and the condition makes sense for any choice.

The aim is to ensure that, for a minimal surface operator associated with a hyper-

Kahler manifold Q, Q is related to a single orbit of G. For example, if G = SU(2) and Q
is parametrized by a single hypermultiplet in the two-dimensional representation, then the

associated surface operator is minimal by the above criterion. But if Q is parametrized

by two or more such hypermultiplets, then one can construct7 chiral operators supported

only on D, so the associated surface operator is not minimal by the above criterion.

However, the condition that we have stated may be too strong. It is only intended as

an approximation to a good notion of minimality. The criterion that we stated does have

the virtue of being duality-invariant.

4. Fingerprints of Surface Operators

Our main goal in the rest of this paper is to learn how rigid surface operators transform

under S-duality of the N = 4 super Yang-Mills theory. To this end, in this section we

discuss several characteristics of the corresponding conjugacy classes which are expected

to be duality invariant.

4.1. Invariant Polynomials

To start with, we consider the set of gauge-invariant polynomials P (ϕ(x)) of the Higgs

field ϕ(x). Such polynomials are half-BPS local operators in the N = 4 super Yang-Mills

theory. If P is homogeneous of degree d, the corresponding operator is a superconformal

primary of dimension d.

Once one picks an invariant quadratic form on the Lie algebra g (corresponding phys-

ically to a choice of the gauge coupling), there is a natural map from a G-invariant poly-

nomial P : g → C to an LG-invariant polynomial P̃ : Lg → C. If G is simply-laced, the two

Lie algebras coincide and this map is the trivial one. To define the map in general, one

uses the fact that G-invariant polynomials on g correspond naturally to Weyl-invariant

polynomials on t, the Lie algebra of a maximal torus T ⊂ G. But G and LG have the

same Weyl group W, and one can define a Weyl-invariant map from t to Lt, taking a short

7 If one parametrizes the hypermultiplet in one of its complex structures by a pair of chiral

superfields Ca, a = 1, 2, then given also a second such hypermultiplet C̃a, one can form the chiral

operator ǫabC
aC̃b.
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coroot to a long coroot and a long coroot to a multiple of a short coroot. (For example,

see the appendix to [2] for further detail. The map from t to Lt is unique up to a constant

factor that depends on the gauge coupling and is not relevant for what follows.)

In N = 4 super Yang-Mills theory, S-duality sends a local operator P (ϕ) to the

corresponding local operator P̃ (ϕ). This can be demonstrated by first showing explicitly

that it is true in the abelian case and then by reducing the general case to the abelian

case by Higgsing. (For this, one studies the theory on its Higgs or Coulomb branch, in

a vacuum in which the gauge group G is spontaneously broken to the abelian subgroup

T. Then the appropriate transformation of half-BPS operators in the underlying G theory

can be determined by computing what happens in the effective theory with gauge group

T.)

The Dimension

If a surface operator is related to a conjugacy class C ⊂ GC (as are all surface operators

considered in the present paper), then the most basic invariant of this surface operator

is the dimension of C. Indeed, as we explained in section 3.4 (see also eqn. (2.18)), in

compactification to two dimensions, including a surface operator associated with C has the

effect of increasing the dimension of the moduli space of solutions of Hitchin’s equations

by dimC. Since the dimension of the target space of a sigma model is a duality invariant,

it follows that dim(C) is a duality invariant.

For unipotent surface operators constructed via su(2) embeddings ρ : su(2) → g,

the dimension of the corresponding nilpotent orbit c can be computed as in section 2.3

by decomposing g into irreducible representations of su(2). Then the total number of

irreducible summands in the decomposition (2.27) gives the dimension s of the centralizer

Gn
C

of a nilpotent element n ∈ c, and the dimension of the nilpotent orbit c follows from

the formula dim c = dim(GC) − s. This also gives the dimension of the conjugacy class C

containing U = exp(n).

As we explained in section 2.2, for classical groups of type A, B, C, and D, homo-

morphisms ρ : su(2) → g or, equivalently, nilpotent orbits c ⊂ gC are labeled by partitions

λ = [λ1, λ2, . . . , λk], where each part λi represents the size of the i-th Jordan block. (The

general result is summarized at the end of section 2.2.) For each of these classical groups, it

is straightforward to compute the dimension s of the centralizer Gn
C

of a nilpotent element
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n ∈ c associated with a given partition, using eqn. (2.27). One obtains a simple formula

for the dimension of the nilpotent orbit c in terms of λi (see [12], section 6.1):

(AN ) : dim(cλ) = (N + 1)2 −
∑

i

|{j|λj ≥ i}|2

(BN ) : dim(cλ) = 2N2 +N − 1

2

∑

i

|{j|λj ≥ i}|2 +
1

2

∑

i odd

|{j|λj = i}|

(CN ) : dim(cλ) = 2N2 +N − 1

2

∑

i

|{j|λj ≥ i}|2 − 1

2

∑

i odd

|{j|λj = i}|

(DN ) : dim(cλ) = 2N2 −N − 1

2

∑

i

|{j|λj ≥ i}|2 +
1

2

∑

i odd

|{j|λj = i}|

(4.1)

For example, for G = SU(2) the regular nilpotent orbit discussed in section 2.2 is

an orbit of a nilpotent element n that consists of a single Jordan block of size 2. As we

learned there, the closure of the corresponding unipotent conjugacy class is the familiar

Z2 orbifold singularity,

C[2] = C
2/Z2

It has complex dimension 2, in agreement with (4.1) for G = A1 and λ = [2]. For
LG = SO(3) the same unipotent conjugacy class would be labeled by λ = [3], and eqn.

(4.1), now with G = B1, also gives dim C = 2. In symplectic groups, this example is a

special case of a hyper-Kahler Z2 orbifold (2.26), the closure of a minimal nilpotent orbit in

CN labeled by λ = [2, 12N−2]. As we explained in section 2.3, it is strongly rigid for N > 1,

and has complex dimension 2N , as is obvious from (2.26). This is in perfect agreement

with (4.1), which gives

dim C[2,12N−2] = 2N2 +N − 1

2
(2N − 1)2 − 1

2
− 1

2
(2N − 2) = 2N

The dimension of an orbit is an important invariant, but it is not enough, since many

rigid surface operators may be associated with orbits of the same dimension. We will next

consider a much more refined invariant.

4.2. Polar Polynomials

In the presence of any of the surface operators described in sections 2 and 3, the Higgs

field has a singularity. For example, in the presence of a unipotent surface operator at

z = 0, we have

ϕ =
n

z
+ . . . (4.2)
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where n takes values in a prescribed nilpotent orbit c, and the ellipses refer to regular

terms. There is an analogous expression near a semisimple surface operator, as we discuss

presently.

Given such a singularity in ϕ, the invariant polynomials P (ϕ) also generally have sin-

gularities. Precisely because n is nilpotent, the singular terms in P (ϕ) are not determined8

by the singularity in ϕ, but rather depend on the regular part of ϕ, the part indicated by

ellipses in eqn. (4.2).

The moduli space MH of solutions of Hitchin’s equations has a Hitchin fibration

π : MH → B, where B is parametrized by the values of the invariant polynomials P (ϕ).

If including a surface operator increases the dimension of MH by d = dim C, then it must

increase the dimension of B by d/2. This means that, looking at all possible choices of P ,

there will be precisely d/2 independent complex parameters, characterizing the singularities

of the polynomials P (ϕ), that depend on the regular terms not written explicitly in eqn.

(4.2). The pattern of these singularities gives us a rather refined invariant of a surface

operator that we will call its “fingerprint.”

Let us illustrate this with a simple example. We consider the (non-rigid) surface

operator associated with the regular nilpotent orbit of SL(2,C), that is the orbit c of a

nilpotent element

n =

(
0 1
0 0

)
(4.3)

As explained in [2] and reviewed in section 2.2, this surface operator can be regarded as

a limit of a “generic” surface operator in gauge theory with G = SU(2) as α, β, γ → 0.

Supposing that such a surface operator is inserted at z = 0, the behavior of ϕ near z = 0

is

ϕ = n/z +m+m′z + . . . , (4.4)

with m,m′ ∈ sl(2). For G = SU(2), the only independent invariant polynomial is

P (ϕ) = Trϕ2 =
2 Trnm

z
+ . . . , (4.5)

where the ellipses denote regular terms. We see that the singularity of P (ϕ) is characterized

by exactly one coefficient, in agreement with the fact that 1
2 dim c = 1. Moreover, this

8 Any coefficient in P (ϕ) that is determined by the surface operator would be a variable

parameter, and a surface operator with such a parameter would not be rigid. See the next

footnote for an example.
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coefficient depends on the square-integrable part of ϕ, which is free to fluctuate, so it is

not a parameter of the surface operator; rather, we can regard it as one of the coordinates

that parametrizes the base B of the Hitchin fibration, in the presence of a surface operator

whose definition depends only on the choice of orbit c.9

We can extract from eqn. (4.5) the statement that Trϕ2 has a simple pole at z = 0,

Trϕ2 ≃ p

z
+ . . . (4.6)

This statement must be invariant under duality. The assertion that p can be defined as

2 Trnm, with n and m as above, has no reason to be preserved by duality. For G = SU(2),

the “fingerprint” of this particular type of surface operator is simply the statement that

the singularity of Trϕ2 is a (variable) simple pole.

The regular unipotent conjugacy class Creg of SL(2,C) is not rigid, however. Closer to

the subject of the present paper is the double cover C̃reg, which, as we explained in section

3.3, is weakly rigid. Since taking the cover does not change the invariant polynomials, the

weakly rigid surface operator associated with C̃reg has the same polar polynomials, namely

(4.6). In section 3.4, we proposed that the dual to this weakly rigid surface operator is

a surface operator associated with a semisimple conjugacy class of the element (3.13) in
LG = SO(3):

S =




1 0 0
0 −1 0
0 0 −1


 . (4.7)

The conjugacy class CS is also weakly rigid since nearby conjugacy classes have strictly

smaller stabilizers.

As a test of our duality proposal, we will verify that the surface operator associated

with the weakly rigid semisimple conjugacy class CS leads to the same simple pole in

Trϕ2. Let us remember the definition of the semisimple surface operator with monodromy

S. The fields must all have monodromy S around z = 0. In particular, the expansion of

the so(3)-valued field ϕ looks like (see Appendix B for the Lie algebra conventions):

ϕ = z−1/2




0 a b
−b 0 0
−a 0 0


 +




0 0 0
0 c 0
0 0 −c


 , (4.8)

9 If we deform this unipotent but non-rigid surface operator to a more general one with ϕ =

σ/z + . . . , where now σ = (β + iγ)/2 takes values in a prescribed semisimple conjugacy class, we

will get Tr ϕ2 = a/z2 + b/z + . . ., where now a = Tr σ2 is a parameter of the surface operator, and

b depends on the regular part of ϕ and is a function on B.
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where a, b, and c are single-valued functions of z (to get the right monodromy) and regular

at z = 0 (so that ϕ is square-integrable). So

Trϕ2 = −4ab

z
+ . . . (4.9)

with the same simple pole as before, though of course with a different interpretation of the

residue of the pole. This is in perfect agreement with the proposed duality between the

weakly rigid conjugacy classes C̃reg and CS .

Before describing any systematic theory, we will consider by hand another, more

representative example. This example involves a pair of strongly rigid orbits in B3 and

C3. As we explained in section 2.5, strongly rigid orbits in classical groups of type B and

C can be conveniently labeled by the proper subset of simple roots Θi ⊂ ∆ and a pair

of partitions (λ′, λ′′). In this notation, in type B3 there is a strongly rigid semisimple

conjugacy class of dimension 6 which corresponds to the root system Θ3 = D3 and the

partitions λ′ = [16] and λ′′ = [1],

C
D3

([16],[1]) (4.10)

According to the general formula (2.38), in gauge theory it corresponds to a rigid surface

operator, with the holonomy of the GC-valued gauge connection A = A+ iφ conjugate to

the rigid semisimple element

S3 = diag (+1,−1,−1,−1,−1,−1,−1)

which breaks the gauge group G = SO(7) down to a subgroup

O(6) ⊂ SO(7), (4.11)

as in eqn. (2.46). The conjugacy class of the element S3 is thus SO(7)/O(6), and so has

dimension 6.

On the other hand, in C3 there is also a strongly rigid conjugacy class of dimension 6,

namely the unipotent conjugacy class labeled by the partition λ′′ = [2, 1, 1, 1, 1]. In gauge

theory, it corresponds to a singularity of the Higgs field with a single Jordan block of size

2 (corresponding to the part “2” in the partition λ′′ = [2, 1, 1, 1, 1]),

ϕ =
1

z




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




+ . . . (4.12)
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In the notation of section 2.4, this unipotent conjugacy class corresponds to Θ0 = ∆ and

similarly to (4.10) can be denoted

CC3

(∅,[2,14]) (4.13)

The fact that both conjugacy classes CD3

([16],[1]) and CC3

(∅,[2,14]) are rigid and have the same

dimension strongly suggests that they might be related by electric-magnetic duality.

Further evidence for this comes from comparing the fingerprints of these rigid conju-

gacy classes. In both cases, we find the following behavior of the Higgs field:

Trϕ2 ≃ p2

z
+ . . .

Trϕ4 ≃ p4

z2
+
p1

z
+ . . .

Trϕ6 ≃ p6

z3
+
p3

z2
+
p5

z
+ . . .

(4.14)

Since the orbits in question are six-dimensional, the singularity in the invariant polynomials

of ϕ should depend on only 3 = 6/2 coefficients. Accordingly, the 6 parameters p1, . . . , p6

will obey 3 relations. It turns out that one gets the same 3 relations in the two cases10:

p4 =
1

2
(p2)

2

p6 =
1

4
(p2)

3

p3 =
3

4
p1p2

(4.15)

The first two relations are manifestly invariant under a redefinition of the local complex

parameter near the surface operator. It is easy to verify that the last relation is also

invariant, given the first two. Indeed, for z = w+ ǫw2 + . . ., we have 1
zk ≃ 1

wk − kǫ
wk−1 + . . .,

so that
p1 → p1 − 2ǫp4 = p1 − ǫ(p2)

2

p3 → p3 − 3ǫp6 = p3 −
3

4
ǫ(p2)

3
(4.16)

The first transformation implies p1p2 → p1p2 − ǫ(p2)
3, which together with the second

transformation in (4.16) demonstrates that p3 − 3
4
p1p2 is indeed an invariant combination.

10 In making this comparison, one needs a fact explained in Appendix B. The S-duality trans-

formation from SO(2N +1) gauge theory to Sp(2N) gauge theory maps Tr ϕ2k, with the trace in

the (2N + 1)-dimensional representation of so(2N + 1), precisely to Tr ϕ2k with the trace in the

2N -dimensional representation of sp(2N).
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We will now explain how to find this structure. To compute these polar polynomials

in a theory with gauge group G = SO(7), it is convenient to pass to a double cover of the

z-plane (parametrized by a local coordinate y = z1/2) and to describe this surface operator

by a singularity with a generic first-order pole consistent with the gauge symmetry breaking

(4.11):

ϕ = y−1




0 a b
−bt 0 0
−at 0 0


 + . . . (4.17)

Here, B = (a, b) is a generic 6-vector (the upper left and lower right blocks are here

1 × 1 and 6 × 6 matrices). From this starting point, one can compute Trϕ2k by adding

less singular terms with the same structure as in (4.8) (even powers of y for diagonal

blocks, odd powers for off-diagonal blocks). On the other hand, in the dual theory with
LG = Sp(6), the polar polynomials (4.14) can be computed directly, by adding a generic

regular term to the singularity (4.12) and evaluating Trϕ2k. In either of these two cases,

it is immediate to see that Trϕ2k has a pole of order k at z = 0, giving the general form

in (4.14). It is also easy in each case to verify the first two relations in (4.15); for this it

suffices to compute the coefficient of the leading singularity z−k in Trϕ2k, i = 1, 2, 3. It is

a little harder to verify the coefficient of 3/4 in the last relation in (4.15). Actually, as we

have observed, this coefficient is determined by reparametrization invariance.

Kazhdan-Lusztig Map

It quickly becomes cumbersome to describe detailed relations among polynomials as

in the above example. An alternative point of view is useful. To explain this point of view,

we go back to the SU(2) example of eqn. (4.4). It is convenient to write

ϕ(z) =

(
∗ z−1 + ∗
m ∗

)
, (4.18)

where all we need to know about the matrix elements denoted ∗ is that they are regular at

z = 0. For any non-zero z, ϕ(z) is regular semisimple, and thus can be conjugated to tC.

We recall that for GC = SL(2,C), tC is the abelian Lie algebra of traceless diagonal

2 × 2 matrices diag(ξ,−ξ). For z 6= 0, ϕ(z) is conjugate to

ϕD =

(±
√
m/z 0

0 ∓
√
m/z

)
. (4.19)

(This formula is exact if the matrix elements denoted ∗ in (4.18) are set to zero, and in

general is valid near z = 0.) Of course, the diagonalization of ϕ is not quite unique – it is
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only unique up to a Weyl transformation, with the Weyl group W acting by exchange of

the two eigenvalues or equivalently multiplication by −1. Moreover, we see in eqn. (4.19)

that as z circles around the origin in the punctured complex z-plane, ϕD undergoes a

monodromy. Inevitably, the monodromy element is a Weyl transformation, in this case

the unique nontrivial element of the Weyl group of SU(2).

This procedure can be carried out for every surface operator. Regardless of what

singularity or monodromy we require ϕ to have at z = 0, ϕ is generically regular semisimple

for z 6= 0. Hence it can be diagonalized for z 6= 0, but this diagonalization is only unique

up to a Weyl transformation. Making a specific choice of how to diagonalize ϕ, we get a

tC-valued “function” ϕD(z), whose monodromy around z = 0 is an element of W. The

element w ∈ W that arises for a generic choice of ϕ is an invariant of the surface operator.

This invariant is a compact way to describe the “fingerprint” of a surface operator.

Let us explain explicitly for G = SU(N) how a conjugacy class in W determines the

fingerprint defined in terms of polar parts of invariant polynomials P (ϕ). The case of any

G is similar. Consider first the case that w is a cyclic permutation of the N eigenvalues

ξ1, . . . , ξN of a tC-valued function ϕD(z). Then w-invariance and square-integrability of ϕ

(which implies that the eigenvalues are less singular than 1/z) tells us that

ϕD(z) =

N−1∑

m=1

cm(z)b(m)(z), (4.20)

where the functions cm(z) are regular at z = 0, and the matrices b(m) are

b(m)(z) = z−m/Ndiag(1, ωk, ω2k, . . . , ω(N−1)k), (4.21)

where ω = exp(2πi/N). (For N = 2, this reduces to our example (4.19) for G = SU(2).

In general, it is invariant under monodromy in z plus cyclic permutation of eigenvalues.)

Clearly, given this data, we can compute the behavior of the invariant polynomials Trϕk

for generic functions cm(z) and thus describe the “fingerprint” of the surface operator.

The extension to any Weyl conjugacy class is as follows. A general element w of the Weyl

group is obtained from a partition N = λ1 + λ2 + . . .+ λk. One divides the N eigenvalues

of ϕD in k different groups, with λi elements in the ith group; w acts in each group as a

cyclic permutation of the λi eigenvalues. Then ϕD(z) is a direct sum of blocks, the ith

block looking just like (4.20), with N replaced by λi. Again, this leads to a determination

of the “fingerprint” starting from a conjugacy class in W.
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So instead of describing the fingerprint of a surface operator in terms of the polar

behavior of functions P (ϕ), and relations among their coefficients, we can summarize this

information by specifying a conjugacy class in W.

Since our surface operators are related to conjugacy classes in GC, we really have here

a map from conjugacy classes in GC to conjugacy classes in W. This map is known as the

Kazhdan-Lusztig map. It was originally defined [16] as a map that assigns a conjugacy

class of W to a nilpotent orbit in gC. (For us, this definition corresponds to the case of

a unipotent surface operator.) Later, it was extended by Spaltenstein [17] to a map from

nilpotent orbits in parabolic subalgebras to conjugacy classes in W. This more general

version is exactly what we need for identifying the fingerprints of a general surface operator

with monodromy V = SU , S being semisimple and U unipotent. We will make use of these

mathematical results in section 6.

4.3. Center vs. Topology

We will describe one other type of invariant of a surface operator. First we recall some

basic observations of [2] about center, topology, and surface operators.

Let Z or Z(G) be the center of G. A very elementary but important example of a

surface operator (which moreover is rigid) is obtained by twisting by an element z ∈ Z.

We simply make the construction of eqn. (2.41), but setting S = z. This gives a strongly

rigid surface operator since the conjugacy class of a central element, as it consists only of

a single point, has smaller dimension than any noncentral conjugacy class.

Such a surface operator must have a dual, of course. The center of G is the Pontryagin

dual11 to the fundamental group of LG, and vice-versa:

π1(
LG) ∼= Z(G)∨

Z(LG) ∼= π1(G)∨.
(4.22)

In gauge theory with gauge group LG on a four-manifold M , a basic ingredient is an LG

bundle LE → M . It has a characteristic class ξ ∈ H2(M,π1(
LG)). (For example, ξ is the

second Stieffel-Whitney class if LG = SO(3).) Now let D be a closed two-manifold in M ,

and

f̂ : π1(
LG) → U(1) (4.23)

11 The Pontryagin dual of a finite group F is F∨ = Hom(F,U(1)).
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a homomorphism. We denote this homomorphism as ψ → exp(i〈f, ψ〉), for ψ ∈ π1(
LG)

and f in a sense the logarithm of f̂ . We can modify LG gauge theory by including in the

path integral a factor

Ψ
f̂

= exp

(
i

〈
f,

∫

D

ξ

〉)
. (4.24)

This modification gives a surface operator for every choice of the homomorphism f̂

in (4.23). But according to (4.22), the homomorphism f̂ : π1(
LG) → U(1) corresponds

naturally to an element of Z(G). The proposal in [2] is that the surface operator in G

gauge theory whose monodromy is a central element z is dual to the surface operator in
LG gauge theory associated with the corresponding homomorphism f̂ .

Generalization

So far nothing is new. Now let us repeat this story beginning with a surface operator

associated with a conjugacy class C in gauge theory with gauge group G. Let V ∈ C be

the monodromy around the singularity of the complexified gauge field A = A+ iφ.

Let z be an element of Z. Whatever the original surface operator may be, we can,

using the reasoning of section 2, construct a new one with monodromy zV . Of course, it

may happen that V and zV are conjugate. In this case, multiplying by z gives nothing

new. This happens not infrequently if V is semisimple. But if V and zV are not conjugate

— which is always the case12 if V is unipotent and z 6= 1 — then the twist by z gives a

new surface operator. If this happens for all nontrivial elements of Z, we say that we can

“observe the center of G” for this particular surface operator.

In general, let ZV or Z(G)V be the subgroup of Z defined by saying that zV is

conjugate to V for z ∈ ZV . Then we can observe the quotient Z/ZV , in the sense that

this quotient group parametrizes new surface operators that we can make by twisting by

an element of the center of G.

Of course, there is a dual to this, as follows. Along the support D of a surface

operator, say in gauge theory with gauge group LG, the structure group of the gauge

bundle is reduced from LG to a group H that is a symmetry of the surface operator. (H

is the subgroup of LG that commutes with V and with the relevant su(2) embedding if

12 Since z is central, it acts in any irreducible representation R of G as a multiple of the

identity, say z. Pick a representation R for which z 6= 1. If V is unipotent, its only eigenvalue in

any representation is 1 (such a V typically is not completely diagonalizable). Likewise, the only

eigenvalue of zV is z. So zV and V are not conjugate.

51



V is not semisimple.) The inclusion ι : H → LG determines a natural homomorphism

ι : π1(H) → π1(
LG) and hence a subgroup ι(π1(H)) ⊂ π1(

LG). When integrated over D,

the characteristic class ξ of the gauge bundle actually takes values in this subgroup. This

reflects the fact that H is the effective gauge group along D.

Hence, when we modify the path integral by including the factor Ψ
f̂

= exp
(
i〈f,

∫
D
ξ〉

)
,

so as to build a new surface operator, some choices of f̂ are irrelevant. We are not interested

in those f̂ that are trivial when restricted to ι(π1(H)). So in π1(
LG)∨, there is an irrelevant

subgroup π̃1(
LG)∨, which classifies homomorphisms that are trivial on ι(π1(H)). We say

that we can observe the topology if ι(π1(H)) = π1(
LG), so that π̃1(

LG)∨ is trivial and a

twist by any factor Ψ
f̂

gives a new surface operator.

In general, the surface operators that we can make in LG gauge theory by twisting

by some f̂ are classified by π1(
LG)∨/π̃1(

LG)∨. By contrast, the possible twists in G gauge

theory by an element of the center were classified by Z(G)/Z(G)V . Since π1(
LG)∨ = Z(G)

according to (4.22), we see that duality requires

Z(G)V = π̃1(
LG)∨. (4.25)

One special case is that if on one side we can observe the full center of G – that is if

Z(G)V is trivial – then on the other side we can observe the full topology, meaning that

ι(π1(H)) = π1(
LG) (so that a homomorphism that annihilates ι(π1(H)) is trivial). At the

other extreme, the center and topology are completely invisible (for the chosen pair of dual

surface operators) if Z(G)V = Z(G), or dually if ι(π1(H)) is trivial and all homomorphisms

annihilate it.

Let us see how this works out for the (noncentral) rigid surface operators for the pair of

groups SO(3) and SU(2). We recall that for SU(2), the rigid surface operator in question

is associated with the double cover of the nilpotent cone. It has unipotent monodromy

and is associated with an irreducible su(2) embedding. The dual rigid surface operator

for SO(3) is associated with the conjugacy class of the element S = diag(1,−1,−1). The

essential case to consider is G = SU(2), LG = SO(3). (The opposite case G = SO(3),
LG = SU(2) is of little interest, as SO(3) has trivial center and SU(2) is simply-connected.)

We can analyze this example as follows. Since the monodromy of the G surface

operator is unipotent, we can observe the center of G; in other words, Z(G)V is trivial for

this surface operator. Dually the group H is the subgroup O(2) ⊂ SO(3). Any loop in

SO(3) can be deformed to a loop in SO(2) ⊂ O(2), so ι(π1(H)) = π1(
LG); hence we can

observe the topology of LG.
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5. Duality for Strongly Rigid Surface Operators

Now, we use the invariants described in the previous section in order to identify dual

pairs of rigid surface operators in theories with SO and Sp gauge groups, starting with

the simplest examples of small rank. To keep things simple, we will analyze only rigid

surface operators that are associated to strongly rigid conjugacy classes. We know that

these do not give the whole story, even for SU(2) and SO(3); in section 3.4, we described

apparently dual rigid surface operators for these groups that are not associated to strongly

rigid conjugacy classes.

However, strongly rigid conjugacy classes are relatively easy to analyze, and this

analysis will give many examples of what appear to be dual pairs. We begin with rank 2,

the first case in which non-trivial strongly rigid conjugacy classes exist.

5.1. Duality for G = SO(5) and LG = Sp(4)

Strongly rigid conjugacy classes give rigid surface operators in either the adjoint or

the simply-connected form of the group. That being so, the comparison of B2 and C2

may appear trivial, since these groups are the same. However, as we will see, even in this

case, S-duality identifies strongly rigid surface operators in a nontrivial way. First, let us

describe strongly rigid surface operators in these theories.

In each case, there is only one strongly rigid unipotent surface operator, which in

the SO(5) (resp. Sp(4)) theory corresponds to a rigid unipotent conjugacy class Cλ with

λ = [2, 2, 1] (resp. λ = [2, 1, 1]). These rigid unipotent conjugacy classes in B2 and C2

are both of dimension 4, so that one might naively expect that duality maps strongly

rigid surface operators associated with these unipotent conjugacy classes into each other.

However, by studying the polar polynomials, one can show that this is not the case.

As we explain in Appendix B, the S-duality map between Sp(2N) gauge theory and

SO(2N+1) gauge theory maps Trϕ2k, with the trace in the 2N -dimensional representation

of Sp(2N), to Trϕ2k with the trace in the (2N+1)-dimensional representation of SO(2N+

1). On the other hand, for the rigid surface operators associated with unipotent conjugacy

classes labeled by λ = [2, 2, 1] and λ = [2, 1, 1] we find that, in both cases, the invariant

polynomials Trϕ2k have the same structure of poles

Trϕ2 ≃ p1

z
+ . . .

Trϕ4 ≃ p2

z2
+
p3

z
+ . . .

(5.1)
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but the relations among the coefficients pi are different. Since both conjugacy classes in

question are four-dimensional, the polar polynomials should contain only 2 = 4/2 inde-

pendent coefficients, and there has to be one relation among the 3 parameters p1, p2, p3.

For the conjugacy class C[2,1,1] in C2, the relation is p2 = 1
2 (p1)

2. On the other hand, for

the conjugacy class C[2,2,1] in B2, the relation is different: p2 = 1
4 (p1)

2.

However, in both SO(5) and Sp(4) theories, there is another rigid surface operator,

this time with semisimple monodromy. As explained in section 2.4, in each case, the

monodromy preserves a subgroup of the gauge symmetry group whose Dynkin diagram

can be obtained by removing a node from the extended Dynkin diagram of B2 or C2,

respectively. The relevant node is the middle node, i = 1. (Removing the other node

i = 0 leads back to the rigid unipotent conjugacy class already considered above.) In

the notation of section 2.5, these rigid semisimple conjugacy classes can be denoted by

C
D2

([14],[1]) and C
C1×C1

([12],[12]) since they preserve gauge symmetry groups O(4) ⊂ SO(5) and

Sp(2) × Sp(2) ⊂ Sp(4), respectively, cf. (2.46) and (2.47). Summarizing, we have the

following list of rigid surface operators:

B2 dim C2

C
D2

([14],[1]) 4 C
C2

(∅,[2,1,1])

CB2

(∅,[2,2,1]) 4 CC1×C1

([12],[12])

where we put what we claim to be dual pairs of strongly rigid surface operators on the

same line. In particular, a surface operator associated with the rigid semisimple conjugacy

class CD2

([14],[1]) has the same set of polar polynomials (5.1), with p2 = 1
2
(p1)

2, as the surface

operator associated with the unipotent conjugacy class CC2

(∅,[2,1,1]) in C2. Similarly, surface

operators associated with the conjugacy classes CB2

(∅,[2,2,1]) and CC1×C1

([12],[12]) have the polar

polynomials (5.1) with p2 = 1
4
(p1)

2, in complete agreement with the duality.

Further evidence for this identification of dual surface operators comes from comparing

discrete invariants discussed in section 4.3. Thus, surface operators associated with the

rigid unipotent conjugacy classes CB2

(∅,[2,2,1]) and CC2

(∅,[2,1,1]) can “detect” the center of the

gauge group (in the sense that twisting Z(G) or Z(LG) gives rise to new surface operators).

In fact, as explained in section 4.3, the group Z(G)V (resp. Z(LG)V ) is trivial for any

unipotent conjugacy class.

On the other hand, surface operators associated with the rigid unipotent conjugacy

classes CB2

(∅,[2,2,1]) and CC2

(∅,[2,1,1]) can not “detect” topology. Thus, in the adjoint form of
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G = SO(5), the symmetry group H of the surface operator associated with the rigid

conjugacy classes CB2

(∅,[2,2,1]) is a double cover of Sp(2). It has a trivial fundamental group,

π1(H) = 1, which means that the image of the natural map ι : π1(H) → π1(
LG) is trivial

and all homomorphisms (4.23) annihilate ι(π1(H)). Hence, in the notation of section 4.3,

we have π̃(G) = π1(G) and we conclude that the strongly rigid surface operator associated

with the conjugacy class CB2

(∅,[2,2,1]) can not “detect” topology. The analysis of topology

for the surface operator associated with a rigid unipotent conjugacy class CC2

(∅,[2,1,1]) is

essentially identical since the adjoint form of LG = Sp(4) is isomorphic to G = SO(5) and

the symmetry group H is also the same.

The situation is reversed for surface operators associated with rigid semisimple con-

jugacy classes C
D2

([14],[1]) and C
C1×C1

([12],[12]), which “detect” the fundamental group but not the

center of the gauge group.

Let us explain why this is so. We start with the class CD2

([14],[1]) in B2, which corre-

sponds to the element S = diag(1,−1,−1,−1,−1) in SO(5), the adjoint form of B2. This

element commutes with SO(4), and the map of fundamental groups from SO(4) to SO(5)

is surjective, so the surface operator associated with this class detects topology.

Let us explain why this surface operator does not detect the center of the gauge group.

Let z be the nontrivial element of the center of Spin(5); of course, z corresponds to a 2π

rotation in space. Let T = diag(−1,−1, 1, 1, 1) ∈ SO(5). As elements of SO(5), S and T

commute, but when they are lifted to Spin(5), we have

T−1ST = zS, (5.2)

showing that S and zS are conjugate in Spin(5). Thus, a surface operator with monodromy

conjugate to S does not detect topology.

The story is similar for the conjugacy class CC1×C1

([12],[12]) in C2. This corresponds to an

element of C2 that in 2 × 2 blocks looks like

S′ =

(
−1 0
0 1

)
. (5.3)

In the adjoint form of the group, which is Sp(4)/Z2, S
′ commutes with H = (Sp(2) ×

Sp(2))/Z2. The map of fundamental groups from H to Sp(4)/Z2 is surjective, so a surface

operator with monodromy S′ detects topology. On the other hand, the center of Sp(4)
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is generated by the element −1. S′ can be conjugated to −S′ by an element T ′ which in

2 × 2 blocks looks like

T ′ =

(
0 1
1 0

)
, (5.4)

and this shows that a surface operator with monodromy S′ does not detect the center of

Sp(4).

Since duality exchanges the center with the fundamental group, cf. (4.22), the fact

that the unipotent surface operators of this class detect only the center while the semisimple

ones detect only the topology is consistent with the proposal that S-duality exchanges these

two kinds of surface operator. Another indication of this will emerge in section 7 when we

study quantization.

5.2. Duality for G = SO(8)

Another instructive example, in which duality exchanges rigid surface operators in a

far from obvious way, is the self-dual theory with gauge group G = SO(8). (Of course,

SO(8) is self-dual only to the extent that the difference between the adjoint and simply-

connected forms is not essential.) In this case, in addition to the two rigid unipotent

conjugacy classes of dimension 10 and 16 that we listed in the end of section 2.3, we also

have a 16-dimensional conjugacy class of a strongly rigid semisimple element

S = diag(−1,−1,−1,−1,+1,+1,+1,+1)

which corresponds to the gauge symmetry breaking pattern D2 ×D2 ⊂ D4. We list all of

these conjugacy classes in the following table:

D4 dim

C
D4

(∅,[22,14]) 10

CD4

(∅,[3,2,2,1]) 16

CD2×D2

([14],[14]) 16

This is the complete list of surface operators associated with strongly rigid non-central

conjugacy classes for G = SO(8). While the surface operator associated with the ten-

dimensional class is clearly self-dual (if only these strongly rigid classes are relevant), rigid

surface operators associated with the two 16-dimensional conjugacy classes potentially can
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be mapped into each other. In particular, they have identical sets of polar polynomials.

(The calculation of polar polynomials is similar to the example of section 4.2.) Moreover,

using the techniques of section 4.3, we find that the surface operator associated with the

rigid unipotent conjugacy class C
D4

(∅,[3,2,2,1]) can detect the center, but not the topology,

of the gauge group. On the other hand, the surface operator associated with the rigid

semisimple conjugacy class CD2×D2

([14],[14]) can detect the fundamental group, but not the center,

of the gauge group, as expected for the dual surface operator.

Further evidence for the duality action on the three rigid surface operators listed here

will become clear in the following sections. Thus, the unipotent conjugacy class labeled

by λ = [22, 14] is special and, as we explain in section 7, should map into a unipotent

conjugacy class. On the other hand, the unipotent conjugacy class labeled by λ = [3, 2, 2, 1]

is not special and, in general, duality maps such conjugacy classes into operators whose

monodromy is not unipotent.

5.3. Duality for G = SO(7) and LG = Sp(6)

While two of our previous examples were rather subtle, the duality between gauge

theories with G = SO(7) and LG = Sp(6) is very simple in a sense that dual pairs of

strongly rigid surface operators in this case can be identified simply by comparing the

most basic invariant, namely the dimension of the corresponding conjugacy classes.

In both gauge theories, the construction based on su(2) embeddings and Nahm’s

equations gives only one strongly rigid surface operator. In gauge theory with G = SO(7),

this is a strongly rigid surface operators associated with a rigid nilpotent orbit labeled by

λ = [2, 2, 1, 1, 1]. Similarly, in the dual theory with LG = Sp(6), there is one rigid surface

operator associated with a strongly rigid nilpotent orbit labeled by λ = [2, 1, 1, 1, 1] (see

table in sec. 2.3). These nilpotent orbits have dimensions 8 and 6, respectively, which

makes it clear that the construction of rigid surface operators based on su(2) embeddings

and Nahm’s equations is not sufficient for producing a set of surface operators closed under

duality.

This situation is rectified if we include surface operators which correspond to strongly

rigid semisimple conjugacy classes. In the theory with G = SO(7), there are two such

surface operators, which correspond to rigid semisimple conjugacy classes C
D3

([16],[1]) and

CD2×B1

([14],[13]) of dimension 6 and 12, respectively. On the other hand, in the dual theory

with LG = Sp(6), there are two surface operators which correspond to rigid semisimple
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conjugacy classes C
C1×C2

([12],[14]) and C
C2×C1

([2,1,1],[1,1]) of dimension 8 and 12, respectively. Now, the

complete list of strongly rigid surface operators has a nice form:

B3 dim C3

C
D3

([16],[1]) 6 C
C3

(∅,[2,14])

CB3

(∅,[2,2,13]) 8 CC1×C2

([12],[14])

C
D2×B1

([14],[13]) 12 C
C2×C1

([2,1,1],[1,1])

In each case, we find three strongly rigid conjugacy classes of the same dimension, which

allows to identify unambiguously dual pairs of rigid surface operators for G = SO(7) and

LG = Sp(6). As a strong test of the duality, we have checked that all other invariants of

dual surface operators also match. In particular, in the previous section we already gave

a detailed comparison of the polar polynomials for the six-dimensional conjugacy classes

CD3

([16],[1]) and CC3

(∅,[2,14]).

5.4. Duality for G = SO(9) and LG = Sp(8)

Now we turn to SO(9) and Sp(8). This turns out to be the first case in which we do

not get a consistent picture in considering only strongly rigid conjugacy classes. Possibly,

this means that for these groups, a full duality statement involves also the more delicate

constructions that were described for SU(2) and SO(3) in section 3.4. (Of course, these

contructions may also be relevant for a more complete treatment of the groups that we

have just considered.)

As in the previous examples, we start with rigid surface operators constructed via

su(2) embeddings ρ : su(2) → g. These surface operators correspond to rigid unipotent

conjugacy classes which, for B4 and C4, we summarized in the table in the end of section

2.3. Namely, in B4 there are two rigid unipotent conjugacy classes labeled by λ = [2, 2, 15]

and λ = [24, 1]. Similarly, in C4 there are also two rigid unipotent conjugacy classes labeled

by λ = [2, 16] and λ = [23, 12]. However, these rigid unipotent conjugacy classes have

completely different dimensions which, again, makes it clear that S-duality cannot work

unless we enlarge the set of rigid surface operators at least by including those corresponding
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to strongly rigid semisimple conjugacy classes. Once we do this, the list of strongly rigid

surface operators in B4 and C4 becomes considerably larger, with some obvious matches:

B4 dim C4

C
D4

([18],[1]) 8 C
C4

(∅,[2,16])

CB4

(∅,[2,2,15]) 12 CC1×C3

([12],[16])

CB4

(∅,[24,1]) 16 CC2×C2

([14],[14])

CD3×B1

([16],[13]) 18 CC4

(∅,[23,12])

CD4

([22,14],[1]) 18 CC1×C3

([12],[2,14])

CD2×B2

([14],[15]) 20 CC2×C2

([2,12],[14])

CD4

([3,2,2,1],[1]) 24 CC2×C2

([2,12],[2,12])

CD2×B2

([14],[2,2,1]) 24 ?

In particular, strongly rigid surface operators which correspond to conjugacy classes of

dimension 8, 12, 16, and 20 can be identified simply by matching the dimension. For

these surface operators, one can also check that all other invariants match, in complete

agreement with the duality.

Strongly rigid surface operators which correspond to conjugacy classes of dimension 18

and 24 are more interesting. In dimension 18, there is an ambiguity in the matching that

is actually not resolved by our other invariants. All four surface operators of dimension 18

listed in the table have the same set of polar polynomials:

Trϕ2 ≃ p2

z
+ . . .

Trϕ4 ≃ p4

z2
+
p1

z
+ . . .

Trϕ6 ≃ p6

z3
+
p3

z2
+
p5

z
+ . . .

Trϕ8 ≃ p8

z4
+
p7

z3
+
p9

z2
+
p10

z
+ . . .

(5.5)
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Since these orbits have dimension 18, we expect the space of polar polynomials to be 9-

dimensional. Therefore, we expect one relation among the 10 parameters pi. This relation

turns out to be

p8 =
1

48
p4
2 −

1

4
p2
2p4 +

1

4
p2
4 +

2

3
p2p6 (5.6)

(which one can verify to be invariant under reparametrization of the local coordinate z).

Moreover, even the discrete invariants of section 4.3 do not help to resolve the ambiguity

in matching of orbits. Indeed, in B4, both rigid surface operators associated with the

18-dimensional conjugacy classes CD3×B1

([16],[13]) and CD4

([22,14],[1]) can detect the fundamental

group π1(G), but not the center Z(G). On the other hand, in C4, both rigid surface

operators associated with the 18-dimensional conjugacy classes C
C4

(∅,[23,12]) and C
C1×C3

([12],[2,14])

can detect the center Z(LG), but not the fundamental group π1(
LG). This is consistent

with the duality, but one needs finer invariants in order to say more precisely how these

18-dimensional conjugacy classes are paired up.

In dimension 24, we have a worse problem: there are two strongly rigid conjugacy

classes in B4 and only one in C4 so there is no hope of matching them. Perhaps the

inclusion of more delicate constructions of surface operators — such as those of section 3.4

— is needed for resolving this problem.

Still, it is attractive that all but one strongly rigid surface operators in our table does

appear to have a dual.

6. More Examples

Although we do not know the general mapping from rigid surface operators in a theory

with gauge group G to similar operators in the dual theory with gauge group LG, in this

section we make a duality conjecture for certain infinite families of surface operators. The

proposal generalizes examples seen in the previous section. Again, our main tools for

identifying dual pairs will be invariants described in section 4.

6.1. Special Rigid Orbits

As we have already mentioned, there is no bijection between nilpotent orbits (rigid or

not) for the dual groups GC and LGC. There is, however, a nice bijection between a certain
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subset of nilpotent orbits called special orbits13 which has been studied in the mathematical

literature [6,7] (see also [18]). This bijection is defined by considering representations of the

Weyl group associated to an orbit by the Springer correspondence, while we are interested

in a duality map that preserves the invariants of section 4. The most important invariant

in what follows is the conjugacy class in the Weyl group associated to an orbit by the

Kazhdan-Lusztig map; this is somewhat analogous to the invariant associated with the

Springer correspondence.

Many special orbits are not rigid; however, some of them are. And even though ex-

plaining how generic special orbits transform under duality involves a rather sophisticated

combinatorics, the case of surface operators associated with special rigid orbits is consider-

ably easier. First, we will give an idea of what special orbits look like, and then specialize

to the rigid ones.

There are several ways to define special orbits. For example, one definition, related to

quantization, will be mentioned in section 7. Here, we present another, equivalent defini-

tion which is helpful for better understanding of the set of nilpotent orbits (or unipotent

conjugacy classes) as a whole. We have seen in section 2.2, for the example of G = SU(2),

that it is possible for one nilpotent orbit (the orbit of the zero element of sl(2)) to be in the

closure of another (the orbit of a regular nilpotent element). Exploiting this idea, we get a

natural partial order on the set of nilpotent orbits. Let cλ and cµ be two nilpotent orbits.

One says that cλ ≤ cµ if cλ is contained in the closure of cµ, that is if cλ ⊂ cµ. For classical

groups, we can think of λ and µ as partitions, N = λ1 + . . . + λn = µ1 + µ2 + . . . + µn′

(where we take λi ≥ λj , µi ≥ µj for j > i). We say that λ ≤ µ if

k∑

i=1

λi ≤
k∑

i=1

µi

for all k. This condition is equivalent with one exception14 that will not concern us to the

condition cλ ≤ cµ. For example, the closure ordering of nilpotent orbits in B3 and C3 can

be summarized in the diagram below.

13 Special nilpotent orbits include Richardson orbits, which correspond in the following sense

to surface operators studied in [2] and reviewed in section 2.1. Let L be a Levi subgroup of G,

with L-regular parameters α, β, γ. In the limit that these parameters are all taken to zero, the

monodromy of the surface operator generically takes values in the Richardson unipotent orbit

associated to L. For more on this see section 3.3 of [2].
14 The exception arises for Dn in the case of a very even partition, that is a partition such that

the λi are all even. Such a partition corresponds to two distinct nilpotent orbits, neither of which

is in the closure of the other.
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B3 C3[7]

[5,1,1]

[3,3,1]

[3,1,1,1,1]

[3,2,2]

[1,1,1,1,1,1,1]

[2,2,1,1,1]

[6]

[4,2]

[4,1,1] [3,3]

[2,2,2]

[2,2,1,1]

[2,1,1,1,1]

[1,1,1,1,1,1]

* *

*

Fig. 2: Hasse diagram for B3 and C3. If λ ≤ µ, then λ is shown below µ in the

diagram. Nilpotent orbits which are not special are shown in red and labeled by an

asterisk; omitting such orbits gives a diagram with an order-reversing involution.

There is a natural order-reversing involution on the set of nilpotent orbits, which in

type A corresponds to a map λ → λt, where λt is the transpose partition of λ, see e.g.

[12]. The transpose partition is described as follows. We relate a partition to a Young

tableau by turning every “part” λi into a column of height λi. For example, for N = 11,

to the partition N = 3 + 3 + 2 + 2 + 1, we associate the Young tableau

. (6.1)

To make the transpose partition, we just take the transpose of the picture. Thus, for the

example that we just gave, the transpose operation is

λ =  λt = , (6.2)

so the transpose of the partition [32, 22, 1] is [5, 4, 2].

For a group of type A, the transpose operation makes sense for any partition. It can

be shown that it reverses order, meaning that if λ ≤ µ, then µt ≤ λt.

For other classical groups B,C, and D, the transpose operation does not make sense

for an arbitrary partition. For these groups, nilpotent orbits are associated with partitions
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that obey certain constraints (the constraints are stated at the end of section 2.2). These

constraints are not invariant under the transpose operation. For example, in the B case,

the constraint is that if λi is even, it must occur with even multiplicity. In the example of

eqn. (6.2), we see that λ = [32, 22, 1] obeys this constraint, and λt = [5, 4, 2] does not.

For groups of type B, and C, we say that a partition λ is special (or the corresponding

orbit cλ is special) if the transpose λt obeys the relevant conditions (for the same group).

Thus, in the above example, λ is not special. On the other hand, for SO(9) the partition

[3, 22, 12] is special since its transpose, which is [5, 3, 1], has no even parts:

 . (6.3)

For type A, all nilpotent orbits are special since λ is subject to no constraint. For

groups of type D, a nilpotent orbit cλ labeled by an orthogonal partition λ is special if

and only if the transpose partition λt is symplectic. For example, the orbit labeled by

λ = [3, 2, 2, 1] in D4 that we discussed in section 5.2 is not special since the transpose

partition λt = [4, 3, 1] is not symplectic:

λ =  λt = . (6.4)

This definition is rather surprising, but we will not describe it here, as we will not go into

any depth concerning groups of type D.

Now we focus on groups of type B and C. Clearly, with the above definition, the

operation λ → λt makes sense for special partitions. Since we are interested in rigid

surface operators, our next task is to single out those special partitions λ for which cλ is

rigid. First, let us consider BN . As usual, we label nilpotent orbits by partitions

λ = [knk(k − 1)nk−1 . . . 2n21n1 ] (6.5)

where we assume that the multiplicities ni are positive precisely if i ≤ k. (This is one of

the criteria for rigidness that were described in section 2.3.) Of course, we also have n2i

even since we are considering orbits in BN . Finally, the other criterion for rigidness is that

n2i+1 6= 2 for all i. Imposing an extra condition that the orbit is special, one finds that nk

is odd and ni is even for all i < k. For example, since nk−1 6= 0, we find that the transpose
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partition has for its smallest part the number nk occurring with multiplicity 1, as in this

example:

 . (6.6)

Hence, if nk is even (as in this example) then λt is not orthogonal. A similar argument

shows that ni must be even for i < k.

Therefore, we conclude that special rigid orbits in BN are associated with partitions

of the form

λ = [k2mk+1(k − 1)2mk−1 . . . 2m212m1 ] (6.7)

with k odd.

Similarly, a rigid orbit in CN is labeled by the partition in the form (6.5) with n2i+1

even and n2i not equal to 2. In addition, such an orbit is special if all ni are even. Hence,

we label special rigid orbits in CN by

λ = [k2mk(k − 1)2mk−1 . . . 22m212m1 ] (6.8)

Notice that in the case of CN we do not need to assume that k is odd.

Now, let us identify dual pairs of special rigid surface operators. Starting with a

special rigid orbit labeled by the symplectic partition (6.8) of 2N , we need to describe the

orthogonal partition of 2N + 1 that labels the dual orbit. It can be constructed by the

following simple rule:15 in the symplectic partition, every block lnl with l odd remains

invariant, while in every block lnl with l even one of the parts is replaced by l+ 1 and one

other part is replaced by l − 1:

lnl 7→
{

(l + 1)lnl−2(l − 1) l even
lnl l odd

Notice that this operation does not change the net sum of all the parts. Hence, we also

add “1” to the resulting partition in order to obtain a partition of 2N + 1 (instead of a

partition of 2N). In the end, we obtain the following map16

[k2mk . . . 32m322m212m1 ] 7→
{

[(k + 1)1k2mk−2 . . . 32m3+222m2−212m1+2] k even
[k2mk+1(k − 1)2mk−1−2 . . . 32m3+222m2−212m1+2] k odd

(6.9)

15 This rule was found by comparing to some constructions of Lusztig [7] as well as to examples

in the last section.
16 Here (k + 1)1 refers to a part k + 1 that appears with multiplicity 1.
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where mj > 1 if j is even, and mj > 0 in general.

This map preserves all the invariants of surface operators introduced in section 4. For

example, using (4.1) we find that special rigid orbits labeled by the partitions (6.9) have

the same dimension, given by

dim(cλ) = 2N2 +N − 2
∑

i

( ∑

j≥i

nj
)2 −

∑

i odd

ni

Similarly, one can identify the corresponding polar polynomials or, equivalently, the

conjugacy class in the Weyl group W under the Kazhdan-Lusztig map. For groups of type

BN and CN that we are considering here, conjugacy classes in W are indexed by pairs

of partitions (ν+, ν−) such that |ν+| + |ν−| = N , see e.g. [17]. In particular, (ν+, ν−) =

([1, 1, . . . , 1], ∅) corresponds to the class of the identity in W, while (ν+, ν−) = (∅, [N ])

corresponds to the Coxeter class (the class which contains a cyclic permutation of order

N). After a somewhat lengthy calculation, using formulas in [17], one finds that under the

Kazhdan-Lusztig map, dual orbits identified in (6.9) map to the same conjugacy class in

W, namely:

([. . .5n532n31n1 ], [. . .32n622n412n2 ])

Therefore, we conclude that special rigid orbits identified by (6.9) have the same finger-

prints.

Finally, we consider the center and topology of G and LG as follows. For a unipotent

surface operator with gauge group G, one can always observe the center of G, as explained

in section 4.3. Dually, consider a surface operator in a theory with gauge group LG and

let H be the automorphism group of this surface operator. Then one can observe the

topology of LG if the natural map ι : π1(H) → π1(
LG) is surjective. For LG of type BN ,

this will be so if H contains a factor SO(n), n ≥ 2, since the map of fundamental groups

SO(2) → SO(2N + 1) is surjective. In turn, for a surface operator associated with a

partition λ, H has such a factor if one of the odd parts in λ has multiplicity at least 2.

According to (6.7), this is so whenever λ is rigid and special. For LG of type CN , the

condition we need is that the central element −1 of LG should be connected to the identity

in the subgroup H that commutes with the embedding ρ : sl(2) → Lg. (A path from 1

to −1 in CN = Sp(2N) projects in Sp(2N)/Z2 to a generator of the fundamental group.)

H is a product of factors Hλ∗ , associated respectively with the parts of size λ∗. If a part

λ∗ appears with multiplicity m, then Hλ∗ is SO(m) or Sp(m) (depending on whether λ∗

is even or odd). The element −1 is connected to the identity in SO(m) or Sp(m) if m is

even, which is always true in the rigid special case, according to eqn. (6.8).
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6.2. Dualities Involving Rigid Semisimple Orbits

Now let us consider dual pairs that involve rigid semisimple conjugacy classes on at

least one side. Simple classes of this type were described in section 2.4.

We start with the minimal unipotent orbit in CN (whose dual turns out to be semisim-

ple). We already discussed this orbit in detail in section 2.3, eqns. (2.25) - (2.26). In the

notation of section 2.5, this orbit corresponds to Θ0 = ∆ with λ′ = ∅ and λ′′ = [2, 12N−2].

It has dimension 2N and via the Kazhdan-Lusztig map is identified with the following

conjugacy class in the Weyl group:

([1N−1], [1])

In type BN , there is also a 2N -dimensional conjugacy class CDN

([12N ],[1])
of the semisimple

element

S = diag(1,−1,−1, . . . ,−1)

which has the same behavior of the Higgs field and discrete invariants introduced in section

4.3. This is a strong hint that the corresponding surface operators are dual.

For our next example we take the strongly rigid unipotent conjugacy class in BN

corresponding to the partition λ′′ = [2, 2, 12N−3]. This conjugacy class was also discussed

in section 2.3. It has dimension 4(N − 1) and via the Kazhdan-Lusztig map is identified

with the following conjugacy class in the Weyl group:

([2, 1N−2], ∅)

One finds the same behavior of the Higgs field for the strongly rigid conjugacy class of the

semisimple element

S = diag(1, 1,−1,−1, . . . ,−1)

in CN associated with Θ1 = C1 × CN−1 and (λ′, λ′′) = ([12], [12N−2]).

Our next example involves dual pairs of surface operators, both of which correspond

to strongly rigid semisimple conjugacy classes. In type BN , we consider the conjugacy

class associated to Θ2 = D2 ×BN−2 and (λ′, λ′′) = ([14], [12N−3]). On the other hand, in

type CN the candidate for the dual conjugacy class has Θ2 = C2 × CN−2 and (λ′, λ′′) =

([2, 1, 1], [12N−4]). It is possible to check that both of these conjugacy classes have equal

polar polynomials and their image under the Kazhdan-Lusztig map is the same conjugacy

class in the Weyl group:

(∅, [1N ])
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Summarizing, we find the following families of dual pairs of rigid semisimple surface

operators:

BN CN

C
DN

([12N ],[1])
C
CN

(∅,[2,12N−2])

C
BN

(∅,[2,2,12N−3])
C
C1×CN−1

([12],[12N−2])

C
D2×BN−2

([14],[12N−3])
C
C2×CN−2

([2,1,1],[12N−4])

. . . . . .

We note that these examples completely cover all dual pairs of strongly rigid conjugacy

classes in small rank N ≤ 3. In particular, for N = 2 we recover a somewhat subtle duality

between rigid surface operators in B2 and C2 discussed in section 5.1.

Lusztig in [8], section 13.3, generalizes the correspondence between special unipotent

classes in GC and LGC to a surjective map from special conjugacy classes in GC that are

not necessarily unipotent to unipotent classes in LGC that are not necessarily special. The

first two entries in the above table appear to be special cases of this definition, though the

third is not. The table is hopefully an approximation to a more complete table that would

describe a bijection between suitable objects on the two sides.

7. Duality and Quantization

In this paper, we have mainly studied “static” half-BPS surface operators supported

on D = R2 in the space-time manifold M = R4. This problem admits various generaliza-

tions; in particular, one can consider more general space-time manifolds M and embedded

surfaces D ⊂M , including those with boundary. A simple example of such a generalization

is obtained by taking

M = R
3 × [0, 1]

with supersymmetric boundary conditions B± at W− = R3×{0} and W+ = R3 ×{1}, and

with a “static” surface operator on D = R × [0, 1], where R ⊂ R3 stands for the “time”

direction, parametrized by x0.
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− +B B

Fig. 3: A time zero slice of a time-independent configuration on M = R
3 ×

[0, 1] with boundary conditions B+ and B−. The support D of a surface operator

intersects the time zero slice on the interval I = [0, 1], parametrized by x1.

Quantization of this theory gives a Hilbert space, H, which depends on all the choices

involved, in particular, on the surface operator as well as on the boundary conditions B+

and B−. As will be explained in more detail elsewhere [19], for a suitable choice of boundary

conditions B± and a surface operator on D = R× [0, 1], the space H is a representation of

a real form GR of the complexified gauge group GC.

In this construction, we consider a surface operator associated with a unipotent con-

jugacy class C or with a semisimple conjugacy class obtained by a deformation of C.

Furthermore, the real form GR is determined by one of the boundary conditions, say B−,

while the other boundary condition, B+, is universal. In compactification to two dimen-

sions, B+ corresponds to the so-called canonical coisotropic brane; see [20], section 12.4

for a detailed description of this boundary condition in four-dimensional gauge theory. In

particular, B+ includes mixed Neumann-Dirichlet boundary conditions for the gauge field

A and the Higgs field φ:

D0φ2 + ∂1A2 = 0

D0φ3 + ∂1A3 = 0

F02 − ∂1φ2 = 0

F03 − ∂1φ3 = 0

(7.1)
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where x1 is the coordinate on the interval [0, 1].

For applications to the present paper, the details of the second boundary condition B−

are not important, as long as it preserves the same supersymmetry17 as B+. A particularly

nice class of boundary conditions B− corresponds to imposing Dirichlet boundary condi-

tions on half of the fields (A, φ). This can be done so that the boundary conditions, upon

reduction to the sigma-model, define a Lagrangian brane supported on a GR-conjugacy

class CR ⊂ C, for some real form GR of GC. For example, it is easy to see that the Dirichlet

boundary condition

B− : φ|W−
= 0 (7.2)

restricts the monodromy V of the connection A = A + iφ to be in a conjugacy class of

the compact group G. More generally, one can define a boundary condition B− associated

with a GR-conjugacy class CR for some real form GR of GC, such that

V ∈ CR (7.3)

For our purposes, all we need to know from [19] is that the central character ζ of the

representation H attached to CR depends only on the surface operator (that is, on the

corresponding conjugacy class C) involved in this construction and not on the particular

choice of the boundary condition B− (which, among other things, determines the real form

GR and CR ⊂ C). In particular, for a surface operator (2.4) labeled by a Levi subgroup L

and continuous parameters (α, β, γ, η), the central character is given by [19]:

ζ = η + iγ (7.4)

More generally, in all examples that we have checked of surface operators constructed

via su(2) embeddings and solutions to Nahm’s equations, it turns out that the central

character ζ of the GR-representation attached to CR ⊂ C is related to the semisimple part

LS of the conjugacy class LC associated with the dual surface operator,

LS = exp(2πζ) (7.5)

This motivates the following conjecture:

17 In fact, it is really only necessary to preserve part of their common supersymmetry. The

important part is the supersymmetry of the relevant A-model.
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Conjecture: Let C be a unipotent conjugacy class (or a semisimple conjugacy class ob-

tained by a deformation of C). Then, the parameter 1
2π log LS of the dual conjugacy class

LC is equal to the central character ζ of (any) GR-representation attached to CR ⊂ C.

This conjecture can be verified for many surface operators. In particular, it holds for

all the surface operators constructed in [2] and reviewed in section 2.1. Indeed, let us

consider a surface operator (2.4) labeled by a Levi subgroup L and continuous parameters

(α, β, γ, η). As explained in [19] and summarized in eqn. (7.4), in this case the central

character is ζ = η + iγ. Since η is a “quantum” parameter, it is convenient to use the

duality transformation of the parameters of such surface operators [2],

(α, η) → (η,−α) (7.6)

to write ζ in terms of “classical” parameters in the dual theory:

ζ = −Lα+ iLγ (7.7)

This indeed equals the semisimple part LS of the dual conjugacy class LC, thus justifying

(7.5) for surface operators associated with Richardson conjugacy classes and their semisim-

ple deformations. However, one can verify the above conjecture for more general surface

operators, including rigid unipotent surface operators studied in this paper.

A simple class of surface operators that are rigid (and, therefore, not included in

those of [2]) can be constructed in a theory with gauge group G = Sp(2N) via su(2)

embeddings labeled by λ = [2, 12N−2]. We already considered such rigid surface operators

in the previous sections; they correspond to minimal orbits cmin in CN . The minimal orbit

cmin in CN has dimension 2N , and the representation attached to this orbit is the familiar

Weyl representation obtained by quantizing the phase space of N decoupled harmonic

oscillators. (For mathematical literature on quantization of the minimal orbit cmin, see

e.g. [21,22].) The central character of this representation gives a rigid semisimple element

LS = exp(2πζ) = diag(+1,−1,−1, . . . ,−1)

in the dual group, LG = SO(2N + 1). It corresponds to the root system of type DN , and

its conjugacy class CLS also has dimension 2N . In fact, CLS = CDN

([12N ],[1])
is precisely the

rigid semisimple conjugacy class of a surface operator in the LG = SO(2N + 1) theory

that, by matching invariants, we proposed in section 6.2 as the dual to the rigid surface
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operator associated with the minimal nilpotent orbit cmin in the G = Sp(2N) theory. In

particular, this analysis implies that the minimal orbit in CN is dual to a rigid semisimple

orbit in BN , thus explaining a somewhat subtle duality in the case of B2 and C2 discussed

in section 5.1.

Suppose that a surface operator associated with a nilpotent orbit maps under duality

to a surface operator associated with a nilpotent orbit of the dual group. The conjecture

implies that GR-representations obtained by quantizing such an orbit have trivial (or in-

tegral) central character ζ. These are precisely the special nilpotent orbits (which were

described in section 6.1). Because of this property, they are sometimes called “quantiz-

able” orbits in the mathematical literature, cf. [23,8]. In particular, it follows that the

pairs of rigid unipotent conjugacy classes in GC and LGC which are related to each other

by S-duality are precisely the special ones. We have checked this prediction for all strongly

rigid surface operators in BN and CN up to rank N = 10, assuming that only strongly

rigid conjugacy classes need to be considered in the dual group, and using the invariants

we know for surface operators to partly constrain the duality map.

8. Stringy Constructions of Rigid Surface Operators

8.1. Holographic Description

For gauge groups of classical types A, B, C, or D, the large N limit of the N = 4

super-Yang-Mills theory is believed to be equivalent to type IIB string theory in space-time

AdS5×Q, where the “horizon” Q equals S5 if G = SU(N) and or RP
5 if G is an orthogonal

or symplectic group [1,24]. In particular, under this duality, the superconformal symmetry

group PSU(2, 2|4) of the N = 4 gauge theory is identified with the isometry group of the

super-geometry whose bosonic reduction is AdS5×Q. In orientifold models with Q = RP
5,

different choices of the gauge group G correspond to different values of the discrete torsion

for the 2-form fields BNS and BRR. Following [24], we introduce discrete holonomies

θNS =

∫

RP2

BNS
2π

, θRR =

∫

RP2

BRR
2π

(8.1)

which can take two values, 0 and 1
2 , since RP

2 ⊂ RP
5 is a two-torsion element, generating

H2(RP
5, Z̃) = Z2. (Z̃ is a twisted version of the constant sheaf of integers.)

A rigid surface operator of a type studied in this paper breaks the four-dimensional

conformal group SU(2, 2) ∼= SO(2, 4) down to a subgroup SO(2, 2) × SO(2). Moreover,
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just like half-BPS surface operators in [2], it introduces a singularity for two components of

the Higgs field and, therefore, breaks the R-symmetry group SO(6)R down to a subgroup

SO(6)R → SO(4) × SO(2) (8.2)

The remaining symmetry group

SO(2, 2)× SO(2) × SO(4) × SO(2) (8.3)

is precisely the part of the isometry of AdS5 × S5 preserved by a “probe” D3′-brane

embedded in AdS5 ×Q as

space − time : AdS5 × Q
∪ ∪

D3′−brane : AdS3 × ℓ
(8.4)

where ℓ ⊂ Q is “equator” of Q.

The identification of the parameters is similar to the SU(N) case considered in [2].

Thus, if we denote the gauge field on the D3′-brane by A′, the parameter α is simply the

holonomy of A′, while η is identified with the holonomy of the dual photon Ã′,

α = Holℓ(A
′) , η = Holℓ(Ã

′) (8.5)

Similarly, in this description, β and γ determine the asymptotic behavior of the Higgs field

ϕ′ on the D3′-brane. Namely, it has the familiar form,

ϕ′ =
1

2z
(β + iγ) + . . .

where z is a complex variable on the D3′-brane world-volume. It is convenient to introduce

coordinates (y1, y2, y3, χ) on the D3′-brane world-volume, AdS3 × ℓ, such that the metric

takes the standard form

ds2 =
1

y2
3

(dy2
1 + dy2

2 + dy2
3) + dχ2 (8.6)

In terms of these coordinates, we have z = y3e
iχ.

In general, the number of D3′-branes determines the number of independent param-

eters α, as well as β, γ, and η. (This is clear from the intersecting brane model, which

will be discussed below.) In other words, the number of D3′-branes is equal to the number

of abelian factors in the Levi subgroup L. For example, in a theory with gauge group
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G = SU(N), a single D3′-brane corresponds to a surface operator with maximal Levi

subgroup L = SU(N − 1)× U(1). In general, larger number of D3′-branes corresponds to

surface operators with smaller Levi subgroups and larger orbits c ⊂ gC.

The identification of the parameters allows to see how surface operators in this holo-

graphic description transform under S-duality. Indeed, since S-duality in the D3- and

D3′-brane theory correspond to S-duality in type IIB string theory, it easily follows that

α and η transform as

S : (α, η) → (η,−α) (8.7)

while β and γ are essentially invariant under S-duality.

8.2. Application: SO(2N) Gauge Theory

In section 7, we made a general proposal on how S-duality should act on surface

operators associated with (rigid) unipotent conjugacy classes. Here, we will go in the

opposite direction and use the holographic description to study the action of S-duality on

surface operators associated with rigid semisimple conjugacy classes.

Let us consider a simple case of SO(2N) gauge theory, whose holographic dual is given

by AdS5 × RP
5 with no discrete torsion, (θNS , θRR) = (0, 0). A particular class of rigid

surface operators which is easy to describe in this holographic setup consists of strongly

rigid surface operators with semisimple holonomy V = S of the form (2.31),

S = diag
(

+ 1,+1 . . . ,+1,−1,−1, . . . ,−1,−1︸ ︷︷ ︸
2k

)
, 1 < k ≤

[N
2

]
. (8.8)

This surface operator corresponds to k D3′-branes with non-trivial holonomy α = 1
2

and

with β = γ = η = 0. An element S of the form (8.8) breaks the gauge group G = SO(2N)

down to a subgroup,

G→ S (O(2k) ×O(2N − 2k))

so that we label this surface operator by the conjugacy class,

C = C
Dk×DN−k

([12k],[12N−2k])
(8.9)

Now, let us consider what happens under duality. Since in the D3′-brane theory, S-

duality exchanges α and η, just as in (8.7), it follows that strongly rigid surface operators

associated with S 6= 1 given by (8.8) are mapped to rigid surface operators with Lα =
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Lβ = Lγ = 0 and Lη 6= 0. In particular, such surface operators should correspond to rigid

unipotent conjugacy classes LC ⊂ LGC since they have Lα = Lγ = 0 and, hence, LS = 1,

cf. (2.8). In other words, the holographic description of these surface operators suggests

that, under duality, they are mapped to strongly rigid surface operators labeled by rigid

unipotent conjugacy classes LC,

S : rigid semisimple −→ rigid unipotent
(S 6= 1, U = 1) (LS = 1, LU 6= 1)

(8.10)

It is not yet clear how to deduce from this holographic description the dictionary between

values of Lη and the corresponding unipotent conjugacy classes LC. However, we can

determine what the answer must be by comparing invariants described in section 4. We

find that rigid semisimple conjugacy classes (8.9) are dual to rigid unipotent conjugacy

classes labeled by the partition

λ = [3, 22k−2, 12N−4k+1] (8.11)

It is easy to see that the unipotent conjugacy class labeled by this partition is indeed rigid.

Namely, it has no gaps — which, according to section 2.3, is one of the criteria for rigidness

— as long as 1 < k ≤
[
N
2

]
. The second condition for rigidness says that no odd part of

λ should occur exactly twice. This condition automatically holds true for the partition

(8.11) since the only odd parts are “3” and “1”, and their multiplicities are always odd.

We note that the duality we arrived at, which relates rigid semisimple surface op-

erators with the monodromy (8.8) and rigid unipotent surface operators associated with

the conjugacy class labeled by (8.11), is consistent with the general proposal of section

7. Indeed, from the relation with quantization discussed in section 7 it follows that the

only rigid unipotent surface operators which under duality are mapped to rigid unipotent

operators are those associated with special conjugacy classes. Therefore, as a consistency

check, we should verify that the unipotent conjugacy class labeled by the partition (8.11)

is not special. This is easy to do using the criterion described in section 6.1. According to

this criterion, a unipotent conjugacy class Cλ in DN is special if and only if the transpose

partition λt is symplectic. The transpose of the partition (8.11) is

λt = [2N − 2k, 2k − 1, 1] (8.12)

Clearly, this λt is not symplectic since odd parts “(2k−1)” and “1” have odd multiplicity.

Hence, we conclude that the unipotent conjugacy class labeled by the partition (8.11) is
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not special and, therefore, according to the general proposal in section 7 under duality

should transform into a rigid semisimple conjugacy class. This is precisely what we find in

this section, from the holographic description of the corresponding rigid surface operators.

Finally, we remark that the duality between surface operators in SO(8) gauge theory

studied in section 5.2 is a special case of the duality found in this section; it corresponds

to N = 4 and k = 2.

8.3. Intersecting Brane Models

Now we will reconsider the same subject from the point of view of intersecting brane

models. (The holographic models just considered arise from the near-horizon limit of the

intersecting brane models.)

In intersecting brane models, gauge theories with symplectic and orthogonal gauge

groups can be engineered by introducing orientifold p-planes (Op-planes). Therefore, let

us start by recalling a few basic facts about Op-planes, see e.g. [25]. In type II string

theory, an orientifold p-plane is defined using a Z2 projection that combines world-sheet

orientation symmetry Ω with a space-time involution I9−p and, possibly, the action of

(−1)FL on fermions,

Op : R
1,p × R

9−p/I9−pΩ ·
{

1 p = 0, 1 mod 4
(−1)FL p = 2, 3 mod 4.

The action of the orientifold on anti-symmetric tensor fields is given by

BNS → −BNS
Cp′ → +Cp′ p′ = p+ 1 mod 4

Cp′ → −Cp′ p′ = p+ 3 mod 4

(8.13)

For 2 ≤ p ≤ 5, there are four types of orientifold planes, labeled by the discrete

torsion (θNS , θRR) of the NS-NS 3-form field H and of the (6 − p)-form field G6−p in the

R-R sector, cf. (8.1). We summarize these Op-planes, their charges, and the corresponding

gauge groups in the table below.
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(θNS , θRR) orientifold plane G charge

(0, 0) Op− SO(2N) −2p−5

( 1
2
, 0) Op+ Sp(2N) +2p−5

(0, 1
2 ) Õp

−
SO(2N + 1) −2p−5 + 1

2

( 1
2 ,

1
2 ) Õp

+
Sp(2N) +2p−5

Maximally supersymmetric N = 4 gauge theory with G = U(N) can be realized

on the world-volume of N D3-branes in type IIB string theory. In this realization, half-

BPS surface operators can be obtained by introducing k extra D3′-branes, which intersect

D3-branes over the surface D ⊂M .

D3−branes

D3’−branes

Fig. 4: A D-brane realization of surface operators in U(N) gauge theory. N D3-

branes (shown horizontally) intersect k extra D3′-branes (shown vertically) over a

two-dimensional subspace D ⊂ M .

Introducing orientifold 3-planes on top of the D3-branes leads to stringy realizations

of gauge theories with orthogonal and symplectic gauge groups, where the gauge group is

determined by the particular type of the O3-plane, according to the above table. On the

other hand, the gauge group G′ on the D3′-branes is a Z2 extension of U(k), which we call

U(k),

1 → U(k) → U(k) → Z2 → 1 (8.14)
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Specifically, U(k) is generated by elements gi of U(k) and the generator ǫ of Z2, with the

commutation relations
(gi, ǫ) · (gj , ǫ) = (gigj , 1)

(gi, ǫ) · (gj , 1) = (gigj , ǫ)

(gi, 1) · (gj, ǫ) = (gigj, ǫ)

(8.15)

The holonomy V ′ = ǫ in the D3′-brane theory breaks G′ = U(k) down to a subgroup,

which is the centralizer of V ′ in G′. For example, V ′ = ǫ breaks G′ down to a subgroup

O(k) × Z2. Indeed, it consists of the elements (g, s) ∈ G′, such that

(1, ǫ) · (g, s) = (g, s) · (1, ǫ)

which implies g = g ∈ O(k).

8.4. Bubbling Geometries

So far, we discussed stringy description of rigid surface operators in terms D3′-branes

realizing N = 4 gauge theory either on the world-volume of D3-branes or via its holo-

graphic dual. However, there is yet another, equivalent description, in which D3′-branes

are also replaced by a dual geometry. Following [26,27], we call these bubbling geometries.

Conformally invariant half-BPS surface operators in N = 4 gauge theory with gauge group

G = SU(N) can be obtained [28] by analytic continuation of the LLM solutions [26,27].

These solutions are asymptotic to AdS5 × S5.

x

y

i−1
i

i+1

D
i

Fig. 5: Bubbling geometries are specified by point “charges” in the base space

X = R+ × R
2. Semi-infinite dashed lines represent disks Di.
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In order to make the symmetry group (8.3) manifest, it is convenient to construct the

bubbling geometries as AdS3 × S3 × S1 fibrations over the three-dimensional base space

X = R+ × R2 (for more detail, see [28]). In the case of SU(N) gauge theory, every half-

BPS geometry is parametrized by positions (~xi, yi) of point “charges” in X of total charge

N , where yi ∈ R≥0 and ~xi ∈ R2. The coordinate yi is related to the value of each charge,

Ni, as

Ni =
y2
i

4πl4p
.

whereas the coordinate ~x is related to the (eigen-)values of β and γ. Namely, we have18

~xi = (βi, γi).

In order to describe the geometric interpretation of α and η, we note that S1 degenerates

at every point (~xi, yi) (location of the i-th charge) and S3 degenerates at the plane y = 0.

Therefore, every bubbling geometry contains some number of 5-spheres (one for every point

charge in X) represented by a Hopf-like fibration of S3 × S1 over the interval y ∈ [0, yi],

and some number of disks (also, one for every point charge in X) ending on the asymptotic

boundary,

Di = {(y, χ) | y ∈ [yi,∞), χ ∈ S1}.

Here, χ is the variable parametrizing the S1, as in (8.6). The (eigen-)values of α and η are

holonimies of the NS and RR 2-form fields [28]:

αi = −
∫

Di

BNS
2π

, ηi =

∫

Di

BRR
2π

. (8.16)

The S-duality of type IIB string theory exchanges BNS and BRR, thus, providing another

evidence for (8.7) – (8.10).

For example, the bubbling geometry corresponding to a single charge at (~x0, y0), is

the familiar space AdS5 × S5, with the usual metric

ds2 = y0
[
(cosh2 u ds2AdS3

+ du2 + sinh2 u dψ2) + (cos2 θdΩ3 + dθ2 + sin2 θdφ2)
]
, (8.17)

where the variables are
x1 − x1

0 + i(x2 − x2
0) = rei(φ−ψ)

r = y0 sinhu sin θ

y = y0 coshu cos θ

χ =
1

2
(φ+ ψ).

(8.18)

18 in the conventions where ℓs = 1
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Now we can extend this construction to describe bubbling geometries representing

conformally invariant half-BPS surface operators in N = 4 gauge theory with symplectic

and orthogonal gauge groups. As usual, this can be achieved by introducing a Z2 orientifold

projection, such that the corresponding quotient of the AdS3 × S3 × S1 fibrations over X

is asymptotic to AdS5 × RP
5. Since the Z2 involution I acts trivially on AdS5 and as the

antipodal map on S5, it follows from (8.17) – (8.18) that it acts as

I :

S3 → S3/Z2

χ→ χ+
π

2

~x→ −~x

(8.19)

Notice that I has no fixed points. Moreover, as usual, the orientifold projection acts

non-trivially on the 2-form fields BNS and BRR, cf. (8.13).

The generic surface operator which has deformation parameters (α, β, γ, η) and cor-

responds to the regular conjugacy class Creg is represented by N pairs of charges at ±~xi,
that is N charges and their “mirror images”.

On the other hand, surface operator associated with the rigid semisimple conjugacy

class (8.8) – (8.9) is described by the “rigid” configuration with two charges, N1 = 2k and

N2 = 2N − 2k, located at ~x = 0.
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Appendix A. Rigid Nilpotent Orbits for Exceptional Groups

Here we describe rigid nilpotent orbits in exceptional cases. In such cases, the ap-

propriate language to classify nilpotent orbits is based on Bala-Carter theory which we

summarize below. According to Bala and Carter, nilpotent orbits in gC are in one-to-one

correspondence with pairs (l, pl), where l ⊂ g is a Levi subalgebra, and pl is a distin-

guished19 parabolic subalgebra of the semisimple algebra [l, l]. Such pairs can be conve-

niently labeled as XN (ai) where XN is the Cartan type of the semisimple part of l and i

is the number of simple roots in any Levi subalgebra of pl. If i = 0 one simply writes XN ,

and if a simple component of a Levi subalgebra l involves short roots (when g has two root

lengths) then one labels its Cartan type with a tilde. Using this notation, below we list

rigid nilpotent orbits in G2:

orbit c dim(c) π1(c)

A1 6 1

Ã1 8 1

These are the only nilpotent orbits in G2 which are not special. As usual, we omit the

trivial orbit, and in the last column we also list the Gsc-equivariant fundamental group

of c (defined as π1(c) = Gsc(c)/Gsc(c)
o, where Gsc(c) is the centralizer of c in the simply-

connected form of G). The Gad-equivariant fundamental group, usually denoted A(c), is

the same as π1(c) in types G2, F4, and E8.

In the following table we list rigid nilpotent orbits in F4:

orbit c dim(c) π1(c)

A1 16 1

Ã1 22 S2

A1 + Ã1 28 1

A2 + Ã1 34 1

Ã2 + A1 36 1

19 A nilpotent orbit in gC is called distinguished if its centralizer contains no semisimple elements

which are not in the center of gC. In type A, the only distinguished orbit is a principal orbit.

In types B, C, or D, an orbit is distinguished if and only if its partition has no repeated parts.

Thus, the partition of a distinguished orbit in type B and D has only odd parts, each occuring

once, while the partition of a distinguished orbit in type C has only even parts, also occuring only

once.
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All of these orbits, except for Ã1 and A1 + Ã1, are not special.

In type E6, rigid nilpotent orbits are the following:

orbit c dim(c) π1(c)

A1 22 1

3A1 40 1

2A2 +A1 54 Z3

The orbit A1 is special, while 3A1 and 2A2 + A1 are not. The group A(c) is trivial for all

of these rigid orbits.

In type E7, rigid nilpotent orbits are the following:

orbit c dim(c) π1(c)

A1 34 1

2A1 52 1

(3A1)
′ 64 1

4A1 70 1

A2 + 2A1 82 1

2A2 +A1 90 1

(A3 +A1)
′ 92 1

All of these orbits have A(c) = 1. Among these, the orbits A1, 2A1, and A2 + 2A1 are

special.

Finally, in the following table we list rigid nilpotent orbits in E8:
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orbit c dim(c) π1(c)

A1 58 1

2A1 92 1

3A1 112 1

4A1 128 1

A2 + A1 136 S2

A2 + 2A1 146 1

A2 + 3A1 154 1

2A2 +A1 162 1

A3 + A1 164 1

2A2 + 2A1 168 1

A3 + 2A1 172 1

D4(a1) +A1 176 S3

A3 + A2 + A1 182 1

2A3 188 1

A4 + A3 200 1

A5 + A1 202 1

D5(a1) +A2 202 1

The only special orbits in this list are A1, 2A1, A2 + A1, A2 + 2A1, D4(a1) +A1.
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Appendix B. Orthogonal and Symplectic Lie Algebras and Duality

In this appendix, we recall the root systems of the Lie algebras so(2N+1) and sp(2N).

In particular, we describe a convenient matrix realization that leads to a simple identifica-

tion of the invariant polynomials Trϕk in the corresponding fundamental representations.

We begin with the symplectic group Sp(2N). It consists of (2N) × (2N) matrices A

that satisfy

AtJA = J (B.1)

where

J =

(
0 IN

−IN 0

)

The matrix form of the corresponding Lie algebra, sp(2N), can be obtained by writing

A = exp(X) ≃ I +X in terms of N ×N matrices Xi,

X =

(
X1 X2

X3 X4

)
(B.2)

Then, the condition (B.1) implies

Xt
1 = −X4, Xt

2 = X2, Xt
3 = X3 (B.3)

The Lie algebra, t, of the maximal torus of Sp(2N) can be represented by diagonal matrices

of the form

X =

(
D 0
0 −D

)
(B.4)

where D = diag(x1, x2, . . . , xN).

Now, in this 2N -dimensional representation, let us define the root system of sp(2N)

Λrt = {±(ei ± ej), 1 ≤ i < j ≤ N} ∪ {±2ei, i = 1, . . . , N}

the set of positive roots

Λ+
rt = {ei ± ej , 1 ≤ i < j ≤ N} ∪ {2ei, i = 1, . . . , N}

and the set of simple roots

∆ = {ei − ei+1, 1 ≤ i < N} ∪ {2eN}
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Here, ei denote basis elements of t∗ ∼= IRN . The 2(N2 − N) short roots ±ei ± ej can be

represented by matrices (see e.g. [12]):

Xei−ej
= Ei,j − Ej+N,i+N

Xei+ej
= Ei,j+N +Ej,i+N

X−ei−ej
= Ei+N,j + Ej+N,i

(B.5)

where Ei,j is a matrix with 1 at the position (i, j) and zeros elsewhere. Similarly, 2N long

roots ±2ei are represented by matrices

X2ei
= Ei,i+N

X−2ei
= Ei+N,i

(B.6)

Choosing a metric on t defines a natural isomorphism between t and t∗ that we need

later. We normalize the metric so that short coroots (equivalently, long roots) have length

squared 2. With this normalization, in type C2 we have

α1 =
√

2e1 , α2 =
1√
2
(e2 − e1) (B.7)

where {e1, e2} is an orthonormal basis of t∗ ∼= IR2.

α

α

α

α

1
1

2

2

Fig. 6: The root systems of type B2 and C2.

Now, let us consider the orthogonal group SO(2N + 1). In the (2N + 1)-dimensional

representation, it is realized by (2N + 1) × (2N + 1) matrices A which satisfy

AtA = I (B.8)
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In order to obtain the matrix form of the corresponding Lie algebra so(2N + 1), we write

A = exp(X) ≃ I +X . Then, the condition (B.8) leads to the following condition on the

Lie algebra element X ,

X +Xt = 0

In particular, this condition implies that all diagonal elements of X vanish.

Our goal, however, is to describe a matrix realization of the Lie algebra so(2N + 1)

which would allow a simple comparison of the invariant polynomials in the dual Lie algebras

sp(2N) and so(2N+1). This will be easy to achieve if we can realize the Cartan subalgebra

of so(2N + 1) by diagonal matrices, as we did in eqn. (B.4) for sp(2N). For this reason,

it is convenient to perform a unitary transformation on matrices A,

A = UBU t

which after substituting to (B.8) and writing B = exp(X) ≃ I +X gives a condition on

the Lie algebra element X ,

XtK +KX = 0 (B.9)

with K = U tU .

In the (2N +1)-dimensional representation that we are considering, we write matrices

X in the block form,

X =



X0 a b
c X1 X2

d X3 X4




where the diagonal blocks X0, X1, and X4 have size 1, N , and N , respectively. In this

presentation, we choose

U =
1√
2




√
2 0 0

0 iIN −iIN
0 −IN −IN




which gives

K = U tU =




1 0 0
0 0 IN
0 IN 0




so that the condition (B.9) becomes

X0 = 0, Xt
1 = −X4,

c = −bt, Xt
2 = −X2,

d = −at, Xt
3 = −X3
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Therefore, in this representations, we can realize elements of the Lie algebra so(2N + 1)

by matrices of the form

X =




0 a b
−bt X1 X2

−at X3 −Xt
1


 (B.10)

where X1 is arbitrary and X2 and X3 are anti-symmetric. This form is similar to the

realization (B.2) - (B.3) of the Lie algebra sp(2N). In particular, as in (B.4) the Cartan

subalgebra of so(2N + 1) is realized by diagonal matrices of the form

X =




0 0 0
0 D 0
0 0 −Dt


 (B.11)

Now, let us describe the root system of so(2N + 1),

Λrt = {±(ei ± ej), 1 ≤ i < j ≤ N} ∪ {±ei, i = 1, . . . , N}

with the standard choice of positive roots

Λ+
rt = {ei ± ej , 1 ≤ i < j ≤ N} ∪ {ei, i = 1, . . . , N}

and simple roots

∆ = {ei − ei+1, 1 ≤ i < N} ∪ {eN}

In the (2N + 1)-dimensional representation (B.10), 2(N2 − N) long roots ±ei ± ej are

represented by matrices

Xei−ej
= Ei+1,j+1 − Ej+N+1,i+N+1

Xei+ej
= Ei+1,j+N+1 −Ej+1,i+N+1

X−ei−ej
= Ei+N+1,j+1 − Ej+N+1,i+1

(B.12)

and 2N short roots ±ei are represented by matrices

Xei
= E1,i+N+1 −Ei+1,1

X−ei
= E1,i+1 − Ei+N+1,1

(B.13)

For example, with our choice of normalization, in type B2 we have

α1 = e1 , α2 = e2 − e1 (B.14)
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Notice, coroots of B2 are the same as roots of C2 scaled by the factor
√
ng =

√
2, and vice

versa.

The matrix realizations of the Lie algebras sp(2N) and so(2N + 1) described here

have a nice feature that, in both cases, the Cartan subalgebras are realized by the set of

diagonal matrices, (B.4) and (B.11), respectively. This defines a natural map from the

Cartan subalgebra of these two Lie algebras, in which we simply identify the “eigenvalues”

in eqs. (B.4) and (B.11) (and add an extra “0” in the case of so(2N + 1)).

In particular, this map between Cartan subalgebras of sp(2N) and so(2N+1) gives rise

to a map from invariant polynomials of sp(2N) to invariant polynomials of so(2N+1), with

the property that Trϕk, with the trace in the 2N -dimensional representation of sp(2N),

maps to Trϕk, with the trace in the (2N + 1)-dimensional representation of so(2N + 1).
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