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THE ARNOUX–YOCCOZ TEICHMÜLLER DISC
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Abstract. We prove that the Teichmüller disc stabilized by the Arnoux–
Yoccoz pseudo-Anosov diffeomorphism contains at least two closed Teich-
müller geodesics. This proves that the corresponding flat surface does not
have a cyclic Veech group.

In addition, we prove that this Teichmüller disc is dense inside the
hyperelliptic locus of the connected component Hodd(2, 2). The proof uses
Ratner’s theorems.

Rephrasing our results in terms of quadratic differentials, we show that
there exists a holomorphic quadratic differential, on a genus 2 surface, with
the two following properties:

1. The Teichmüller disc is dense inside the moduli space of holo-
morphic quadratic differentials (which are not the global square
of any Abelian differentials).

2. The stabilizer of the PSL2(R)-action contains two non-commuting
pseudo-Anosov diffeomorphisms.

1 Introduction

After the work of McMullen [Mc1,2,4,5,6] and Calta [C] who classified Veech
surfaces and completely periodic translation surfaces arising from Abelian
differentials in genus 2, it is a big challenge to try to understand what hap-
pens for translation surfaces that admit pseudo-Anosov diffeomorphism in
higher genus. We recall that the trace field of a pseudo-Anosov diffeomor-
phism is Q[λ + λ−1] where λ is the expansion factor. This is an invariant
of the underlying translation surface: it is the holonomy field. The trace
field of such a surface is a number field of degree bounded above by the
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genus of the surface (see, Appendix of Kenyon–Smillie [KS]). At the time
Thurston defined pseudo-Anosov diffeomorphism, no examples were known
where the holonomy field is an extension of Q of degree more than 2.

At the beginning of the 1980s, Arnoux and Yoccoz [AY] discovered a
family Φn, n ≥ 3, of pseudo-Anosov diffeomorphisms with expansion factor
λn = λ(Φn) the Pisot root of the irreducible polynomial Xn −Xn−1−· · ·−
X − 1. The pseudo-Anosov diffeomorphism Φn acts linearly on a genus n
translation surface (Xn, ωn) (the Abelian differential ωn having two zeroes
of order n− 1). The stable and unstable foliations of these pseudo-Anosov
diffeomorphisms exhibit interesting properties studied in [A1]. See also [A2]
where a strange phenomenon is discussed in the case of genus 3.

In this paper, we study properties of the Teichmüller disc stabilized
by the pseudo-Anosov diffeomorphism Φ = Φ3. The Abelian differential
ω = ω3 has two zeroes of order 2. The stratum of Abelian differentials (see
section 2.2 for definitions) with two zeroes of order 2 is called H(2, 2). It has
two connected components (see Kontsevich–Zorich [KoZ]). The translation
surface (X,ω) sits in Hodd(2, 2) the non-hyperelliptic component with odd
parity of the spin structure. Nevertheless, as Φ was first defined on the
sphere and then lifted to (X,ω), the Riemann surface X is a hyperelliptic
surface. Thus, (X,ω) belongs to the hyperelliptic locus in Hodd(2, 2). We
denote this locus by L. It has complex codimension 1 in Hodd(2, 2).

Hubert and Lanneau [HuL] showed that this Teichmüller disc was not
stabilized by any parabolic element. Thus the Arnoux–Yoccoz surface has
been considered as a good candidate for a Teichmüller disc stabilized only
by a cyclic group generated by a pseudo-Anosov diffeomorphism. We show
that this does not hold.

Theorem 1.1. The surface (X,ω) has at least two transverse hyperbolic
directions. More precisely the Teichmüller disc of (X,ω) is stabilized by Φ
and by a pseudo-Anosov diffeomorphism Φ̃ not commuting with Φ. The
expansion factor λ̃ = λ(Φ̃) has degree 6 over Q.

We recall that the stabilizer of a translation surface under the natural
SL2(R)-action is a Fuchsian group called the Veech group. The Veech group
is the group of the differentials of the diffeomorphisms that preserve the
affine structure induced by the translation structure. Combining Theorem
1.1 with the aforementioned result of Hubert–Lanneau [HuL] we get the
following corollary.

Corollary 1.2. Non-elementary Veech groups without parabolic elements
do exist.
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Theorem 1.3. The Teichmüller disc stabilized by the Arnoux–Yoccoz
pseudo-Anosov diffeomorphism Φ = Φ3 is dense inside the hyperelliptic
locus L.

Theorem 1.1 and Theorem 1.3 show that in genus 3 the situation is very
different from what we know in genus 2. McMullen proved that, as soon as a
genus 2 translation surface is stabilized by a pseudo-Anosov diffeomorphism
with orientable stable and unstable foliation, the image of its Teichmüller
disc in the moduli space of curves is contained in a Hilbert modular surface.
In particular, it is not dense in its stratum. Here, the Veech group is non-
elementary, nevertheless, the closure of the Teichmüller disc is as big as it
can be.

It is also interesting to rephrase Theorems 1.1 and 1.3 using quadratic
differentials. In particular we show that the orientability assumption in
genus 2 is necessary.

Corollary 1.4. Let (P1, q) be the quotient of (X,ω) by the hyperelliptic
involution. Then the SL2(R)-orbit of (P1, q) is dense in the stratum of
meromorphic quadratic differentials having two simple zeores and six simple
poles. The stabilizer of the SL2(R)-action contains two (non-commuting)
pseudo-Anosov diffeomorphisms.

One can reformulate the latter result in term of holomorphic quadratic
differentials on a genus 2 surface in the following way. Let Q2 be the moduli
space of holomorphic quadratic differentials which are not the global square
of any Abelian differentials. Let π : Y → P1 be a double covering of
P1 ramified precisely over the six poles of q. Let (Y, q̃) be the lift of q.
Obviously (Y, q̃) ∈ Q2.

Corollary 1.5. The SL2(R)-orbit of (Y, q̃) is dense inside the whole
moduli space Q2. Moreover the stabilizer of the SL2(R)-action of (Y, q̃)
contains two non-commuting pseudo-Anosov diffeomorphisms.

Proof. As we have seen, (P1, q) belongs to the stratum Q(1, 1,−16) of
meromorphic quadratic differentials having two simple zeores and six simple
poles. The stratum Q(1, 1,−16) is isomorphic to the stratum Q(1, 1, 1, 1),
the principal stratum of holomorphic quadratic differentials on genus 2
surfaces (see Lanneau [L1]). Moreover the SL2(R)-action is equivariant
with respect to this isomorphism. Therefore Corollary 1.4 shows that the
closure of the Teichmüller disc SL2(R) · (Y, q̃) contains Q(1, 1, 1, 1). This
last stratum is dense inside Q2 which gives Corollary 1.5. �
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2 Background

In order to establish notation and preparatory material, we review basic
notions concerning translation surfaces, affine diffeomorphisms, and moduli
spaces.

2.1 Pseudo-Anosov diffeomorphisms and Veech groups. A trans-

lation surface is a genus g surface with a translation structure (i.e. an atlas
such that all transition functions are translations). As usual, we consider
maximal atlases. These surfaces are precisely those given by a Riemann
surface X and a holomorphic (non-zero) one-form ω ∈ Ω(X); see say [MT]
for a general reference on translation surfaces and holomorphic one-forms.

Let (X,ω) be a translation surface. The stabilizer of (X,ω) under
the SL(2,R)-action is called the Veech group of (X,ω) and is denoted by
SL(X,ω). A more intrinsic definition is the following. An affine diffeo-

morphism is an orientation preserving homeomorphism of X which is affine
in the charts of ω and permutes the zeroes of ω. The derivative (in the
charts of ω) of an affine diffeomorphism defines an element of SL(X,ω).
Conversely such an element is the derivative of an affine diffeomorphism.

A diffeomorphism f is a pseudo-Anosov diffeomorphism if and only if
the linear map Df is hyperbolic; that is |trace(Df)| > 2. In this case, Df
has two real eigenvalues λ−1 < 1 < λ. The number λ is called the expansion

factor of the pseudo-Anosov diffeomorphism f .

2.2 Connected components of the strata. The moduli space of
Abelian differentials is stratified by the combinatorics of the zeroes. We
denote by H(k1, . . . , kn) the stratum of Abelian differentials consisting of
holomorphic one-forms with n zeroes of multiplicities (k1, . . . , kn). These
strata are non-connected in general but each stratum has at most three con-
nected components (see [KoZ] for a complete classification). In particular
the stratum with two zeroes of multiplicity 2, H(2, 2), has two connected
components. The hyperelliptic component Hhyp(2, 2) contains precisely
pairs (X,ω) of a hyperelliptic surface X and a one-form whose zeros are
interchanged by the hyperelliptic involution. The other (non-hyperelliptic)



1992 P. HUBERT, E. LANNEAU AND M. MÖLLER GAFA

component Hodd(2, 2) is distinguished by an odd parity of the spin struc-
ture. There are two ways to compute the parity of the spin structure of
a translation surface X. The first way is to use the Arf formula on a
symplectic basis (see [KoZ]). The second possibility applies if X comes
from a quadratic differential, i.e. if X possesses an involution such that the
quotient produces a half-translation surface (see [L2]).

Let Q(1, 1,−16) be the stratum of meromorphic quadratic differentials
on the projective line with two simple zeroes and six simple poles. It is
easy to see that this stratum is connected (see [KoZ], [L1]). Taking the
orientating double covering, one gets a local embedding

Q(1, 1,−16) → H(2, 2) .

We will denote by L the image in H(2, 2) of the previous map. The con-
struction of the Arnoux–Yoccoz surface (X,ω) is given below. Here we
record for later use:

Lemma 2.1. The Arnoux–Yoccoz surface (X,ω) lies in L ⊂ Hodd(2, 2).

Proof. Thanks to the decomposition of the Arnoux–Yoccoz surface (X,ω)
into cylinders (see section 5.2) it is easy to define an affine diffeomorphism
of (X,ω) by a rotation of 180 degree around the center of C ′

1 (see Figure 4).
This diffeomorphism fixes 8 points, but not the two zeros of ω. Hence X is
hyperelliptic and lies in Hodd(2, 2).

Let us recall the formula in Theorem 1.2. of [L2, p. 516] in order to
calculate the parity of the spin structure. If X is a half translation surface
belonging to the stratum Q(k1, . . . , kl) then the parity of the spin structure
of X̂, the orientating surface, is[

|n+1 − n−1|
4

]
mod 2

where n±1 is the number of zeros of degrees kj = ±1 mod 4, and where all
the remaining zeros satisfy kr = 0 mod 4 (the square brackets denote the
integer part). This shows that the parity of the spin structure of (X3, ω3)
is then 1

4(6 − 2) = 1 mod 2. �

Therefore the hyperelliptic locus L belongs to the odd part Hodd(2, 2)
of H(2, 2). We recall that the complex dimension of Q(1, 1,−16) is 6 and
the complex dimension of H(2, 2) is 7.

Lemma 2.2. There exists a linear isomorphism between the stratum
Q(1, 1, 1, 1) and the stratum Q(1, 1,−16).

Here linear implies in particular that the SL2(R)-action commutes with
this isomorphism.



Vol. 18, 2008 THE ARNOUX–YOCCOZ TEICHMÜLLER DISC 1993

Proof. We recall here the proof presented in [L1]. Let us consider a
meromorphic quadratic differential q on P1 having the singularity pattern
(1, 1,−16). Consider a ramified double covering π over P1 having ramifi-
cation points over the simple poles of q, and no other ramification points.
We obtain a genus 2 hyperelliptic Riemann surface X with a quadratic
differential q̃ = π∗q on it. It is easy to see that the induced quadratic
differential has the singularity pattern (1, 1, 1, 1). Hence we get locally an
SL2(R)-equivariant mapping

Q(1, 1,−16) → Q(1, 1, 1, 1) .

Since the dimensions coincide, i.e.

dimC Q(1, 1,−16) = 2 · 0 + 8 − 2 = 6 = 2 · 2 + 4 − 2 = dimC Q(1, 1, 1, 1) ,

and since the geodesic flow acts ergodically on the strata the image of the
above map equals Q(1, 1, 1, 1). �

3 Completely Periodic Directions

Let (X,ω) be a translation surface. A cylinder is a topological cylinder
embedded in X, isometric to a flat cylinder R/wZ × (0, h). The boundary
of a maximal cylinder is a union of a finite number of saddle connections.

A direction θ is completely periodic on X if all the regular geodesics in
the direction θ are closed. This means that X is the closure of a finite
number of maximal cylinders in the direction θ. In a periodic direction, all
the geodesics emanating from singularities are saddle connections.

Let θ be a completely periodic direction on a translation surface (X,ω).
A translation surface comes with a horizontal and vertical direction, and
we will henceforth assume that θ is different from the vertical direction.
The saddle connections in the direction θ are labeled by γ1, . . . , γk. The
cylinders are labeled by C1, . . . , Cp, and w1, . . . , wp will stand for the widths
(or perimeters) of the cylinders.

For each cylinder Ci one can encode the sequence of saddle connections
contained in the bottom of Ci and ordered in the cyclic ordering of the
boundary of Ci by a cyclic permutation σb

i . We get an analogous definition
if we replace bottom by top. Therefore one gets two p-tuples of cyclic
permutations (σb

1 . . . σ
b
p) and (σt

1 . . . σ
t
p). Note that these data define two

permutations on k elements πb = σb
1 ◦ · · · ◦ σb

p and πt = σt
1 ◦ · · · ◦ σt

p.

These data form the combinatorics G of the direction θ on the surface X .
This notion is very close to the one of separatrix diagram introduced by
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Kontsevich and Zorich (see [KoZ]) but will be more convenient for our
purposes.

To give a complete description of the surface (X,ω) in the direction θ
we also need continuous parameters:

• the lengths of the saddle connections,
• the heights of the cylinders with respect to the vertical direction,

• the twists of the cylinders.

The only parameters which are non-trivial to define are the twists. For
that, one has first to fix a marking on the combinatorics G, i.e. on each
cycle of σb

i and σt
i , we mark an arbitrary element, denoted by mb(i) (resp.

mt(i)). When representing the combinatorics by a table, we will underline
the marked elements.

On a translation surface with marked combinatorics in some direction
θ we will normalize the first twist to zero, but define a twist vector in the
cylinder C1. This is a saddle connection contained in C1 joining the origin of
the saddle connection γmb(1) to the origin of the saddle connection γmt(1).
The corresponding vector may be decomposed into its vertical component
(denoted by h1, where (h1)y is the height of C1) and its component in the
direction θ, denoted by v1 (see Figure 1). The vector v1 is well defined up
to an additive constant nw1 where n ∈ Z. We normalize v1 by requiring
|v1| < |w1| and v1 to be positive in the direction of θ.

To have enough flexibility we will define twists for cylinders Ci (i =
2, . . . , p) with respect to the direction θ⊥ = θ⊥(n0) given by h1 + v1 + n0w1

for n0 ∈ Z. This is done in the following way.
Let Ci be a cylinder. Let (hi)y be its height. The endpoint P of the

vertical vector hi =
( 0

(hi)y

)
based at the origin of the saddle connection

γmb(i) is located on the top of Ci. Let vi be the vector joining P to the
origin of the saddle connection γmt(i) in the direction θ. The vector vi is
well defined up an additive constant nwi where n ∈ Z. The twist ti of Ci is
defined to be the difference

ti = vi −
(hi)y
(h1)y

(v1 + n0w1)

(see Figure 1). The affine invariant will be the normalized twist, namely

|ti|
|wi|

∈ [0, 1[

Therefore for each completely periodic direction θ, each marking m on G(θ)
and each n0 ∈ Z, one gets the following quantities:

• −→
L (θ) ∈ Rk;
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• −→
H (θ) ∈ Rp;

• G(θ);

• −→
T (θ,m, n0) ∈ [0, 1[p−1 (normalized twists).

11

2=mt(1)

2=mb(2)

3

3=mb(1)

4

4=mt(2)

55

C1

C2

−→w1

−→w2

−→
h1

−→
h2

−→v1

−→v2

−→
t2=−→v2−

(h2)y
(h1)y

−→v1

(h2)y
(h1)y

−→v1

−→
h1+

−→v1

Figure 1: Combinatorics and marking of a translation surface.

Applying an appropriate linear transformation M in GL2(R) to the
surface (X,ω) we can make all cylinders, in the directions θ, horizontal. We
send the direction θ⊥ to the vertical direction. Furthermore we normalize
the cylinder C1 of direction θ to a unit square. This is the normalizing

matrix associated to the pair (θ, θ⊥).
Note that the conditions above define completely the linear transforma-

tion M . Let h be the affine Dehn twist along the cylinder C1. If we change
the direction θ⊥ by hn0 we then change the matrix by Mh−n0 .

Remark 3.1. In Figure 1 one has, with previous notation, σt
1 = (1 2),

σt
2 = (3 5 4) and σb

1 = (3 4 1), σb
2 = (2 5). Or equivalently: G =((

1 2
3 4 1

)
,
(

3 5 4
2 5

))
and a marking is (G,m) =

((
1 2
3 4 1

)
,
(

3 5 4
2 5

))
.

For a vector u ∈ Rn and a permutation π on n symbols, we will use the
following convention π ((u1, . . . , un)) = (uπ(1), . . . , uπ(n)).

We then have the obvious

Lemma 3.1. Let f : X → X be an affine diffeomorphism. Let θ ∈ S1 be
a completely periodic direction and θ′ := f(θ). Then f induces a bijection
between the collections {γ1, . . . , γk} and {γ′1, . . . , γ′k} of saddle connections
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(and thus a permutation πsc
f on k elements) and a bijection between the col-

lections {C1, . . . , Cp} and {C′
1, . . . , C′

p} of cylinders (and thus a permutation
πcy

f on p elements). Moreover one has
−→
L (θ) = πsc

f

(−→
L (θ′)

)
∈ RP(k)

and −→
H (θ) = πcy

f

(−→
H (θ′)

)
∈ RP(p) .

Lemma 3.2. With the same assumptions as in Lemma 3.1, let us choose
a marking m on G = G(θ). Then πsc

f induces a marking m′ on G′ = G(θ′).

Moreover there exists n′0 ∈ Z such that the normalized twists
−→
T (θ,m, 0)

and πsc
f (

−→
T (θ′,m′, n′0)) are the same.

In fact, given a combinatorics in the direction θ, the lengths of the
saddle connections, the width of the cylinders (with respect to the vertical
direction) and the twists characterize the surface (X,ω) in the moduli space.
Namely one has

Theorem 3.3. Let X be a flat surface. Let θ, θ′ ∈ S1 be two completely
periodic directions. Let us choose a marking m on G. Let us also assume
there exist two permutations π1 on k elements and π2 on p elements such
that

(1)
−→
L = π1(

−→
L′) ∈ RP(k) and

−→
H = π2(

−→
H ′) ∈ RP(p);

(2) G and G′ are isomorphic via (π1, π2) and there exists n′0 ∈ Z such that

the normalized twists
−→
T (θ,m, 0) and π1(

−→
T ′(θ′,m′, n′0)) are the same.

Then there exists an affine diffeomorphism f ∈ Aff(X,ω). Moreover
f(θ) = θ′, f(θ′⊥) = θ′⊥ and πsc

f = π1, π
cy
f = π2.

Moreover if M and M ′ are the normalizing matrices associated with the
pairs (θ, θ⊥) and (θ′, θ′⊥), then Df = M ′−1M.

4 Application to the Arnoux–Yoccoz Flat Surface

4.1 Construction (after P. Arnoux). Here we present the idea of the
construction of the Arnoux–Yoccoz flat surface. What appears to be ad hoc
here was constructed originally by a self-similar interval exchange transfor-
mation whose canonical suspension is a quadratic differential on P1. One
can find all details in the original paper [AY]. See also [A2, p. 496-498].

Let us consider three rectangles in R2 glued along the horizontal segment
[0, 2] with the following parameters. The bases have length 2α, 2α2 and 2α3

and the heights are respectively 2, 2(α+α2) and 2α (here α is the positive
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Figure 2: The Arnoux–Yoccoz flat surface. Identifications of the
boundaries are made with respect to the labels. The black and white
bullets correspond to the two singularities. The grey bullets corre-
spond to a marked point.

real root of polynomial X3 + X2 + X − 1). On the union of these three
rectangles, we make small vertical cuts starting on the base with specified
lengths. The cuts start at the points α−α3, α+α2, 1 +α respectively on
the base and they have heights α + α3, 1 + α2, α2 + α4 respectively (see
Figure 2).

We then identify horizontal boundaries with the following rules: we
identify the point (x, y) on the top boundary with (f(x), 0) for any x ∈ [0, 2],
where f : [0, 2[→ [0, 2[ is an interval exchange transformation. Following
[A2, p. 489], this interval exchange transformation has permutation π =(

1 2 3 4 5 6 7
2 5 4 7 6 3 1

)
and the interval labels are indicated in Figure 2.

In this manner we obtain a flat surface with vertical boundary compo-
nents. To get a closed flat surface we have to identify the vertical bound-
aries. This is done according to the rules presented in Figure 2. The
parameters are chosen in such a way that the gluing is by (Euclidean)
isometry.

The flat surface (X,ω) obtained in this way has two conical singularities
of total angle 6π, so (X,ω) ∈ H(2, 2).
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We review the construction of the pseudo-Anosov diffeomorphism due to
Arnoux–Yoccoz. Let us define a new parametrization of X. We will do that
in two steps. First in the chart of X, let us take the two small rectangles
and glue them above the big rectangle by an isometry (in this operation, we
have to cut the medium rectangle into two parts). Then we cut the figure
along the vertical line x = α + α4 and permute the two obtained pieces.
In this way we get a new parametrization of our surface which is exactly
the same except that the horizontal coordinates are multiplied by α and
the vertical coordinates are multiplied by α−1. Therefore we can define an
affine diffeomorphism Φ on (X,ω):

Φ(x, y) in the first parametrization

= (αx,α−1y) in the second parametrization.

The derivative of Φ is(
α 0
0 α−1

)
=

(
λ−1 0
0 λ

)
,

1

α
= λ = λ(Φ) > 1 .

4.2 Proof of Theorem 1.1. There are two completely periodic direc-
tions on the Arnoux–Yoccoz surface of slopes θ = 1 − α2 and θ′ = 3 + α2

respectively. Let θ⊥ = 1 + α2 and θ′⊥ = 1
169 (367 + 252α + 175α2). We

check that the hypotheses of Theorem 3.3 for the pairs (θ, θ⊥), (θ′, θ′⊥) are
fulfilled. The normalizing matrices associated to the pairs (θ, θ⊥), (θ′, θ′⊥)
are

M = 1
4

(
1+α2 −4−4α−2α2

−1 6+5α+3α2

)
M ′ = 1

4

(
−49−42α−27α2 −66−56α−36α2

14+14α+9α2 20+17α+11α2

)
.

Therefore there exists a pseudo-Anosov diffeomorphism Φ̃ on the Arnoux–
Yoccoz flat surface whose differential is

DΦ̃ = M ′−1M =

(
23 + 18α + 12α2 −29 − 24α − 16α2

74 + 62α + 40α2 −95 − 80α − 52α2

)
.

Since the trace of this matrix is greater than 2, the diffeomorphism Φ̃ is
a pseudo-Anosov diffeomorphism. The minimal polynomial over Q of the
expansion factor of Φ̃ is

X6 + 114X5 − 409X4 + 604X3 − 409X2 + 114X + 1 .

Moreover neither the horizontal direction nor the vertical direction is an
eigenvector of DΦ̃. The eigenvectors of the derivative correspond to the
stable and unstable foliations. Since the stable and unstable foliations of
Φ are by construction the horizontal and vertical ones we conclude that
both the stable and unstable foliations of Φ and Φ̃ are different. Since
two pseudo-Anosov diffeomorphisms have a power in common if and only
if their stable and unstable foliations coincide; this concludes the proof of
Theorem 1.1. The details of the calculations will be given in the Appendix.
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5 Closure of the Disc

The set of translation surfaces (X,ω) ∈ L with fixed area α (with respect
to ω) form a real hypersurface Lα in L.

This section is devoted to prove

Theorem 5.1. The Teichmüller disc stabilized by the Arnoux–Yoccoz
pseudo-Anosov diffeomorphism is dense inside Lα.

Equivalently, we claim that the GL+
2 (R)-orbit of the Arnoux–Yoccoz

surface is dense inside L. We will switch between both statements in the
proof: Using GL+

2 (R) is more convenient for normalization while we need
an ergodicity argument that holds for the SL2(R)-action on Lα.

We sketch the strategy of proof. Our proof follows the ideas intro-
duced by McMullen in [Mc3]. First, by topological considerations we find
a direction on the Arnoux–Yoccoz surface with a set of homologous saddle
connections that allows one to decompose the surface into tori and cylin-
ders. The parabolic subgroup of SL2(R) that fixes the direction of these
saddle connections acts on the set of pairs of lattices that define the tori.
Second we apply Ratner’s theorem and the explicit geometry of the surface
to see that the orbit closure in the homogeneous space of pairs of lattices
is as big as one could hope for. Hence the closure of the disc contains at
least the submanifold of Lα defined by fixing the areas of the decomposition
pieces. We will give details of this using period coordinates on L. The third
step consists of splitting the Arnoux–Yoccoz surface in another direction
to remove this area constraint.

Let (X,ω) be the Arnoux–Yoccoz surface. Besides the completely pe-
riodic directions (for example the one with slope θ = 1 − α2 used in the
previous section) there are directions Ξ on (X,ω) with the following prop-
erty. There are 4 homologous saddle connections βi such that β2 and β3

(resp. β4 and β1) bound a cylinder C1 (resp. C2). The hyperelliptic invo-
lution interchanges C1 and C2. The complement of X \ {C1 ∪C2} consists
of two components T1 and T2. If we identify the cuts lines β1 and β2 on
T1 and β3 and β4 on T2 we obtain two tori, which are also denoted by the
same letter. In fact T1 and T2 are irrationally foliated as we will see below.

Such a direction is given by the slope Ξ = α+ α2 (see Figure 3).

Convention. Abusing notation, we will use the same letter for a saddle
connection and its affine holonomy vector.

We apply a matrix in GL+
2 (R) such that Ξ becomes horizontal and

θ vertical and moreover such that γ2 becomes γ′2 = ( 0
1 ) and βi becomes
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Figure 3: Decomposition of the Arnoux–Yoccoz surface: shaded re-
gions represent a 2T2C-direction, black lines the 3C-direction studied
in section 5.2.

β′i = ( 1
0 ). We can draw this surface in the GL+

2 (R)-orbit of (X,ω) as
indicated in Figure 4. Note that the primes in this section do not have the
same meaning as the primes in section 5.2. Note moreover that the figure
does not display scales in the vertical and horizontal direction correctly.

We refer to this surface as the adjusted Arnoux–Yoccoz surface (X ′, ω′).
Moreover we call a splitting of a translation surface in L with the same
topology and dynamics as the horizontal one a 2T2C-splitting.

5.1 Applying Ratner’s theorem. Let G be a Lie group, Γ a lattice
in G and U ⊂ G a 1-parameter subgroup generated by unipotent elements.
The group U acts on the left on X = G/Γ. Ratner’s theorem [R] states
that for any x ∈ X the closure U · x is an orbit H · x ∈ X , where H is a
unimodular subgroup depending on x with the property that xΓx−1 ∩H is
a lattice in H.

Let Λi, i = 1, 2, 3, be lattices in R2 normalized such that

area(R2/Λi) = 1 .

Triples of normalized lattices are parameterized by the homogeneous space
X = G3/Γ3 where G = SL2(R) and Γ = SL2(Z). We denote the projec-
tions onto the factors, resp. pairs of factors, by pri, resp. prij . Some more
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Figure 4: The adjusted Arnoux–Yoccoz flat surface.

notation: Let g be the Lie algebra of G and n (resp. u, resp. a) be the
Lie algebra of the unipotent upper triangular matrices N (resp. unipotent
lower triangular matrices U , resp. diagonal matrices A). Choose standard
generators

n =

(
0 1
0 0

)
∈ n , a =

(
1 0
0 −1

)
∈ a , u =

(
0 0
1 0

)
∈ u ,

such that [n, a] = −2n, [n, u] = a and [a, u] = −2u.
We will apply this to the case where U is the group diagonal embed-

ding N∆ of the unipotent upper triangular matrices N . We remark that,
in genus 2, McMullen studies the case of one lattice and the action of
N ∩ SL2(Z) or the case of two lattices and the action of N∆ (see [Mc3]
Theorems 2.3 and 2.6 of loc. cit.). We remark that we could also proceed
with Shah’s version of Ratner’s theorem for cyclic groups ([S]) and the ac-
tion of N∆ ∩ SL2(Z) on pairs of lattices, fixing C ′′

i . We will not list all the
possible closures of N∆-actions but restrict to what we actually need.

Lemma 5.2. Suppose that Λ3 is the standard lattice and C :=
N∆ · (Λ1,Λ2,Λ3) projects to the whole space G2/Γ2 via pr12. Then C =
(G×G×N) · (Λ1,Λ2,Λ3).

Proof. By Ratner’s theorem C = H · (Λ1,Λ2,Λ3) for some H. By the
hypothesis on Λ3 the Lie algebra h of H is contained in

(n1 ⊕ a1 ⊕ u1) ⊕ (n2 ⊕ a2 ⊕ u2) ⊕ n3 .
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Either this is an equality and we are done, or h is given by one equation∑7
i=1 αixi = 0, in the basis {e1, . . . , e7} where ei are the standard gener-

ators of the summands defined above. For i 6= 7 let bi = ei if αi = 0 and
bi = α7/αiei − e7 otherwise. We have bi ∈ h in both cases. One checks that
[b1, b3] is a non-zero multiple of e2, that [b1, b2] is a non-zero multiple of e1
and that [b3, b2] is a non-zero multiple of e3. Continuing like this ei ∈ h for
i 6= 7. Since h contains the diagonal we also have e7 ∈ h and we are done. �

Corollary 5.3. Let Λ3 be the standard lattice. Suppose that neither of
the lattices Λ1 and Λ2 contains a horizontal vector and suppose there does
not exist an element Mt ∈ N such that Λ1 and Mt ·Λ2 are commensurable.
Then

C := N∆ · (Λ1,Λ2,Λ3) = (G×G×N) · (Λ1,Λ2,Λ3) .

Proof. The hypothesis on Λ1 and Λ2 are just the one needed to apply
Theorem 2.6 in [Mc3]. Its conclusion is the condition on pr12 needed to
apply Lemma 5.2. �

Let C ′
1 and T ′

i , i = 1, 2, be the components obtained by splitting the
adjusted Arnoux–Yoccoz surface (X ′, ω′). We denote by the same symbols
the tori obtained by gluing the slits. Let Λ′

i, i = 1, 2 and Λ′
C be defined by

R2/Λ′
i
∼= T ′

i and Λ′
3 := Λ′

C be defined by R2/Λ′
C

∼= C ′
1. Finally we apply

homotheties to Λ′
i in order to obtain lattices Λ̃i with area one. We will

generally denote with a tilde lattices that are area-normalized.

Lemma 5.4. The area-normalized lattices Λ̃i obtained by splitting the
adjusted Arnoux–Yoccoz surface (X ′, ω′) in the horizontal direction, i.e.
along the saddle connections β′i, satisfy the conditions of Corollary 5.3.
More generally, let Λ1,Λ2 be the lattices

Λi =

〈(
0
ai

)
,

(
bi
ci

)〉
.

Let Ai =
√

area(R2/Λi) with i = 1, 2. Assume that ai, bi, ci belong to Q(α)
for i = 1, 2. If ci

ai
6∈ Q and Q(A1) 6= Q(A2) then the area-normalized lattices

Λ̃1 and Λ̃2 satisfy the conditions of Corollary 5.3.

Proof. We prove the general statement first. Nonexistence of horizontal
vectors in Λ̃i (and thus in Λi) is equivalent to the first condition on the

lattices Λi. Now let us prove that the area-normalized lattices Λ̃1 and
Mt · Λ̃2 are not commensurable for any t ∈ R. By contradiction let us
assume there exist integers n,m and p such that

n

(
0
a1
A1

)
= mMt

(
0
a2
A2

)
+ pMt

(
b2
A2
c2
A2

)
.
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This yields

n

(
0
a1
A1

)
= m

( ta2
A2
a2
A2

)
+ p

(
b2+tc2

A2
c2
A2

)
.

Taking the second coordinate one gets:

n
a1

A1
= m

a2

A2
+ p

c2
A2

implying A1 ∈ Q(A2) which is a contradiction.

Now let us prove that the area-normalized lattices Λ̃i obtained by split-
ting the adjusted Arnoux–Yoccoz surface satisfy the conditions of Corollary
5.3. For that we will use the general statement we have just proved.

Claim 5.5. The lattices Λ′
1 and Λ′

2 (and thus Λ̃1 and Λ̃2) have no horizontal
vectors.

Proof of Claim. This exactly means that the horizontal flows on T ′
1 and

T ′
2 are irrational. We explain the method for T ′

1. Flowing in the horizontal
direction, from P the intersection of γ′3 and β′1 (see Figure 4), we cross
again γ′3 at a point Q. The flow in the horizontal direction is irrational if
and only if the first return map on the circle γ′3 is an irrational rotation.
We prove that the normalized twist PQ/γ′3 ∈ Q(α) is irrational. A direct

computation shows that the value of the normalized twist for T ′
1 is 1

2 − α2

2
and for T ′

2 is 10
11 − 5

11α + 3
11α2 . Both numbers are irrational which proves

the claim. �

Now let us verify the second hypothesis. We have to prove that the num-
bers

√
area(T ′

1) and
√

area(T ′
2) generate two distinct quadratic extensions

of Q(α). According to Figure 4 one has

area(T ′
1) = γ′3 ∧ β′1 + γ′3 ∧ h′s and area(T ′

2) = γ′6 ∧ β′4 + γ′6 ∧ h′m , (5.1)

where ∧ is the cross product. The adjusted Arnoux–Yoccoz surface is
obtained from the original one by the linear map which sends the vectors
γ2 to ( 0

1 ) and β2 to ( 1
0 ). This is a calculation in the field Q(α). Since

area(T ′
1)

area(T1)
=

area(T ′
2)

area(T2)
∈ Q(α) ,

we may as well prove the same assertion for
√

area(T1) and
√

area(T2) using
formula (5.1) without the primes and the values from table in section 5.2.
This leads to

area(T1) = 4α and area(T2) = −8 + 12α + 8α2.

and the proof of Lemma 5.4 is completed by the following claim. �

Claim 5.6. The numbers
√

area(T1) and
√

area(T2) generate two different
quadratic extensions of Q(α).
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Proof of the Claim. We first prove that x :=
√

area(T1) does not be-
long to Q(α). The polynomial Q(X) = X6 + X4 + X2 − 1 annihilates
x by definition of α and it is irreducible over Q. Indeed Q(X + 1) =
2 + 12X + 22X2 + 24X3 + 16X4 + 6X5 +X6 satisfies Eisenstein’s criterion
with respect to the prime number 2.

Second, assume by contradiction, that y :=
√
−2 + 3α+ 2α2 belongs

to Q(x). Then, there exist a, b ∈ Q(α) such that y = a + bx. Taking the
square of this equation we get a2 + b2α + 2abx = −2 + 3α + 2α2. In the
basis {1, x} this leads to the two following equations:{

ab = 0
a2 + b2α = −2 + 3α + 2α2

If b = 0, we get a2 = −2 + 3α + 2α2. We have already proved that
−2+3α+2α2 is not a square in Q(α) which is a contradiction with a ∈ Q(α).
If a = 0, we get b2 = 1− 2α2. A straightforward computation shows that b
is a root of the polynomial S(X) = X6 −5X4 +19X2 −7. This polynomial
is irreducible over Q. Consequently Q(b) has degree 6 over Q which is a
contradiction to b ∈ Q(α). The claim is proven. �

5.2 Splitting in different directions. We want to conclude the proof
of Theorem 5.1. By the following observation it suffices to show that the
closure of the Arnoux–Yoccoz disc contains a set of positive measure of Lα

or equivalently that the GL+
2 (R)-orbit of (X ′, ω′) contains a set of positive

measure of L.

Lemma 5.7. Let Lα be the hypersurface of fixed area α in the hyperelliptic
locus L ⊂ H(2, 2). The action of SL2(R) on Lα is ergodic.

Proof. Let Q(1, 1,−16) be the stratum of quadratic differentials on the
projective line with two simple zeros and 6 simple poles. Taking a double
cover, ramified at each of the poles and zeroes of the quadratic differential,
yields a SL2(R)-equivariant local diffeomorphism ([KoZ], [L1])

Q(1, 1,−16) → Hodd(2, 2) .

The action of SL2(R) on the hypersurface of fixed area in any stratum of
quadratic differentials is ergodic by [V2], see also [MS]. These two state-
ments imply the lemma. �

Given a basis of the relative homology of a surface in Hodd(2, 2), inte-
gration of the one-form defines a map to C7. This map is a local biholo-
morphism ([DH], [MS], [V3]), the coordinates are called period coordinates.
In the case of the adjusted Arnoux–Yoccoz surface a basis of the relative



Vol. 18, 2008 THE ARNOUX–YOCCOZ TEICHMÜLLER DISC 2005

homology is given by {γ′2, γ′3, γ′6, γ′5, β′1, δ′1, δ′2}. If γ′2 = γ′5 then the 180 de-
gree rotation around the center of C ′

1 defines an affine diffeomorphism with
8 fixed points. Hence this equation singles out the hyperelliptic locus L
inside Hodd(2, 2).

We deduce from Lemma 5.4 that the orbit closure of the Arnoux–Yoccoz
disc contains a full neighborhood of the initial value for |γ′3|/

√
area(T ′

1),
|δ′1|/

√
area(T ′

1), |γ′6|/
√

area(T ′
2) and |δ′2|/

√
area(T ′

2) while the other param-
eters are kept fixed. Using the GL+

2 (R)-action we may vary |γ′2|/
√

area(C ′
1),

|β′1|/
√

area(C ′
1) and area(C ′

1) arbitrarily while the ratios of the areas of the
splitting pieces are kept fixed.

Let us count the dimensions that we already obtained from Lemma 5.4
and by applying GL+

2 (R). The Lie algebra h gives 7 dimensions. We check
using GL+

2 (R) that one gets 3 more dimensions which makes 10 in total.
We will now see that the ratios area(T ′

i )/area(C ′
1), i = 1, 2, will give the

two missing parameters.

Hence till now we know that in a neighborhood of (X ′, ω′)

GL+
2 (R) · (X ′, ω′) ⊃

{
area(T ′

i )/area(C ′
1) = κi , i = 1, 2

}

for some constants κ1 and κ2. We have to vary these constants next using
resplittings. The final argument below will use yet another coordinate
system. We have to control when the hypotheses of Lemma 5.4 are satisfied.

Apply a Dehn twist to the vertical cylinder of height (hb)x := (β1)x = 1
in Figure 4. The corresponding direction is also a 2T2C-direction. We
denote objects in this direction by double-primes, i.e. we have a twisted

splitting

(X ′, ω′) = T ′′
1 #C ′′

1 #T ′′
2 #C ′′

2 .

By Lemma 5.4, the N -orbit closure of (T ′
1#C ′

1 #T ′
2 #C ′

2) contains
N ×N × {id} · (T ′

1#C ′
1 #T ′

2 #C ′
2). In particular for (u1, u2) in a neigh-

borhood of (0, 0)
(
X ′(u1, u2), ω

′(u1, u2)
)

:= Mu1(T
′
1)#Mu2C

′
1 #T ′

2 #Mu2C
′
2 ,

lies in the N -orbit closure, where Mui
=
(

1 ui
0 1

)
.

Lemma 5.8. For (u1, u2) in a neighborhood of (0, 0) the twisted decompo-
sition persists.

The statement is obvious from the construction via Dehn twists. We
denote this decomposition as follows:
(
X ′(u1,u2), ω

′(u1, u2)
)
:=T ′′

1 (u1,u2)#C ′′
1 (u1,u2)#T ′′

2 (u1,u2))#C ′′
2 (u1,u2) .
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We fix some more notation: T ′′
i (u1, u2) = R2/Λ′′

i (u1, u2) and Λ′′
3(u1, u2) :=

Λ′′
C(u1, u2) is defined by C ′′

1 (u1, u2) = R2/Λ′′
1(u1, u2). By definition we have

Λ′′
1(u1, u2) =

〈(
u1|γ′3|
|γ′3|

)
, V (u1, u2) +

(
(h′s)x + u1(h

′
s)y

(h′s)y

)〉

Λ′′
2(u1, u2) =

〈(
0

|γ′6|

)
, V (u1, u2) +

(
(h′m)x
(h′m)y

)〉

Λ′′
3(u1, u2) =

〈(
u2|γ′2|
|γ′2|

)
, V (u1, u2)

〉

where

V (u1, u2) =

(
2u2 |γ′2|

2|γ′2|

)
+

(
0

|γ′6|

)
+

(
u1 |γ′3|
|γ′3|

)
+

(
β′1
0

)
.

The next lemma shows that the (u1, u2)-twisting can indeed be used to
adjust the areas.

Lemma 5.9. The map

ϕ : (u1, u2) 7→(
area(T ′′

1 (u1, u2))/area(C ′′
1 (u1, u2)), area(T ′′

2 (u1, u2))/area(C ′′
1 (u1, u2))

)

is an invertible function in a neighborhood of (u1, u2) = (0, 0).

Proof. We remark that ϕ is the composition of

ψ : (u1, u2) 7→
(
area(T ′′

1 (u1, u2)), area(T ′′
2 (u1, u2))

)

and

η : (x, y) 7→
(

2x

1 − x− y
,

2y

1 − x− y

)
.

A direct computation shows that the Jacobian of η is 4/(1 − x− y)3. This
number is non-zero when x+ y is far from 1, a condition which is satisfied
for (u1, u2) in a neighborhood of (0, 0).

The rest of the proof of the lemma consists in computing the Jacobian
of ψ.

area(T ′′
1 ) = u1|γ′3|V (u1, u2)y − |γ′3|

(
2u2|γ′2| + u1|γ′3| + |β′1| + (h′s)x

)

and
area(T ′′

2 ) = |γ′6|
(
2u2|γ′2| + u1|γ′3| + |β′1| + (h′m)x

)
.

A direct computation leads to

Jacobian(ψ) = 2|γ′3||γ′2||γ′6|Vy .

This number is non-zero, therefore ψ is locally one to one. �

We want to apply the result of Corollary 5.3 to the decomposition
(T ′′

1 (u1, u2), C
′′
1 (u1, u2), T

′′
2 (u1, u2)). The “horizontal direction” is the di-

rection of the vector V (u1, u2). We denote by NV the conjugate of N fixing
V (u1, u2).
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Lemma 5.10. For almost all (u1, u2) in a neighborhood of (0, 0) with
respect to the Lebesgue measure the NV -orbit of (T ′′

1 (u1, u2), T
′′
2 (u1, u2),

C ′′
1 (u1, u2)) contains

(G ×G×NV ) ·
(
T ′′

1 (u1, u2), T
′′
2 (u1, u2), C

′′
1 (u1, u2)

)
.

Proof. We have to check the hypothesis of Corollary 5.3 for almost all
(u1, u2) in a neighborhood of (0, 0) replacing the horizontal direction by
the direction of V (u1, u2).

If Λ′′
1(u1, u2) has a vector parallel to V (u1, u2) there exist t ∈ R, n, p ∈ Z,

such that

tV (u1, u2) = n

(
u1|γ′3|
|γ′3|

)
+ p

(
(h′s)x + u1(h

′
s)y

(h′s)y

)
.

The second coordinate equation implies t =
p(h′

s)y+n|γ′

3|
2|γ′

2|+|γ′

6|+|γ′

3|
. Thus, if n and p

are fixed, the first coordinate yields a linear equation in (u1, u2). Almost
all parameters (u1, u2), do not belong to this countable union of lines which
gives the first claim. The same reasoning holds for the lattice Λ′′

2(u1, u2).

Let M̂t for t ∈ R denote the elements ofNV , defineA′′
i :=area(Λ′′

i (u1, u2))

and abbreviate V := V (u1, u2). If the normalized lattice M̂t(Λ̃′′
2(u1, u2)) is

commensurable to Λ̃′′
1(u1, u2) for some t, there are integers m 6= 0, n, p

such that:
m√
A1

(
tV +

(
0

|γ′6|

))
=

1√
A2

(
n

(
u1|γ′3|
|γ′3|

)
+ p

(
V +

(
(h′s)x + u1(h

′
s)y

(h′s)y

)))

We want to show that for each fixed (m,n, p) ∈ Z3 but arbitrary t the
set of solutions (u1, u2) for this equation is of measure zero. Let |γ′| :=
2|γ′2|+ |γ′3|+ |γ′6| be the height of the big vertical cylinder. From the second
coordinate we obtain

t =

√
A1(n|γ′3| + p(|γ′| + (h′s)y))√

A2m|γ′| −m|γ′6| .

Plugging this into the first coordinate and using the area expressions from
the proof of Lemma 5.9 one obtains an algebraic equation for (u1, u2),
whose non-triviality we have to decide. Suppose this equation is trivial.
Then (u1, u2) = (0, 0) is a solution. But for (u1, u2) = (0, 0) we have by the
Dehn twist construction obviously area(Λ′′

i (0, 0)) = area(Λ′
i) for i = 1, 2.

The field extension argument from Lemma 5.4 and Claim 5.6 applies and
yields a contradiction. �

Now, we have all the material to complete the proof of Theorem 1.3. The
surfaces (X ′(u1, u2)) belong to the closure of the SL2(R)-orbit of (X ′, ω′)
if (u1, u2) belongs to a small neighborhood of (0, 0). Take (u1, u2) in the
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set of full measure which satisfies Lemma 5.10. The NV -orbit closure of
(Λ′′

1(u1, u2),Λ
′′
2(u1, u2),Λ

′′
3(u1, u2)) equals

(G×G×N) ·
(
Λ′′

1(u1, u2),Λ
′′
2(u1, u2),Λ

′′
3(u1, u2)

)
.

Applying an element of SL2(R), we can map V (u1, u2) to any vector in R2.
The previous analysis is SL2(R)-equivariant. Thus, given A ∈ SL2(R), the
orbit closure under the action of the unipotent subgroup of the decomposi-
tion of A · (X ′(u1, u2)) in the direction A ·V equals the G×G×NA.V -orbit.
As in the motivating discussion after Lemma 5.7 we see, using period coor-
dinates and still for fixed (u1, u2), that the ratios of the splitting pieces are
unchanged by this process. But within the real codimension-2 neighbor-
hood of (X ′, ω′) in Lα determined by the ratios of the splitting pieces, the
SL2(R)-orbit contains an open set. On the other hand, by Lemma 5.9 the
data of (u1, u2) is equivalent to the areas of the splitting pieces. Thus, the
SL2(R)-orbit closure of (X ′, ω′) contains a set of positive measure in Lα.
Applying Lemma 5.7, we conclude that the SL2(R)-orbit closure of (X,ω)
is equal to Lα.

Appendix

In this section, we give the details of the calculations of Theorem 1.1.

We find two completely directions on the Arnoux–Yoccoz surface, namely
θ and θ′. Let us check that the pairs of slopes

(θ, θ⊥) = (1 − α2, 1 + α2) , (θ′, θ′⊥) =
(
3 + α2, 1

169 (367 + 252α + 175α2)
)

satisfy to the theorem.

Let us first introduce some notation. According to Figure 2 we denote
the white points by P1, P2, P3 and the black points by P4, P5, P6 in the order
presented. The reason for this order will become clear in the sequel. Note
that the points {Pi}i=1,2,3 and {Pi}i=4,5,6 respectively define a singularity
in X. If θ is a completely periodic direction then for each of the two
singularities there are three emanating saddle connections. We label the
saddle connection emanating from Pi by γi.

With these conventions the labels of the singularities appear in the
counterclockwise order around a singularity. The length of γi is denoted by
|γi| = |

∫
γi
ω|. We will frequently abuse notation and write γi for the vector(

R

γi
Re(ω)

R

γi
Im(ω)

)
. For a vector u = (u1, . . . , un) we will use the notation u2 for

(u2
1, . . . , u

2
n).
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A first direction of slope θ = 1 − α
2. In this direction the surface

X decomposes into three metric cylinders. See Figure 5 and also Figure 4
(in the vertical direction) for the way the 6 saddle connections bound the
cylinders. We call such a direction a 3C-direction. A straightforward com-
putation gives the lengths of the γi (in the direction θ) summarized in the
following table:

saddle connection γi (|γi|2)i=1,...,6 ∈ R6 L(θ)2 ∈ RP(6)

i = 1 16 + 18α+ 10α2 40 + 34α + 22α2

i = 2 4 − 6α− α2 1
i = 3 16 + 18α+ 10α2 40 + 34α + 22α2

i = 4 4 − 6α+ 6α2 4 + 2α+ 2α2

i = 5 4 − 6α− α2 1
i = 6 4 − 6α+ 6α2 4 + 2α+ 2α2

Figure 5: Singular geodesics on the Arnoux–Yoccoz flat surface in
the direction of slope θ = 1 − α2: a 3C-direction.

Let us now describe the combinatorics of the 3C-direction θ. We will
denote these cylinders by Cb, Cm, Cs for big, medium and small according to
their widths. For the top boundaries of the cylinders, the saddle connections
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appear in the following order

σt
big = (2 4 5 1) , σt

med = (6) , σt
small = (3) .

And for the bottom boundaries one has

σb
big = (3 2 6 5) , σb

med = (4) , σb
small = (1) .

Thus we get the following combinatorics, on which we have chosen arbi-
trarily a marking.

(G,m) =
( (

2 4 5 1
3 2 6 5

)
,
(

6
4

)
,
(

3
1

) )
.

The affine holonomy vector of the big cylinder is
(

4+4α+2α2

2+4α+2α2

)
. The heights

of the cylinders are summarized below.

cylinder ( (hb)y, (hm)y, (hs)y ) ∈ R3 [ (hb)y, (hm)y, (hs)y ] ∈ RP(3)

Cb 2 − 4α+ 2α2 3 + 3α+ 2α2

Cm −2 + 2α+ 4α2 2 + 2α+ α2

Cs −2 + 6α− 4α2 1

Equipped with this marking one can calculate the twists in the medium
and small cylinder (recall that we normalize the twist in the first, i.e. the
big cylinder to zero). We first calculate the direction θ⊥.

The twist vector along the cylinder Cb is a vector (contained in Cb)
joining the origin of the saddle connection γ3 to the origin of the saddle
connection γ2. This vector can be calculated in the following way. Let

P be the endpoint of the vector hb =
(

0
(hb)y

)
based at the origin of γ3,

namely P3. The point P is located on the top of Cb. Let vb be the vector
joining P to the origin of the saddle connection γ2 (namely P2) in the
direction θ. The twist vector of Cb is then hb + vb. A simple computation

shows that vb =
(

1−α2

2α−2α2

)
. Hence the twist vector is hb + vb =

(
1−α2

2−2α

)
.

Note that here we require that |vb| < |wb| (we choose the positive one with
respect to the direction θ). Finally with our marking, one obtains

θ⊥ := θ⊥(0) = hb + vb =
2 − 2α

1 − α2
= 1 + α2.

The normalizing matrix is:

M =
(

4+4α+2α2 1−α2

2+4α+2α2 2−2α

)−1
= 1

4

(
1+α2 −4−4α−2α2

−1 6+5α+3α2

)
.

Furthermore, this matrix sends the big cylinder in the direction θ to a unit
square with horizontal and vertical sides.

Let us compute the twists of cylinders Cm and Cs with respect to the
direction θ⊥. We first begin with cylinder Cm.
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As above let P be the endpoint of the vector hm =
(

0
(hm)y

)
based at the

origin of γ4, namely P4. The point P is located on the top of Cm. Let vm be
the vector joining P to the origin of the saddle connection γ6 (namely P6)

in the direction θ. A simple computation shows vm =
(

1−α
2−2α−2α2

)
. The

vector vm is well defined up to an additive constant nwm where n ∈ Z. The
twist tm of Cm will be the difference

tm = vm − (hm)y
(hb)y

vb .

Thus
(hm)y
(hb)y

vb =
1

2
(1 + α2)

(
1−α2

2α−2α2

)
=
(

1−α
2−2α−2α2

)
= vm .

Therefore the (normalized) twist |tm|/|wm| ∈ [0, 1[ of Cm is zero.

Now let us finish the calculation of the twist of Cs. As above let P be
the endpoint of the vector hs =

( 0
(hs)y

)
based at the origin of γ1, namely

P1. The point P is located on the top of Cs. Let vs be the vector joining P
to the origin of the saddle connection γ3 (namely P3) in the direction θ. A

simple computation shows vs =
(

1+α+2α2

2−2α+2α2

)
. The vector vs is well defined

up to an additive constant nws where n ∈ Z. The twist ts of Cs will be the

difference ts = vs − (hs)y

(hb)y
vb. But

(hs)y
(hb)y

vb =
1

2
(−1 + 2α+ α2)

(
1−α2

2α−2α2

)
=
(

−1+α+2α2

−2α+4α2

)
.

Therefore the twist vector in the small cylinder is ts =
(

2
2−2α2

)
. Using

ws = γ3 = γ1 we calculate the normalized twist of Cs to be

|ts|
|ws|

=

(
4 + 8α− 8α2

16 + 18α + 10α2

)1/2

=
(
1 − 2α+ α2

)1/2 ∈ [0, 1[

We summarize the above computations for the direction θ = 1 − α2.

−→
L 2(θ) =




40 + 34α+ 22α2

1
40 + 34α+ 22α2

4 + 2α + 2α2

1
4 + 2α + 2α2



,

−→
W (θ) =




3 + 3α+ 2α2

2 + 2α+ α2

1




(G,m) =
( (

2 4 5 1
3 2 6 5

)
,
(

6
4

)
,
(

3
1

) ) −→
T 2(θ,m, 0) =

(
0, 1 − 2α+ α2

)

normalized twists
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Figure 6: Singular geodesics on the Arnoux–Yoccoz flat surface in
the direction θ′ = 3 + α2: again a 3C-direction.

A second direction of slope θ
′ = 3 + α

2. Using Figure 6 one checks
that θ′ is also a 3C-direction with the following invariants.

saddle connection γ′i (|γ′i|2)i=1,...,6 ∈ R6 L(θ′)2 ∈ RP(6)

i = 1 26 + 20α+ 11α2 1
i = 2 144 + 114α + 74α2 4 + 2α+ 2α2

i = 3 144 + 114α + 74α2 4 + 2α+ 2α2

i = 4 26 + 20α+ 11α2 1
i = 5 1612 + 1354α + 878α2 40 + 34α+ 22α2

i = 6 1612 + 1354α + 878α2 40 + 34α+ 22α2

As previously we label the cylinders by C′
b, C′

m, C′
s according to their widths.

The combinatorics with some choice of marking is given by

(G′,m′) =
( (

4 3 1 6
5 4 2 1

)
,
(

2
3

)
,
(

5
6

) )
.

A straightforward computation shows the expected results for the heights
of the cylinders in the direction θ′.

cylinder ( (h′b)y, (h
′
m)y, (h

′
s)y ) ∈ R3 [ (h′b)y, (h

′
m)y, (h

′
s)y ] ∈ RP(3)

C′
b −6 + 8α+ 6α2 3 + 3α+ 2α2

C′
m −2 + 6α− 4α2 2 + 2α+ α2

C′
s 10 − 14α − 8α2 1
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To calculate the twists of C′
m and C′

s we first calculate the direction θ′⊥.
The twist vector of C′

b is a vector (contained in this cylinder) joining the
origin of the saddle γ′5 to the origin of the saddle connection γ′4. We will
use this remark for the computation of the twist vector of C′

b.

Let P be the endpoint of the vector h′b =
( 0

(h′

b
)y

)
based at the origin

of γ′5, namely P5. The point P is located on the top of C′
b. Let v′b be the

vector joining P to the origin of the saddle connection γ′4 (namely P4) in
the direction θ′. A simple computation using the requirement |v′b| < |w′

b|
shows v′b =

(
5+2α−α2

18+2α

)
. Given n′0 ∈ Z, the twist vector of C′

b is then

h′b + v′b + n′0w
′
b. The width of the big cylinder is given by the vector w′

b =

γ′5 + γ′4 + γ′2 + γ′1 =
(

14+12α+8α2

46+40α+26α2

)
. Finally with our marking, one obtains

the direction θ′⊥ := θ′⊥(n0) = h′b + v′b + n′0w
′
b.

Proceeding as in the previous section we obtain v′m =
(

4−3α−α2

10−8α+4α2

)
and

(h′m)y
(h′b)y

(v′b + n′0w
′
b) =

1

2
(1 + α2)

((
5+2α−α2

18+2α

)
+ n′0

(
14+12α+8α2

46+40α+26α2

))

=
(

4−α+α2

10+8α2

)
+ n′0

(
9+8α+5α2

30+26α+16α2

)
.

This yields

t′m = v′m − (h′m)y
(h′b)y

(v′b + n′0w
′
b) =

(
−2α−2α2

−8α−4α2

)
− n′0

(
9+8α+5α2

30+26α+16α2

)
.

The width of C′
m is the norm of the vector w′

m = γ2 = γ3 =
(

3+2α+α2

10+6α+4α2

)
.

Therefore the normalized twist of C′
m is

|t′m|
|w′

m| =
(
4+2n′0+7n′0

2
+(−6+6n′0

2
)α+(−2+2n′0+4n′0

2
)α2
)1/2 ∈ R

Z
. (A.2)

Remark A.1. If n′0 = −1 then |t′m|/|w′
m| equals 3. Thus in case n′0 = −1,

the normalized twist of C′
m is zero, more precisely t′m = 3w′

m.

Now let us compute the twist of the cylinder C′
s. We obtain v′s =(

−1+5α+6α2

−4+22α+12α2

)
and

(h′s)y
(h′b)y

(v′b + n′0w
′
b) =

1

2
(−1 + 2α+ α2)

((
5+2α−α2

18+2α

)
+ n′0

(
14+12α+8α2

46+40α+26α2

))

=
(

−2+3α+5α2

−8+16α+10α2

)
+ n′0

(
3+2α+α2

10+6α+4α2

)
.

Together this gives

t′s = v′s −
(h′s)y
(h′b)y

(v′b + n′0w
′
b) =

(
1+2α+α2

4+6α+2α2

)
− n′0

(
3+2α+α2

10+6α+4α2

)
.



2014 P. HUBERT, E. LANNEAU AND M. MÖLLER GAFA

The width w′
s of the small cylinder is given by ws = γ′5 = γ′6, hence

|t′s|
|w′

s|
=
(
2 − n′0

2
+(−2+2n′0+2n′0

2
)α+(−3−4n′0)α

2
)1/2 ∈ R

Z
. (A.3)

Remark A.2. If n′0 = −1 then |t′s|/|w′
s| equals (1 − 2α+ α2)1/2 ∈ [0, 1[ .

One can summarize the above computations (for the direction θ′ =
3 + α2)

−→
L 2(θ′) =




1
4 + 2α+ 2α2

4 + 2α+ 2α2

1
40 + 34α+ 22α2

40 + 34α+ 22α2




−→
W (θ′) =




3 + 3α + 2α2

2 + 2α+ α2

1




(G′,m′) =
((

4 3 1 6
5 4 2 1

)
,
(

2
3

)
,
(

5
6

)) −→
T 2(θ′,m′, n′0) = (see (A.2), see (A.3))

normalized twists

The normalizing matrix is

M ′ =
(

14+12α+8α2 −9−10α−9α2

46+40α+26α2 −34−30α−20α2

)−1
=

1

4

(
−49−42α−27α2 −66−56α−36α2

14+14α+9α2 20+17α+11α2

)
.

A second pseudo-Anosov diffeomorphism. We have now all nec-
essary tools to prove that there exists another pseudo-Anosov diffeomor-
phism, say Φ̃, in the stabilizer of the Arnoux–Yoccoz Teichmüller disc.

Proof. If we take n′0 = −1 then Theorem 3.3 applies with the above θ, θ′,
and permutations π1 on k = 6 elements and π2 on p = 3 elements given by

π1 =

(
1 2 3 4 5 6
6 4 5 3 1 2

)
and π2 = id .

We claim that the diffeomorphism Φ̃ thus obtained has the required prop-
erty. For this purpose we calculate its derivative in the coordinates (x, y)
given by the Arnoux–Yoccoz construction at the beginning of section 4.
By construction, one knows the image by Φ̃ of the saddle connections in
direction θ. In particular, Φ̃(γi) = γ′π1(i)

. For i = 3 we obtain

Φ̃(γ3) = γ′5 i.e. DΦ̃
(

3+2α+α2

2+2α

)
=
(

9+8α+5α2

30+26α+16α2

)
.

Moreover, with our previous normalization, the image of the vector hb + vb

is the vector h′b + v′b + n′0w
′
b (with n′0 = −1). Therefore

DΦ̃
(

1−α2

2−2α

)
=
(

−9−10α−9α2

−34−30α−20α2

)
.

Applying a change of basis, we get the matrix DΦ̃ in the coordinate (x, y):
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DΦ̃ =
(

9+8α+5α2 −9−10α−9α2

30+26α+16α2 −34−30α−20α2

)(
3+2α+α2 1−α2

2+2α 2−2α

)−1

=
(

23+18α+12α2 −29−24α−16α2

74+62α+40α2 −95−80α−52α2

)
.

Obviously, DΦ̃ = M ′−1M . Since the trace of this matrix is greater than 2,
the diffeomorphism Φ̃ is a pseudo-Anosov diffeomorphism. �
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