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POLYAK-VIRO FORMULAS FOR COEFFICIENTS OF THE
CONWAY POLYNOMIAL

SERGEI CHMUTOV, MICHAEL CAP KHOURY, AND ALFRED ROSSI

ABSTRACT. We describe the Polyak-Viro arrow diagram formulas for the co-
efficients of the Conway polynomial. As a consequence, we obtain the Conway
polynomial as a state sum over some subsets of the crossings of the knot di-
agram. It turns out to be a simplification of a special case of Jaeger’s state
model for the HOMFLY polynomial.

INTRODUCTION

In this paper we are working with the Conway polynomial V(L) of an oriented
link L defined by the equations
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Its coefficient ¢, (L) at z™ is a Vassiliev invariant of order < n. The purpose of this
paper is to provide, in case L is a knot, some formulas for ¢, (L) in terms of certain
subdiagrams of the Gauss diagram of L. These formulas may be equivalently refor-
mulated (Section[I]) as a state model on a diagram of the knot. L. Kauffman noted
that this state model should be related to Jaeger’s state model for the HOMFLY
polynomial [Ja]. Indeed it turns out that our state model is a simplification of
Jaeger’s model to the special case of knots and to the Conway polynomial. Also
our formulas lead to two (different) extensions of the Conway polynomial to long
virtual knots.

In Section [l we formulate the state model for the Conway polynomial. We review
Gauss diagrams and Polyak-Viro formulas in Section 2l In Section [3 we formulate
our main result (Theorem [BH]) in terms of Gauss diagrams and give some examples.
Section Ml is devoted to the proof of the main theorem.

1. STATE MODEL

A subset S of the crossings of a knot diagram K is said to be one-component
if the curve obtained from K by smoothing all the crossings of S according to
orientation has one component.

Assume that the diagram K has a base point and .S is a one-component subset of
the crossings. Let us travel along the smoothened curve starting at the base point.
In this journey we pass a neighborhood of every smoothing twice. We call the subset
S ascending if, for every smoothing, the first time we approach its neighborhood on
overpass of K (so we jump down to perform the smoothing) and upon returning to
the neighborhood we approach it on the underpass (jumping up).
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Define the down polynomial, in variable z, as

Vase K) = Y (H Wr(x)) FE

s ascending x€S
one-component

where wr(x) is the local writhe of the crossing x. If S is the empty set, then we
set the product to be equal to 1 by definition. Therefore the free term of Vs.(K)
always equals 1.

For example, for the knot 64

@4(\5@ © 3 ®
3
Knot 6 @ G, = © 4 Gauss diagram
not b2 27 o e of 6o
6(/ 2@ @ A
S 1@: ) 5

there are eleven one-component subsets with two crossings, {1,2}, {1,4}, {1,5},
{1,6}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {4,6}, {5,6}. However, only three of
these subsets, {2,4}, {2,6}, and {4, 6}, are ascending. The products of the writhes
for the subsets {2,5}, {2,6}, and {4,6} are equal to —1, +1, and —1, respectively.
Hence the coefficient of 2?2 in the polynomial Vs.(62) equals =1 +1—1= —1.

Corollary of Theorem The Conway polynomial V(K) of a knot K is
equal to the down polynomial of its diagram,

V(K) = Vase(K)

Let us remind that the Conway polynomial of the knot 62 is equal to V(62) =
1 — 22 — z*. So indeed its coefficient at z2 equals —1.

This formula also holds for links. Similarly to V.. (K), one can define the
descending polynomial Vges(K). It turns out that for all classical knots Vs (K) =
Vdes(K). This equality fails for virtual knots. However, each of these polynomials
can be extended to virtual links with a based point. See more details in Remark
4.312.

2. GAUSS DIAGRAMS AND POLYAK-VIRO FORMULAS

Definition 2.1. A Gauss diagram is a chord diagram with oriented chords and
with numbers 41 or —1 assigned to each chord.

With a knot diagram we associate a Gauss diagram with the outer circle being
the parameterizing circle S' of our knot, a chord for each double point of the
diagram, each chord oriented from the overpass to the underpass and the local
writhe number assigned to each double point (chord). An example of the Gauss
diagram of the knot 62 is given in the introduction.
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The Reidemeister moves for knot diagrams can be expressed in terms of Gauss
diagrams as follows (see, for example, [CDBooK])

R'IGd . E - > |I > - > :/ R
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M. Polyak and O. Viro suggested [PV] the following approach to represent knot
invariants in terms of Gauss diagrams.

Definition 2.2. An arrow diagram is a based chord diagram with oriented chords.

Definition 2.3. Let A be an arrow diagram and let G be a Gauss diagram, both
with base points. A homomorphism ¢ from A to G, ¢ € Hom(A, G), is an orien-
tation preserving homeomorphism of the circle of A to the circle of G which maps
the base point to the base point and induces an injective map of chords of A to
chords of G respecting the orientation of the chords.

Definition 2.4. The pairing between a based arrow diagram and a based Gauss
diagram is defined by

A,G) = > [T sisnle(e) .

¢@€Hom(A,G) cchord in A

We want to use this pairing to define knot invariants by choosing an arrow
diagram A and then sending K — G(K) — (A, G(K)). This invariant will be well
defined if the result is independent of the choice of the Gauss diagram G(K) and

the base point on it. For example, this is the case for the arrow diagram A =

If G is the Gauss diagram of the knot 62 from the introduction, then there are three
homomorphisms of A into G, which send the two arrows of A to the pairs of chords
{2,5}, {2,6}, and {4,6} of G, respectively. Thus, in this case (A,G) = —

In general, if you take an arbitrary arrow diagram A, the value (A, G(K)) is
not uniquely defined by the knot K. However, if we extend the pairing to a linear
combination of arrow diagrams

Z/\ A;,G): Z/\ (A;, G)

by linearity, then there are many linear comblnatlons of arrow diagrams that yield
knot invariants by this construction. Moreover, with a slight generalization of arrow
diagrams involving signed arrows, there is a general theorem due to M. Goussarov
Gl I[GPV] stating that any Vassiliev invariant can be obtained from a suitable linear
combination of arrow diagrams (possibly with signed chords).
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In the next section we explicitly describe the linear combinations of arrow dia-
grams which give the coefficients of the Conway polynomial.

The Polyak-Viro formulas may be considered for links as well. For example, the
following formula gives the linking number for a link L with two components K3

and Ks:
i, 1) = (Y~ )60

Such formulas for 2-component links will be used in the proof of our Main theorem.

3. MAIN THEOREM

Definition 3.1. A chord diagram D is said to be k-component if after parallel

. . . L \ .
doubling of each chord according to the picture H -2 - , the resulting
curve will have k components. We use the notation |D| = k.

Example 3.2. For chord diagram with two chords we have:

X1 =X (G01=s = {D-

In this paper we will work with one-component diagrams only. With four chords,
there are four one-component diagrams (the notation is borrowed from [CDBooK]):

B @ P )

Definition 3.3. We can turn a one-component chord diagram with a base point
into an arrow diagram according to the following rule. Starting from the base point
we travel along the diagram with doubled chords. During this journey we pass both
copies of each chord in opposite directions. Choose an arrow on each chord which
corresponds to the direction of the first passage of the copies of the chord. Here is

an example.
X =@ =D

We call the arrow diagram obtained in this way the ascending arrow diagram.

Definition 3.4. The Conway combination €5, is the sum of all based one-component
ascending arrow diagrams with 2n arrows. For example,

O
BBDDH DD
H DB

Q:Q =

Q:4 =

+

+
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Note that for a given one-component chord diagram we have to consider all possible
choices for the base point. However, some choices may lead to the same arrow
diagram. In €y, we list them without repetitions. For instance, all choices of a
base point for the diagram df give the same arrow diagram. So d} contributes only
one arrow diagram to €,. The diagram d2 contributes four arrow diagrams because
of its symmetry, while d2 and di contribute eight arrow diagrams each.

Theorem 3.5. For n > 1, the coefficient ca, of 2™ in the Conway polynomial of
a knot K with the Gauss diagram G is equal to

can = (€2, G) .

Example 3.6. Consider the knot K := 62 and its Gauss diagram G := Gg, from
the introduction. To compute the pairing (€4, G) we have to match the arrows of
each diagram of ¢4 with the arrows of G. One common property of the arrows in
€y, is that the first (and the last) arrow end-point we meet while traveling along
the circle counterclockwise (starting with the base point) is the tail of the arrow.
This follows from the above arrow rule for €y,. Hence the arrow {1} of G can
not participate in the matching with any diagram of €4. The only candidates to
match with the first arrow of a diagram of €4 are the arrows {2} and {4} of G. If
it would be {4}, then {1,2,3} do not participate in the matching, and there would
remain only 3 arrows to match with the four arrows of &4. Therefore the arrow
of G which matches with the first arrow of a diagram of €4 must be {2}. In a
similar way we can find that the arrow of G which matches with the last arrow of
a diagram of €, must be {6}. This leaves three possibilities to match with the four
arrows of €4: {2,3,4,6}, {2,3,5,6}, and {2,4,5,6}. Checking them all we find only
one quadruple, {2,3,5,6}, which matches with the second diagram of the second
row of €4. The product of the local writhes of the arrows {2,3,5,6} is equal to
(=1)(=1)(+1)(—=1) = —1. In other words,

<€4,G>—<®7G>——1,
4

which coincides with the coefficient ¢, of the Conway polynomial V(K) = 1—22—2%.

4. PROOF

Let us regard (€a,, Gp) as a function of the knot diagram D. The proof consists
of two parts. In the first part we study how the function changes with a switching of
a crossing of D (exchanging the over-strand and the under-strand at the crossing)
and produce a skein relation for our invariant which models the Conway skein
relation. This would involve two-component links and an extension of the function
to their diagrams. In the second part we prove the coincidence with the Conway
polynomial using an induction on the number of arrows of the Gauss diagram Gp.

4.1. Skein relation. The notions of a one-component ascending arrow diagram
and the Conway combination from Definition 4] can be naturally extended to
(arrow) diagrams with two circles. In this case the number of arrows must be odd,
so we have:
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Lemma. Suppose K, is a knot diagram with a positive distinguished crossing

x, and K_ and Ky are the corresponding knot and 2-component link obtained by
changing the crossing x as in the Conway skein relation:

5 _ A A

K, =340 K =30 Ko = )() ,

Let us introduce shorter notations: Gy = Gi,, G_ = Gg_, and Gy := Gk,.
Then,

(1) (Can, Gy ) = (Cop, G_) = (€21, Go).

Proof. Let A be one of the arrow diagrams of €5,,. If o € Hom(A4, G) is a ho-
momorphism such that x & im ¢ then such a homomorphism exists in Hom(A4, G_)
as well, and they cancel each other on the left side. Now suppose for some arrow
a€ A pi(a) =x. We can construct a two-circle one-component ascending ar-
row diagram A, and a homomorphism ¢, € Hom(A4,, Go) whose contribution to
(€an—1,Go) is the same:

(2) [T sienesi)= J[ sien(ealo) -
¢ chord in A c chord in A,

The arrow diagram A, is obtained from A by doubling the chord a as in the defini-
tion 3.1l It has two circles, and obviously it is one-component and ascending. Also
the diagram A, contains 2n — 1 arrows. Note that the Gauss diagram Gy of the
link K is obtained from G by a similar doubling of the arrow x (more precisely, of
the arrow corresponding to the crossing x). So any homomorphism ¢, : A — G4
which sends a to x induces a homomorphism ¢, : A; — G which sends the arrows
of A, (which may be identified with the arrows of A different from a) to the same
arrows of Gy (which may be identified with the corresponding arrows of G;). Then
the equation (2)) is obvious since sign(¢4 (a)) = sign(x) = 1.

In a similar way, a homomorphism ¢_ : A — G_ which sends some arrow ato x
induces a homomorphism ¢, : A, — Gy. However, since sign(¢_(a)) = sign(x) =
—1, now the left and right hand sides of (2)) differ by a sign. But the homomorphism
¢_ € Hom(A, G_), as a part of (€2, G_), occurs in the left hand side of the desired
equation of the lemma with the sign —1. Therefore its contribution to the left hand
side will be the same as the contribution of the corresponding ¢, to the right hand
side, <€2n—17 G0>

In the other direction for any homomorphism g : Ag — Go, where Ag is a
two-circle arrow diagram from €,,_1, we can construct either ¢ or ¢_ which
contributes into the left hand side of the equation of the lemma the same amount
as o to (€2,-1,Gop). Indeed, vy maps some two arcs from different circles of Ay
to the two arcs of Gy corresponding to the two pieces of Ky in the vicinity of x
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on the picture above. We can make a connected sum of the two circles of Ag by
connecting these arcs with a band. The result will be a one-circle arrow diagram.
We put an extra chord a across the band and orient it in the direction which makes
the whole diagram ascending. (This direction depends on which of the two arcs of
Ao was passed first while the traveling along Ay with doubled chords). The band
corresponds to a half-twisted band making a connected sum of the components of
Ky to produce either K| or K_, depending on the orientation of the new arrow a.
The resulting K or K_ determines the sign of a. Thus we obtain a one-component
ascending arrow diagram A with a distinguished arrow a and its homomorphism,
either ¢ or p_. It is easy to see that this construction is indeed inverse to the
construction above: ¢y = @,. This proves the lemma. (|

Example. Let us continue our example with the knot K = 65 and its Gauss
diagram G = Gg,. Let us choose crossing {5} as the distinguished one. Then we can
denote the knot diagram K as K. The corresponding knot K_ is not interesting
because there are no homomorphisms from €, to G_ (its Gauss diagram is obtained
from G by reversing its arrow {5} and changing its sign to —1). The link K is
more interesting:

)
@4@ 3 .
Y, @ “
" 52@ " °
6
@C'l/@ @ 5 @2 *

Doing an analysis similar to Example one can conclude that there in only one
non-trivial homomorphism ¢q from the first arrow diagram Ay of €3 to Gy which
sends the arrows to {2, 3,6} of Go. The arcs of K in the vicinity of the crossing {5}
are represented on the Gauss diagram Gy by the parallel copies of the arrow {5}
from G. On the picture of Ap, the preimages of these arcs under the homomorphism
o are located in between the two crossing arrows of the left circle and on the right
portion of the right circle. These are the places where we are supposed to make a
band connected sum.

O - OFO-GRD -

Also we are supposed to put an arrow a across the band. In order to make the
diagram A ascending we have to orient it down. Thus we obtain the diagram A,
the only diagram of ¢, contributing to (€4, G, ).

An analogous lemma may be formulated for two-component links. Namely, let
Ly, L_, and Lo be a triple of diagrams participating in the Conway skein rela-
tion, and G1, G_, Go be their Gauss diagrams. We assume that Ly and L_
are two-component links, and the two strands at the crossing x belong to different
components. Then Ly will be a knot diagram. We have

(3) (C2n+1,G4) — (Cont1, G-) = (Cap, Go).
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The proof is similar to the proof of the lemma. We use these two skein relations
to simplify the diagrams in the next subsection.

4.2. Coincidence with the Conway coefficients. We proceed by induction on
the number of arrows of the Gauss diagram Gp, where D is either a knot or a
2-component link diagram.

If D has no crossings then there is nothing to prove.

Now let us assume (Cs,, Gp) = cap, and (€opy1,Gp) = copy1 for all knot (2-
component link) diagrams D with less than m crossings. Let D be a diagram with
m crossings. We can pick a crossing on D and use the relations (1) and @) to
simplify the corresponding Gauss diagrams. The diagrams on the right hand sides
of these relations have less than m crossings. So, by induction, the right hand sides
coincide with the corresponding Conway coeflicients. For dealing with the left hand
sides we need to consider the cases of knots and links separately.

Knots. Changing the appropriate crossings using the relation () we can make
our diagram D descending. This means that traveling along the knot diagram
starting from the base point, the first passage of each crossing will be an overpass.
On Gauss diagrams this means that all arrows are oriented in accordance with
the orientation of the circle of the Gauss diagram, i.e. traveling along the circle
for every arrow we first pass its tail and then its head. Hence we can represent
(Con,Gp) as (€qy,, Gp/), for some descending diagram D', plus some terms of the
form (€2, Gp, ), where the 2-component link diagram Dy has less than m crossings.
The descending diagram D’ represents an unknot, so its Conway polynomial is
equal to 1. Therefore its coefficients ca,, (n > 1) vanish. On the other hand, any
subdiagram of a descending Gauss diagram is also descending. None of the arrow
diagrams of €5, has this property, so there is no homomorphism of €5, to Gp- and
(€oy,, Gp/) = 0. By induction (€, Gp) = can (D).

Links. Now D represents a 2-component link with m crossings. Using (3]) we
change some crossing between the components of D in order to lower the component
with the base point to the bottom. On Gauss diagrams, this means that all arrows
between different components will point toward the component with the base point.
So we represent (€a,41,Gp) as (€ap41, Gpr) for some diagram D’ with the base
component lower than the other one, plus some terms of the form (€5, Gp,) where
the knot diagram Dy has less than m crossings. For the link D’ with unlinked
components the Conway polynomial is equal to zero. Also in €y, there are
no diagrams whose arrows are all oriented toward the based component. Thus
(Cont1,Gp/) =0 and (€ap11, Gp) = cony1(D) follows by induction.

This completes the proof of Main Theorem. ([

4.3. Remarks. 1. The equation V(L) = Vs (L) for links follows from the fact
that a morphism of a connected arrow diagram to the Gauss diagram of L can be
reconstructed from its image.

2. M. Polyak found a direct way to prove the invariance of (€s,, Gp) under
the Reidemeister moves. Together with the skein relation of Section [A.1] it gives a
direct proof of our Main Thereom. This way also shows that the formulas of Main
Theorem provide an extension of V(L) (as well as Vges(L)) to virtual links
with a based point. In particular, to long virtual knots. The second coefficients
of these two etensions are the two second order invariants of long virtual knots
from [GPV]. The Polyak-Viro formulas for Vassiliev invariants coming from the



POLYAK-VIRO FORMULAS FOR THE CONWAY POLYNOMIAL 9

HOMFLY polynomial were found in [CP]. That paper contain also the extensions
of the HOMFLY polynomial to virtual string links.
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