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Lectures on Modular Symbols

Yuri I. Manin

Abstract. In these lecture notes, written for the Clay Mathematics Insti-
tute Summer School “Arithmetic Geometry”, Göttingen 2006, I review some
classical and more recent results about modular symbols for SL(2), includ-
ing arithmetic motivations and applications, an iterated version of modular
symbols, and relations with the “non–commutative boundary” of the modular
tower for elliptic curves.

1. Introduction: arithmetic functions and Dirichlet series

1.1. Arithmetic functions. Many basic questions of number theory involve
the behavior of arithmetic functions, i.e. sequences of integers {an |n ≥ 1} defined
in terms of divisors of n, or numbers of solutions of a congruence modulo n, etc.
After having chosen such a function, one might ask for example:

(i) Is {an |n ≥ 1} multiplicative, that is, does amn = aman for (m, n) = 1?

(ii) What is the asymptotic behavior of
∑

n≤N an as N → ∞?

(iii) Can one give a “formula” for an if initially it was introduced only by a
computational prescription, such as an := the number of representations of n as a
sum of four squares?

A very universal machinery for studying such questions consists in introducing
a generating series for an depending on a complex parameter, and studying the
analytic and algebraic properties of this series.

Two classes of series that are used most often are the Fourier series

f(z) :=

∞∑

n=1

ane2πinz (1.1)

and the Dirichlet series

Lf (s) =

∞∑

n=1

ann−s. (1.2)

In full generality, they must be considered as formal series; however, if an does not
grow too fast, e.g. is bounded by a polynomial in n, then (1.1) converges in the
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upper half-plane H := {z ∈ C | Im z > 0}, whereas (1.2) converges in some right
half plane Re s > D.

1.2. Mellin transform and modularity. Some of the properties of {an} are
directly encoded in the generating Dirichlet series. For example, multiplicativity of
{an} translates into the existence of an Euler product over primes p:

Lf(s) =
∏

p

Lf,p(s), Lf,p(s) :=

∞∑

n=1

apnp−ns. (1.3)

Hence the Dirichlet series for the logarithmic derivative of such a function carries
information about the values of an restricted to powers of primes. This idea leads
to famous “explicit formulas” expressing partial sums of apn ’s via poles of the
logarithmic derivative of Lf (s) i.e. essentially zeroes of Lf (s). Applied to the
simplest multiplicative sequence an = 1 for all n, this formalism produces the
classical relationship between primes and zeroes of Riemann’s zeta.

It turns out, however, that to establish the necessary analytic properties of
Lf(s) such as the analytic continuation in s and a functional equation, and generally
even the existence of an Euler product, one should focus first upon the Fourier series
f(z). The main reason for this is that interesting functions f(z) more often than not
possess, besides the obvious periodicity under z 7→ z+1, additional symmetries, for
example, a simple behavior with respect to the substitution z 7→ −z−1. This is the

case for f(z) =
∑

n≥1 e2πin2z (or the more symmetric
∑

n∈Z
e2πin2z) corresponding

to Lf (s) = ζ(2s).

The transformations z 7→ z + 1 and z 7→ −z−1 together generate the full
modular group PSL(2,Z) of fractional linear transformations of H , and Fourier
series of various modular forms with respect to this group and its subgroups of
finite index generate a vast supply of most interesting arithmetic functions.

The basic relation between f(z) and Lf (s) allowing one to translate analytic
properties of f(z) into those of Lf (s) is the integral Mellin transform

Λf (s) :=

∫ i∞

0

f(z)
(z

i

)s dz

z
. (1.4)

Here the s–th power in the integrand is interpreted as the branch of the exponential
function which takes real values for real s and imaginary z. Convergence at i∞
is usually automatic whereas convergence at 0 is justified by a functional equation
(possibly after disposing of a controlled singularity).

Whenever we can integrate termwise using (1.1) (for large Re s), an easy cal-
culation shows that

Λf (s) = (2π)−sΓ(s)Lf (s). (1.5)

A functional equation for f(z) with respect to z 7→ −z−1 (or more generally, z 7→
−(Nz)−1 for some N) then leads formally to a functional equation of Riemann type
connecting Λf (s) with Λf (1 − s) or Λf (D − s) for an appropriate D defining the
critical strip 0 ≤ Re s ≤ D for Lf (s).

This is a very classical story, which acquired its final shape in the work of
Hecke in the 1920’s and 30’s. More modern insights concern the role of Γ–factors
as Euler factors at arithmetic infinity, and most important, the universality of this
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picture and the existence of its vast generalizations crystallized in the Taniyama–
Weil conjecture and the so-called Langlands program. This involves, in particular,
consideration of much more general arithmetic groups than PSL(2) as modular
groups.

We will not discuss this vast development in these lectures and focus upon the
classical modular group and related modular symbols. For some generalizations,
see [AB90], [AR79].

2. Classical modular symbols and Shimura integrals

2.1. Modular symbols as integrals. Since we are interested in Mellin trans-
forms of the form (1.4) where f(z) has an appropriate modular behavior with re-
spect to a subgroup of PSL(2,Z), we must keep track of similar integrals taken
over PSL(2,Z)–images of the upper semi–axis as well. The latter are geodesics
connecting two cusps in the partial compactification H := H ∪ P1(Q).

Roughly speaking, the classical modular symbols are linear functionals (spanned
by)

{α, β} : f 7→

∫ β

α

f(z)zs−1dz, α, β ∈ P1(Q)

on appropriate spaces of 1–forms f(z)zs−1dz. To be more precise, we must recall
the following definitions.

The group of real matrices with positive determinant GL+(2,R) acts on H
by fractional linear transformations z 7→ [g]z. Let j(g, z) := cz + d where (c, d)
is the lower row of g. Then we have, for any function f on H and homogeneous
polynomial P (X, Y ) of degree k − 2,

g∗[f(z)P (z, 1) dz] := f([g]z)P ([g]z, 1) d([g]z)

= f([g]z) (j(g, z))−kP (az + b, cz + d) det g dz (2.1)

where (a, b) is the upper row of g. From the definition it is clear that the diagonal
matrices act identically so that we have in fact an action of PGL+(2,R).

This action induces for any integer k ≥ 2 the weight k action of GL+(2,R) on
functions on H . In the literature one finds two different normalizations of such an
action. They differ by a determinantal twist and therefore coincide on SL(2,R)
and the modular group. For example, in [Mer94] and [Man06] the action

f |[g]k(z) := f([g]z) j(g, z)−k (det g)k/2 (2.2)

is used.

A holomorphic function f(z) on H is a modular form of weight k for a group
Γ ⊂ SL(2,R) if f |[γ ]k(z) = f(z) for all γ ∈ Γ and f(z) is finite at cusps.

Such a form is called a cusp form if it vanishes at cusps.

Let Sk(Γ) be the space of cusp forms of weight k. Denote by Shk(Γ) the space
of 1–forms on the complex upper half plane H of the form f(z)P (z, 1) dz where
f ∈ Sk(Γ), and P = P (X, Y ) runs over homogeneous polynomials of degree k−2 in
two variables. Thus, the space Shk(Γ) is spanned by 1–forms of cusp modular type
with integral Mellin arguments in the critical strip in the terminology of [Man06],
Def. 2.1.1, and 3.3 below.


