Lectures on Modular Symbols

Yuri I. Manin

Abstract

In these lecture notes, written for the Clay Mathematics Institute Summer School "Arithmetic Geometry", Göttingen 2006, I review some classical and more recent results about modular symbols for $S L(2)$, including arithmetic motivations and applications, an iterated version of modular symbols, and relations with the "non-commutative boundary" of the modular tower for elliptic curves.

1. Introduction: arithmetic functions and Dirichlet series

1.1. Arithmetic functions. Many basic questions of number theory involve the behavior of arithmetic functions, i.e. sequences of integers $\left\{a_{n} \mid n \geq 1\right\}$ defined in terms of divisors of n, or numbers of solutions of a congruence modulo n, etc. After having chosen such a function, one might ask for example:
(i) Is $\left\{a_{n} \mid n \geq 1\right\}$ multiplicative, that is, does $a_{m n}=a_{m} a_{n}$ for $(m, n)=1$?
(ii) What is the asymptotic behavior of $\sum_{n \leq N} a_{n}$ as $N \rightarrow \infty$?
(iii) Can one give a "formula" for a_{n} if initially it was introduced only by a computational prescription, such as $a_{n}:=$ the number of representations of n as a sum of four squares?

A very universal machinery for studying such questions consists in introducing a generating series for a_{n} depending on a complex parameter, and studying the analytic and algebraic properties of this series.

Two classes of series that are used most often are the Fourier series

$$
\begin{equation*}
f(z):=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z} \tag{1.1}
\end{equation*}
$$

and the Dirichlet series

$$
\begin{equation*}
L_{f}(s)=\sum_{n=1}^{\infty} a_{n} n^{-s} . \tag{1.2}
\end{equation*}
$$

In full generality, they must be considered as formal series; however, if a_{n} does not grow too fast, e.g. is bounded by a polynomial in n, then (1.1) converges in the

[^0]upper half-plane $H:=\{z \in \mathbf{C} \mid \operatorname{Im} z>0\}$, whereas (1.2) converges in some right half plane $\operatorname{Re} s>D$.
1.2. Mellin transform and modularity. Some of the properties of $\left\{a_{n}\right\}$ are directly encoded in the generating Dirichlet series. For example, multiplicativity of $\left\{a_{n}\right\}$ translates into the existence of an Euler product over primes p :
\[

$$
\begin{equation*}
L_{f}(s)=\prod_{p} L_{f, p}(s), \quad L_{f, p}(s):=\sum_{n=1}^{\infty} a_{p^{n}} p^{-n s} \tag{1.3}
\end{equation*}
$$

\]

Hence the Dirichlet series for the logarithmic derivative of such a function carries information about the values of a_{n} restricted to powers of primes. This idea leads to famous "explicit formulas" expressing partial sums of $a_{p^{n}}$'s via poles of the logarithmic derivative of $L_{f}(s)$ i.e. essentially zeroes of $L_{f}(s)$. Applied to the simplest multiplicative sequence $a_{n}=1$ for all n, this formalism produces the classical relationship between primes and zeroes of Riemann's zeta.

It turns out, however, that to establish the necessary analytic properties of $L_{f}(s)$ such as the analytic continuation in s and a functional equation, and generally even the existence of an Euler product, one should focus first upon the Fourier series $f(z)$. The main reason for this is that interesting functions $f(z)$ more often than not possess, besides the obvious periodicity under $z \mapsto z+1$, additional symmetries, for example, a simple behavior with respect to the substitution $z \mapsto-z^{-1}$. This is the case for $f(z)=\sum_{n \geq 1} e^{2 \pi i n^{2} z}$ (or the more symmetric $\sum_{n \in \mathbf{Z}} e^{2 \pi i n^{2} z}$) corresponding to $L_{f}(s)=\zeta(2 s)$.

The transformations $z \mapsto z+1$ and $z \mapsto-z^{-1}$ together generate the full modular group $P S L(2, \mathbf{Z})$ of fractional linear transformations of H, and Fourier series of various modular forms with respect to this group and its subgroups of finite index generate a vast supply of most interesting arithmetic functions.

The basic relation between $f(z)$ and $L_{f}(s)$ allowing one to translate analytic properties of $f(z)$ into those of $L_{f}(s)$ is the integral Mellin transform

$$
\begin{equation*}
\Lambda_{f}(s):=\int_{0}^{i \infty} f(z)\left(\frac{z}{i}\right)^{s} \frac{d z}{z} \tag{1.4}
\end{equation*}
$$

Here the s-th power in the integrand is interpreted as the branch of the exponential function which takes real values for real s and imaginary z. Convergence at $i \infty$ is usually automatic whereas convergence at 0 is justified by a functional equation (possibly after disposing of a controlled singularity).

Whenever we can integrate termwise using (1.1) (for large Re s), an easy calculation shows that

$$
\begin{equation*}
\Lambda_{f}(s)=(2 \pi)^{-s} \Gamma(s) L_{f}(s) \tag{1.5}
\end{equation*}
$$

A functional equation for $f(z)$ with respect to $z \mapsto-z^{-1}$ (or more generally, $z \mapsto$ $-(N z)^{-1}$ for some $\left.N\right)$ then leads formally to a functional equation of Riemann type connecting $\Lambda_{f}(s)$ with $\Lambda_{f}(1-s)$ or $\Lambda_{f}(D-s)$ for an appropriate D defining the critical strip $0 \leq \operatorname{Re} s \leq D$ for $L_{f}(s)$.

This is a very classical story, which acquired its final shape in the work of Hecke in the 1920's and 30 's. More modern insights concern the role of Γ-factors as Euler factors at arithmetic infinity, and most important, the universality of this
picture and the existence of its vast generalizations crystallized in the TaniyamaWeil conjecture and the so-called Langlands program. This involves, in particular, consideration of much more general arithmetic groups than $P S L(2)$ as modular groups.

We will not discuss this vast development in these lectures and focus upon the classical modular group and related modular symbols. For some generalizations, see [AB90], [AR79].

2. Classical modular symbols and Shimura integrals

2.1. Modular symbols as integrals. Since we are interested in Mellin transforms of the form (1.4) where $f(z)$ has an appropriate modular behavior with respect to a subgroup of $P S L(2, \mathbf{Z})$, we must keep track of similar integrals taken over $\operatorname{PSL}(2, \mathbf{Z})$-images of the upper semi-axis as well. The latter are geodesics connecting two cusps in the partial compactification $\bar{H}:=H \cup \mathbf{P}^{1}(\mathbf{Q})$.

Roughly speaking, the classical modular symbols are linear functionals (spanned by)

$$
\{\alpha, \beta\}: f \mapsto \int_{\alpha}^{\beta} f(z) z^{s-1} d z, \quad \alpha, \beta \in \mathbf{P}^{1}(\mathbf{Q})
$$

on appropriate spaces of 1 -forms $f(z) z^{s-1} d z$. To be more precise, we must recall the following definitions.

The group of real matrices with positive determinant $G L^{+}(2, \mathbf{R})$ acts on H by fractional linear transformations $z \mapsto[g] z$. Let $j(g, z):=c z+d$ where (c, d) is the lower row of g. Then we have, for any function f on H and homogeneous polynomial $P(X, Y)$ of degree $k-2$,

$$
\begin{align*}
& g^{*}[f(z) P(z, 1) d z]:=f([g] z) P([g] z, 1) d([g] z) \\
& =f([g] z)(j(g, z))^{-k} P(a z+b, c z+d) \operatorname{det} g d z \tag{2.1}
\end{align*}
$$

where (a, b) is the upper row of g. From the definition it is clear that the diagonal matrices act identically so that we have in fact an action of $P G L^{+}(2, \mathbf{R})$.

This action induces for any integer $k \geq 2$ the weight k action of $G L^{+}(2, \mathbf{R})$ on functions on H. In the literature one finds two different normalizations of such an action. They differ by a determinantal twist and therefore coincide on $S L(2, \mathbf{R})$ and the modular group. For example, in [Mer94] and [Man06] the action

$$
\begin{equation*}
f \mid[g]_{k}(z):=f([g] z) j(g, z)^{-k}(\operatorname{det} g)^{k / 2} \tag{2.2}
\end{equation*}
$$

is used.
A holomorphic function $f(z)$ on H is a modular form of weight k for a group $\Gamma \subset S L(2, \mathbf{R})$ if $f \mid[\gamma]_{k}(z)=f(z)$ for all $\gamma \in \Gamma$ and $f(z)$ is finite at cusps.

Such a form is called a cusp form if it vanishes at cusps.
Let $S_{k}(\Gamma)$ be the space of cusp forms of weight k. Denote by $S h_{k}(\Gamma)$ the space of 1-forms on the complex upper half plane H of the form $f(z) P(z, 1) d z$ where $f \in S_{k}(\Gamma)$, and $P=P(X, Y)$ runs over homogeneous polynomials of degree $k-2$ in two variables. Thus, the space $S h_{k}(\Gamma)$ is spanned by 1 -forms of cusp modular type with integral Mellin arguments in the critical strip in the terminology of [Man06], Def. 2.1.1, and 3.3 below.

[^0]: 2000 Mathematics Subject Classification. Primary 11F67, Secondary 11F11, 11F75, 11M41.

