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4 BERNHARD KRÖTZ

1. Vorwort

This paper features no introduction; it has a table of contents.

The material for this text is scattered throughout my work, often
only found in unpublished notes of mine. I focus on the upper half
plane but want to mention that most matters hold true for arbitrary
Riemannian symmetric spaces of the non-compact type. When I think
it is useful, then remarks and references to the more general literature
are made.

Over the years I had the opportunity to lecture on the crown topic
at various institutions; these are:

• Research Institute of Mathematical Sciences (R.I.M.S.), Ky-
oto, various lectures in the fall semester of 2004

• Indian Statistical Institute, Bangalore, Lectures on the crown
domain, March 2005

• University of Hokkaido at Sapporo, Center of excellence lec-
ture series ”Introduction to complex crowns”, May 2005

• Morningside Center of Mathematics, Academica Sinica, Bei-
jing, ”Introduction to complex crowns”, lectures for a summer
school, July 2005

• Max-Planck-Institut für Mathematik, various presentations.

It is my special pleasure to thank my various hosts at this opportunity
again.
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2. Symbols

Throughout this text capital Latin letters, e.g. G, will be used for
real algebraic groups; C-subscripts will denote complexifications, e.g.
GC. Lie algebras of groups will be denoted by the corresponding lower
case altdeutsche Frakturschrift, e.g. g is the Lie algebra of G.

In this paper our concern is with

G = Sl(2,R) and GC = Sl(2,C) .

The following subgroups of G and their complexifications will be of
relevance for us:

A =

{

at =

(
t 0
0 1/t

)

| t > 0

}

,

AC =

{

az =

(
z 0
0 1/z

)

| z ∈ C∗
}

,

H = SO(1, 1; R) and HC = SO(1, 1; C) ,

K = SO(2,R) and KC = SO(2,C) ,

and

N =

{

nx =

(
1 x
0 1

)

| x ∈ R

}

,

NC =

{

nz =

(
1 z
0 1

)

| z ∈ C

}

.

3. The upper half plane, its affine complexification

and the crown

Our concern is with the Riemannian symmetric space

X = G/K

of the non-compact type. We usually identify X with the upper half-
plane H = {z ∈ C | Im z > 0} via the map

X → H, gK 7→ ai+ b

ci+ d

(

g =

(
a b
c d

))

.

We use x0 = K for the base point eK ∈ X and note that x0 = i within
our identification.
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We view X = H inside of the complex projective space P1(C) =
C ∪ {∞} and note that P1(C) is homogeneous for GC with respect to
the usual fractional linear action:

g(z) =
az + b

cz + d

(

z ∈ P1(C), g =

(
a b
c d

)

∈ GC

)

.

Upon complexifiying G and K we obtain the affine complexification

XC = GC/KC

of X. Observe that the map

(3.1) X →֒ XC, gK 7→ gKC

constitutes a G-equivariant embedding which realizes X as a totally
real submanifold of XC. We will use a more concrete model for XC:
the mapping

XC → P1(C) × P1(C)\diag, gKC 7→ (g(i), g(−i))
is a GC-equivariant diffeomorphism. With this identification of XC the
embedding of (3.1) becomes

(3.2) X →֒ XC, z 7→ (z, z) .

We will denote by X the lower half plane and arrive at the object of
our desire:

Ξ = X ×X

the crown domain for Sl(2,R). Let us list some obvious properties of
Ξ and emphasize that they hold for arbitrary crowns:

• Ξ is a G-invariant Stein domain in XC.
• G acts properly on Ξ.
• Ξ = X × X is the complex double – this always holds if the

underlying Riemannian space X = G/K is already complex.

4. Geometric structure theory

4.1. Basic structure theory

4.1.1. Ξ as a union of elliptic G-orbits. We note that

a =

{(
x 0
0 −x

)

| x ∈ R

}

and focus on a domain inside:

Ω =

{(
x 0
0 −x

)

| x ∈ (−π/4, π/4)

}

.
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We note that Ω is invariant under the Weyl group W = NK(A)/ZK(A) ≃
Z2 and that that exp(iΩ) consist of elliptic elements in GC.

The following proposition constitutes of what we call the elliptic
parameterization of the crown domain.

Proposition 4.1. Ξ = G exp(iΩ) · x0.

Proof. (cf. [24], Th. 7.5 for the most general case). We first show that
G exp(iΩ) · x0 ⊂ Ξ. By G-invariance of Ξ, this reduces to verify that

exp(iΩ).x0 ∈ Ξ .

Explicitly this means

(e2iφi,−e2iφi) ∈ X ×X

for φ ∈ (−π/4, π/4); evidently true.
Conversely, we want to see that every element in Ξ lies on a G-orbit

through exp(iΩ). Let S = G × G and U = K ×K and observe, that
Ξ = S/U as homogeneous space. Now

S = diag(G) antidiag(H)U

and all what we have to see is that

antidiag(H) · x0 ⊂ G exp(iΩ) · x0,

or, more concretely,

(4.1)

{
(
i cosh t+ sinh t

i sinh t+ cosh t
,−i cosh t+ sinh t

i sinh t+ cosh t

)

| t ∈ R} ⊂ G exp(iΩ) · x0 .

Now we use that A exp(iΩ)(i) = X and conclude that the LHS of (4.1)
is contained in A exp(iΩ) · x0. �

4.1.2. Ξ as a union of unipotent G-orbits. The following parameteri-
zation of Ξ is relevant for our discussion of automorphic cusp forms at
the end of this article. It was discovered in [25].

We consider the Lie algebra of N :

n =

{(
0 x
0 0

)

| x ∈ R

}

and focus on the subdomain

Λ =

{(
0 x
0 0

)

| x ∈ (−1, 1)

}

.

The following proposition constitutes of what we call the unipotent
parameterization of the crown domain, see [25], Th. 3.4 forG = Sl(2,R)
and [25], Th. 8.3 for G general.
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Proposition 4.2. Ξ = G exp(iΛ) · x0.

Proof. We wish to give the more conceptual proof. Let us first see that
G exp(iΛ) · x0 ⊂ Ξ, i.e.

exp(iΛ)· ⊂ Ξ .

Concretely this means that

(ix+ i,−i+ ix) ∈ X ×X

for all x ∈ (−1, 1); evidently true.
For the reverse inclusion we will borrow in content and notation

from Subsubsection 4.2.1 from below. It is a conceptional argument.
Fix Y ∈ Ω. Then, according to the complex convexity theorem 4.12
there exist a k ∈ K such that

Im log aC(k exp(iY ) · x0) = 0 .

In other words,

k exp(iY ) · x0 ∈ NCA · x0 = ANC · x0 .

We conclude that exp(iY ) · G exp(in) · x0. From our discussion in (i)
we deduce that exp(iY ) · x0 ∈ G exp(iΛ) · x0. �

Another way to prove Prop. 4.2 is by means of matching elliptic and
unipotent G-orbits. We cite [25], Lemma 3.3:

Lemma 4.3. For all φ ∈ (−π/4, π/4) the following identity holds:

G

(
1 i sin 2φ
0 1

)

· x0 = G

(
eiφ 0
0 e−iφ

)

· x0 .

Proof. This is best seen in the hyperbolic model of the crown which
we discuss in Appendix A; the proof of the lemma will be given there,
too. �

4.1.3. Realization in the tangent bundle. Let

p = Sym(2,R)tr=0

and recall that:

• g = k ⊕ p, the Cartan decomposition;
• p is a linear K-module which naturally identifies with Tx0X,

the tangent space of X at x0.

We write TX for the tangent bundle which is naturally isomorphic with
G×K p via the map

G×K p → TX, [g, Y ] 7→ d

dt

∣
∣
∣
t=0
g exp(tY ) · x0 .
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Inside p we consider the disc

Ω̂ = {Y ∈ p | spec(Y ) ⊂ (−π/4, π/4)}
and note that Ω̂ is K-invariant and

Ω̂ ∩ a = Ω .

Therefore we can form the disc-bundle G×K Ω̂ inside of TX.
The following result was obtained in [1], in full generality.

Proposition 4.4. The map

G×K Ω̂ → Ξ, [g, Y ] 7→ g exp(iY ) · x0

is a G-equivariant diffeomorphism.

Proof. Ontoness is clear. Injectivity can be obtained by direct compu-
tation. �

Remark 4.5. The above proposition becomes more interesting when
one considers more general groups G – the statement is literally the
same. One deduces that G acts properly on Ξ (the action of G on
TX is proper) and that Ξ is contractible: Ξ is a fiber bundle over

X = G/K ≃ p with convex fiber Ω̂.

4.1.4. The various boundaries of the crown. In this part we discuss the
various boundaries of Ξ. First and foremost there is the topological
boundary ∂Ξ of Ξ in XC. We will see that ∂Ξ carries a natural struc-
ture of a cone bundle over the affine symmetric space Y = G/H . In
particular Y ⊂ ∂Ξ and Y and we will show that Y is some sort of Shilov
boundary of Ξ ( we will call it the distinguished boundary though).

We write q for the tangent space of Y at the base point y0 = H ∈ Y .
Note that

q = R

(
1 1
−1 −1

)

︸ ︷︷ ︸

:=e

⊕R

(
1 −1
1 −1

)

︸ ︷︷ ︸

:=f

is the decomposition of the H-module in eigenspaces. In particular,

C := R≥0e ∪ R≥0f

is an H-invariant cone in q and we can form the cone bundle

C := G×H C

inside of TY .
We note that Y is naturally realized in XC via the map

Y → XC, gH 7→ g(1,−1) ,

i.e. y0 identifies with (1,−1).
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Proposition 4.6.

C = G×H C → ∂Ξ, [g, Z] 7→ g exp(iZ) · y0

is a G-equivariant homeomorphism.

Proof. Direct computation; see [25], Th. 3.1 for details. �

Corollary 4.7. π1(∂Ξ) = π1(G/H) = Z .

Henceforth we call write ∂dΞ = G · y0 ≃ Y and call ∂dΞ the distin-
guished boundary of Ξ. Its relevance is as follows. Write P(Ξ) for the
cone of strictly plurisubharmonic functions on Ξ which extend contin-
uously up to the boundary. A simple exercise in one complex variable
then yields (cf. citeGKI, Th. 2.3).

Lemma 4.8. For all f ∈ P(Ξ):

sup
z∈Ξ

|f(z)| = sup
z∈∂dΞ

|f(z)| .

The complement of the distinguished boundary of Ξ we denote ∂uΞ,
and refer to it as the unipotent boundary. A straightforward compu-
tation explains the terminology:

(4.2) ∂uΞ = G

(
1 i
0 1

)

· x0 ∐G

(
1 −i
0 1

)

· x0 .

4.2. Fine structure theory

4.2.1. The complex convexity theorem. We begin the standard horo-
spherical coordinates for X: the map

N × A→ X, (nx, a√y) 7→ nxa√y · i = x+ iy

is an analytic diffeomorphism. Accordingly we obtain a map a : X →
A, the so-called A-projection. Upon complexifying X = NA · x0 we
obtain a Zariski-open subset

NCAC · x0 ( XC .

Upon extending the map a holomorphically we have to be more careful
as the groups AC and KC intersect in the finite two-group

M = AC ∩KC = {±1} .
Accordingly the extension aC is only valued mod M :

aC : NCAC · x0 → AC/M .
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The second part of the following proposition is of fundamental impor-
tance.

Proposition 4.9. The following assertions hold:

(i) NCAC ·x0 = C×C\ diag, in other words NCAC ·x0 is the affine
open piece of XC.

(ii) Ξ ⊂ NCAC · x0.
(iii) The map aC, restricted to Ξ, admits a holomorphic logarithm

log aC : Ξ → aC such that log aC(x0) = 0.

Proof. (i) We observe that

NCAC · x0 = {(iz + w,−iz + w) | z ∈ C∗, w ∈ C}
= {(z + w,−z + w) | z ∈ C∗, w ∈ C}
= C × C\ diag .

(ii) is immediate from (i).
(iii) follows from (ii) and the fact that Ξ is simply connected. �

Remark 4.10. We wish to make a few remarks about the inclusion (ii)
for more general groups. For classical groups (ii) was obtained in [23]
and [14] by somewhat explicit, although efficient, matrix computations.
For general simple groups a good argument based on complex analysis
was given in [17] and [18]. The method of [17] was later simplified and
slightly generalized in [27].

From Proposition 4.9(i) we obtain the following

Corollary 4.11.
[
⋂

g∈G gNCAC · x0

]

0
= Ξ, where [·]0 denotes the con-

nected component of [·] containing x0.

Proof. Let D :=
[
⋂

g∈G gNCAC · x0

]

0
. Write D1, D2 for the projection

of D to the first, resp. second, factor in [C × C]\ diag. Then D1 ⊂ C
is G-invariant. Hence D1 = X, D1 = X or D1 = X ∪ X. The last
case is excluded, as D is connexted. The second case is excluded as
x0 ∈ D implies i ∈ D1. Hence D1 = X. By the same reasoning one
gets D2 = X. As Ξ ⊂ D we thus get D = Ξ. �

For an element Y ∈ a we note that the convex hull of the Weyl-group
orbit of Y , in symbols conv(W · Y ), is just the line segment [−Y, Y ].
With that we turn to a deep geometric fact for crown domains, the
complex convexity theorem:

Theorem 4.12. For Y ∈ Ω:

Im log aC(K exp(iY ) · x0) = [−Y, Y ] .
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Proof. Direct computation. For G = Sl(2,R) there is an explicit for-

mula for aC: with kθ =

(
cos θ sin θ
− sin θ cos θ

)

∈ K one has

aC

(

kθ

(
eiφ 0
0 e−iφ

))

= az

with

z =
√

e2iφ + sin2 θ(e−2iφ + e2iφ) ,

see [23], Prop. A.1 (i). From that the assertion follows. For the general
case we refer to [10] for the inclusion ”⊂” and to [26] for actual equality.
�

4.2.2. Realization in the complexified Cartan decomposition. The Car-
tan or polar decomposition of X says that the map

K/M × A→ X, (kM, a) 7→ ka · x0

is onto with faithful restriction to K/M ×A+. Here, as usual

A+ = {at | t > 1} .
Thus

X = KA · x0

and we wish to complexify this equality. We have to be a little more
careful here, as KCAC · x0 is no longer a domain (it fails to be open
at the base point x0). The remedy comes from a little bit of invariant
theory. We note thatXC is an affine variety and write C[XC] for its ring
of regular function. We denote by C[XC]KC for the subring of regular
function. According to Hilbert, the invariant ring is finitely generated,
i.e.

C[XC]KC = C[p] .

In order to describe p we use a different realization of XC, namely

XC = Sym(2,C)det=1 .

In this model the generator p is given by

p : XC → C, z 7→ tr z .

For a symmetric, i.e. W-invariant, open segment ω ⊂ Ω we define a
KC-invariant domain XC(ω) ⊂ XC by

XC(ω) = p−1(p(A exp(iω) · x0)) .

We note that

• KCA exp(iω) · x0 ⊂ XC(ω)
• exp(iω′) · x0 6⊂ XC(ω) if ω ( ω′.
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Hence we may viewXC(ω) as theKC-invariant open envelope ofKCA exp(iω)·
x0 in XC. The main result here is as follows:

Theorem 4.13. For all open symmetric segments ω ⊂ Ω one has

G exp(iω) · x0 ⊂ XC(ω) .

In particular
Ξ ⊂ XC(Ω) .

Proof. For G = Sl(2,R) this was established in [?]; in general in [20].
�

5. Holomorphic extension of representations

I want to explain a few things on representations first. For the be-
ginning G might be any connected unimodular Lie group, for simplicity
even contained in its universal complexification GC. By a unitary rep-
resentation of G we understand a group homomorphism

π : G→ U(H)

from G into the unitary group of some complex Hilbert space H such
that for all v ∈ H the orbit maps

fv : G→ H, g 7→ π(g)v

are continuous. We call a vector v ∈ H analytic if fv is a real analytic h-
valued map. The entity of all analytic vectors of π is denoted by Hω and
we observe that Hω is a G-invariant vector space. The following result
was obtained by Nelson; the idea is already found in the approximation
theorem of Weierstraß.

Lemma 5.1. Hω is dense in H.

Proof. (Sketch) We first recall that with π comes a Banach-∗-representation
Π of the group algebra L1(G) given by

Π(f)v =

∫

G

f(g)π(g)v dg (f ∈ L1(G), v ∈ H)

with dg a Haar-measure. For a Dirac-sequence (fn)n∈N in L1(G) one
immediately verifies that

(5.1) Π(fn)v → v

for all v ∈ H. We choose a good Dirac sequence: Fix a left invariant
Laplace operator on G and write ρt for the corresponding heat kernel.
We use the theory of parabolic PDE’s as black box and just state:
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• ρt ∈ L1(G) for all t > 0,
• ρt is analytic and of Gaußian decay,
• (ρ1/n)n∈N is a Dirac-sequence.

As a result Π(ρt)v ∈ Hω and

lim
t→0+

Π(ρt)v = v (v ∈ H)

by (5.1). �

Let us now sharpen the assumptions on G and π. In the next step
we request:

• G is semisimple.
• π is irreducible.

Harish-Chandra observed that screening the representation π under
a maximal compact subgroup K < G is meaningful. He introduced the
space of K-finite vectors:

HK = {v ∈ H | spanC{π(K)v} is finite dim.}
Observe that HK is dense in H by the theorem of Peter and Weyl.

Harish-Chandra made a key-observation:

Lemma 5.2. HK ⊂ Hω.

Proof. The following sketch of proof is non-standard. We will use a
little bit of functional analysis. It is known that Hω is a locally convex
vector space of compact type. As such it is sequentially complete.
This makes the Peter-Weyl-Theorem for the representation of K on
Hω applicable. In particular the K-finite vectors in Hω

K in Hω are
dense in Hω. Apply the previous Lemma combined with the density of
HK in H. �

The upshot of our discussion is that HK is the vector space consist-
ing of the best possible analytic vectors. It is a module of countable
dimension for the Lie algebra g and as such irreducible.

Given v ∈ HK we consider the real analytic orbit map

fv : G→ H, g 7→ π(g)v

and ask the following :

Question: What is the natural domain Dv ⊂ GC to which fv extends
holomorphically?

It turns out that Dv does only depend on the type of the represen-
tation π but not on the specific vector v 6= 0 (this is reasonable as v
generates HK as a g-module). We will give this classification in the
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subsection below. At this point we only remark that the domain Dv is
naturally left G-invariant and right KC-invariant, in symbols:

Dv = GDvKC .

A little bit more terminology is good for the purpose of the discus-
sion. We write

q : GC → XC, g 7→ gKC

for the canonical projection and for a domain D ⊂ XC we write

DKC = q−1(D)

for the pre-image of D in GC.
To get a feeling for that I want to discuss one class of examples first.

5.1. The spherical principal series

For the rest of this section we return to our basic setup: G = Sl(2,R).
We fix a parameter λ ∈ R, let H = L2(R) and declare a unitary

representation πλ of G on H via

(5.2) [πλ(g)f ](x) = |cx+ d|−1+iλf

(
ax+ b

cx+ d

)

for g−1 =

(
a b
c d

)

, f ∈ H and x ∈ R. In the literature one finds πλ

under the term spherical unitary principal series. This representation
is K-spherical, i.e. the space of K-fixed vectors HK is non-zero. More
precisely, HK = CvK with

vK(x) =
1√
π
· 1

(1 + x2)
1
2
(1−iλ)

being a normalized representative. With vK we form the matrix coef-
ficient

φλ(g) := 〈πλ(g)vK, vK〉 (g ∈ G) .

The function φλ is K-invariant from both sides, in particular descends
to an analytic function on X = G/K, also denoted by φλ. We record
the integral representation for φλ:

φλ(x) =

∫

K

a(kx)ρ(1+iλ) dk (x ∈ X)

where dk is a normalized Haar measure on X, and the other notation
standard too: for µ ∈ a∗

C
and a ∈ A we let aµ := eµ(log a) and ρ ∈ a∗
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is fixed by ρ

(
1 0
0 −1

)

= 1. Now in view of Proposition 4.9(iii), this

implies that φλ extends to a holomorphic function on Ξ given by

φλ(z) =

∫

K

aC(kz)ρ(1+iλ) dk (z ∈ Ξ) .

With a little bit of functional analysis one then gets that the orbit map
fvK

extends holomorphically to ΞKC. Since HK = U(gC)vK we thus
deduce that fv extends to ΞKC for all v ∈ HK . For v 6= 0, this is
actually a maximal domain, but that would require more work. We
summarize the discussion:

Proposition 5.3. Let πλ be a unitary spherical principal series, then
for all v ∈ HK , the orbit map fv : G → H extends to a holomorphic
function on ΞKC.

Remark 5.4. Observe that the above proposition implies that φλ ex-
tends holomorphically to Ξ.

5.2. A complex geometric classification of Ĝ

5.2.1. More geometry. Before we turn to the subject proper we have
to introduce two more geometric objects. We define two G-invariant
domains in XC by

Ξ+ = X × P1(C)\ diag ,

Ξ− = P1(C) ×X\ diag .

We immediately observe that both Ξ+ and Ξ− feature the following
properties:

• G acts properly on Ξ+ and Ξ−,
• Both Ξ+ and Ξ− are maximal G-domains in XC with proper

actions,
• Both Ξ+ and Ξ− are Stein,
• Ξ+ ∩ Ξ− = Ξ.

In terms of structure theory one can define Ξ+ and Ξ− as follows. Let
us denote by Q± the stabilizer of ±i in GC. Note that Q± = KC ⋊ P±

with

P± =

{(
1 + z ∓iz
∓iz 1 − z

)

| z ∈ C

}

.

We easily obtain:

Lemma 5.5. The following assertions hold:
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(i) Ξ+KC = GKCP
+,

(ii) Ξ−KC = GKCP
−.

5.2.2. The classification theorem. In this section (π,H) denotes an ir-
reducible unitary representation of G. We call π a highest weight, resp.
lowest weight, representation if Lie(P+), resp. Lie(P−), acts finitely on
HK . We state the main result (cf. [25] for Sl(2,R) and [21] in general).

Theorem 5.6. Let (π,H) be a unitary irreducible representation of G.
Let 0 6= v ∈ HK be a K-finite vector. Then a maximal G×KC-invariant
domain Dv to which

fv : G→ H, g 7→ π(g)v

extends as a holomorphic function is given as follows:

(i) GC, if π is the trivial representation;
(ii) Ξ+KC, if π is a non-trivial highest weight representation;
(iii) Ξ−KC, if π is a non-trivial lowest weight representation;
(iv) ΞKC in all other cases.

It is our desire to explain how to prove this theorem. We found out
that there is an intimate relation of this theorem with proper actions
of G on XC.

5.2.3. Proper actions and representations. The material in this section
is taken from [25], Section 4. It holds for a general semisimple group.
We begin with a simple reformulation of the Riemann-Lebesgue Lemma
for representations.

Lemma 5.7. Let (π,H) be a unitary representation of G which does
not contain the trivial representation. Then G acts properly on H−{0}.
Proof. Let C ⊂ H − {0} be a compact subset and CG = {g ∈ G |
π(g)C ∩ C 6= ∅}. Suppose that CG is not compact. Then there ex-
ists a sequence (gn)n∈N in CG and a sequence (vn)n∈N in C such that
π(gn)vn ∈ C and limn→∞ gn = ∞. As C is compact we may assume
that limn→∞ vn = v and limn→∞ π(gn)vn = w with v, w ∈ C. We claim
that

(5.3) lim
n→∞

〈π(gn)v, w〉 6= 0 .

In fact ‖π(gn)vn − π(gn)v‖ = ‖vn − v‖ → 0 and thus π(gn)v → w as
well. As w ∈ C, it follows that w 6= 0 and our claim is established.

Finally we observe that (5.3) contradicts the Riemann-Lebesgue lemma
for representations which asserts that the matrix coefficient vanishes at
infinity. �
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From Lemma 5.7 we deduce the following result.

Theorem 5.8. Let (π,H) be an irreducible unitary representation of

G which is not trivial. Let v ∈ HK , v 6= 0, be a K-finite vector. Let D̃
be a G×KC-invariant domain in GC with respect to the property that
the orbit map Fv : G → H, g 7→ π(g)v extends to a G-equivariant

holomorphic map Ξ̃ → H. Then G acts properly on D̃/KC ⊂ XC.

Proof. We argue by contradiction and assume that G does not act
properly on D = D̃/KC. We obtain sequences (z′n)n∈N ⊂ D and
(gn)n∈N ⊂ G such that limn→∞ z′n = z′ ∈ D, limn→∞ gnz

′
n = w′ ∈ D

and limn→∞ gn = ∞. We select preimages zn, z and w of z′n, z′ and w′

in D̃. We may assume that limn→∞ zn = z and find a sequence (kn)n∈N

in KC such that limn→∞ gnznkn = w.
Before we continue we claim that

(5.4) (∀z ∈ D̃) π(z)v 6= 0

In fact assume π(z)v = 0 for some z ∈ D̃. Then π(g)π(z)v = 0 for
all g ∈ G. In particular the map G → H, g 7→ π(g)v is constantly
zero. However this map extends to a holomorphic map to a G-invariant
neighborhood in GC. By the identity theorem for holomorphic func-
tions this map has to be zero as well. We obtain a contradiction to
v 6= 0 and our claim is established.

Write V = span{π(K)v} for the finite dimensional space spanned by
the K-translates of v. In our next step we claim that

(5.5) (∃c1, c2 > 0) c1 < ‖π(kn)v‖ < c2 .

In fact from

lim
n→∞

π(gnznkn)v = π(w)v and ‖π(gnznkn)v‖ = ‖π(zn)π(kn)v‖

we conclude with (5.4) that there are positive constants c′1, c
′
2 > 0 such

that c′1 < ‖π(zn)π(kn)v‖ < c′2 for all n. We use that limn→∞ zn = z ∈ D̃
to obtain π(zn)|V − π(z)|V → 0 and our claim follows.

We define C to be the closure of the sequences (π(znkn)v)n∈N and
(π(gnznkn)v)n∈N in H. With our previous claims (5.4) and (5.5) we
obtain that C ⊂ H − {0} is a compact subset. But CG = {g ∈ G |
π(g)C ∩ C 6= ∅} contains the unbounded sequence (gn)n∈N and hence
is not compact - a contradiction to Lemma 5.7. �

5.2.4. Remarks on the proof of Theorem 5.6. We are going to discuss
the various cases in the Theorem.
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Case 1: π is trivial. This is clear.

Case 2: π is a non-trivial highest weight representation. In this case
all orbit maps fv : G→ H of K-finite vectors v extend to GKCP

+. As
GKCP

+/KC = Ξ+ and Ξ+ ⊂ XC is maximal for proper G-action, the
assertion follows from Theorem 5.8.

Case 3: π is a non-trivial lowest weight representation. Argue as in
case 2.

Case 4: The remaining cases. Here we restrict ourselves to spher-
ical principal series πλ. We have already seen that Dv ⊃ ΞKC. The
remaining inclusion will follow from the following Theorem, cf. [11]
Th. 5.1.

Theorem 5.9. The crown is a maximal G-invariant domain on XC to
which a spherical function φλ, λ ∈ R, extends holomorphically.

In order to prove this result we need some preparation first. We
recall the domain XC(Ω) from Subsection 4.2.2. Likewise one defines

XC(2Ω) = p−1p(A exp(2iΩ) · x0) .

Here is the first Lemma.

Lemma 5.10. φλ extends to a KC-invariant holomorphic function on
XC(2Ω).

Proof. Recall that φλ can be written as a matrix coefficient

φλ(x) = 〈πλ(x)vK , vK〉 .
For x = a exp(2iY ) · x0 with a ∈ A and Y ∈ Ω we now set

(5.6) φλ(a exp(2iY ) · x0) = 〈πλ(a exp(iY ))vK , πλ(exp(iY )vK〉 .
It is easy to see that this is well defined and holomorphic on A exp(2iΩ)·
x0. Extend by KC-invariance. �

Remark 5.11. We will show below that XC(2Ω) is the largest KC-
domain to which φλ extends holomorphically.

Explicitly the KC-domains XC(Ω) and XC(2Ω) are given by

XC,Ω = {z ∈ XC : ReP (z) > 0}
XC,2Ω = {z ∈ XC : P (z) ∈ C\] −∞,−2]} .

We have to understand the inclusion Ξ ⊂ XC(Ω) ⊂ XC(2Ω) better.
It turns out that Ξ cannot be enlarged. Here is the precise result.
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Lemma 5.12. Let G = Sl(2,R). Then for Y ∈ 2Ω\Ω,

G exp(iY ) · x0 * XC,2Ω .

More precisely, there exists a curve γ(s), s ∈ [0, 1], in G such that the
assignment

s 7→ σ(s) = P (γ(s) exp(iY ) · xo)

is strictly decreasing with values in [−2, 2] such that σ(0) = P (xo) = 2
and σ(1) = −2.

Proof. Let g =

(
a b
c d

)

∈ G and z =

(
eiφ 0
0 e−iφ

)

∈ exp(2iΩ)\exp(iΩ).

This means a, b, c, d ∈ R with ad − bc = 1 and π
4
< |φ| < π

2
for φ ∈ R.

Thus

p(gz · xo) = p

(
aeiφ be−iφ

ceiφ de−iφ

)

= a2e2iφ + b2e−2iφ + c2e2iφ + d2e−2iφ

= cos(2φ)(a2 + b2 + c2 + d2) + i sin 2φ(a2 − b2 + c2 − d2)

Using that G = KAN and that p is left K-invariant, we may actually
assume that g ∈ AN , i.e.

g =

(
a b
0 1

a

)

for some a > 0 and b ∈ R. Then

p(gz · xo) = cos(2φ)(a2 +
1

a2
+ b2) + i sin 2φ(a2 − 1

a2
− b2).

We now show that p(gz ·xo) = −2 has a solution for fixed π
4
< |φ| < π

2
.

This is because p(gz · xo) = −2 forces Im p(gz · xo) = 0 and so b2 =
a2 − 1

a2 . Thus

p(gz · xo) = 2a2 cos(2φ) = −2.

Thus if we choose a = 1√
− cos 2φ

we obtain a solution. The desired curve

γ(s) is now given by

γ(s) =

(
a(s) b(s)
0 1

a(s)

)

with

a(s) =
1√− cos 2φ

(
√

− cos 2φ+ s(1 −
√

− cos 2φ))

and

b(s) =

√

a(s)2 − 1

a(s)2
.

�
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We are ready for the
Proof of Theorem 5.9. We first observe from our previous discussion
that there exists a holomorphic function Φλ on C\(−∞, 2] = p(XC,2Ω)
such that

(5.7) φλ(z) = Φλ(P (z)) (z ∈ XC,2Ω).

Let Y ∈ 2Ω\Ω. Let γ ⊂ G and σ ⊂ [−2, 2] be curves as in the previous
lemma.

Note that γ(s) exp(iY ) · xo ⊂ G for all s ∈ [0, 1). Hence (5.7) gives

ϕλ(γ(s) exp(iY ) · xo) = Φλ(σ(s)) (s ∈ [0, 1) .

Now recall that s 7→ Φλ(σ(s)) is positive by (5.6) and tends to infinity
for s ր 1 (cf. [24], Th. 2.4). Let now Ξ ⊂ Ξ′ be a G-domain in
XC which strictly contains Ξ. Thus ∂Ξ ∩ Ξ′ 6= ∅. We recall that
∂Ξ = ∂dΞ ∪ ∂uΞ and distinguish two cases.
Case 1: ∂dΞ ∩ Ξ′ 6= ∅. In this case Ξ′ contains a point exp(i2Ω\Ω) · x0

and we arrive at a contradiction.

Case 2: ∂nΞ ∩ Ξ′ 6= ∅. This means that

(
1 it
0 1

)

∈ Ξ′ for some t with

absolute value sufficiently close to 1 by (4.2).

With ar =

(
r 0
0 1

r

)

∈ A, r > 0, and −1 < t < 1 that

p

(

ar

(
1 it
0 1

)

.x0

)

= r2 +
1

r2
− t2r2 .

In particular, if |t| > 1, then there would exist a sequence rn → r0 such

that p

(

art

(
1 it
0 1

))

→ −2+. We argue as before. �

5.3. Holomorphic H-spherical vectors

To begin with I want to explain a few things on spherical represen-
tations first. Throughout this section we let (π,H) be an irreducible
unitary representation of G. For a subgroup L < G we write HL ⊂ H
for the subspace of L-fixed elements. As a consequence of the Riemann-
Lebesgue Lemma for representations we obtain:

Lemma 5.13. If L < G is closed and non-compact and π is non-trivial,
then HL = {0}.

So why is this of interest. In case of finite groups, Frobenius reci-
procity tells us that π can be realized in functions on G/L if and only if
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HL 6= {0}. For non-compact continuous groups we need a more sophis-
ticated version of Frobenius reciprocity: the Hilbert space H is simply
too small for carrying L-fixed elements. We enlarge H. Recall the
space of analytic vectors Hω of π. This is a locally convex topological
vector space of compact type, i.e. a Hausdorff direct limit space with
compact inclusion maps. We form H−ω, the strong anti-dual of Hω,
i.e. the space of continuous anti-linear functionals Hω → C endowed
with the strong topology. As a topological vector space H−ω is nuclear
Fréchet. In particular it is reflexive, i.e. its strong anti-dual gives us
Hω back. We note that H is naturally included in H−ω via v 7→ 〈·, v〉
and obtain the reflexive sandwiching

Hω →֒ H →֒ H−ω

with all inclusions G-equivariant and continuous. Sometimes one calls
(Hω,H,H−ω) a Gelfand triple.

Now forG = Sl(2,R) andH = SO(1, 1) there is the dimension bound

dim(H−ω)H ≤ 2 .

To be more precise, for highest or lowest weight representations the
dimension is zero or 1 depending on the parity of the smallest K-type.
For the principal series the dimension is 2.

Example 5.14. For a principal series representation πλ the space of
H-fixed hyperfunction vectors is given by (H−ω)H = spanC{η1, η2} with

η1(x) =

{
1√
π
· 1

(1−x2)
1
2 (1−iλ)

for |x| < 1,

0 for |x| ≥ 1;

and

η2(x) =

{
1√
π
· 1

(x2−1)
1
2 (1−iλ)

for |x| > 1,

0 for |x| ≤ 1.

We take a closer look at the basis {η1, η2} in the previous example.
For what follows it is useful to compactify R to P1(R) = G/MAN
and view H as a function space on P1(R). Then both η1 and η2 are
supported on the two open H-orbits in P1(R), namely (−1, 1) and
P1(R)\[−1, 1]. Thus η1, η2 appear to be natural in view of the natural
H-action on the flag variety. However, we claim that it is not the
natural basis for (H−ω)H . Why? Simply because it is not invariant
under intertwining operators – intertwiners here are pseudo-differential
operators which do not preserve supports. So it is our aim to provide a
natural basis for the H-sphericals. For that our theory of holomorphic
extension of representations comes handy.
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Our motivation comes from finite dimensional representations.

5.3.1. Finite dimensional spherical representations. Let (ρ, V ) be a rep-
resentation of G on a finite dimensional complex vector space V . Then
ρ naturally extends to a holomorphic representation of V , also denoted
by ρ, and observe:

V K = V KC and V H = V HC .

Here is the punch line: While H and K are not conjugate in G (one is
non-compact, one is compact), their complexifications HC and KC are
conjugate in GC. With

zH =

(
eiπ/4 0

0 e−iπ/4

)

there is the identity:

zHHCz
−1
H = KC .

Therefore the map

(5.8) V K → V H , v 7→ ρ(zH)v

is an isomorphism.

5.3.2. Construction of the holomorphic H-spherical vector. Our goal
here is to find an analogue of (5.8) for infinite dimensional represen-
tations. For what follows we assume in addition that (π,H) is K-
spherical and fix a normalized generator vK ∈ HK . Now, observe that
zH · x0 ∈ ∂dΞ = Y = G/H . For ǫ > 0 we set

aǫ :=

(
ei(π/4−ǫ) 0

0 e−i(π/4−ǫ)

)

and remark:

lim
ǫ→0

aǫ = zH and aǫ ∈ ΞKC .

In particular π(aǫ)vK exists for all ǫ > 0 small. It is no surprise that the
limit exists in H−ω and is H-fixed. In fact it is a matter of elementary
functional analysis to establish the following theorem, see [11], Th.
2.1.3 for a result in full generality.

Theorem 5.15. Let (π,H) be a unitary irreducible representation of
G. Then the map

HK → (H−ω)H , vK 7→ vH := lim
ǫ→0

π(aǫ)vK

is defined and injective.
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We call the vector vH the H-spherical holomorphic hyperfunction
vector of π. It is natural in the sense that it is preserved by intertwining
(observe that intertwiners commute with analytic continuation). We
will return to this topic later when we discuss the most continuous
spectrum of L2(Y ).

We wish to make vH explicit for the principal series πλ. A simple
calculation gives

vH = e−i π
4
(1−λ)η1 + ei π

4
(1−λ)η2 .

Upon conjugating the coefficients we get a second, linearly independent
vector

vH = ei π
4
(1−λ)η1 + e−i π

4
(1−λ)η2 .

which we call the anti-holomorphic H-spherical vector. Likewise one
obtains vH by using zH = z−1

H instead of zH . It features the same
invariance properties as vH . We therefore arrive at a basis

{vH , vH}
of (H−ω)H which is invariant under intertwining, i.e. a canonical diag-
onalization of scattering in the affine symmetric space Y .

6. Growth of holomorphically extended orbit maps

Throughout this section (π,H) is a unitary irreducible representation
of G and v = vK ∈ HK a normalized K-finite vector. Our objective of
this section is to discuss the growth of the orbit map

fv : Ξ → H, zKC 7→ π(z)v

for z approaching the boundary of Ξ. We are interested in two quan-
titities:

• The norm of ‖π(z)v‖ for z → ∂Ξ.
• The invariant Sobolev norms SG

k (π(z)v) for z → ∂Ξ.

The invariant Sobolev norms were introduced by Bernstein and Reznikov
in [4] as a powerful tool to give growth estimates for analytically con-
tinued automorphic forms. We will comment more on that in the sub-
sections below.

We notice that

‖fv(g exp(iY ) · x0)‖ = ‖π(exp(iY ))v‖
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for all g ∈ G and Y ∈ Ω. Thus for our growth- interest for z 7→ ∂Ξ we
may assume that z = exp(iY ) · x0 for Y → ∂Ω, or with our previous
notation with Z = aǫ · x0 for ǫ→ 0.

6.1. Norm estimates

Here we determine the behaviour of

‖π(aǫ)v‖ for ǫ→ 0 .

For G = Sl(2,R) this is a simple matter - for general G this is a
serious and difficult problem; it was settled in [25].

Proposition 6.1. Let (π,H) be a unitary K-spherical representation
of G and v a normalized K-fixed vector. Then

‖π(aǫ)v‖ ≍
√

| log ǫ|
for ǫ→ 0.

Proof. It is no big loss of generality to assume that π = πλ. Within
the non-compact realization we determine:

‖π(aǫ)v‖2 =
1

π
eλπ/2

∫

R

∣
∣
∣
∣
∣

1

(1 + e−i(π−4ǫ)x2)
1
2
(1+iλ)

∣
∣
∣
∣
∣

2

dx ,

≍
∫ 2

−2

∣
∣
∣
∣

1

(1 + (−1 + iǫ)x2)

∣
∣
∣
∣
dx ,

≍
∫ 1

0

1

(|u| + ǫ)
du ,

≍ | log ǫ| .
�

I want to pose the following

Problem: Fix σ ∈ K̂ and let H(σ) be the corresponding K-type. De-
termine optimal bounds for

‖π(aǫ)v|| (v ∈ H(σ))

for ǫ→ 0. Possibly generalize to all semi-simple groups.
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6.2. Invariant Sobolev norms

We first recall some definitions from [4].

Definition 6.2. (Infimum of seminorms; cf. [4], Appendix A) Let V
be a complex vector space and Ni∈I a family of semi-norms. Then the
prescription

inf
i∈I

Ni(v) := inf
v=

P

i∈I vi

∑

i∈I

Ni(vi)

defines a semi-norm. It is the largest seminorm with respect to the
property of being dominated by all Ni.

Remark 6.3. To get an idea of the nature of the definition of the
infimum seminorm infNi it is good to think in the following analogy:
Think of V as a function space, say on R and think of Ni as a semi-
norm with support on a certain interval, say Ji. such that ∪Ji = R.
Further v =

∑

i∈I vi should be considered as breaking the function v
into functions vi with smaller support in Ji.

We want to bring in a symmetry group G which acts linearly on
the vector space V . We start with one seminorm N : V → R≥0 and
produce others: for g ∈ G we let

Ng(v) := N(g(v)) .

In this way we obtain a seminorm

NG := inf
g∈G

Ng(v)

which is uniquely characterized as being the largest G-invariant semi-
norm on V which is dominated by N .

We come to specific choices for V and N . For V we use the Fréchet-
space of smooth vectors H∞ for the representation π; the seminorm N
will be Sobolev norm. We briefly recall their construction. Recall that
the derived representation dπ of g is defined as

dπ : g → End(H∞), dπ(Z)(v) :=
d

dt

∣
∣
∣
t=0
π(exp(tZ))v .

We fix a basis Z1, Z2, Z3 of g and an integer k ∈ N0. Then the k-th
Sobolev norm Sk of π is defined as

Sk(v) :=
∑

k1+k2+k3≤k

‖dπ(Z1)
k1dπ(Z2)

k2dπ(Z3)
k3v‖ (v ∈ H∞) .

Let us emphasize that Sk depends on the chosen basis Z1, Z2, Z3, but
a different basis yields an equivalent norm. Our interest is now with
SG

k the G-invariant Sobolev norm. Notice that SG
0 = ‖ · ‖ is the Hilbert
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norm, as we assume that π is unitary. In view of our preceding remark
it is natural to view SG

k as some Besov-type norm for the representation.
We wish to understand the nature of SG

k . For that it is useful to
introduce the following notation: For a closed subgroup L < G we
write Sk,L for the k-th Sobolev norm for the restricted representation
π|L. We make a first simple observation:

Lemma 6.4. Let (π,H) be a unitary representation of G and v ∈ H∞.
Then for all k ≥ 0:

(i) SA+

k,N(v) = ‖v‖.
(ii) SG

k,AN(v) = SG
k (v).

Proof. Easy; see [23], Lemma 6.5 for the general statement. �

The following Theorem is fundamental ([23], Prop. 6.6).

Theorem 6.5. Let (π,H) be an irreducible unitary representation of
G. Let k ∈ Z≥0. Then there exists a constant C = C(k, π) such that

SG
k (v) ≤ C · SG

k,A(v) (v ∈ H∞) .

Proof. We will only treat the case of π = πλ. We remark that

H∞ = {f ∈ C∞(R) |x|iλ−1f(
1

x
) ∈ C∞(R)}

and introduce some standard notation
We use a usual basis for the Lie algebra of γ

h =

(
1 0
0 −1

)

, e =

(
0 1
0 0

)

, f =

(
0 0
1 0

)

.

Then a = Rh, n = Re and n = Rf . With u = e − f we have k = Ru.
Differentiating the action (5.2) one obtains the formulas

dπλ(h) = (iλ− 1) − 2x
d

dx
,(6.1)

dπλ(e) = − d

dx
,(6.2)

dπλ(f) = (1 − iλ)x+ x2 d

dx
,(6.3)

dπλ(u) = (iλ− 1) − (1 + x2)
d

dx
,(6.4)

dπλ(e + f) = (1 − iλ)x− (1 − x2)
d

dx
.(6.5)
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We also define the radial operators by

(Rjf)(x) = (xj d
j

dxj
f)(x)

and define the radial Sobolev norms by

Sk,rad(f) =

k∑

j=0

‖Rjf‖.

From the action of dπλ(h) and Rj it is clear that there exists a constant
C > 0, depending on k and λ, such that for all f ∈ S(R)

(6.6)
1

C
Sk,rad(f) ≤ Sk,A(f) ≤ CSk,rad(f) .

We wish to point out that in (6.1) and (6.3) the coefficient of the
derivative term has a zero, consequently Sk(v) can not be majorized
by Sk,AN(v) or by Sk,A(v) in general. However, we shall show in the
next Proposition that there is such a relationship for the G−invariant
Sobolev norms.

The A action on K/M ∼= S1 has two fixed points, corresponding to
the two Bruhat cells. In the non-compact realization N they become
the origin and the point at infinity. We shall estimate SG

k (f) by using
first a cutoff function at infinity, n, and an elementary estimate there.
Near the origin a dilated cutoff localizes sufficiently high derivatives
of f to get an estimate. Away from the fixed points, motivated by an
argument in [4] and classical Littlewood-Paley theory, we use a family of
suitably dilated cutoff functions which compress the n derivatives in the
definition of G-invariant norm to radial derivatives thereby obtaining
the desired estimate.

For j ∈ Z we denote by Ij the set {x ∈ R 2−j−1 ≤ |x| ≤ 2−j+1}.
For a function ψ on R we write ψj(x) = ψ(2jx). Notice that if ψ is
supported in I0 then ψj is supported in Ij, and

supp(ψj) ∩ supp(ψj+1) ⊆ [
1

2j+1
,

1

2j
].

We take a smooth, non-negative function φ supported in I0 and such
that for every m ∈ N0 we have

m∑

j=0

φj(x) =







0 if |x| ≤ 2−m−1 ,

1 if 2−m ≤ |x| ≤ 1 ,

0 if 2 ≤ |x|
Choose a nonnegative function τ ∈ C∞(R) with support in {x ∈

R 1 ≤ |x|} such that (τ +φ)(x) = 1 for |x| ≥ 1. Finally for each m ∈ N
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define the function τm ∈ C∞
c (R) by τm = 1 − τ − ∑m

j=0 φj . Notice

that supp τm ⊂ {x ∈ R | |x| ≤ 2−m} and τm(x) = 1 for |x| ≤ 2−m−1.
From the properties of the φj and τ it is easy to see that for any l ≥ 1,

τ
(l)
m (x) = −2lmφ(l)(2mx).
Let f ∈ H∞. Since

1 = τ + 1 − τ

= τ + τm +
m∑

j=0

φj

= τ + φ+ τm +

m∑

j=1

φj ,

then

f = (τ + φ)f + τmf +
m∑

j=1

φjf.

For any choices of g, g1, . . . , gm ∈ G, using the definition of SG
k , we get

(6.7) SG
k (f) ≤ Sk((τ + φ)f) + Sk(πλ(g)(τmf)) +

m∑

j=1

Sk(πλ(gj)(φjf)) .

First we consider the term Sk((τ + φ)f). From an examination of
formulas (6.1) - (6.3) one sees that Sk((τ + φ)f) ≤ CSk,N((τ + φ)f)
for all f ∈ H∞. (Throughout this proof C will denote a constant
depending only on k, τ , φ and λ.) Hence we have

Sk((τ + φ)f) ≤ CSk,N((τ + φ)f) ≤ CSk,N(f)

for all f ∈ H∞. Majorizing this term in (6.8) we get

(6.8) SG
k (f) ≤ CSk,N(f) + Sk((πλ(g)τmf)) +

m∑

j=1

Sk(πλ(gj)(φjf))

for all f ∈ H∞.
Next we specify a good choice of the elements g, g1, . . . , gm ∈ G. For

every t > 0 denote by bt the element

bt =

( 1√
t

0

0
√
t

)

∈ A.

From (5.2) it follows that

(πλ(bt)f)(x) = t
1
2
(1−λ)f(tx)

for all t > 0 and x ∈ R. Take gj = b2−j for all 1 ≤ j ≤ m and
g = b2−(m+1) . Notice that for every m all the πλ(gj)(φjf) are supported
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in [−2, 2], as is πλ(g)(τmf). For any smooth function h supported in
[−2, 2] we can conclude from the formulas (6.1) - (6.4) that Sk(h) ≤
CSk,N(h). Using this in (6.9) we get
(6.10)

SG
k (f) ≤ CSk,N(f) + CSk,N(πλ(g)(τmf)) + C

m∑

j=1

Sk,N(πλ(gj)(φjf))

for all f ∈ H∞.
We estimate Sk,N(πλ(g)(τmf)). For this we use Leibniz on τmf and

L∞ estimates on τ
(j)
m = −2jmφ(j)(2mx). From (6.2) one sees that

Sk,N(h) =
∑k

l=0 ‖h(l)‖. Then

Sk,N(πλ(g)(τmf)) =
k∑

l=0

‖ d
l

dxl
2−

(m+1)
2

(1−λ)(τmf)(2−(m+1)·)‖

=

k∑

l=0

|2− (m+1)
2

(1−λ)|
[ ∫ ∣

∣
∣

l∑

n=0

2−(m+1)l

(
l

l − n

)

·

· τ (l−n)
m (2−(m+1)x)f (n)(2−(m+1)x)

∣
∣
∣

2

dx
] 1

2

≤
k∑

l=0

|2− (m+1)
2

(1−λ)|
l∑

n=0

[ ∫

|x|≤2

∣
∣
∣2−(m+1)l

(
l

l − n

)

·

· τ (l−n)
m (2−(m+1)x)f (n)(2−(m+1)x)

∣
∣
∣

2

dx
] 1

2

=

k∑

l=0

∣
∣
∣2

(m+1)
2

λ
∣
∣
∣

l∑

n=0

[ ∫

|y|≤ 1
2m

∣
∣
∣2−(m+1)l

(
l

l − n

)

τ (l−n)
m (y)fn(y)

∣
∣
∣

2

dy
]1

2

≤
k∑

l=0

|2 (m+1)
2

λ|
l∑

n=0

(
l

l − n

)‖2(l−n)mφ(l−n)‖∞
2(m+1)l

[ ∫

|y|≤ 1
2m

|f (n)(y)|2 dy
]1

2

=

k∑

n=0

|2 (m+1)
2

λ| 1

2mn

k∑

l=n

(
l

l − n

)‖φ(l−n)‖∞
2l

[ ∫

|y|≤ 1
2m

|f (n)(y)|2 dy
]1

2

=
k∑

n=0

|2 (m+1)
2

λ| 1

2(m+1)n

k−n∑

j=0

(
j + n

n

)‖φj‖∞
2j

[ ∫

|y|≤ 1
2m

|f (n)(y)|2 dy
]1

2

≤
(

k∑

j=0

‖φ(j)‖∞
j!2j

)
k∑

n=0

k!

n!2(m+1)n

[ ∫

|y|≤ 1
2m

|f (n)(y)|2 dy
]1

2

.
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Now k is fixed and each of the at most k derivatives f (n) is in L2, hence
the integrals can be made uniformly small. So for each f we can choose
an m so that the last line above is at most ‖f‖. Then we have

SG
k (f) ≤ CSk,N(f) + C‖f‖ + C

m∑

j=1

Sk,N(πλ(gj)(φjf))

for any f ∈ H∞. Thus we obtain that
(6.9)

SG
k (f) ≤ CSk,N(f) + C‖f‖ + C

k∑

l=0

m∑

j=1

‖ d
l

dxl
(2−

j

2
(1−iλ)φf(2−j·))‖ .

As in the long computation above, using Leibniz on φf , L∞ estimates
on φ(j), and majorizing the binomial coefficients we get

k∑

l=0

m∑

j=1

‖ d
l

dxl
(2−

j

2φf(2−j·))‖ ≤ C
k∑

l=0

m∑

j=1

(∫

I0

2−j−2l|f (l)(2−jx)|2 dx
) 1

2

= C
k∑

l=0

m∑

j=1

( ∫

Ij

2−2l|f (l)(x)|2 dx
) 1

2

≤ 4C

k∑

l=0

m∑

j=1

(∫

Ij

|xlf (l)(x)|2 dx
) 1

2

≤ 4CSk,rad(f) ≤ 4CSk,A(f),

where the last inequality follows from (6.6) and again C depends only
on τ , φ, k and λ. Thus we get from (6.9) and (??) that

SG
k (f) ≤ CSk,N(f) + C‖f‖ + CSk,A(f) ≤ C‖f‖ + CSk,AN(f)

for all f ∈ H∞. Thus

SG
k ≤ CSG

k,AN

and, using Lemma 6.4(ii), SG
k ≤ CSG

k,A as was to be shown. �

With regard to the above theorem I want to pose the following

Problem: Formulate and possibly prove the above result for all semisim-
ple groups.

We come to the main result of this section, see [23], Th. 6.7: the
estimate for SG

k (π(aǫ)v). We will only explain the idea and refer to [23]
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for a discussion in full detail. We fix on the case π = πλ and observe
that, up to constant:

[π(aǫ)v](x) =
1

(1 + eiπ(1−ǫ)x2)
1
2
(1−iλ)

(x ∈ R)

Hence π(aǫ)v(x) develops singularities at x = ±1 which are logarith-
mic in the L2-sense, see Proposition 6.1 from above. Taking the k-
th Sobolev norm increases the singularity accordingly; one verifies for
k ≥ 1 that

Sk(π(aǫ)v) ≍ ǫ−k .

It is so remarkable that the situation is much different for SG
k (π(aǫ)v.

Why? Observe that

(6.10) Sk,H(π(aǫ)v) ≍ ‖π(aǫ)v‖

as the fixed points of H are precisely x = ±1, the loci where the
function π(aǫ)v develops singularities (cf. with (6.5)). Now with

k0 =
1√
2

(
1 1
−1 1

)

∈ K

there is an element which rotates a to h. Hence

Sk,A(π(k0)π(aǫ)v) = Sk,H(π(aǫ)v)

and combined with (6.10) we arrive at the hardest result in this article.

Theorem 6.6. Let (π,H) be a unitary irreducible representation of G
and v ∈ H a K-fixed vector. Let k ∈ Z≥0. Then there exists a constant
C = C(π, k) such that

SG
k (π(aǫ)v) ≤ C‖π(aǫ)v‖

for all ǫ > 0 small.

I expect the theorem from above to be true for all K-finite vectors
v with the reservation that C = C(π,K) depends on the occuring K-
types in the support of v in addition. In [23] we conjecture (Conjecture
C) that the the estimate holds even for arbitrary semisimple Lie groups.
This is very difficult. For real rank one we could establish this for the
K-fixed vector in [23].



CROWN THEORY 33

7. Harmonic analysis on the crown

7.1. Holomorphic extension of eigenfunctions

Let
∆ = −y2(∂2

x + ∂2
y)

be the Laplace-Beltrami operator on X. For µ ∈ C we consider the
eigenvalue problem

∆φ = µ(1 − µ)φ .

We observe that solutions φ are necessarily analytic functions as ∆ is
an elliptic operator. Analytic functions admit holomorphic extensions
to some complex neighborhood of X in XC. Further, as G commutes
with ∆, the resulting domain Dφ ⊂ XC attached to φ is G-invariant.
By now it should be no surprise that Dφ = Ξ for generic choices of φ.
In fact it is just a disguise of the non-unitary version of Theorem 5.6,
see [24], Th. 1.1 and Prop. 1.3.

Theorem 7.1. All ∆-eigenfunctions on X extend to holomorphic func-
tions on Ξ.

Proof. At this point it would better to switch from X to its bounded
realization: the unit disc. It has the advantage of circular symmetry on
a compact boundary and results in a good grip concerning convergence
problems of boundary value issues on X. However, I do not want to do
that and thus certain convergence issues will remain untreated below.

To begin with we recall the Poisson-kernel P on X:

P (z) =
1

π

Im z

z · z (z ∈ X) .

Now if ∆φ = µ(1−µ)φ with µ 6= 0, then there is a generalized function
φR on R as boundary value of φ from which we can reconstruct φ via
Poisson integration:

φ(z) =

∫

R

φR(x)P µ(z − x) dx .

Now observe that P admits a holomorphic extension P∼ to Ξ = X×X
obtained by polarization:

P∼(z, w) =
1

2πi

z − w

z · w ((z, w) ∈ Ξ) .

Thus φ admits a holomorphic extension φ∼ to Ξ by setting

φ∼(z, w) =

∫

R

φR(x)(P∼)µ(z − x, w − x) dx .
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�

7.2. Paley-Wiener revisited

Let us begin with a short disgression into history: the theorems of
Paley and Wiener [28] on the restriction of the Fourier transform to
various meaningful function spaces.

When dealing with Fourier analysis on Rn one often identifies Rn

with its dual space. However, it is better not to do it in order to avoid
confusion between the geometric and spectral features.

Let V be a finite dimensional real vector space V . Its dual space
shall be denoted V ∗. We fix an Euclidean structure on V (and hence
on V ∗) and normalize the resulting Lebesgue measures dv, dα such that
the Fourier transform

F : L1(V ) → C0(V
∗), f 7→ F(f) := f̂ ; f̂(α) :=

∫

V

eiα(v)f(v) dv

extends to an isometry L2(V ) → L2(V ∗).

Actually we wish to view V ∗ as V̂ , the unitary dual of the abelian
group (V,+). The isomorphism is given by

V ∗ → V̂ , α 7→ χα; χα(v) = eiα(v) .

For a general, say reductive, group G, we know from the work of
Segal that there is a Fourier transform from L1(G) to a Hilbert-valued

fiber bundle V → Ĝtemp over the tempered unitary dual Ĝtemp of G
which extends to an isometry F : L2(G) → Γ2(V). Here Γ2 stands for
the L2-sections of the bundle with respect to the Plancherel measure
which was determined explicitly by Harish-Chandra, [15].

Back to our original setup of V and V ∗. In the context of Fourier
transform one might ask about the image of certain function spaces, for
instance test functions, Schwartz functions, their duals, or of functions
on V which extend holomorphically to some tube domain in VC = V +
iV . Paley-Wiener theory is concerned with the first and last mentioned
examples in the uplisting. For a more serious discussion we need more
precision.

The image of test functions. We want to characterize F(C∞
c (V )).

For that we define for every R > 0 the subspace C∞
R (V ) of those test

functions which are supported in the Euclidean ball of radius R. Like-
wise we define PWR(V ∗

C
) to be the space of those holomorphic functions

f on V ∗
C
, the complexification of V ∗, which satisfy the growth condition

|f(α+ iβ)| ≪ eR‖β‖(1 + ‖α‖ + ‖β‖)−N (α, β ∈ V ∗)
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for all N > 0. Then the smooth version of Theorem X of Paley and
Wiener (cf. [28]) asserts that

(7.1) F(C∞
R (V )) = PWR(V ∗

C
) (PW-I) .

The image of strip functions. For R > 0 we let BR be the ball of
radius R centered at the origin and define a tube domain in VC by

SR = V + iBR .

Further we define

SR(V ) := {f ∈ O(SR) | sup
w∈BR

∫

V

|f(v + iw)|2 dv <∞}

and simply call them strip functions. Then Theorem IV of Paley and
Wiener [28] specializes to

(7.2) F(SR(V )) = ER(V ∗) (PW-II)

with

ER(V ∗) = {f ∈ L2(V ∗) |
∫

V ∗

|f(α)|2e2R‖α‖ dα <∞}

the space of exponentially decaying functions L2-functions on V ∗ with
decay exponent R.

We move from V to G. As we remarked earlier, we have to be careful
because of the symmetry break between G and Ĝ. So there are in fact
four different types of Paley-Wiener theorems which are of interest:
(PW-I) and (PW-II) and as well their inverse versions for F−1.

Arthur did a case of (PW-I) in [3] when he characterized the image
of the K×K-finite test functions C∞

c (G)K×K under F . We emphasize
the subspace

C∞
c (G)1×K

K×1
⊂ C∞

c (G)K×K

of functions which are fixed under right K-displacements. These func-
tions naturally realize as K-finite functions on X. 1 Then Arthur’s
Paley Wiener result gives us the image of C∞

c (X)K as certain entire
sections over the complexification of the spherical unitary dual, i.e.
a∗

C
/W. It became the bad habit to restrict even further to K-fixed

functions on X – this makes the sections scalar valued and matters
reduced to some ”Euclidean” Harmonic analysis with respect to a spe-
cific weighted measure space. In this simplified context a Paley-Wiener
theorem for the inverse of (PW-I) was established for some class of ex-
amples [29]. A fully geometric version of the inverse of (PW-I) was
recently obtained by Thangavelu in [31], when he showed that sections

1As for analysis on X one should think of it as K-invariant analysis on G.
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with compact support in a ball correspond to holomorphic functions
on the crown with a certain growth condition related to the size of
the support. We will not further delve into that but focus on (PW-II)
instead.

So far the discussion was general, but now I wish to return – for
the sake of the exposition – to G = Sl(2,R) and the upper halfplane
X where very concrete formulas hold. For 0 < R ≤ π/4 we define a
G-domain in Ξ by

ΞR = G exp(iπ/4(−R,R)h) · x0 .

For R = π/4 we obtain the crown and in general (ΞR)R is a filtration
of Ξ of G-invariant Stein domains (see [10] for the general fact). We
think of ΞR as a strip domain around X and define the analogue of the
space of strip functions by

SR(X) := {f ∈ O(ΞR) | sup
r∈(0,R)

∫

G

|f(g exp(irh) · x0)|2 dg <∞}

By a theorem of Harish-Chandra , F identifies L2(X) with

L2 (K/M × ia∗/W, d(kM) ⊗ λ tanh(πλ)dλ)

where we have identified ia∗ linearily with R subject to the normaliza-
tion that the functional cih → c corresponds to 1 ∈ R. As W = Z2

acts as the flip on R we may safely identify ia∗/W with [0,∞). Ob-
viously K/M identifies with the unit circle. The Fourier transform on
G, restricted to K-invariants is then given by

Ff(kM, λ) =

∫

X

f(z)φλ(k
−1z) dz

The Parseval identity for G reduced to X then states that:
∫

X

|f(z)|2 dz =

∫

K/M

∫ ∞

0

|(Ff)(kM, λ)|2 d(kM) λ tanh(πλ/2)dλ .

If we want to extend this identity by moving the G-orbit X into ΞR,
i.e. a contour shift, then we need the Plancherel theorem for G (and
not only of X). For a function f ∈ SR(X), we then get for all r < R:

∫

G

|f(g exp(irh) · x0)|2 dg

=

∫

K/M

∫ ∞

0

|(Ff)(kM, λ)|2φλ(exp(i2rh) λ tanh(πλ/2)dλ .
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In [6] Faraut named this equality Gutzmer identity in the honour of
Gutzmer who, in the 19th century, investigated growth of Fourier co-
efficients with respect to analytic continuation , [6]. We emphasize
that φλ(exp(i2rh) is a positive quantity as we know from the doubling
identity (5.6).

Let us define the analogue of ER(V ∗) to be

ER(Ĝ) =
{

f ∈ L2 (K/M × ia∗/W, d(kM) ⊗ λ tanh(πλ/2)dλ) |

sup
0≤r<R

∫

K/M

∫ ∞

0

|(Ff)(kM, λ)|2φλ(exp(i2rh) λ tanh(πλ/2)dλ <∞
}

and state the analogue of Theorem IV of Paley and Wiener.

Theorem 7.2. For all 0 ≤ R ≤ π/4

f ∈ SR(X) ⇐⇒ F(f) ∈ ER(Ĝ) .

To end this section I want to pose the following

Problem: Formulate and possibly prove geometric Paley-Wiener the-
orems, i.e. (PW2) and inverse of (PW1), for G.

7.3. Hard estimates on extended Maaß cusp forms

Let Γ < G be a lattice. Then, an analytic function φ : X → C is
called a Maaß automorphic form if

• φ is Γ-invariant,
• φ is a ∆-eigenfunction,
• φ is of moderate growth at the cusps of Γ\X.

We note that the third bulleted item is automatic if Γ is co-compact,
i.e. Γ\X is compact.

A Maaß form φ is called a cusp form if it vanishes at all cusps of
Γ\X, i.e.

∫

N ′∩Γ\N ′

φ(n′x)dn′ = 0 (x ∈ X)

for all unipotent groups N ′ < G with Γ ∩N ′ 6= ∅.
From now on we assume that φ is a cusp form. Frobenius reciprocity

(see [8] and [5] for a quantitative version) tells us that

φ(gK) = (π(g)vK, η) (g ∈ G)

for (π,H) a unitary irreducible representation of G, vK ∈ HK a normal-
ized K-fixed vector and η ∈ (H−∞)Γ a Γ-invariant distribution vector (
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in [5]it is, perhaps more appropriately, called automorphic functional).
It is useful to allow arbitrary smooth vectors v ∈ H∞ and build Γ-
invariant smooth functions φv on G by

φv(g) = (π(g)vK , η) (g ∈ G) .

Langland’s modification of the Sobolev Lemma for cusp forms then
reads as:

(7.3) ‖φv‖∞ = sup
g∈G

|φv(g)| ≤ C · S2(v) (v ∈ H∞)

for C > 0 a constant only depending on the geometry of Γ\G (see [4],
Appendix B for an exposition). As ‖ · ‖∞ is G-invariant, we deduce
from 7.3 that

(7.4) ‖φv‖∞ = sup
g∈G

|φv(g)| ≤ C · SG
2 (v) (v ∈ H∞)

(cf. [4], Section 3). One deep observations in [4] was that SG
2 (v) can be

considerably smaller as S2(v), for instance if v = π(aǫ)vK . We combine
with Theorem 6.6 and Proposition 6.1 (cf. [23], Th. 6.7)

Theorem 7.3. Let φ be a Maaß cusp form. Then there exist constants
C,C ′ > 0 such that

sup
g∈G

|φ(gaǫ · x0)| ≤ C‖φ(·aǫ)‖L2(Γ\G) ≤ C ′ ·
√

| log ǫ|

Remark 7.4. In [4] a slightly weaker bound was established, namely:

sup
g∈G

|φ(gaǫ · x0)| ≤ C · | log ǫ|,

see [4] Sect.1, Proposition part (3).

8. Automorphic cusp forms

In this section we explain how one can use the unipotent model for
the crown domain in the theory of automorphic functions on the upper
half plane.

To avoid extra notation we will stick to

Γ = Sl(2,Z)

for our choice of lattice.
In the sequel we let φ be a Maaß cusp form. Let us fix y > 0 and

consider the 1-periodic function
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Fy : R → C, u 7→ φ(nuay(i)) = φ(u+ iy) .

This function being smooth and periodic admits a Fourier expansion

Fy(u) =
∑

n 6=0

An(y)e2πinx .

Here, An(y) are complex numbers depending on y. Now observe that

nuay = aya
−1
y nuay = aynu/y

and so

Fy(u) = φ(aynu/y.x0) .

As φ is a D(X)-eigenfunction, it admits a holomorphic continuation
to Ξ = X ×X. So we employ the crown model and conclude that Fy

admits a holomorphic continuation to the strip domain

Sy = {w = u+ iv ∈ C | |v| < y} .
Let now ǫ > 0, ǫ small. Then, for n > 0, we proceed with Cauchy

An(y) =

∫ 1

0

Fy(u− i(1 − ǫ)y)e−2πin(u−i(1−ǫ)y) du

= e−2πn(1−ǫ)y

∫ 1

0

Fy(u− i(1 − ǫ)y)e−2πinu du

= e−2πn(1−ǫ)y

∫ 1

0

φ(aynu/yn−i(1−ǫ).x0)e
−2πinu du .

Thus we get, for all ǫ > 0 and n 6= 0 the inequality

(8.1) |An(y)| ≤ e−2π|n|y(1−ǫ) sup
Γg∈Γ\G

|φ(Γgn±i(1−ǫ).x0)|

We need an estimate.

Lemma 8.1. Let φ be a Maaß cusp form. Then there exists a constant
C only depending on λ such that for all 0 < ǫ < 1

sup
Γg∈Γ\G

|φ(Γgni(1−ǫ).x0)| ≤ C| log ǫ| 12

Proof. Let −π/4 < tǫ < π/4 be such that ±(1 − ǫ) = sin 2tǫ. Then,

by Lemma 4.3 we have Gn±i(1−ǫ).x0 = Gaǫ.x0 with aǫ =

(
eitǫ 0
0 e−itǫ

)

.
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Now note that tǫ ≈ π/4 −
√

2ǫ and thus Prop. 6.1 and Theorem 7.3 ,
give that

sup
Γg∈Γ\G

|φ(gaǫ.x0)| ≤ C| log ǫ| 12 .

This concludes the proof of the lemma. �

We use the estimates in Lemma 8.1 in (8.1) and get

(8.2) |An(y)| ≤ Ce−2π|n|y(1−ǫ)| log ǫ| 12 ,

and specializing to ǫ = 1/y gives that

(8.3) |An(y)| ≤ Ce−2π|n|(y−1)(log y)
1
2 .

This in turn yields for y > 2 that

|φ(iy)| = |Fy(0)| ≤
∑

n 6=0

|An(y)|

≤ C(log y)
1
2

∑

n 6=0

e−2π|n|(y−1)

≤ C(log y)
1
2 · e−2πy

It is clear, that we can replace Fy by Fy(· + x) for any x ∈ R without
altering the estimate. Thus we have proved:

Theorem 8.2. Let φ be a Maaß cusp form. Then there exists a con-
stant C > 0, only depending on λ, such that

|φ(x+ iy)| ≤ C(log y)
1
2 · e−2πy (y > 2) .

Remark 8.3. It should be mentioned that this estimate is not optimal:
one can drop the log-term by employing our knowledge about the coeffi-
cient functions An(y). However the method presented above generalizes
to all semi-simple Lie groups.

9. G-innvariant Hilbert spaces of holomorphic func-

tions on Ξ

Hilbert spaces of holomorphic functions are in particular reproducing
kernel Hilbert spaces, cf. [2].
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9.1. General theory

In this subsection G is a group and M is a second countable com-
plex manifold. The compact-open topology turns O(M) into a Fréchet
space.

We assume that G acts on M in a biholomorphic manner. This
action induces an action of G on O(M) via:

G×O(M) → O(M), (g, f) 7→ f(g−1·) .
We assume that the action is continuous. By a G-invariant Hilbert
space of holomorphic functions on M we understand a Hilbert space
H ⊂ O(M) such that

• The inclusion H →֒ O(M) is continuous;
• G leaves H invariant and the action is unitary.

It follows that all point evaluations

Km : H → C, f 7→ f(m); (m ∈M)

are continuous, i.e. f(m) = 〈f,Km〉. We obtain a kernel function

K : M ×M → C, (m,n) 7→ 〈Kn,Km〉 = Kn(m)

which is holomorphic in the first and anti-holomorphic in the second
variable. The kernel K characterizes H completely. Moreover that G
acts unitarily just means that K is G-invariant:

K = K(g·, g·) (g ∈ G) .

We denote by C = C(M,G) the cone of all G-invariant holomorphic
positive definite kernels (i.e reproducing kernels) on M ×M . In the
terminology of Thomas [32] is a conuclear cone in the Fréchet space
O(M ×M) and as such admits a decomposition

(9.1) K =

∫

Ext(C)

Kλ dµ(λ) ,

see [19], Th. II.12 for a more general statement. In (9.1) the symbol
Ext(C) denotes the equivalence classes (under R+-scaling) of extremal
rays in C and

λ 7→ Kλ

is an appropriate assignment of representatives; furthermore µ is a
Borel measure on Ext(C).
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9.2. Invariant Hilbert spaces on the crown

We return to G = Sl(2,R) and M = Ξ. We write Ĝsph for the K-

spherical part of Ĝ and note that the map λ 7→ [πλ] is a bijection from

(R ∪ (−i, i)) /W to Ĝsph. Morover for [π] ∈ Ĝsph we define a positive
definite holomorphic G-imvariant kernel Kπ on Ξ via

Kπ(z, w) = 〈π(z)v, π(w)v〉 (z, w ∈ Ξ)

where v is a unit K-fixed vector. Then each kernel K of a G-invariant
Hilbert space H ⊂ O(Ξ) can be written as

(9.2) K(z, w) =

∫

Ĝsph

Kλ(z, w) dµ(λ) (z, w ∈ Ξ)

where we simplified notation Kπλ to Kλ. The Borel measure µ satisfies
the condition

(9.3) (∀0 < c < 2)

∫

Ĝsph

ec|Reλ| dµ(λ) <∞

and conversely, a measure µ which satisfies (9.3) gives rise to a G-
invariant Hilbert space of holomorphic functions on Ξ, see [24], Prop.
5.4.

9.3. Hardy spaces for the most continuous spectrum of the

hyperboloid

A little bit of motivation upfront. We recall the splitting of square
integrable functions on R

L2(R) ≃ H2(X) ⊕H2(X)

into a sum of Hardy spaces:

H2(X) =

{

f ∈ O(X) | sup
y>0

∫

R

|f(x+ iy)|2 dx <∞
}

,

and

H2(X) =

{

f ∈ O(X) | sup
y<0

∫

R

|f(x+ iy)|2 dx <∞
}

.

The isomorphism map from H2(X) to L2(R) is just the boundary
value:

b : H2(X) → L2(R); b(f)(x) = lim
y→0+

f(· + iy)
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and likewise

b : H2(X) → L2(R); b(f)(x) = lim
y→0−

f(· + iy)

In the sequel we replace the pair (R, X), i.e. Shilov boundary R of the
complex manifold X, by (Y,Ξ) where Y = G/H = Sl(2,R)/SO(1, 1) is
the distinguished boundary of Ξ. But now we have to be more careful
with the space of square-integrable functions L2(Y ). Recall the Casimir
element, the generator of Z(g) := U(g)G:

C = h2 + 4ef .

Then
L2(Y ) = L2(Y )mc ⊕ L2(Y )disc

accordingly whether C has continuous or discrete spectrum. Here our
concern is only with the (most) continuous part L2(Y )mc. So it is about
to define the Hardy spaces H2(Ξ) and H2(Ξ). It was a result of [11]
that H2(Ξ) actually exists and that the kernel is given (up to positive
scale) by

(9.4) K =

∫ ∞

0

Kλ λ tanh(πλ/2)

cosh(πλ)
· dλ .

There exists a well defined boundary value map

b : H2(Ξ) → L2
mc(Y ); b(f)(g(1,−1)) = lim

e→0+
f(gaǫ · x0)

which is equivariant and isometric. Likewise one has a Hardy space
H2(Ξ) on Ξ which is just the complex conjugate of H2(Ξ). The de-
composition of the continuous spectrum then is [11]:

(9.5) L2
mc(Y ) = b(H2(Ξ)) ⊕ b(H2(Ξ))

Remark 9.1. (a) We caution the reader that L2
mc(Y ) is not exhausted

by our Hardy spaces once the real rank of Y is larger then one.
(b) We defined H2(Ξ) by its kernel and not by its norm. It is possible
to give a geometric expression of the norm in H2(Ξ) in terms of certain
G-orbital integrals on Ξ, see [13]. This method was also quite useful in
our work on the heat kernel transform [22].

10. Kähler structures on Ĝsph

Throughout this section (π,H) denotes a non-trivialK-spherical uni-
tary representation of G. We let vK ∈ H be a K-fixed unit vector.

We first recall that the projective space
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P(H) = H×/C∗

of H is an infinite dimensional complex manifold which is complete
under the Fubini-Study metric gFS. We write

hFS = gFS + iωFS

for the corresponding Hermitian structure on P(H).
Without proof we state two results, see [24], Prop. 3.1 and Th. 3.3,

which hold in full generality.

Theorem 10.1. The map

Fπ : Ξ → P(H), z 7→ [π(z)vK ]

is proper. In particular imFπ is closed and the pull back hπ := F ∗
πhFS

defines a Hermitian Kähler structure on Ξ whose underlying Riemann-
ian structure gπ is complete.

Remark 10.2. Elementary complex analysis shows that the map

sπ : Ξ → R>0, z 7→ ‖π(z)v‖2

is strictly plurisubharmonic. The Kähler form ωπ from the previous
theorem is then nothing else as

ωπ(z) =
i

2
∂∂ log ‖π(·)vK‖2 .

The main result of this section then is, see [24], :

Theorem 10.3. The map π 7→ ωπ identifies Ĝsph \ {1} with positive
Kähler forms on Ξ whose associated Riemannian metric is complete.

The big problem then is to characterize the image of π 7→ ωπ.

11. Appendix: The hyperbolic model of the crown

domain

The upper half plane X = G/K does not depend on the isogeny
class of G. Replacing G by its adjoint group PSl(2,R) ≃ SOe(1, 2) has
essentially no consequences for the crown. Changing the perspective to
G = SOe(1, 2) we obtain new view-points by realizing Ξ in the complex
quadric. This is the topic of this section.

Let us fix the notation first. From now on G = SOe(1, 2) and we
regard K = SO(2,R) as a maximal compact subgroup of G under the
standard lower right corner embedding.

Let us define a quadratic form Q on C3 by
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Q(z) = z2
0 − z2

1 − z2
2 , z = (z0, z1, z2)

T ∈ C3 .

With Q we declare real and complex hyperboloids by

X = {x = (x0, x1, x2)
T ∈ R3 | Q(x) = 1, x0 > 0}

and
XC = {z = (z0, z1, z2)

T ∈ C3 | Q(z) = 1} .
We notice that mapping

GC/KC → XC, gKC 7→ g.x0 (x0 = (1, 0, 0))

is diffeomorphic and that X is identified with G/K.
At this point it is useful to introduce coordinates on g = so(1, 2).

We set

e1 =





0 0 1
0 0 0
1 0 0



 , e2 =





0 1 0
1 0 0
0 0 0



 , e3 =





0 0 0
0 0 1
0 −1 0



 .

We notice that k = Re3, p = Re1⊕Re2 and make our choice of the flat
piece a = Re1. Then Ω = (−1, 1)e1, Ξ = G exp(i(−π/2, π/2)e1).x0

and we obtain Gindikin’s favorite model of the crown

Ξ = {z = x + iy ∈ XC | x0 > 0, Q(x) > 0} .
It follows that the boundary of Ξ is given by

(11.1) ∂Ξ = ∂sΞ ∐ ∂nΞ

with semisimple part

(11.2) ∂sΞ = {iy ∈ iR3 | Q(y) = −1}
and nilpotent part

(11.3) ∂nΞ = {z = x + iy ∈ XC | x0 > 0, Q(x) = 0} .
Notice that z1 = exp(iπ/2e1).x0 = (0, 0, i)T and that the stabilizer

of z1 in G is the symmetric subgroup H = SOe(1, 1), sitting inside of
G as the upper left corner block. Hence

(11.4) ∂sΞ = ∂dΞ = G.z1 ≃ G/H

A first advantage of the hyperbolic model is a more explicit view
on the boundary of Ξ: Proposition 4.6 becomes more natural in these
coordinates. We allow ourselves to go over this topic again.

Write τ for the involution on G with fixed point set H and let g =
h⊕ q the corresponding τ -eigenspace decomposition. Clearly, h = Re2
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and q = a ⊕ k = Re1 ⊕ Re3. Notice that q breaks as an h-module into
two pieces

q = q+ ⊕ q−

with
q± = {Y ∈ q | [e2, Y ] = ±Y } = R(e1 ± e2) .

Let us define the H-stable pair of half lines

C = R≥0(e1 ⊕ e3) ∪ R≥0(e1 − e3)

in q = q+ ⊕ q−. We remark that C is the boundary of the H-invariant
open cone

W = Ad(H)(R>0e1) = R>0(e1 + e3) ⊕ R>0(e1 − e3) .

Recall that the tangent bundle T (G/H) naturally identifies with G×Hq

and let us mention that C = G ×H C is a G-invariant subset thereof.
Proposition 4.6 from before now reads as:

Proposition 11.1. For G = SOe(1, 2), the mapping

b : G×H C → ∂Ξ, [g, Y ] 7→ g exp(−iY ).z1

is a G-equivariant homeomorphism.

As a second application of the hyperbolic model we now prove the
orbit-matching Lemma l=match from before.

Proof of Lemma 4.3. With a = Re1 we come to our choice of n. For
z ∈ C let

nz =





1 + 1
2
z2 z −1

2
z2

z 1 −z
1
2
z2 z 1 − 1

2
z2





and
NC = {nz | z ∈ C} .

Further for t ∈ R with |t| < π
2

we set

at =





cos t 0 −i sin t
0 1 0

−i sin t 0 cos t



 ∈ exp(iΩ) .

The statement of the lemma translates into the assertion

(11.5) Gni sin t.x0 = Gat.x0 .

Clearly, it suffices to prove that

at.x0 = (cos t, 0,−i sin t)T ∈ Gni sin t.x0 .

Now let k ∈ K and b ∈ A be elements which we write as
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k =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 and b =





cosh r 0 sinh r
0 1 0

sinh r 0 cosh r





for real numbers r, θ. For y ∈ R, a simple computation yields that

kbniy.x0 =





cosh r(1 − 1
2
y2) − 1

2
y2 sinh r

iy cos θ + sin θ(sinh r(1 − 1
2
y2) − 1

2
y2 cosh r)

−iy sin θ + cos θ(sinh r(1 − 1
2
y2) − 1

2
y2 cosh r)



 .

Now we make the choice of θ = π
2

which gives us that

kbniy.x0 =





cosh r(1 − 1
2
y2) − 1

2
y2 sinh r

sinh r(1 − 1
2
y2) − 1

2
y2 cosh r

−iy



 .

As y = sin t we only have to verify that we can choose r such that
sinh r(1 − 1

2
y2) − 1

2
y2 cosh r = 0. But this is equivalent to

tanh r =
1
2
y2

1 − 1
2
y2
.

In view of −1 < y = sin t < 1, the right hand side is smaller than one
and we can solve for r. �
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[10] S. Gindikin and B. Krötz, Invariant Stein domains in Stein Symmetric spaces
and a non-linear complex convexity theorem, IMRN 18 (2002), 959-971.
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[26] B. Krötz and M. Otto, A refinement of the complex convexity theorem via

symplectic techniques, Proc. Amer. Math. Soc. 134 (2) (2006), 549–558.
[27] T. Matsuki, Stein extensions of Riemann symmetric spaces and some general-

ization, J. Lie Theory 13 (2003), no. 2, 565–572.
[28] Paley and Wiener, Fourier transforms, Amer. Math. Soc. Colloquium Publi-

cations, Volume XIX, 1949.
[29] A. Pasquale, A Paley-Wiener theorem for the inverse spherical transform, Pa-

cific J. Math. 193 (2000), no. 1, 143–176.
[30] I.E. Segal, An extension of Plancherel’s formula to separable unimodular

groups, Ann. Math. 52 (2) (1950), 272–292.



CROWN THEORY 49

[31] S. Thangavelu, A Paley-Wiener Theorem for the inverse Fourier transform on
some homogeneous spaces, Hiroshima J. Math., to appear

[32] E.G.F. Thomas, Integral representations in conuclear cones, J. Convex Anal-
ysis, 1:2 (1994), 225–258.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn,

email: kroetz@mpim-bonn.mpg.de


	1. Vorwort
	2. Symbols
	3. The upper half plane, its affine complexification and the crown
	4. Geometric structure theory
	4.1. Basic structure theory
	4.2. Fine structure theory

	5. Holomorphic extension of representations
	5.1. The spherical principal series
	5.2. A complex geometric classification of 
	5.3. Holomorphic H-spherical vectors

	6. Growth of holomorphically extended orbit maps
	6.1. Norm estimates
	6.2. Invariant Sobolev norms

	7. Harmonic analysis on the crown
	7.1. Holomorphic extension of eigenfunctions
	7.2. Paley-Wiener revisited
	7.3. Hard estimates on extended Maaß cusp forms

	8. Automorphic cusp forms
	9. G-innvariant Hilbert spaces of holomorphic functions on 
	9.1. General theory
	9.2. Invariant Hilbert spaces on the crown
	9.3. Hardy spaces for the most continuous spectrum of the hyperboloid

	10. Kähler structures on sph
	11. Appendix: The hyperbolic model of the crown domain
	References

