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Abstract. Let M be a finitely generated module over a local ring R of characteristic p > 0.
If depth(R) = s, then the property that M has finite projective dimension can be character-
ized by the vanishing of the functor Ext i

R(M, f n
R) for s +1 consecutive values i > 0 and for

infinitely many n. In addition, if R is a d-dimensional complete intersection, then M has finite
projective dimension can be characterized by the vanishing of the functor Ext i

R(M, f n
R) for

some i ≥ d and some n > 0.

1. Introduction

Let (R,m, k) be a local Noetherian ring of characteristic p > 0. Let f : R −→ R,
f (r) = r p, denote the Frobenius map and for each n ∈ N, let f n

R denote the map
f repeated n times. Each f n

R defines a new R-module structure on R, denoted by
f n
R, such that for r , s ∈ R, r · s = r pn

s. The ring R is said to be F-finite if f 1
R,

hence every f n
R, is a finitely generated R-module. For any R-module M , f n

M will
stand for the module M viewed as an R-module via f n

R .
Peskine and Szpiro [14] showed that if R is Noetherian and M is a finitely

generated R-module, then pd R(M) < ∞ implies that Tor R
i (M, f n

R) = 0 for all
i > 0 and all n. Later Herzog [10] showed the converse and an injective version of
the result of Peskine and Szpiro mentioned above.

Theorem 1.1. Let R be a local ring of characteristic p > 0, and let M be a finitely
generated R-module.

(1) [10, Theorem 3.1] If Tor R
i (M, f n

R) = 0 for all i > 0 and infinitely many n,
then M has finite projective dimension.

(2) [10, Theorem 5.2] Suppose that R is F-finite. If Ext i
R( f n

R, M) = 0 for all
i > 0 and infinitely many n, then M has finite injective dimension.
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Later Koh and Lee [11] and also Takahashi and Yoshino [16] proved the asser-
tions of this theorem in more general settings.

In [6] the first item of Theorem 1.1 is generalized in the case of R being a com-
plete intersection: M is of finite projective dimension provided TorR

r (M, f n
R) = 0

for some fixed n, r ≥ 1. The main ingredient of the authors’ proof was the notion
of complexity. In [9] Dutta gave a different proof of this result, without using the
notion of complexity. In [13] Li proved that over a complete intersection local ring
R, a finitely generated R-module M has finite projective dimension if and only if
Exti

R( f n
R, M) = 0 for some i > 0 and some n > 0. This complements the result

of Avramov and Miller. All together we have the following result.

Theorem 1.2. Let R be a local complete intersection of characteristic p > 0, and
let M be a finitely generated R-module.

(1) [6, Main Theorem] [9] If Tor R
i (M, f n

R) = 0 for some i > 0 and for some
n > 0, then M has finite projective dimension.

(2) [13] If Ext i
R( f n

R, M) = 0 for some i > 0 and for some n > 0, then M has
finite injective dimension.

There are three different functors induced by Frobenius functors, Tor R
i (−, f n

R),
Ext i

R( f n
R,−), and Ext i

R(−, f n
R). As we see in the literature there are some results

on the characterization of modules with finite projective (resp. injective) dimen-
sion by using the functors Tor R

i (−, f n
R) (resp. Ext i

R( f n
R,−)). Now it is natural

to ask about the functor Ext i
R(−, f n

R). The aim of this paper is to study the func-
tor Ext i

R(−, f n
R) and somehow give the third part of Theorems 1.1 and 1.2. More

precisely, we prove the following two theorems.

Theorem A. Let R −→ S be a local homomorphism of local rings, and let M be
a finitely generated S-module. Suppose that depth(R) = d, char(R) = p > 0 and
n is an integer with pn ≥ µ(R) (the definition of µ(R) is given in 2.2). If there
exists an integer t ∈ N such that Ext i

R(M, f n
R) = 0 for all t ≤ i ≤ t + d, then

pd R(M) < ∞.

Theorem B. Let M be a finitely generated module over a d-dimensional complete
intersection local ring (R,m, k) of characteristic p > 0. If for some i ≥ d and
some n > 0, Ext i

R(M, f n
R) = 0, then M has finite projective dimension.

2. Proof of Theorem A

An R-module M is called finite over a local homomorphism if there exists a local
homomorphism of Noetherian local rings R → S such that M is a finitely generated
S-module and the S-action is compatible with the action of R. Studied by Apassov,
Avramov, Foxby, Iyengar, Miller and others, cf. [2,5,7], homological properties of
modules finite over (local) homomorphisms are shown to extend those of finitely
generated modules.

By [1, Lemma 2.57], if (R,m, k) is a local ring and the R-module N is finite over
a local homomorphism, then fd R(N ) < i for some i provided that Tor R

i (k, N ) = 0.
In the following result we give an Ext version of André’s formula.
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Proposition 2.1. Let ϕ : (R,m, k) −→ (S, n, l) be a local homomorphism of local
rings, and let N be a finitely generated S-module. Then fd R(N ) < i for some i
provided that Ext i

R(N , k) = 0.

Proof. For any R-module M let M∨ = Hom R(M, ER(k)) be the Matlis dual of
M , where ER(k) is the injective hull of k. By using the fact k∨ ∼= k, we have the
following isomorphisms for all j

Ext j
R(N , k) ∼= Ext j

R(N , k∨) ∼= Tor j
R(N , k)∨.

Therefore Ext j
R(N , k) = 0 if and only if Tor j

R(N , k) = 0 for all j . Hence the
assertion follows from the above mentioned result of André. �	
Definition 2.2. . Let R be a local ring with maximal ideal m and d = depth(R).
We define the invariant µ(R) to be

µ(R) = inf{n ∈ Z | (0 :R/xR m) ∩ mn(R/xR) = 0

for some maximal R-sequence x = x1, x2, ..., xd}.
Remark 2.3. (1) A similar integer-valued invariant ν(R) is defined in [16]. From

the definition, one can easily check that µ(R) ≤ ν(R) and the result [16,
Corollary 3.3] of Takahashi and Yoshino also holds for this possibly better
bound µ(R) with the same proof. In fact, the following statement holds:
Let (R,m, k) be a local ring of char(R) = p > 0, and let n be an integer
with pn ≥ µ(R). Then k is isomorphic to a direct summand of f n

R/x f n
R as

an R-module for some maximal f n
R-regular sequence x in f n

m.
(2) When (R,m, k) is a local ring of characteristic p > 0, a sequence x1, x2, ..., xd

of elements of R is f n
R-regular if and only if x pn

1 , x pn

2 , ..., x pn

d is an R-regular
sequence. Thus if depth (R) = d, then every maximal f n

R-regular sequence
in m has length d.

The following is the proof of Theorem A.

Proof. By 2.3(1), there exists a maximal f n
R-regular sequence x such that k is a

direct summand of f n
R/x f n

R as an R-module. By the assumption it is easy to see
that Ext t

R(M, f n
R/x f n

R) = 0 and this implies that Ext t
R(M, k) = 0. Hence by

Proposition 2.1, fd R(M) < ∞. On the other hand, [17, Theorem 4.2.8] says that
for any flat R-module F , pd R(F) ≤ dim (R). Hence by using a flat resolution for
M as an R-module, we see that pd R(M) < ∞.

Corollary 2.4. Let (R,m, k) be a local ring, and let M be a finitely generated
R-module. Suppose that depth(R) = d and char(R) = p > 0. If there exists an
integer t ∈ N such that Ext i

R(M, f n
R) = 0 for all t ≤ i ≤ t+d and infinitely many n,

then M has finite projective dimension.

Remark 2.5. (1) Let R be a local ring and M be a finitely generated R-module.
Let

· · · −→ Rn j+1
ϕ j+1−→ Rn j

ϕ j−→ Rn j−1 −→ · · · −→ Rn0 −→ 0
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denote the minimal free resolution of M . Following [11], if pd R(M) = ∞
define Col(M) to be the smallest integer c such that for each i > 1+depth (R),
each column of ϕi contains an element outside mc and if pd R(M) < ∞ let
Col(M) = 1.
Also set

Col(R) = sup{Col(M) | M is a finitely generated R-module}.
Another version of Corollary 2.4 can be obtained from [11, Theorem 1.7] as
follows:
Let (R,m, k) be a local ring, and let M be a finitely generated R-module.
Suppose that depth(R) = d and char(R) = p > 0. If there exist integers
t, n ∈ N such that pn ≥ Col(R) and Ext i

R(M, f n
R) = 0 for all t ≤ i ≤ t + d,

then M has finite projective dimension.

For the proof, suppose that pd R(M) = ∞ and

· · · −→ Rn j+1
ϕ j+1−→ Rn j

ϕ j−→ Rn j−1 −→ · · · −→ Rn0 −→ 0

is the minimal free resolution of M . By applying the functor Hom R(−, f n
R)

we get the following exact sequence

Hom R(Rnt−1, f n
R)

αt−1−→ Hom R(Rnt , f n
R)

αt−→ · · · αt+d−→ Hom R(Rnt+d+1 , f n
R),

where αi = Hom R(ϕi+1,
f n

R). Set L = coker (αt+d). It’s easy to see that
the above sequence is a part of minimal free resolution of L and all entries
of αi for t − 1 ≤ i ≤ t + d belong to mpn ⊆ mCol(R). Also, if pd R(L) <

∞, then by Auslander–Buchsbaum formula, pd R(L) ≤ d and consequently
Hom R(Rnt , f n

R) = 0, which is a contradiction. Thus pd R(L) = ∞. On the
other hand, by [11, Theorem 1.7 (i)] each column of αt−1 contains an element
outside mCol(R). This contradiction implies that pd R(M) < ∞.

(2) As mentioned in the Introduction, Peskine and Szpiro [14] proved that for
a local ring (R,m, k) of characteristic p > 0, if M is a finitely generated
R-module with finite projective dimension, then Tor R

i (M, f n
R) = 0 for any

i, n > 0. Furthermore when R is F-finite, Herzog [10] showed that if M is of
finite injective dimension then Ext i

R( f n
R, M) = 0 for any i, n > 0.

It is easy to see that Theorem A implies that: Let (R,m, k) be a local ring of
characteristic p > 0 and M be a finitely generated R-module. If Ext i

R(M, f n
R) =

0 for all i > 0 and infinitely many n, then M has finite projective dimension.
Now it is natural to ask for the converse of this result. In the following example

we show that this does not hold in general.

Example 2.6. Let (R,m, k) be a d-dimensional Cohen–Macaulay local ring with
characteristic p > 0. Suppose that R is an F-finite ring. Let x = {x1, ..., xd} ⊂ m
be a maximal R-sequence. We know that pd R(R/xR) = d. On the other hand we
have

Ext d
R(R/xR, f n

R) ∼= Hom R(R/xR, f n
R/x f n

R)

∼= Hom R/xR(R/xR, f n
R/x f n

R)

∼= f n
R/x f n

R.
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By Nakayama’s lemma f n
R/x f n

R 
= 0 and so Ext d
R(R/xR, f n

R) 
= 0.

3. Proof of Theorem B

Lemma 3.1. Let M be a finitely generated module over a d-dimensional complete
intersection local ring R of characteristic p > 0. If for some i ≥ d and some
n > 0, Ext i

R(M, f n
R) = 0, then Ext j

R(M, f n
R) = 0 for all j ≥ i .

Proof. Without loss of generality we can assume that R = S/x where S is a com-
plete regular local ring of characteristic p > 0 and x = (x1, ..., xt ) is the ideal
generated by an S-sequence x1,..., xt . By Kunz’s theorem [12, Theorem 3.3], f n

S is
a flat map. Thus ˜f n = R ⊗S f n

S : S/x −→ S/xpn
is flat. Also f n

R : R −→ R can
be factored as

R
˜f n

−→ Rn
πn−→ R

where Rn denotes S/xpn
and πn is the natural surjection. We consider M as an

Rn-module by restriction of scalars using πn . Consequently, we have an Rn-mod-
ule structure on M ⊗S

f n
S. So

M ⊗S
f n
S ∼= M ⊗R (R ⊗S

f n
S) ∼= M ⊗R

˜f n
Rn,

as Rn-module (and R-module).
Consider the minimal R-free resolution F. −→ M −→ 0 of M . The R-module

˜f n
Rn is an Rn-module by πn . Thus M ⊗R

˜f n
Rn has an Rn-module structure which

comes from ˜f n
Rn . More precisely, for s + xpn ∈ Rn , m ∈ M and α ∈ R, we have

(s + xpn
)(m ⊗ α) = ((s + x)m) ⊗ α = m ⊗ ((s pn + xpn

)α).

Therefore, F.⊗R
˜f n

Rn is an Rn-free resolution for M ⊗R
˜f n

Rn and two Rn-module
structures for M ⊗R

˜f n
Rn which come from M and ˜f n

Rn are the same.
Thus we observe that

Ext j
Rn

(M ⊗S
f n
S, R) ∼= Ext j

Rn
(M ⊗R

˜f n
Rn, R) ∼= Ext j

R(M, Hom Rn (
˜f n

Rn, R)),

for all j ≥ 0. It’s easy to check that ϕ : Hom Rn (
˜f n

Rn, R) −→ f n
R with ϕ(g) =

g(1 + xpn
) is an R-module isomorphism. Hence we have

Ext j
Rn

(M ⊗S
f n
S, R) ∼= Ext j

R(M, f n
R),

for all j ≥ 0, especially Ext i
Rn

(M ⊗S
f n
S, R) = 0.

We have the following exact sequences

0 −→ K1 −→ S/xpn −→ S/x −→ 0,

0 −→ K2 −→ K1 −→ S/x −→ 0,

...

0 −→ Ktn −→ Ktn−1 −→ S/x −→ 0,
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where Ktn is isomorphic to S/x. So by applying Hom Rn (M ⊗S
f n
S,−) to the above

short exact sequences, we get the exact sequences

0 −→ Ext i+1
Rn

(M ⊗S
f n
S, K1) −→ Ext i+1

Rn
(M ⊗S

f n
S, S/xpn

),

0 −→ Ext i+1
Rn

(M ⊗S
f n
S, K2) −→ Ext i+1

Rn
(M ⊗S

f n
S, K1),

...

0 −→ Ext i+1
Rn

(M ⊗S
f n
S, Ktn ) −→ Ext i+1

Rn
(M ⊗S

f n
S, Ktn−1).

We have d = dim(S) − t = idRn (S/xpn
). Thus Ext j

Rn
(M ⊗S

f n
S, S/xpn

) = 0 for

all j > i . By going down along the above exact sequences we obtain Ext i+1
Rn

(M ⊗S

f n
S, S/x) = 0. Repeating these processes, we get Ext j

Rn
(M ⊗S

f n
S, S/x) = 0 for

all j ≥ i and this is equivalent to the vanishing of Ext j
R(M, f n

R) for all j ≥ i as
desired. �	
Definition 3.2. Let (T, l) −→ (S, n) be a local homomorphism of Noetherian local
rings. We say S is a Cohen T -algebra if the following three conditions hold:

(1) S is complete,
(2) S is a flat T -module,
(3) n = lS and S/n is separable over T/l.

Theorem 3.3. [15, Theorem 9.6] Let (T, l) be a Noetherian local ring, and let K
be a separable field extension of T/l. Then there exists a Cohen T -algebra (S, n)

such that S/n ∼= K over T/l.

Theorem 3.4. [4, Theorem III] Let R be a d-dimensional complete intersection
local ring. Assume that M and N are finitely generated R-modules. Then the
following are equivalent:

(1) Ext i
R(M, N ) = 0 for all i � 0,

(2) Ext i
R(N , M) = 0 for all i � 0,

(3) Tor R
i (M, N ) = 0 for all i � 0.

Now we are ready to give the proof of Theorem B.

Proof. Let k be the algebraic closure of k. We know that k is perfect and thus
is a separable extension of k. Therefore by Theorem 3.3, there exists a Cohen
R-algebra (S, n) such that S/n ∼= k over R/m. Since S/mS is a field and R is
complete intersection, by [3, Theorem 7.4.3], S is complete intersection. Hence by
using the fact that f n

R R ⊗R S ∼= f n
S S, we can replace R by S and assume that R is

complete and the residue field k is perfect. Thus we can assume that R is F-finite
(see for example [8, page 398]). Also by Lemma 3.1, Ext j

R(M, f n
R) = 0 for all

j � 0. Therefore, by Theorem 3.4, Tor R
j ( f n

R, M) = 0 for all j � 0. Now by
Theorem 1.2(1), M has finite projective dimension. �	

Note that there exist d(≥ 2)-dimensional complete intersection local rings R
and finitely generated R-modules M such that Ext i

R(M, f n
R) = 0 for all 1 ≤ i < d

and for all n ≥ 1, but M does not have finite projective dimension.
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Example 3.5. Let (R,m) be an F-finite d(≥ 2)-dimensional complete intersection
local ring of characteristic p > 0 which is not regular. For such an example, one
can choose k to be a perfect field with chark = p > 0 and d ≥ 2 be a nat-
ural number. Then let R = k[[X1, X2, ..., Xd+1]]/(t) where t is an element of
k[[X1, X2, ..., Xd+1]] contained in (X1, X2, ..., Xd+1)

2.
Now since depthR( f n

R) = depth(R), we have Ext i
R(R/m, f n

R) = 0 for 0 ≤
i ≤ d − 1 and Ext d

R(R/m, f n
R) 
= 0. On the other hand pd R(R/m) = ∞.
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