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Abstract We prove that the natural invariant surface associated with the billiard game on
an irrational polygonal table is homeomorphic to the Loch Ness monster, that is, the only
orientable infinite genus topological real surface with exactly one end.
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1 Introduction

The classical Katok–Zemljakov construction associates to every rational angled polygon P
a compact flat surface X (P) with finite angle conic singularities [3,9]. The genus of this
surface is totally determined by the angles of the polygon:

Lemma 1 [2] Let the interior angles of P be πmi/ni , i = 1, . . . , k, where mi and ni are
coprime, and let N be the least common multiple of the ni ’s. Then

genus X (P) = 1 + N

2

(
k − 2 − �

1

ni

)

The Katok–Zemljakov construction, in the case of a general nondegenerate simply connected
polygon P , leads to a non-compact flat surface X (P). Our main result is to determine its
topological type:

Theorem 1 Let λ1π, . . . , λN π be the interior angles of the polygon P. Suppose that there
exists j = 1, . . . , N such that λ j is not a rational number. Then, the flat surface X (P) is
homeomorphic to the Loch Ness monster, that is, the only infinite genus, orientable topolog-
ical surface with exactly one end.
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Theorem 1 extends some results presented in [8] that deal with the case where P is a “generic”
triangle. Moreover, the proof we present makes no use of the dictionary between flat surfaces
arising from general polygons and the leaves of homogeneous holomorphic foliations on C2.

This article is organized as follows. In Sect. 2, we recall some basic concepts and results
related to non-compact orientable surfaces and flat surfaces arising from polygons. In Sect. 3,
we prove Theorem 1.

2 Generalities

From now on, surface will mean a connected two dimensional real orientable manifold.

2.1 Non-compact orientable surfaces: the Loch Ness monster

A subsurface of a given surface is a closed region inside the surface whose boundary con-
sists of a finite number of non-intersecting simple closed curves. The genus g of a com-
pact bordered surface S with q boundary curves and Euler characteristic χ is the number
g = 1 − 1

2 (χ + q). A surface is said to be planar if all of its compact subsurfaces are of
genus zero.

Definition 1 A surface X is said to have infinite genus if there exists no finite set C of mutually
non-intersecting simple closed curves with the property that X\C is connected and planar.

Two compact real surfaces are homeomorphic if and only if they have the same genus.
Kerékjártó’s theorem states that non-compact surfaces of the same genus and orientability
class are homeomorphic if and only their ideal boundaries are homeomorphic. We refer the
reader to [7] for the definition of ideal boundary and a proof of this theorem. Points in the
ideal boundary of a surface X are also called ends of X .

Definition 2 Up to homeomorphism, the Loch Ness monster is the unique infinite genus
surface with only one end. (Fig. 1)

This nomenclature can be found in [1]. An infinite genus surface X has only one end if
and only if, for every compact set K ⊂ X , there exists a compact set K ⊂ K ′ such that X\K ′
is connected [7].

2.2 Flat coverings of the N -punctured sphere

Henceforth P ⊂ R2 denotes a non-degenerate simply connected N -sided polygon. Vertices
of P at which the interior angle is a rational multiple of π are called rational. All vertices of
a rational polygon are rational.

Let P0 := P\{vertices of P}. The identification of two disjoint copies of the vertexless
polygon P0 along “common sides” defines a Euclidean structure on the N -punctured sphere.
We denote it by S2(P). The following figure illustrates the simplest case: (Fig. 2).

Fig. 1 The Loch Ness monster
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Fig. 2 S2(P) for a triangle P

The locally Euclidean structure on S2(P) gives rise to the holonomy representation:

hol : π1(S2(P)) −→ Isom+(R2) (1)

Let B j be a simple loop in S2(P) around the missing vertex of P whose interior angle
is λ jπ, j = 1, . . . , N . Suppose that B j ∩ Bi = ∗, for i �= j . Then, {B j }N

j=1 generates

π1(S2(P), ∗). Given an isometry ϕ ∈ Isom+(R2), we denote its derivative by D ◦ ϕ. A sim-
ple calculation shows that M j := D ◦ hol(B j ) is given by:

M j =
(

cos(2λ jπ) − sin(2λ jπ)

sin(2λ jπ) cos(2λ jπ)

)
j = 1, . . . , N . (2)

Let ˜S2(P) be the universal cover of the N -punctured sphere S2(P) and Trans(P) the kernel
of D ◦ hol.

Definition 3 [4] Let X (P0) := ˜S2(P)/Trans(P). The translation surface X (P0) is called the
minimal translation surface corresponding to P .

We denote by π̂ : X (P0) −→ S2(P) the corresponding projection. The deck transforma-
tion group of the covering, Aut(π̂), is abelian, as Trans(P) always contains the commutator
subgroup [π1(S2(P)), π1(S2(P))] (see ibid, [5]).

When the set of rational vertices of P is not empty, the translation surface X (P0) can be
locally compactified by adding to it points above rational vertices of P . The result of this
local compactification is a flat surface with conical singularities. We denote it by X (P). If
the set of rational vertices of P is empty, we set X (P) = X (P0).

Definition 4 We call X (P) the flat surface obtained from the polygon P by the Katok–
Zemljakov construction.

Remark In the case of rational polygons, some authors give a different definition for the flat
surface X (P), see [3] or [6].

3 Proof of theorem 1

The proof of Theorem 1 is organized as follows. First we show that the surface X (P) has
only one end. For this we consider two main cases: (A) all interior angles of P are irrational
multiples of π and (B) there exists at least one interior angle of P which is a rational multiple
of π . Second, we prove that X (P) has infinite genus. Through the proof of Theorem 1, we
need the following

Definition 5 Let (n1, . . . , nN−1) be a choice of coordinates for ZN−1 and λ′ = (λi1 , . . . ,

λiN−1) a choice of N −1 angle parameters λi j ∈ {λ1, . . . , λN }. A point n̂ := (n1, . . . , nN−1)
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is called a resonance of λ′ if and only if
∑N−1

j=1 n jλi j is an integer. The set of resonances of

λ′ is a subgroup of ZN−1. Let Res(λ′) denote this subgroup and G(λ′) := ZN−1/Res(λ′).
The parameter λ is called totally irrational if, for every choice λ′, the subgroup Res(λ′) is
trivial.

The surface X (P) has only one end. Case (A).We suppose that all interior angles of
the polygon P are irrational multiples of π , so that X (P0) = X (P). Our strategy is to con-
struct, for every compact set K ⊂ X (P), a compact set K ′ = K ′(K ) containing K such that
X (P)\K ′ is connected.

Let d be the standard Euclidean metric on C and

ρ : S2(P) −→ P (3)

the natural projection of the punctured sphere onto the polygon P . Denote the set of vertices
of P by Ver(P). For every compact set K ⊂ X (P), the projection π̂(K ) onto the punctured
sphere S2(P) is contained in:

Kε := {t ∈ S2(P) | d(ρ(t), Ver(P)) ≥ ε}, (4)

for a suitable choice of 0 < ε 
 1. Let Sides(P) ⊂ P be the sides of the polygon and fix a
side s ∈ Sides (P). We define

Uε := Kε ∩ ρ−1(P\{Sides(P)\s}) (5)

The closure of Uε in S2(P) is Kε . For every ξ ∈ π̂−1(Uε), we denote by ˜Uε(ξ) a connected
lift of Uε to the surface X (P) containing the point ξ . By compactness, there exist finitely
many points {ξ1, . . . , ξm} in X (P) such that the compact set K is contained in the closure in
X (P) of

m⋃
j=1

˜Uε(ξ j ). (6)

We define K ′(K ) to be the closure in X (P) of (6) (Fig. 3).

Lemma 2 The complement of K ′ in X (P) is connected by arcs.

Fig. 3 The sets K and K ′ in
X (P)

K

X(P)

K
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Proof Let 	 := {Bi j }N−1
j=1 , i j ∈ {1, . . . , N }, be a basis for π1(S2(P), ∗) such that D ◦

hol(Bi j ) is a rotation of angle 2πλi j , for j = 1, . . . N − 1. For this choice of basis, let
λ′ = (λi1 , . . . , λiN−1). The N punctured sphere S2(P) retracts to 	. Fix one retraction

R : S2(P) � 	. (7)

It induces a retraction

R̃ : X (P) � ϒ. (8)

In the following paragraph we describe the retraction space ϒ in terms of C(λ′), the Cayley
graph of G(λ′). First, we identify the set of vertices of C(λ′), that by definition is the set of
elements of the group G(λ′), with the set of points R̃(π̂−1(∗)), in the following way. Let
{e j }N−1

j=1 be the standard basis vectors for G(λ′). Recall that R̃ restricted to the fiber π̂−1(∗)

is the identity. Choose a point ∗0 ∈ π̂−1(∗) and define µ : π̂−1(∗) −→ G(λ′) by

µ(∗0) = (0, . . . , 0), µ(Bi j ∗0) = e j , for all j = 1, . . . , N − 1. (9)

and, for every word m = m(Bi1 , . . . , BiN−1) ∈ π1(S2(P), ∗)

µ(m∗0) = m(µ(Bi1∗0), . . . , µ(BiN−1∗0))µ(∗0). (10)

On the left side of the preceding equations, multiplication corresponds to the monodromy
action of π1(S2(P), ∗) on the fiber π̂−1(∗), and on the right side, multiplication corresponds
to the translation action of G(λ′) on itself. Now we describe the identification for the edges
of C(λ′). Let g, ejg ∈ G(λ′) be vertices of C(λ′). Denote B̃i j (g) the lift of Bi j via π̂ whose
extremities are the points µ−1(g) and µ−1(ejg). We identify the edge between the vertices
g, ejg with R̃(B̃i j (g)) = B̃i j (g). Henceforth ϒ is endowed with its standard graph topology.
This graph depends on our choice of basis 	. Nevertheless, the number of ends of ϒ does not,
for

∑N
j=1 λ j is an integer and this implies that Rank(G(λ′)) = Rank(G(λ′′)) for any pair of

choices λ′, λ′′ of angle parameters. We are now in position to finish the proof of Lemma 2 by
considering two cases.

Case A.1: (Rank G(λ′) ≥ 2) In this situation, any basis 	 for π1(S2(P), ∗) defines a graph
ϒ with exactly one end. Therefore, if we set K := R̃(K ′), there is a finite subgraph K′ of ϒ

containing K such that ϒ\K′ is connected. Let η1 and η2 be two points in X (P)\K ′. We claim
that η1 and η2 can be connected through an arc with points η′

1 and η′
2 in R̃−1(ϒ \K′), respec-

tively. This implies that X (P)\K ′ is connected by arcs, for R̃−1(ϒ \K′) is connected by arcs.
To prove our claim we suppose, without loss of generality, that d(ρ ◦ π̂(η j ), Ver(P)) < ε,
for j = 1, 2. Let

γ j : [0, L] −→ S2(P)\Kε, L ∈ N, j = 1, 2 (11)

be a parameterization for a simple loop passing through π̂(η j ). Up to a change of basis for
π1(S2(P), ∗), we can suppose that the image of each γ j is in the homotopy class of BL

i j
,

for j = 1, 2. Let γ̃ j be a lift of γ j to X (P)\K ′ such that γ̃ j (0) = η j , j = 1, 2. Given
that the matrix D ◦ hol(Bi j ) is a rotation by an irrational multiple of π , the lift γ̃ j is never
closed and the parameter λ′ presents no resonances of the form ne j , for n ∈ N and j = 1, 2.
Therefore, R̃(γ̃ j ) is a path on the graph ϒ without cycles passing through at least L vertices.
The compact set K′ ⊂ ϒ contains finitely many vertices. Then, for L large enough, the point
R̃ ◦ γ̃ j (L) is contained in ϒ\K′, for both j = 1, 2. For such L , it is then sufficient to consider
η′

j = γ̃ j (L).
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Case A.2: (Rank G(λ′) = 1) As in the preceding case, we suppose that d
(
ρ ◦ π̂(η j ),

Ver(P)) < ε, for j = 1, 2. Let

δ j : R −→ S2(P)\Kε (12)

be a Z-covering of a simple loop passing through π̂(η j ) and such that δ j (n) = π̂(η j ), for all
n ∈ Z, j = 1, 2. As in the preceding case, we can suppose that, for each j = 1, 2 the image
of [0, L] via δ j is in the homotopy class of BL

i j
and that D ◦ hol(Bi j ) is a rotation by an angle

λi j that is not a rational multiple of π . Let δ̃ j denote the lift of δ j to X (P)\K ′ satisfying
δ̃ j (0) = η j . We claim that image of the composition R̃ ◦ δ̃ j ‘makes progress’ in the Cayley
graph ϒ . More precisely, that the image of this composition is a regular subgraph ϒ ′

j of ϒ

isomorphic to the Cayley graph of Z. Indeed, assume R̃(η j ) ∈ R̃(π̂−1(∗)). Then, the vertices
of ϒ ′

j are R̃ ◦ δ̃ j (n), for j = 1, 2 and n ∈ Z. Given that λi1 and λi2 are not rational multiples
of π , the parameter λ′ presents no resonances of the form ne j , for n ∈ N and j = 1, 2. This
implies that all vertices in {R̃ ◦ δ̃ j (n)}n ∈ Z are different, for each j = 1, 2 and the claim
follows. In the next figure, we illustrate with normal and dotted arrows the ‘progress’ of the
graphs ϒ ′

j in ϒ in the case of an isoceles triangle. Here Res(λ′) is generated by (1,−1) and
integers in the figure show the identifications on the vertices required to obtain ϒ (Fig. 4).

When the rank of G(λ′) is equal to one, there is a finite subgraph K′ ⊂ϒ containing K
such that ϒ\K′ has two connected components �1 and �2. The graph K′ can be chosen
so that, for each j = 1, 2, ϒ j\K′ has two connected components as well, namely ϒ j ∩ �1

and ϒ j ∩ �2. Proceeding with the covering δ j as we did with the loop γ j , j = 1, 2 in the
preceding case, we can connect the points η1 and η2, respectively, through an arc with points
η′

1 and η′
2 in X (P)\K ′ such that R̃(η′

1) and R̃(η′
2) are contained in the same connected com-

ponent of ϒ \ K′, say �1. The points η′
1 and η′

2 can then be connected through an arc within
R̃−1(�1), and we obtain this way an arc connecting η1 to η2. ��

The surface X (P) has only one end. Case (B). We now turn to the case where not all
angles of P are irrational multiples of π . Let VerQ(P) be the set of vertices of P at which
the interior angle is a rational multiple of π and VerI (P) := Ver(P)\VerQ(P). We denote

by S2(P) the punctured sphere obtained by adding all rational vertices of P to S2(P). In the
following diagram

X (P0)

π̂

��

� � χ2 �� X (P)

π̃

��

S2(P)
� � χ1 �� S2(P)

(13)

χ1 and χ2 are the natural embeddings defined when “adding rational vertices” and π̃ is the
corresponding branched covering of X (P) over the punctured sphere S2(P). Let K ⊂ X (P)

be a compact set. Our strategy will be the same, that is, to show that there is exist a compact
set K ⊂ K ′(K ) ⊂ X (P) such that X (P)\K ′ is connected.

Fig. 4 Graphs ϒ ′
1 and ϒ ′

2
(dotted arrows) in ϒ

40

0−1−3−4 −2

1 2 3

1 2

−1−2−3

3
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For 0 < ε sufficiently small, the set π̂ ◦ χ−1
2 (K ) is contained in the complement of an

ε-neighborhood of the set of irrational vertices in S2(P). Abusing notation, we write

Kε = {t ∈ S2(P) | d(ρ(t), VerI (P)) ≥ ε}, (14)

and define Uε as in (5). For every ξ ∈ π̂−1(Uε) we denote by ˜Uε(ξ) a connected lift of Uε

to X (P0). For every choice � = {ξ1, . . . , ξs} ⊂ π̂−1(Uε) define K ′(�) to be the closure in

X (P) of χ2(∪s
j=1

˜Uε(ξ j )). Choose � such that

(i) The compact set K is contained in K ′(�).

(ii) For every simple loop γ ⊂ π̃(K ′(�)) around a rational vertex v and every connected
lift γ̃ of γ to X (P) satisfying γ̃ ⊂ K ′(�), one has that γ̃ is contractible within K ′(�)

to a point over v.

For such a choice of �, we affirm that X (P)\K ′(�) is connected by arcs. Let q1, q2 ∈
X (P)\K ′(�). Property (ii) implies that q1 and q2 can be connected within X (P)\K ′(�)

respectively through an arc with points q ′
1 and q ′

2 such that each projection π̃(q ′
j ), j = 1, 2

lies in the interior of an ε-neighborhood in S2(P) of the set of irrational vertices VerI (P).
Define α j := χ−1

2 (q ′
j ), j = 1, 2. We claim that these points can be connected through an

arc γ within X (P0)\χ−1
2 (K ′(�)). Then χ2(γ ) connects q1′ with q2′ , and this completes the

proof of Case (B).
To prove our claim, chose a basis 	 := {Bi j }N−1

j=1 for the fundamental group of S2(P)

such that, for each j = 1, 2 there exist a loop Bi j in 	 whose index with respect to π̂(α j )

is equal to 1. Given that π̃(q ′
j ) lies in the interior of an ε-neighborhood of VerI (P), each

matrix D ◦ hol(Bi j ) represents a rotation by an angle which is not a rational multiple of π .
Let λ′ be the set of angle parameters defined by our choice of basis 	. As in the preceding
situation, we consider two cases: (B.1) Rank G(λ′) ≥ 2 and (B.2) Rank G(λ′) = 1.

Set K = R̃(χ−1
2 (K ′(�))). For case (B.1) the graph ϒ has only one end. Given that the

angles of the rotations D ◦ hol(Bi j ) are not rational multiples of π we can proceed as in case
(A.1), Lemma 2. In other words, find a simple loop γ j passing through π̂(α j ) for which no
connected lift γ̃ j to X (P0) is closed. Then, ‘making progress’ in the Cayley graph ϒ , reach
a points α′

1 and α′
2 in R̃−1(ϒ\K′), that can be connected through an arc. Here, K ⊂ K′ ⊂ ϒ

denotes a finite graph such that ϒ\K′ is connected. For (B.2) set K = R̃
(
χ−1

2 (K ′(�))
)

as

well and proceed as in case (A.2), Lemma 2.
The surface X (P) has infinite genus. Here our strategy is to find a sequence of domains

{D j } j∈Z in X (P), each homeomorphic to a torus to which we have removed a finite number
of small discs and such that D j ∩ Di = ∅ whenever i �= j . Therefore, there exists no finite
set C ⊂ X of mutually non-intersecting simple closed curves with the property that X\C is
a connected and planar surface.

Remark When proving that X (P) has infinite genus, we do not suppose that all interior
angles of P are irrational multiples of π .

Let v and w denote vertices of P whose interior angles are not rational multiples of π .
Denote these angles by λi1π and λi2π respectively. The boundary ∂ P\{v,w} has two con-
nected components. Let S denote a connected component containing at least two sides of P .
Define

Uε := {t ∈ S2(P) | d(ρ(t), Ver(P)) ≥ ε}, (15)
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Fig. 5 The domain U ⊂ S2(P)

s’

v w
P

s s’

s

=v w

s s’

s’s

B Bi1 i2

v

s

s’

w

Bi1

Bi2

s

s’

Fig. 6 The loops Bi1 and Bi2 in U

and let U := Uε\ρ−1(S). If ε > 0 is sufficiently small, U can be identified, topologically,
with the following figure (for the sake of simplicity, we present an image corresponding to a
pentagon P) (Fig. 5).

In this figure s and s′ denote the sides of P in S adjacent to the vertices v and w respec-
tively. Let 	 be a basis for the fundamental group of S2(P) containing two generators Bi1

and Bi2 in U whose holonomy is given by:

D ◦ hol(Bi j ) =
(

cos(2λi j π) − sin(2λi j π)

sin(2λi j π) cos(2λi j π)

)
j = 1, 2. (16)

Denote by U (m) a connected lift of U along a loop described by a word on the letters forming
m ∈ 	. We claim that, despite the possible resonances, there is always a word m such that
U (m) is homeomorphic to a torus from which we have removed a finite number of discs.
Since the angle λi1π is not a rational multiple of π , for M ∈ N sufficiently large, each domain

of the form U (mBjM
i1

), j ∈ Z\0, contains a domain D j homeomorphic to a torus and such
that D j ∩ Di = ∅, whenever i �= j .

First, identify U and the loops Bi1 and Bi2 with the following figure (Fig. 6).
We denote by [m1, m2] = m−1

2 m−1
1 m2m1 the commutator of two words in 	. We proceed

by cases, given by the resonances of the parameter λ.

Case 1 We suppose that λ is totally irrational. Then U ([B−1
i1

, Bi2 ][Bi1 , Bi2 ]) is homeomor-
phic to a torus from which we have removed a finite number of discs. We explain this step by
step. A connected lift of a commutator [Bi1 , Bi2 ] to the covering X (P0) via π̂ is a loop, for
Aut(π̂) is abelian. Given that λ has no non-trivial resonances, neither λi1 + λi2 nor λi1 − λi2

is an integer. We deduce that the lift U ([Bi1 , Bi2 ]) is of the form (Fig. 7).
The commutativity of Aut(π̂) and the lack of non-trivial resonances for λ, imply that the

connected lift of the product [B−1
i1

, Bi2 ][Bi1 , Bi2 ] is “homeomorphic” to the capital letter B.

In terms of figures, U ([B−1
i1

, Bi2 ][Bi1 , Bi2 ]) is given by (Fig. 8).
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Fig. 7 The lift of the
commutator [Bi1 , Bi2 ]

−1

2
i

B−1

i1

Bi1

B
2

iB

−1

2
i

B−1

i1

Bi1

B
2

iB
2

i

B−1

i1

B−1

2
i

Bi1

B

Fig. 8 The lift of the product of commutators [B−1
i1

, Bi2 ][Bi1 , Bi2 ]

Fig. 9 The domain
U ([B−1

i1
, Bi2 ][Bi1 , Bi2 ])

A’A

Fig. 10 The domain
U ([B−1

i1
, Bi2 ][Bi1 , Bi2 ]) is a

“punctured” torus

A’A

Trivially, the domain U ([B−1
i1

, Bi2 ][Bi1 , Bi2 ]) is obtained from the identification of two
connected components A and A′ (Fig. 9). This identification defines a torus to which one has
removed a finite number of discs (Fig. 10).

Case 2 In the preceding case no element of R := {λi1 +λi2 , λi1 −λi2 , 2λi1 +λi2 , 2λi1 −λi2}
was an integer. This fact let us arrive to Fig. 8. Henceforth we deal with all possible subcases
defined by non-empty subsets of R(Z) := R ∩ Z. Define

(2.1) R(Z) = {2λi1 + λi2}, (2.2) R(Z) = {2λi1 − λi2},
(2.3) R(Z) = {λi1 − λi2}, and (2.4) R(Z) = {λi1 + λi2}

Remark that these are all possible non-empty subsets of R ∩ Z. Take as example, R(Z) =
{2λi1 + λi2 , λi1 + λi2}. This set of “resonances” will never occur, for the difference of its
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p

−1

2
i

B−1

i1

B
2

i
B

2
i

Bi1
Bi1

p

B

Fig. 11 The domain U (Bi2 B2
i1

[Bi1 , Bi2 ])

Fig. 12 Simplification of
U (Bi2 B2

i1
[Bi1 , Bi2 ])

pi1

Bi1

B−1

i1

B
2

i B−1

2
iB−1

2
i

p

B

Fig. 13 The domain U (B2
i1

B−1
i2

[Bi1 , B−1
i2

])

Fig. 14 Simplification of
U (B2

i1
B−1

i2
[Bi1 , B−1

i2
])

elements is equal to, say, λi1 , which by hypotheses is not a rational number. All other possible
cases not figuring in the list (2.1)–(2.4) are excluded by similar arguments. We now proceed
explaining in detail how to obtain in subcase (2.1) a domain homeomorphic to a torus from
which we have removed a finite number of discs.

Subcase 2.1 When neither λi1 + λi2 , nor λi1 − λi2 are integers, the lift of the commutator
U ([Bi1 , Bi2 ]) is given by Fig. 7. Given that 2λi1 + λi2 is an integer, a connected lift of the
word Bi2 B2

i1
to X (P0) is a loop. We depict the domain U (Bi2 B2

i1
[Bi1 , Bi2 ]) in (Fig. 11).

Here, points labeled with the letter p are identified. With a suitable homeomorphism,
figure (Fig. 11) can be simplified to (Fig. 12), which is clearly homeomorphic to a torus from
which we have removed a finite number of discs.

Subcase 2.2 Proceeding as in the preceding subcase, we obtain that U (B2
i1

B−1
i2

[Bi1 , B−1
i2

])
corresponds to the figure (Fig. 13).

With a suitable homeomorphism, one can deform (Fig. 13) into a “punctured” torus
(Fig. 14).
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Fig. 15 The domain U (B−1
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Fig. 16 The domain
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i2
Bi1 )
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Fig. 17 The domain U (Bi2 Bi1 )
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Fig. 18 The domain U (Bi1 B2
i2

Bi1 )

Subcase 2.3 In this situation the domain U (B−1
i2

Bi1) is homeomorphic to a disc from which
we have removed a finite number of discs (Fig. 15).

Then, U (B−1
i1

Bi2 Bi1 B−1
i2

Bi1) corresponds to (Fig. 16) which is homeomorphic to a “punc-
tured” torus as well.

Subcase 2.4 In this case, P has at least four sides. In order to “see” the punctured torus
we present an argumentation based on the pentagon presented in Fig. 5. However, it remains
valid for any polygon having more than three sides. If λi1 +λi2 is an integer, the lift of Bi2 Bi1

to the covering X (P0) via π̂ is a loop. The domain U (Bi2 Bi1) is then obtained from two
copies of Fig. 5 after identifications defined in (Fig. 17).
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Clearly, U (Bi2 Bi1) is homeomorphic to a disc from which we have removed some discs.
In Fig. 18 we show the identifications defining the domain U (Bi1 B2

i2
Bi1), which is homeo-

morphic to torus to which we have removed a finite number of discs.
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