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MAXIMAL RATIONALLY CONNECTED FIBRATIONS AND

MOVABLE CURVES

LUIS E. SOLÁ CONDE AND MATEI TOMA

Abstract. A well known result of Miyaoka asserts that a complex pro-
jective manifold is uniruled if its cotangent bundle restricted to a general
complete intersection curve is not nef. Using the Harder-Narasimhan fil-
tration of the tangent bundle, it can moreover be shown that the choice of
such a curve gives rise to a rationally connected foliation of the manifold.
In this note we show that, conversely, a movable curve can be found so
that the maximal rationally connected fibration of the manifold may be
recovered as a term of the associated Harder-Narasimhan filtration of the
tangent bundle.

1. Introduction

Since the 1980’s it has become evident that rational curves play a central role
in birational algebraic geometry, bringing uniruled varieties -that is, varieties
covered by rational curves- into the area of interest of many researchers.

Several characterizations of uniruledness may be found in the literature, all
of them relating this property with positivity properties of the tangent bundle.
In 1987 Miyaoka and Mori proved that a complex projective manifold X is
uniruled if and only if KX is negative on a curve C passing by x for general
x ∈ X (cf. [MM]). This result has been recently improved by Boucksom,
Demailly, Păun and Peternell, who have proved in [BDPP] that in fact X is
uniruled if and only if KX is not pseudoeffective.

Also in 1987, Miyaoka provided a more geometric criterion of uniruledness:
a complex projective manifold X is uniruled if the restriction of TX to a
general complete intersection curve has a vector subbundle of positive degree
([Mi], see also [KST]). In fact, under the above hypotheses, the lower terms of
the Harder-Narasimhan filtration of TX with respect to the chosen complete
intersection curve are rationally connected foliations.

On the other side, one may associate to a uniruled variety X its maximally
rationally connected fibration (MRCF for brevity), constructed by Campana
and by Kollár, Miyaoka and Mori independently, see [C] and [KMM].
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In this note we address the question whether the MRCF of X may be
recovered as one of the foliations provided by Miyaoka’s construction for a
suitably chosen complete intersection curve. Unfortunately it is not even clear
whether one may always find a complete intersection curve on which KX has
negative degree (see Example 3.8), so we have decided to work with a broader
class of curves.

Given a complex projective manifold X we will denote by Namp the interior

of the closed cone ME(X) generated by movable curves, see [BDPP, Def. 1.3].
One has a notion of slope and stability of torsion free sheaves on X with
respect to a class in ME(X), cf. [CP]. Our main result is the following

Theorem 1.1. Let X be a uniruled complex projective manifold, and let G ⊂
TX denote the foliation associated with its MRCF. There exists a class α ∈
Namp represented by a reduced movable curve C verifying that G|C is ample
and G is a member of the Harder-Narasimhan filtration of TX with respect to
α.

As a corollary we get a positive answer to our initial question when dim X =
2.

Acknowledgement: We wish to thank F. Campana for useful discussions.

2. Preliminaries

Along this paper X will denote a complex projective manifold of dimension
at least two.

In this section we first review known facts about stability with respect to
movable classes. We refer the interested reader to [CP] for further details.
Finally we discuss the relation of that concept with the maximal rationally
connected fibration of X.

Definition 2.1. A curve C ⊂ X is called movable if there exists an irreducible
algebraic family of curves containing C as a reduced member and dominating
X. As usual, we denote by N1(X) the vector space of numerical classes of real
1-cycles on X and by N1(X) its dual. The closure in N1(X) of the convex

cone generated by classes of movable curves will be denoted by ME(X), and

its interior by Namp. The elements of ME(X) are called movable classes.

By a theorem of Boucksom, Demailly, Păun and Peternell (cf. [BDPP]),

ME(X) equals the dual of the pseudoeffective cone, i.e. the closure in N1(X) of
the convex cone generated by classes of effective divisors. The pseudoeffective
cone may also be described as the cone of classes of R-divisors represented by
positive closed (1, 1)-currents on X.

Definition 2.2. A movable class α is called weakly free if given any codimen-
sion 2 subset B ⊂ X there exists a representative C of α verifying C ∩B = ∅.

Remark 2.3. A smooth curve C ⊂ X is usually called free (cf. [Kol, II.3]) if
H1(C, TX |C) = 0 and TX |C is globally generated. By [Kol, II.3.7], the class of
a free curve C is weakly free.
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We may associate a notion of stability to every movable class α.

Definition 2.4. Given a movable class α ∈ ME(X) and a torsion free sheaf
E on X, we define the slope of E with respect to α in the usual way:

µα(E) :=
c1(E) · α

rank(E)
.

When there is no possible confusion about the class we are using, we will
denote the slope simply by µ.

We say that a torsion free sheaf E on X is stable (resp. semistable) with
respect to α if the slope of every coherent subsheaf of E is smaller than (resp.
smaller than or equal to) µα(E).

Note that if α is the class of a complete intersection curve of ample divisors
H1, · · · ,Hn−1, these concepts coincides with the usual notions of stability and
semistability with respect to the polarizations H1, · · · ,Hn−1.

The following remark is well known for the usual concept of stability, and
the same proof can be applied verbatim in our setting:

Remark and definition 2.5. Given a movable class α and a torsion free
sheaf E on a variety X, the set of slopes of torsion free subsheaves of E
has a maximum, and the saturated subsheaf of maximal rank for which the
maximal slope is achieved is called the maximally destabilizing subsheaf of E.
By recursion one obtains the Harder-Narasimhan filtration of E with respect
to α, which is the only filtration

HNα(E) : 0 = E0 ( E1 ( . . . ( Er = E

verifying that the quotients Ei/Ei−1 are torsion free semistable sheaves, and
the sequence of slopes

(
µi(E) := µ(Ei/Ei−1)

)
i
is strictly decreasing.

If α = [C] we may also consider the Harder-Narasimhan filtration of E|C .
Although it is not true in general that this filtration coincides with the re-
striction of HNα(E), it does when C is a general complete intersection curve.
This follows from the Mehta-Ramanathan restriction theorem (cf. [MR], see
also [F]) and as a consequence we obtain in this case that Ei|C is ample if
µi(E) > 0.

In this paper we are interested in the Harder-Narasimhan filtration of TX

with respect to movable classes α. Let us introduce the notation that we will
use below.

Notation 2.6. Let X be a smooth complex projective variety and α be a
movable class in X. We will denote by

HN(TX) : 0 = F0 ( F1 ( . . . ( Fr = TX

the Harder-Narasimhan filtration of TX with respect to α and by µi the slopes
of Fi/Fi−1, for all i. We will also denote by s the integer s = max

(
{0}∪{i| µi >

0}
)
.
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The first property we are concerned with is the behaviour of HN(TX) with
respect to birational transformations:

Lemma 2.7. Let α = [C] be a movable class on X, and let π : X̃ → X be
projective birational morphism. Assume that C does not intersect the image
B of the exceptional locus E of π. Then the Harder-Narasimhan filtrations
of TX with respect to α and of T eX

with respect to the pull-back class α̃ of α
coincide over X \B. Thus the Harder-Narasimhan filtration of TX with respect
to weakly free classes is birationally invariant.

Proof. Let 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = TX denote the Harder-Narasimhan

filtration of TX with respect to α. For every i let us denote by F̃i the saturation
in T eX

of the extension by zero of Fi|U , where U denotes the open set X \B ∼=

X̃ \ E.

By construction µeα(F̃i/F̃i−1) = µα(Fi/Fi−1), hence it suffices to show that

F̃i/F̃i−1 is semistable with respect to α̃ for all i. In fact, given any destabilizing

subsheaf D ⊂ F̃i/F̃i−1, the saturation in TX of the extension by zero of D|U
would destabilize Fi/Fi−1, a contradiction. �

Using the fact that the tensor product of semistable sheaves, modulo torsion,
is again semistable ([CP, Appendix]), one can easily prove that the Fi’s are
integrable provided i ≤ s. If s > 0 and α is the class of a general complete
intersection curve C, then Fs|C is ample and [KST] allows us to say that the
leaves of Fs are algebraic and rationally connected. Unfortunately, since the
ampleness of Fs|C is not known for a general movable curve C, the previous
argument cannot be used in general. Nevertheless the following property is
still fulfilled:

Lemma 2.8. With the notation in 2.6, let G be a subsheaf of TX and assume
further that α = [C], where C is a curve contained in the regular locus of the
distributions G and Fs (that is, the locus where TX/G and TX/Fs are locally
free). If moreover G|C is ample, then G is contained in Fs.

Proof. Assume the contrary. By the ampleness of G|C we get µ(G+Fs/Fs) =
µ(G/G ∩ Fs) > 0, therefore µs+1 > 0, contradicting the choice of s. �

The following result will be used in the case of the MRCF.

Lemma 2.9. Let X and Z be smooth projective varieties of positive dimen-
sion, π : X 99K Z a rational map, G the foliation on X associated to π and α
a weakly free class on X. If G ( Fα

s , then Z is uniruled.

Proof. Since by Lemma 2.7 the Harder-Narasimhan filtration of TX with re-
spect to weakly free classes is birationally invariant, we may assume that π
is a morphism. The same property will allow us to reduce ourselves to the
situation when π is also equidimensional. Indeed, over some open subset V of
Z the morphism π coincides with the universal family over some locally closed
subvariety U of the corresponding Chow scheme of X. Let Z1 be the closure
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of U and X1 be the universal family over Z1. Let further Z2 → Z1 denote a
desingularization of Z1 and X2 the normalization of X1 ×Z1

Z2. We get the
following diagram

X2

π2

��

bir

**
// X1

��

//___ U

��

�

�

// X

π

��

Z2
// Z1

//___ V
�

�

// Z

where the composition of the rational maps in the upper row is a birational
morphism. The pullback of α by this morphism is a weakly free class on X2.

We now replace π : X → Z by π2 : X2 → Z2 which is equidimensional
and change notation accordingly. The fact that X could be singular will not
bother us since α is weakly free.

As before the leaves of the foliation Fs contain the leaves of G.
We claim that the foliation Fs descends to a foliation E on Z. Indeed,

consider a small analytic neighborhood W around a general point x of a fixed
general fiber of π. The foliation defined by Fs is regular around x and is
a product in W . Each leaf L of Fs in W projects onto a smooth closed
submanifold S of π(U) with dim S = rank(Fs/G). Therefore the closure of
the leaf of Fs in π−1(π(W )) containing L is π−1(S). Since π−1(π(W )) is a
neighbourhood of π−1(π(x)) we see that S is independent of the choice of
x ∈ π−1(π(x)). This defines the desired foliation on Z.

Choose now a movable curve C representing α and avoiding SingX, the
singular sets of the foliations Fs and G as well as the pull-back of the singular
set of the foliation E. Then in a neighbourhood of C it is easy to check that
F/G and π∗E are locally free and that there exists an injective morphism
F/G → π∗E. This implies degα(π∗E) ≥ degα(Fs/G) > 0. Thus E has positive
degree with respect to the movable curve C ′ = π(C) and by [CP, Thm. 1.9] it
follows that Z is uniruled. �

3. Movable curves and rationally connected foliations

In this section we prove Theorem 1.1 and make some comments on the two
dimensional case.

3.1. The rationally connected case. For rationally connected varieties the
statement of the main theorem takes the following form.

Proposition 3.1. Let X be a rationally connected manifold. There exists a
class α ∈ Namp represented by a movable curve C verifying that TX |C is ample.

In order to prove this result we need some preparations.

Definition 3.2. Let T be a positive closed current of bidegree (1, 1) on X
and f : C → X a non-constant morphism from a smooth connected curve C
to X. Choose local i∂∂-potentials ui for T on open sets Ui ⊂ X and suppose
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that f(C) ∩ Ui is not contained in the polar set of ui for some i. Then define
locally f∗T as i∂∂(ui ◦ f).

Lemma 3.3. Under the above conditions f∗T is a well defined positive closed
current of bidegree (1, 1) on C and [f∗T ] = f∗[T ] where [ ] denotes taking
cohomology classes.

Proof. There exists a smooth closed (1, 1)-form η in the cohomology class of
T . Therefore T − η = i∂∂v. We may assume Ui to be biholomorphic to open
balls, hence η|Ui

= i∂∂vi for some smooth functions vi. Thus f∗T is given

locally as i∂∂((vi + v|Ui
) ◦ f) showing that [f∗T ] = [f∗η] = f∗[T ]. �

Definition 3.4. We shall say that a (connected) family of curves (Cs)s∈S on
X is good if there exists some closed subset A ⊂ X of codimension two such
that for all x ∈ X \ A there exist Cs1

, ..., Csn
curves in the family passing

through x and analytically open connected local branches C0
si

of Csi
at x with

the following properties

(1) C0
si

is smooth at x for all i,

(2)
∑n

i=1 TxC0
si

= TxX,
(3) for all i there are n − 1-dimensional subfamilies in S of curves whose

connected local branches give foliations locally around x which contain
C0

si
as a leaf.

Lemma 3.5. If (Cs)s∈S is a good family of curves on X and T is a posi-
tive closed current of bidegree (1, 1) such that the intersection product [T ][Cs]
vanishes, then T = 0.

Proof. Take f : C ′

s → Cs the morphism of normalization. Since the family
is good f∗T is well defined for general s ∈ S and we see that the hypothe-
sis [T ][Cs] = 0 implies f∗T = 0. Now adopting the notations of the above
definition, let x ∈ X \ A and πi : Ui → Bi be a smooth map from an open
neighborhood Ui of x onto a n − 1-dimensional base Bi defining the local fo-
liation which contains C0

si
as a leaf. Let further ωi be the pull-back to Ui of

a volume form on Bi. Then our assumption on T provides T ∧ ωi = 0 on
Ui and thus T ∧

∑n
i=1 ωi = 0 around x. But

∑n
i=1 ωi is a strictly positive

(n − 1, n − 1)-form and thus the (n − 1)-st power of a (1, 1)-positive form Ω
on ∩n

i=1Ui, cf. [CP, Appendix]. Since the trace measure of T with respect to
Ω vanishes, the support of T will be contained in A, hence T = 0. �

Corollary 3.6. If (Cs)s∈S is a good family on X then [Cs] ∈ Namp.

Proof. By [BDPP] the class α of a curve belongs to Namp if and only if for
every non-zero positive closed current T on X one has [T ]α > 0. For any
non-zero positive closed current T on X there exists an element Cs such that
f∗T is well defined, where f : C ′

s → Cs denotes normalization. Then the above
Lemma yields [T ][Cs] > 0. �

Proof of Proposition 3.1. From the previous discussion, it is enough to show
that any rationally connected manifold X admits good families of very free
rational curves.
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Take x1 any point of X. By [Kol, Thm. IV.3.9] there is an immersion
f of P1 such that f(0) = x1 and f∗TX is ample. Let us denote by M1 the
family of curves determined by the component of the Hom-scheme Hom(P1,X)
containing [f ]. It verifies condition (1) of Definition 3.4 at x1 by construction.
Arguing as in [Hw, Prop. 2.3] one sees that the tangent directions to general
deformations of f sending 0 to x1 fill in almost all of P(ΩX |x1

), hence we
get condition (2). Finally, note that the differential of the evaluation map is
surjective at (f, 0), by the ampleness of f∗TX , hence the last condition at x1

is satisfied as well.
Let us denote by U1 ⊂ X an open set where the family M1 verifies (1),

(2) and (3). For any x2 ∈ X \ U1 we can consider M2 and an open set
U2 constructed as above. Consider now the family M of curves of the form
C1 ∪ C2, for [Ci] ∈ Mi, i = 1, 2. It verfies the properties (1), (2) and (3) for
every point in U1 ∪ U2. By noetherian recursion the assertion follows. �

3.2. The general case.

Proof of Theorem 1.1. Suppose that X is uniruled but not rationally con-
nected and denote by G the foliation induced by the MRCF of X. We first
show that a weakly free curve C exists in X such that G|C is ample and
[C] ∈ Namp.

We take a general smooth complete intersection curve D on X avoiding
the singularities of G. Following [Kol, II 7], we will consider combs with
handle D and m teeth Ri which are smooth free rational curves contained in
distinct general fibers of the rationally connected fibration, each Ri meeting
D transversely in one point Pi. By Proposition 3.1 we may also assume that
G|Ri

is ample for all 1 ≤ i ≤ m. By [Kol, II 7.9-7.10], for arbitrarily large m
one can find such a comb C0 which deforms to give a covering family (Ct)t∈T

of curves on X such that the general member Ct is smooth and free. Moreover,
[Ct] is weakly free and the family (Ct)t∈T is good since the family of complete
intersection curves containing D was already good. In particular [Ct] ∈ Namp

by Corollary 3.6.
We now prove that G|Ct

is ample. Let us denote by

S
q

//

p

��

X

T

the desingularization of the smoothing described above, where T is a smooth
curve. In particular the central fiber S0

∼= C0 ∪
⋃

j Ej , where q(Ej) is zero-

dimensional, hence q∗(G|Ej
) is trivial for every j.

We will consider the relative Harder-Narasimhan filtration

0 = G0 ( G1 ( · · · ( Gk = q∗G
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of q∗G, see [HL, 2.3]. Over some open subset U ⊂ T , it induces the usual
Harder-Narasimhan filtration of q∗(G|Ct

), t ∈ U . Let G′ denote the quotient
q∗G/Gk−1 modulo torsion. It will be enough to show that degCt

(G′) is positive.
In fact, the morphism q∗G → G′ induces a surjective morphism

r∧
q∗G → detG′ ⊗ IZ ,

where r denotes the rank of G′ and IZ is the ideal sheaf of a zero-dimensional
subscheme Z ⊂ S. Now, for general t ∈ U

degCt
(G′) = degCt

(detG′) =

= degD(detG′) +
∑m

i=1 degRi
(det G′) +

∑
j degEj

(det G′).

For each component B of the curve S0 we may consider the image PB of the
natural map

(
detG′⊗IZ

)
|B → (det G′)|B , which is a quotient of (q∗

∧r G) |B
and thus

degB(detG′) ≥ deg(PB) ≥ µmin

(
q∗

r∧
G

)
|B.

The last term is nonnegative for B = Ej and it is at least 1/r when B = Ri,
hence

degCt
(G′) ≥ µmin

(
r∧

G

)
|D +

m

r

is strictly positive for m >> 0.
Let as usual α = [Ct] and consider the Harder-Narasimhan filtration of TX

with respect to α. By Lemma 2.8 it follows that G ⊂ Fs. If G 6= Fs, then
by Lemma 2.9 the target of the MRCF of X would be uniruled. But this is
impossible by [GHS], thus G = Fs and the Theorem is proved. �

3.3. Comments on surfaces. In the case of surfaces we get the following

Corollary 3.7. Let X be a uniruled complex projective smooth surface and
let G denote the foliation associated with the MRCF of X. There exists an
ample divisor C on X such that G|C is ample and G is a member of the
Harder-Narasimhan filtration of TX with respect to [C].

Proof. Since Namp coincides in this case with the cone of ample divisors of X,
the statement follows from Theorem 1.1. �

Note that even for a rational surface X, it is not obvious a priori how to
find an ample divisor C verifying −KX · C > 0. The following example was
shown to us by F. Campana.

Example 3.8. Let X be the blow-up of P2 at sixteen general points
P1, . . . , P16 and let C be the strict transform of a general quintic passing
through P1, . . . , P16. It is easy to check that C is a very ample divisor on X
but −KX · C = −1.
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