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EXTENDED PICARD COMPLEXES AND LINEAR ALGEBRAIC GROUPS

MIKHAIL BOROVOI AND JOOST VAN HAMEL

ABSTRACT. For a smooth geometrically integral varietyover a fieldk of characteristic 0, we introduce
and investigate the extended Picard complex R)jclt is a certain complex of Galois modules of length 2,

whose zeroth cohomology k§X]* /K and whose first cohomology is RX), wherek is a fixed algebraic
closure ok andX is obtained fronX by extension of scalars to WhenX is ak-torsor of a connected linear
k-groupG, we compute UPicX) = UPic(G) (in the derived category) in terms of the algebraic fundaalen
group 7y (G). As an application we compute the elementary obstructiosdohX.

INTRODUCTION

Throughout the papek denotes a field of characteristic 0 akis a fixed algebraic closure &f By a
k-variety we mean a geometrically integkaVariety. If X is ak-variety, we writeX for X x k.
Let G be a connected reductikegroup. Let

p: GSC—» GSS‘—>G

be Deligne’s homomorphism, whe@* is the derived subgroup @ (it is semisimple) andC is the
universal covering o6 (it is simply connected). Let be a maximal torus o (defined ovek) and
let TS¢:= p~1(T) be the corresponding maximal torus@¥. The 2-term complex of tori

Tse P T

(with TSin degree—1) plays an important role in the study of the arithmetic afuetive groups. For
example, the Galois hypercohomology(k, TS¢ — T) of this complex is the abelian Galois cohomology
of G (cf. [Bor98]). The corresponding Galois module

m(G) 1= X.(T)/p X.(T")

(whereX, denotes the cocharacter group of a torus) is the algebradafaental group oB (loc. cit).
The related group of multiplicative type ov€rwith holomorphic Galk/k)-action

Z(G) := Hom(m(G),C*) = kerlX*(T) @ C* — X*(T°)®C¥]

(Where X* denotes the character group) is the center of a connectegldrats dual groufs for G,
considered by Kottwitz [Kot84].

Clearly, the above constructions rely on the linear algelgeup structure ofs. However we show in
this paper that in fact they are related to a very natural geooicohomological construction that works
for an arbitrary smooth geometrically integkaVariety X. Namely, we consider the cone UPX) of the
morphism

in the derived category of discrete Galois modules. Mordigi, this cone is represented by the 2-term
complex

k(X)" /k* — Div(X)
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(with k(X)" /k™ in degree 0), wher&(X) denotes the field of rational functions & and DiV(X) is
the divisor group ofX. It follows from the definitions that the cohomology grougi' of the complex

UPic(X) vanish fori 0,1, and

°(UPic(X)) = U (X) := k[X]* /K"
A (UPig(X)) = Pig(X)
wherek[X] is the ring of regular functions oK. We see that UP{X) can be regarded as a 2-extension
of the Picard group P{X) by U(X). We shall call UPi¢X) the extended Picard complex of. Xhe
importance of the extended Picard complex lies in the faatttPiqX) contains more information than
U (G) and Pi¢G) separately.
Let G be an arbitrary connected line&rgroup, not necessarily reductive. We wri@' for the

unipotent radical o5, and setG'® = G/G (it is reductive). We definer (G) := nl(Gred). This means
the following. Let

p: GS¢ _, GSS—, Gred

be Deligne’s homomorphism, whe@Sis the derived subgroup &™9andGsCis the universal covering
of G Let T be a maximal torus oB"d and letTs¢:= p—(T) be the corresponding maximal torus of
GSC. ThenTs (G) = X, (T)/p X.(T°0).

Consider the derived dual complex®(G), which by definition is given by

m(G)P = (X*(T) — X*(T>%) (with X*(T) in degree 0).

By Rosenlicht’s lemmal[Ros61] we have(G) = X*(G). By a formula of Voskresenskil [Vos59],

Fossum-—Iverseri [FI73] and Popdv [Pop74], we havé®jc X*(kerjp: G~ — G ]). From these
results one can easily obtain that

2 (UPic(G)) ~ 7 (m(G)P) fori =0,1.

The central result of this paper is that U and s (G)P themselves are isomorphic in the derived
category.

Theorem 1 (Theorem[4.B) For a connected group G over a field k of characteridbicthere is a
canonical isomorphism, functorial in G,

UPi¢(G) = m(G)P
in the derived category of discrete Galois modules.

Both Rosenlicht’s lemma and the vanishinglfG) and Pi¢G) for a semisimple simply connected
groupG are used in the proof.
We also prove a version of Theorérn 1 for torsors.

Proposition 2 (Lemmd5.2(iii))) Let G be a connected group over a field k of characteri@tiand let X
be a k-torsor under G. There is a canonical isomorphism, tionned in G and X,

UPic(X) = UPic(G)
in the derived category of discrete Galois modules.

Corollary 3. Let G be a connected group over a field k of characteri@tiand let X be a k-torsor under
G. There is a canonical isomorphism, functorial in G and X,

UPic(X) & m(G)P
in the derived category of discrete Galois modules.

This central result gives a good conceptual explanation afymexisting results in the literature
concerning the striking relationship between the arithenefta linear algebraic grouf and the Galois
modulesX*(G) and Pi¢G).
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Picard group and Brauer group.

Proposition 4 (Corollary[2.20(i)) Let X be a smooth geometrically integral variety over k. Ttimre
is a canonical injection

Pic(X) — H1(k, UPic(X))

which is an isomorphism if k) # 0 or if Br(k) = 0.

Corollary 5. For a connected linear algebraic group G over k we have a caraisomorphism
Pic(G) = H(k, m(G)P).

Proof. The corollary follows immediately from Propositioh 4 andebinen{ 1. O

Let X be a smooth geometrically integral variety oketet Br(X) = Hézt(X,Gm) be the Brauer group

of X, and let Bi(X) be the kernel of the map BX) — Br(X). We write Bi(X) for the cokernel of the
canonical homomorphism Bt) — Bry(X).

Proposition 6 (Corollary[2.20((ii)) Let X be a smooth geometrically integral variety over k. €hera
canonical injection

Bra(X) — H2(k, UPic(X))
which is an isomorphism if g) # 0 or H3(k,k") = 0.
Corollary 7. For a connected linear algebraic group over k we have a catedrisomorphism
Bra(G) = H2(k,m(G)P)
Proof. This follows immediately from Propositidd 6 and Theoriem 1. O

Note that Corollariesl5 arid 7 are versions of results of Kitt{iKot84, 2.4]. Kottwitz proved that for
a connected reductidegroupG we have

Pic(G) = m(Z(G)?), Bra(G) = H'(k,Z(G)),
whereg = Gal(k/K).
UPic and smooth compactifications.

Proposition 8 (Proposition 2. I3)Let Y be a smooth compactification of a smooth geometriaatigial
k-variety X. Then we have a distinguished triangle

Pic(Y)[~1] —— UPic(X) — &L y — Pic(Y)

where the morphism js induced by the inclusion map X — Y, and2<} y is the permutation module
of divisors in the complement of inY .

We see that Pi%Y) is very close to UPi¢X): up to translation, the difference between them is a
permutation module. B
If Cis a complex of Gd¢k/k)-modules, we write

1T}, (k,C) = ker | H'(k.C) — [TH'(y.C)
y
whereH' (k,C) is the corresponding Galois hyperconomology group,janahs over all closed procyclic

subgroups of Gak/k).

Proposition 9 (Corollary[2.16) LetY be a smooth compactification of a smooth k-variety Xn There
is a canonical isomorphism

111, (k, Pic(Y)) = 1112 (k, UPic(X)).

Propositior P follows easily from Propositidh 8.
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Corollary 10. LetY be a smooth compactification of a k-torsor X under a coedelinear k-group G.
There is a canonical isomorphism

LI, (k, Pic(Y) ~ 1115, (k, (G)°)
Proof. The corollary follows immediately from Propositidh 9 andrGitary[3. 0

Note that we havéd(k, Pic(Y)) = II1% (k, Pic(Y)) (see [CTK98, Prop. 3.2].[BK04, Cor. 3.4]). Thus
we have a new proof of the fact that

H(k, Pic(Y)) ~ 1112 (k, 15.(G)P),
cf. [BKOO, Thm. 2.4].

Elementary obstruction. Let X be a smooth geometrically integtahariety. We have an extension of
complexes of Galois modules

0K — (R(Y)X o Div(Y)) o (R(Y)X/RX = Div(Y)) -0

It defines an elemer#(X) € Ext}(UPic(X),k”). If X has ak-point, then this extension splits (in the
derived category), henca#X) = 0. We shall calle(X) the elementary obstructioto the existence of a
k-point in X, since it is a variant of the original elementary obstruttaj Colliot-Thélene and Sansuc
[CTS87, Déf. 2.2.1] which lives in Extk(X) ™ /k™, k™).

Now let G be a connected lined=group and leX be ak-torsor unde!G. By Corollary[3 we have
UPic(X) = i (G)P. Using Lemma& 15 below, we obtain

Ext! (UPic(X),K") = H'(k,Hom(m (G)° k")) = H'(k, T~ T)

(whereTsCis in degree-1). Recall that the first abelian Galois cohomology grouga$ by definition
the abelian groupil(k,G) := H(k, TS¢ — T), so the above identification gives a6X) € H1 (k,G).
Here we compare the elementary obstruceox) Halb(k, G) with the image of the cohomology class
[X] € HY(k,G) of the torsorX under the abelianization map’atH(k,G) — H2(k,G) constructed in
[Bor9g].

Theorem 11(Theoreni5.B) Let X be a k-torsor under a connected linear k-group G. Wittation as
above, we have(X) = ab([X]).

The theorem allows us to translate existing results on ataHalois cohomology of connectéd
groups to results on the elementary obstruction for tordtes simultaneously obtain results on smooth
compactifications of torsors, since Propositidn 8 implieat tthe elementary obstructice{Y) for a
smooth compactificatiolY of a smooth varietyX vanishes if and only if the elementary obstruction
e(X) for X vanishes.

Proposition 12 (Propositior 5.J7) For (a smooth compactification of) a torsor under a connedireear
algebraic group G over a p-adic field k, the elementary olzgian is the only obstruction to the existence
of k-rational points.

Proposition 13 (Propositior 5.8) For (a smooth compactification of) a torsor under a connedirgear
algebraic group G over a number field k, the elementary obsitva is the only obstruction to the Hasse
principle.

Corollary 14 (Sansucl[[San81], Cor. 8.7For a smooth compactification Y of a torsor X under a
connected linear algebraic group G over a number field k, th@uBr—Manin obstruction is the only
obstruction to the Hasse principle.

Proof. Assume thalY has points over all the completions kf By [SkoQ1, Prop. 6.1.4] the vanishing
of the Brauer—Manin obstruction implies that the elemgntarstruction vanishes, and we see from
Propositior 1B thaY has ak-point. O
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1. PRELIMINARIES

Throughout this papek will be a field of characteristic zero. L&tdenote a fixed algebraic closure
of k. For a varietyX overk we denote byDP(Xe) the derived category of complexes of sheaves on the
(small) étale site ovexX with bounded cohomology. We write

Rrx/k = R(I)* D+(Xet) — D+(ket)

where¢ : X — Sped denotes the structure morphism. We shall not distinguigtvden the category
of étale sheaves on Sgeand the category of discrete Galois modules. We shall ahaagame our
varieties to be geometrically integral.

Let G, be the multiplicative group. We shall denote an étale sheyafesented by a group scheme
by the same symbol as the group scheme itself. For a vaXieyerk write X = X x k. We define the
following Galois modules:

U(X) := (Tx kGm)/Gm = K[X]* /K"
Pic(X) := R'Tx xGm = H(X,Gm).

These Galois modules are contravariantly functoriaXin

In this paper we shall be mostly interested inanplexof Galois modules that combinesX)) and
Pic(X). For this we want to take the objeTt;RI"y xGm in DP(ker) moduloGp, (i.e. modulok™), where
RIx k is the derived functor, antk; is the truncation functor. To make this precise, we shatbufuice
some terminology and notation. For definitions of derivetbgaries, triangulated categories, derived
functors, truncation functors etc. we refer to original keofVer77], [Ver96], [BBD82], and textbooks
[lve86], [GM96], [Wei94] (see alsa [GM99]).

1.1. Cones and fibred.et f: P — Q be a morphism of complexes of objects of an abelian categary
We denote by

(P—Q]

theconeof f, i.e., the complex with the object in degrieequal to
PH'l@ Qi

—dp O
—f do/’
which denotes the homomorphigip, q) — (—dp(p), —f(p) +dg(q)). We adopt the convention that the

diagrams of the form
0
<id> id 0)

1) P p " Ippy

and differential given by the matrix

are distinguished triangles.
Similarly, we denote by

P—Q

the complex with the object in degreequal to
Pi D Qifl
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and differential given by the matrix

? (dfp _%Q> ’

which denotes the homomorphisfp,q) — (dp(p), f(p) — dg(q)). We call [P — Q) the fibre (or co-
cone) off. Then

(P— Q] =[P—Qf1],

and we have a distinguished triangle
0
(o)

© P-of - h g
We havelP — 0) =P, and(0 — Q] = Q.

[P— Q1.

Remarkl.2 Note that our sign convention for the differentials in theeaorresponds to [Ive86, 1.4],
but is different from other sources, such as [GM96, Il.3.Eor example, in the latter the cone has

differential
—dp O
f do/°

The choice of signs also has an influence on the class of glissined triangles. Indeed, consider the
following diagram
0
(o)

(4) P Q% com(h)

where we writeCgum ( f) for the cone as defined in [GMB6]. Then this diagram is a disiished triangle
in D(«7) in the convention of [GM96] (cf. Def. I11.3.4 and Lemma IlI3in loc. cit). However, in our
convention we would need to change the last homomorphisragfam [(4) to(—id O) in order to have
a distinguished triangle.

@ 9pp

1.3. Let f: P — Q be a morphism in the derived categddy(7). We define a conéP — Q] as the
third vertex of a distinguished trianglgl (1). Similarly, wefine a fibrgP — Q) as the third vertex of
a distinguished trianglé {3). It is well known that in geriéraa derived category (or in a triangulated
category) a cone and a fibre are defined only up to a non-carilde@morphism. However we shall
prove, that all the cones and fibres that we shall considérbevdefined up to @anonicalisomorphism
(we shall use [BBD82, Prop. 1.1.9]).

1.4. Ext and Galois cohomologyln order to compute the elementary obstruction to the axisteof
a rational point ink-variety X, we need the following lemma, which is probably well-knoveorfipare
for example the closely related result [Mil86, Theorem (8 &xample 0.8]). We are grateful for J.
Bernstein for proving this lemma.

Lemma 1.5. Let M* be a bounded complex of torsion free finitely generated (@yeliscreteGal(k/k)-
modules. Then for all integers i we have canonical isomrpisi

Ext (M*, k") = Hi(k, Homg, (M*,k")).

Let g be a profinite group. By g-module we mean a discregemodule. By a torsion free finitely
generated-module we mean g-module which is torsion free and finitely generated &&etemmd 1.5
follows from the following Lemma1]6.

Lemma1.6. Let A be ag-module, B g--module, and let Mbe a complex of torsion free finitely generated
g-modules. Then there are canonical isomorphisms

Ext,(A,Homy (M*,B)) = Ext"g(A% M*,B).

To obtain Lemma&a1]5 we just take=Z, B=k " in Lemmd_L6.
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Proof of Lemma_1l6First letM be a finitely generateg-module. We have a canonical isomorphism
Homy (A,Homz (M,B)) = Homz (A®@ M, B).
A

Taking g-invariants, we obtain
Homy (A,Homz (M, B)) = Homy(A®@ M, B).
z

If M* is a complex of torsion free finitely generatganodules, we obtain similarly
Hom (A,Hom; (M*,B)) = Hom; (A® M*, B).
m; (A, Homg (M*, B)) M (AQM",B)
Now letl* be an injective resolution @ in the category of discretg-modules. Again
Hom; (A,Homy (M*,1*)) = Hom‘g(A@Z§> M*,1°).

By a definition of Extwe have
%i(Hom;,(A@zp M*,1%)) = Extg(A@Zg M*,B).
To prove Lemma 116 it suffices to prove that
' (Hom, (A, Homy, (M*, 1)) = Ext (A, Horr (M*, B)).
This follows from the next lemma. 0
Lemma 1.7. Hom, (M*,1*) is an injective resolution domy (M*,B).

Proof. Since M* is a bounded complex of torsion free finitely generated megjulwe see that
Homy (M*,1*) is a resolution of Hom(M*,B). This is an injective resolution, since for any torsion-
free finitely generated-moduleM and an injectivgg-modulel, the g-module Hom (M, 1) is injective
(see for example [Mil86, Lemma 0.5]). This completes theofs@f Lemmasg 117,116, ahd1.5. O

2. THE EXTENDED PICARD COMPLEX
2.1. Let X be a geometrically integréd-variety. Consider the cone
UPIC(Y) = <Gm — TSerX/ka]-

In more detail: we can represemt;RIx x\Gm as a complex in degrees 0 and 1. We have a
homomorphismi: G, — HO(Y,Gm), which induces a morphism,: Gy, — Tgerx/ka. Then
UPic(X) is a cone of this map. Note that the mays injective, hences#~1(UPic(X)) = 0, and
UPic(X)[—1] € Ob(D(ker)=1). It follows that Hom{Gn, UPic(X)[—1]) = 0, so by [BBD82, Prop. 1.1.9]
UPic(X) is defined up to a canonical isomorphism. We call URicthe extended Picard complexf a
variety X. We have a canonical distinguished triangle

(5) Gm — T<1RI x xGm — UPIc(X) — G[1].
Note that
#°(UPic(X)) = U(X),
A (UPic(X)) = Pie(X),
' (UPic(X)) = 0 fori #0, 1.

Hence UPi¢X) is indeed a combination of RX) andU (X). In particular, if X is projective, then
UPic(X) = Pic(X)[—1].

The construction of the complex URK) is functorial in X in the derived category. Indeed, a
morphism ofk-varieties f : X — Y induces a pull-back morphisrfi*: 7<1Ry xGm — T<1RMx xGm,
hence by[BBD8R, Prop. 1.1.9] a canonical morphism

f*: UPic(Y) — UPic(X).
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2.2. An explicit presentation of UPicAssumeX to be nonsingular. We write DX) for the Galois
module of divisors orX, andk(X) for the rational function field oK. The divisor map

K(X)* -, Div(X)
has kernel equal tk[X]* and cokernel equal to RX). We write KDiv(X) for the complex of Galois

modulesk(X)” 2 Div(X)). We show below that UP{X) ~ (K* — KDiv (X)]

For this, we need the following fact, which should be welbkm to experts, but for which we do not
have an explicit reference.

Lemma 2.3. There is a canonical isomorphism
KDIV(Y) = TﬁerX/ka .
To prove Lemma 2]3 we need a construction.

Construction 2.4. Let K be a complex of sheaves off K =K% — K1 — ... We write Mx kK =

Fx/kKO — rx/kKl — .... By definition of a right derived functor (see for example [@8/] Def. 111.6.6]),
we have a homomorphism

My kK — R kK
Now assume that we have a morphism- B of sheaves oiX. Then we have a distinguished triangle
[A—B)—A—B—[A—B)[1],

a morphism of triangles

[FX/kA—> FX/kB> —_— rx/kA FX/kB—> [FX/kA—> FX/kB>[1]
Rrx/k[A—> B> —_— Rrx/kA% Rrx/kB _— Rrx/k[A—> B> [1]
and a commutative diagram with exact rows

ffo[l_x/kA—) MxxB) — Mx/kA—Tx /KB — jfl[rx/kAH MxxB)[1] —=0

| . | |

ROT y j[A — B) —= Ry A > ROl y B —— Rk \[A — B) —— Rk kA

Proof of Lemma2]3By [Gro68, 11.1] we have a resolution
0— Gm— H — Yivx — 0

of the sheafs, by the sheaf#* of invertible rational functions and the she@ivy of Cartier divisors.
Hence we get a canonical isomorphism

(6) RFX/ka ~ Rrx/k[cjifx>< — @iVX>.

We haveRT'y 45 = k(X)™ andRTy  Zivx = Div(X). Applying Constructiofi.Z]4 to the morphism
of sheaves’#y* — Zivy, we obtain a canonical morphism

) k(X)* ~ Div(X)) — RMx xGrm

and a commutative diagram with exact rows

0> #°(KDiv (X)) — k(X) — Div(X) — #*(KDiv(X)) — 0

l .

0 —= ROy kGm —= ROy A = ROT y j Divx —= Ry G —= Ry i 75"
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(we use the isomorphisni](6)). By Hilbert 90 in Grothendisckbrm we haveerx/kJifX =0
(cf. [GroBé, Il, Lemme 1.6]). Hence the five lemma gives ug tha vertical arrows#” (KDiv (X)) —
RT x/kGm for i = 0,1 are isomorphisms. In other words, the morphisin (7) indacgsomorphism
(®) K(X)" <5 Div(X)) = T<aRMx G
in the derived category. O
Corollary 2.5. There is a canonical isomorphism

<k —>KDIV( )] —>UPIC( ).
Proof. We have a natural commutative diagram in the derived cayagfoBalois modules

Gm E—— Tgerx/ka

L

K¢ — KDiv(X)
of which the vertical arrows are isomorphisms. The rkap- k[X]* = #°(KDiv (X)) is injective. Now
our corollary follows from[[BBD82, Prop. 1.1.9] (similar tbe argument i 2]1). O
Remark2.6. Observe that
(k" — KDiv(X)] ~ [k(X)" /K* — Div(X)).
We s(ha)ll write KDivX) /K" for [k(X)* /k* — Div(X)). Then by Corollar§ 215 we have KDiX)/k™ ~
UPic(X

Remark2.7. The complex KDi¥X)/k”™ is not functorial inX in the category of complexes. Indeed,
neitherk(X)” /k™ nor Div(X) are functorial inX.

2.8. Splitting.
Let X be a nonsingulak-variety. Assume thaX has a&k-pointx. We set

Div(X)x = {D € Div(X)| x ¢ suppD)}
k(X)x = {f € k(X)"| div(f) € Div(X)x}
KDiv (X), = [K(X) — Div (X))
By a well-known moving lemma, the composed map
Div(X)x — Div(X) — Pic(X)
is surjective. It follows that the morphism of complexes
KDiv (X)x — KDiv (X)
is a quasi-isomorphism.
Set

K(X)y = {f €k(X)"| f(x) =1}

KDiv (X)x1 = [K(X ) — Div(X)y)
We have an isomorphism

K @k(X)q = k(X)y
given by
(c.f)—cf where cek™, fek®X),

Hence we obtain an isomorphism

K* @ KDiv (X)x1 = KDiv (X)y .
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We see that the con&” — KDiv (X),] is canonically quasi-isomorphic to KD@)x 1. Thus UPi¢X) ~

KDiv (X)x 1.
Let f: X — Y be a morphism of nonsingul&rvarieties, and lex € X(k). Sety = f(x) € Y (k). Then
we have a morphism of complexes

f*: KDiv(Y)y1 — KDiv (X)x1 .
We see that the complex KO )y 1 is functorial in(X,x) in the category of complexes.

Lemma 2.9. Let X be a nonsingular k-variety having a k-point x. Then tlangle (B) of[2.1 splits, i.e.
the third morphisnUPic(X) — Gm[1] in this triangle is 0.

Proof. If X has ak-pointx, then the triangle {5) is isomorphic to the split triangle
K* — k" @KDiv(X)x1 — KDiv(X)x1 — K [1]

with obvious morphisms, where the third morphism is 0. Hetheethird morphism in the triangl€l(5)
is 0. O

The lemma shows that the trianglé (5) can provide a cohonmabgbstruction to the existence of a
k-rational point.

Definition 2.10. Let X be a nonsingular variety ovikr We define theelementary obstruction
e(X) € Ext'(UPic(X),Gn)
to be the class(X) of the triangle[(5).

2.11. We calle(X) the elementary obstruction, because it is closely relatéloet elementary obstruction
ob(X) € Ext(k(X)” /k",k”*) of Colliot-Thélene and Sanstic [CTS87, Déf. 2.2.1]. kedleby definition
ob(X) is the class of the extension

0—k"— R(Y)X — R(Y)X/EX — 0,
whereas under the identification UPK ~ KDiv (X)/k”" of Corollary[Z.5.e(X) is the extension class of
the triangle associated to the short exact sequence of ezayl
0— k™ — KDiv(X) — KDiv(X)/k" — 0.
Hencee(X) is the image of the class i) under the homomorphism
(9) Ext(k(X)" /k*,K*) — Ext}(KDiv (X) /K" k")
induced by the natural map KOX) /k* — k(X)™ /K.
Lemma 2.12. For a nonsingular k-variety X, we havé») = 0 if and only ifob(X) = 0.
Proof. The homomorphisni_{9) fits into an exact sequence of Ext-group
(10) Ext(Div(X),K*) — Extt(k(X)" /K*,K*) — Ext! ([E(Y)X K Div(7)>,EX) .
induced by the exact sequence of complexes
0— Div(X)[-1] — [k(X)" /k* — Div(X)) = k(X) /K" — 0
Since DiVX) is a direct sum of permutation modules, Lemima 1.5 gives th#t(Biv(X),k") is a

direct product of theH!-groups of quasi-trivial tori, hence E)(Div(Y),EX) =0, so we see from the
exact sequencé _(1L0) that the homomorphisim (9) is injedtiee which the statement follows. O

Now we investigate how UPic changes under open embeddings.

Proposition 2.13.Let X C Y be an open k-subvariety of a nonsingular k-variety Y. Let 4— Y denote
the inclusion map. Then we have a distinguished triangle

UPIo(Y) —— UPig(X) — %}  — UPIc(Y)[1]
where 2}  is the permutation module of divisors in the complemedt ofY .
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Proof. Clearly we have a short exact sequence of complexes

0— %! [~1] — KDiv(Y)/K* —— KDiv(X)/K* — 0,
whence we obtain distinguished triangles

#} o [1] — KDiv(Y)/K* —— KDiv(X) /K" — %} o
and

KDiv (Y) /K" —— KDiv (X)/K* —— & —— (KDiv(Y)/K)[1]
]

Remark2.14 Let X C Y be an operk-subvariety of a nonsingular complétevariety Y. Proposition
[2.13 implies that UPiX) is non-canonically isomorphic to the f|b{é’§ x — Pic(Y)). Skorobogatov

actually gave a canonical isomorphism in the derived cayed®ic(X) — [,,@”Y x — Pic(Y )> (cf. [CTO8,
Rem. B.2.1(2))).

By IIT' (k,M) we denote the subgroup Bif (k, M) of elements that map to zero i (y, M) for every
closed procyclic subgroup c Gal(k/k). Recall that for a permutation modufewe haveH(k,P) =0
andII12,(k,P) = 0 (cf. [BKQQ, 1.2.1]).

Corollary 2.15. Let XC Y be an open k-subvariety of a nonsingular k-variety Y. Therrdstriction
mapUPic(Y) — UPic(X) induces an injection

H2(k, UPic(Y)) — H?(k, UPic(X))
and an isomorphism
1112, (k, UPic(Y)) = I112 (k, UPic(X)).
Proof. By Propositior Z. 113 we have an exact sequence
H(k, 2 ) — H2(k, UPic(Y)) — H?(k, UPic(X)) — H?(k, 25 x),
where 2} | is a permutation Galois module. Now the injectivity of theotwaps follows from the

vanishing oH(k, 2+ ). The surjectivity of thdI12-map follows from the vanishing af12,(k, 25} )
and an easy diagram chase. O

Corollary 2.16. Let XC Y be an open k-subvariety of a nonsingular complete k-walet Then the
restriction mapPic(Y)[—1] = UPic(Y) — UPic(X) induces an injection

H(k, Pic(Y)) — H?%(k,UPic(X))
and an isomorphism
111, (k, Pic(Y)) = 1112 (k, UPic(X)).
Corollary 2.17. Let XC 'Y be an open k-subvariety of a nonsingular k-variety Y. Le — Y denote
the inclusion map. Then the induced map
j+: Extt(UPic(X),Gm) — Ext}(UPic(Y),Gm)
is injective. In particular, the elementary obstructiofXe vanishes if and only if @) vanishes.

Proof. Applying the functor Ext to the distinguished triangle obposition[2.1B, we obtain an exact
sequence
Ext' (2} «,Gm) — Ext}(UPic(X),Gm) —— Ext*(UPic(Y),Gm).

By LemmalLb Ext(Z} ,Gm) = HY(k,P), whereP is the k-torus such thaX*(P) = 2} . Since
3’;}_)( is a permutation module, we see tlfais a quasi-trivial torus, henddl(k, P) =0, and therefore
the homomorphisnj, is injective. O
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2.18. UPic, the Picard group and the Brauer groupet X be a nonsingular variety ovér Let Br(X) =
H2(X,Gp) denote the (conomological) Brauer groupXf let Bry(X) denote the kernel of the map

Br(X) — Br(X), and let Bg(X) denote the cokernel of the map(By — Bri(X).
We have equalities

Pic(X) = H'(X,Gm) = H'(k, Ry xGm) = H*(k, T<1R x xGm)
Br(X) = H*(X,Gm) = H2(k, RMx xGm) = H?(K, T<2RT x kGm).
From the distinguished triangle
T<1RT x kGm — T<2RTx kGm — RT x %Gm[—2] — T<1RT x kGm|[1]
we obtain a Galois cohomology exact sequence
0 — H2(K, T<1RT x kGm) — H?(K, T<oRTx kGm) — HO(k, R x xGm).
SinceH2(k, T<2RTx xGm) = Br(X), andHO(k, Rl x xGm) = Br(X)%2® ¥ it follows that
Bri(X) = H2(k, T<1R y xGm).

Proposition 2.19. Let X be a nonsingular variety over k. We have an exact seguenc

0 — Pic(X) — H(k,UPic(X)) — Br(k) — Bry(X) — H?*k,UPic(X)) — H3k Gp),
in which the homomorphismsk, UPic(X)) — Br(k) and H?(k, UPic(X)) — H3(k,Gp,) are zero when
X (k) # 0.
Proof. We obtain the exact sequence by taking Galois cohomologdyedfiangle((b) of 2]1 and applying
Hilbert’s Theorem 90 to the tertd!(k, Gy,). For the cas (k) # 0 we apply Lemma219. O
Corollary 2.20. Let X be a smooth geometrically integral variety over k.

(i) There is a canonical injection

Pic(X) — H1(k,UPic(X))

which is an isomorphism if k) # 0 or if Br(k) = 0.

(i) There is a canonical injection

Bra(X) — H2(k,UPic(X))

which is an isomorphism if §) # 0 or H3(k,Gy,) = 0.

3. PCARD GROUPS INVERTIBLE FUNCTIONS, AND THE ALGEBRAIC FUNDAMENTAL GROUP

3.1. Let G be a connected linear algebrdigroup. As in[Bor98] we writeGY C G for the unipotent
radical ofG, G™dfor the reductive grougs,/G", GSSfor the derived group o™ (it is semisimple) G©"
for the torusG'4/Gss, andG®® for the universal covering oS (it is simply connected). The composed
map

p: GS¢ _, GSS—, Gred
has finite kernel

Z:=kerp,

which is central inG¢, and the cokernel gb is equal to the toru&®". We write

X*(G) = Homy (G, Gm)
for the character group @. We have

For a torusT we write

X4(T) = Homg (G, T)

for the cocharacter group df. Note that the underlying abelian groups of the Galois mesl (G)
andX,(T) are free.
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As in [Bor98] we define the algebraic fundamental gregfiG) as follows. Lefl ¢ G be a maximal
torus. Sefls¢= p~1(T), itis a maximal torus irG. Set
m(G) = X.(T)/p. X, (T%).

Itis a Galois module; it does not depend on the choicE afG; it does not change under inner twistings

of G. It follows from the definition, thats (G) = m (G ).

We define the derived dual @ (G) by

p* =SC

m(G)° = [X*(T) — X*(T7)).
In this section we shall recall classical results that gegriorphisms
#°(UPIc(G)) =U (G) = kerp* = #°(m (G)P),
and

#1(UPic(G)) = Pic(G) = cokerp* = 71 (m(G)P).

Lemma 3.2(Rosenlicht) For a connected linear algebraic group G over a perfect fieldhle obvious
mapX*(G) — U(G) is an isomorphism which is functorial in G.

Proof. See[[Ros61], or [FI73, Cor. 2.2], ar [KKV89, Prop. 1.2] O
Corollary 3.3. For a connected linear k-group G we have a canonical isomisrmph
U(G) ~ #°(m(G)P).

Proof. Clearly,X*(G*') ~ X*(G), henceX*(G") ~ U (G). On the other hand, the identificatiGi =
T/p(T*°) gives an isomorphism

X* (G ~ kerX*(T) — X*(T°)] = #°(1(G)P).
[l

We shall now consider the identificatiot’* (UPic(G)) = 2#(m (G)P). We first make a reduction to
G3Susing the following lemma of Fossum—Iversen and Sansuc.

Lemma 3.4. Let1l - G’ — G — G” — 1 be an exact sequence of connected linear k-groups. Then we
have an exact sequence
— = = —

0— X*(G") = X*(G) = X*(G) — Pic(G") — Pi¢(G) — Pic(G) — 0.

Proof. See [San81, (6.11.4)]. In the case whHeh(K,G') = 0 for any extensiorK of k, this exact
sequence was obtained in [F173, Prop. 3.1]. O

Corollary 3.5. Let G be a linear algebraic group over k. Then the canonicapsna G — G"9 and
G5 — G™¥induce a natural isomorphism

Pic(G™) ~ Pic(G).
Proof. We first apply Lemma 314 to the short exact sequence
1-G' -GG -1,
and then to the short exact sequence
1-5GS 5GP GO 1,
using the fact thaxX*(G") = 0, PiqG") = 0, and Pi¢G"") = 0. O

We need the following construction of [Pop72] (see also [FI73, p. 275] and [KKLV89, Example
2.1)).
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Construction 3.6. Let G be a connected lined&-group. LetH C G be ak-subgroup, not necessarily
connected. S&X = G/H. We construct a morphism of Galois modules

c: X(H) — Pic(X)
as follows. Lety € X(H). Consider the embedding
H—GxGp, hw(hx(h™).

SetY = (G x Gn)/H, this quotient exists by Chevalley’s theorem, see for exarf§pr98, Thm. 5.5.5].
We have a canonical map— X = G/H. ClearlyY is a torsor undeGn, over X, which admits a local
section (in Zariski topology) by Hilbert 90. Since the groBp< G, acts transitively oY andX, we
conclude that the torsof — X is locally trivial in Zariski topology. From the principaby,-bundle
Y we construct (using the transition functionsYof a linear bundle onX which we denote by (x).
Alternatively, we can construdt(x) directly as the quotientG x G,)/H of G x G, under the right
action ofH given by

(g.a)-h=(ghax(h)™),
wherege G, ac G,, he H.

We denote bye(x) the class ot (x) in Pic(X). In terms of divisor classes, this means the following.
Let Yx be a rational section df(x). SetD = div(yx). We setc(x) = cl(D) € Pic(X), where c[D)
denotes the class of the divisbr

Note that a rational sectiagi of L(x) overX lifts canonically to a rational functiogyg onG. Namely,
the graph ofyg in G x G, is the preimage of the graph @i in L(x) with respect to the quotient map
GxGy— L(x).

Lemma 3.7. [Pop74, Thm. 4][KKV89] Prop. 3.2]Let G be a connected linear k-group, and let H be a
k-subgroup of G (not necessarily connected). Then the seque

X*(G) — X*(H) —— Pic(G/H) — Pic(G)
is exact.

Corollary 3.8. Let G be a connected semisimple k-group. We regard G as a heraogs space &
G%¢/Z, where Z= kerp. Then we have an isomorphism

c: X*(Z) = Pig(G),
where c is the homomorphism of Construcfiod 3.6.
Proof. The corollary follows from Lemm@a3.7. We use the facts %&{G"") = 0 and Pi¢G™") =0. O

Remark3.9. The equality Pi€G™) = 0 and the existence of an isomorphisti(Z) ~ Pic(G) for a
semisimplek-group G were proved by Voskresenskii [Vos69], Fossum and IveiB&fg| Cor. 4.6], and
Popov [Pop74] (see also [Vos98, 4.3)).

Corollary 3.10. For any connected linear k-group G we have a canonical isqiigm
X*(Z) = Pic(G)
where Z= kerp.

Proof. By Corollary[3.%5, we have an isomorphism R_’?ES) = Pic(G). By Corollary[3.8 we have an
isomorphismX*(Z) = Pic(G™). O

Corollary 3.11. For any connected linear k-group G we have a canonical isquiism Pic(G) ~
A1 (G)P).

Proof. Indeed,

X*(Z) = X*(kerp) = 71X (T) 2 X*(TS9) = #L(m (G)P).
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4. THE COMPARISON THEOREM
We shall now construct a canonical isomorphism
x6: UPIc(G) — m(G)P

for any connected lined-groupG.
We first make a reduction to the reductive case.

Lemma 4.1. Let G be a connected linear algebraic group over k. Then theoial homomorphism
r: G — G"dinduces an isomorphism

—red

r: UPidG ) = UPic(G).

Proof. By Lemmd 3.4 we have an exact sequence

—red

0— X*(G"®% = X*(G) — X*(@") — Pic[G™) — Pic(G) — Pig(G") — 0
whereX*(G") = 0 and Pi¢G") = 0. It follows that the map induces isomorphismé* (G = X*(G)
and Pi¢G"®%) = Pic(G). We see that the morphism: UPIc(G™®) — UPic(G) induces isomorphisms
on % and.#*, hence it is an isomorphism. O
Lemma 4.2. For any torus T over k we hawgPic(T) ~ X*(T).
Proof. This follows from Rosenlicht’s lemma (LemrhaB.2), since(Pic= 0. O

Lemma 4.3. Let G be a connected linear algebraic group over k such th&ti&simply connected,
= = —tor =

then we have canonical isomorphistdBic(G) = X*(G) = X*(G ). In particular, UPic(G) = 0if G is
semi-simple and simply connected.

Proof. We haveX*(G) = X*(G*") (for any connecte). By Lemmd3.ID Pi@G) = 0, hence UPI(G) =
X*(G). 0

4.4. In this subsection and the next one we identify UBicwith KDiv (G)e1 as in[2Z.8, where is the

unit element ofG. We write KDiv(G); for KDiv (G)e1. Note thatG — KDiv (G); is a functor from the
category of connected linelrgroups to the category of complexes of Galois modules.
For a maximal toru§ in a connected reductidegroupG we have a commutative diagram

ES L T
l li
e
(wherei is the inclusion homomorphism), hence a commutative diagrbcomplexes

*

(11) KDiv (G); —— KDiv(G™);
KDiv (T)1 P KDiv (T2
and a morphism of complexes
A =i*® (i%9)*: [KDiv(G)1 — KDiv(G™%)1) — [KDiv (T)1 — KDiv (T")1).
Consider the fibrékDiv (G); — KDiv(G'°)1). The canonical morphism
[KDiv (G); — KDiv(G>)1) — KDiv (G);
is an isomorphism in the derived category, because («Tiﬁ?al ~ 0 by Lemmad4.B.
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Consider the fibrékDiv (T); — KDiv(T"")1). The commutative diagram of complexes
XH(T) ——= X*(T°)
| l
KDiv (T); — KDiv (T™%);
in which the vertical arrows are isomorphisms in the derivatggory, induces a morphism of complexes
[X*(T) — X*(T°%) — [KDiv(T)1 — KDiv (T>%);)
which is an isomorphism in the derived category.

Construction 4.5. For a reductivek-group G we define a morphismes: UPic(G) — m(G)P as the
composition

UPIc(G) = [KDiv (G)1 — KDiv (G™)1) —2— [KDiv(T)1 — KDiv(T);)
= [XH(T) = XH(T) = m(G)°.
For a general connected lindagroupG (not necessarily reductive) we defing : UPic(G) — m(G)P
as the composition
UPIC(G) % UPIC(G™®) — 78(G™*%)P = 1(G)P.
Remark4.6. Using [BBD82, Prop. 1.1.9], one can show that all the fibres morphisms of fibres that
we defined in.44 and 4.5 using an explicit representationdmyptexes and morphisms of complexes,

do not depend on this representation. We use the fact théb Pig a torsion group (by Corollafy 3.1.0),
hence

HoMps(, (UPIC(G)[1], UPic(T™)) = Hom(Pic(G), X*(T™)) =0,
and so([BBD82, Prop. 1.1.9] can be applied.

4.7. Functoriality. Let ¢: G; — G, be a homomorphism of connected lindagroups. Consider the
induced homomorphismgd: Gig? — G4 and ¢S¢: G5¢ — GSC. Choose maximal torT; ¢ GE¢ and
T, C G?Y such thatp™9(T;) C To. Let TS (resp. T59) be the preimage of; in G5 (resp. ofT in G$9.
We have homomorphismg,: T — T, and ¢3¢ T — T;% We obtain a commutative diagram in the
derived category

KDiv (G); — = KDiv (Gy)s

Gy l Gy l/

X (T2) — X (TE) — [X* (T1) — X*(T39)

Thus the morphismcg: UPic(G) — m(G)P is functorial inG.
The following theorem is the main result of this paper.

Theorem 4.8. With notation as above, for a connected ﬂnear algebraicugras over a field k of
characteristic 0, the canonical morphisag: UPic(G) — 4 (G)P is an isomorphism.

Before proving the theorem, let us first mention two cordgigr
Corollary 4.9. The canonical isomorphismg induces canonical isomorphisms
Ext (UPic(G),Gm) ~ Hly(k,G),
where Hy(k,G) := H'(k, (TS — T]).

Proof. By Theoren{4.B EX{UPic(G),Gm) = Ext (76(G)P,Gp). By LemmaLh EX{7(G)P,Gm) =
H'(k,(TS¢— T]). ]
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Corollary 4.10. Letl - G' — G — G” — 1 be an exact sequence of connected linear k-groups. Then
we have a distinguished triangle
UPic(G) — UPI¢(G) — UPIc(G') — UPIc(G")[1].
Proof. Indeed, by([Bor9B, Lemma 1.5] (see also [BK04, Lemma 3.7]haee an exact sequence
0—m(G)— m(G) - m@G)—0,
hence a distinguished triangle
m(G")° — m(G)° - m(G)® - m(G")°[1],
and the assertion follows from Theoréml4.8. O

Remark4.11 This triangle strengthens Lemrhal3.4. Note that it does n@ ginew proof, since the
lemma was used in the proof of Theoreml 4.8, hence in the pifabfocorollary.

4.12. Proof of Theoreri 4]8/Ne may and shall assume thats reductive. Recall that
KDiv (G)1 = [K(G)Z; — DIV(G)e),
where
K@)z, = {f ek(©)| f(e) =1},
Div(G)e = {D € Div(G)| e ¢ supgD)}.
From the diagrarmi (11) we obtain a morphism of complexes
A=i"a (i%9": C; —Ct,
whereCg andC; are the complexes introducedinl4.4:
C, = [KDiv(G); — KDiv(G™)y),
C; = [KDiv(T)1 — KDiv(T%)y).
In other words,
Cg = KDiv(G)1 @ KDiv (G™)4[-1],
C; = KDiv(T)1 @ KDiv (T%%)1[-1],
with differentials given by the matrix of formulal(2)in1.1.
To prove the theorem, it suffices to prove thas a quasi-isomorphism. We must prove that the maps

A0 #0(Cy) — #°(Cy) andAt: #Y(Cy) — 1(C)
are isomorphisms.
We prove thatA ° is an isomorphism. Using Rosenlicht’s lemma, we see imnielgi¢hat

A#°(Cy) =kerfp”: X*(G) — X" (G,

HAO(Cr) = kerpt: X*(T) — X*(TH)],
andA©: #0(Cy) — #°(Cs) is the map induced by the restriction migp X*(G) — X*(T). Now it is
clear thatA ? is an isomorphism.

We prove thaiA ! is an isomorphism. Writ& = ker p. Consider the composed map
Oc: X*(Z) —= Pic(G™) = #(KDiv(G)1) = #1(Cy).

Here the last isomorphism is induced by the isomorphism K@)yl Cg in the derived category and
the mapc is the map of Constructidn 3.6. The mag is an isomorphism, because it is a composition of

isomorphisms. We computas; explicitly.
We have
C& =Div(G)e®K(G)g,
kerdg = {(Dg, fese) € DIV(G)e®K(G™)%; | p*(Dg) = div(fas)}
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whered} : C§ — C3 is the differential inCg,.

Let x € X*(Z). Define a right action oF on G™ x G, by (g,a) *z= (9z x(2) *a), whereg ¢
G ac GyzeZ. SetES=L(x) = (G x Gy)/Z, thenESSis a linear bundle oveG>> = G°°/Z. By
definition cESS) = c(x) € Pic(G™). Since we have a canonical isomorphism(Big= Pic(G™), our
ESS comes from a unique (up to an isomorphism) line burillever G. Let ¢ be a rational section of
E such thatp () # 0,0. SetDg = div(¢), then c[Dg) is the image ofy in Pic(G) = 1 (KDiv (G)1).
SetDgs = p*(Dg). Since Pi¢G™) = 0, there existsfesc on G- such thatDgs = div(fes). Since
ec ¢ supfDg), we see thafgse(egse) # 0,00. Setfle = fase/ fase(egse). Then(Dg, f&) € kerdd and
cl(Dg, f&sc) = 0c(X) € 51(Cy).

We need a lemma.

Lemma 4.13. The restriction of £ to Z is x 2.

Proof of Lemm&4.13Consider the sectiop*(¢) of p*E. By the construction oE®® we have a
canonical trivialization
U: G xGy p'E
which mapso*(¢) to somey = u*(p*(¢)). We have
(12) W(92) = x(2) w(g) forallge G, ze Z
becausep | is a rational section dE®. But
Dgs = p*(Dg) = div(p™(¢)) = div(y),

s0 we may takefgse = . SinceU (G°°) = X*(G™°) = 0, there exists, up to a constant, only one rational

function fesc onG°* such thaDgsc = div( fesc). Using [12), we obtain that for any sudhs: we have
foee(2) = fose(2)/ fosc(€) = W(2) /() = X (2.

4.14. Proof of Theorerh 418 (cont.\We have

Ct =DiV(T)e k(T )51,
kerd} = {(Dr, frsc)| pi (D7) = div(frse)},

whered?} : Ct — C2 is the differential irC;. The canonical isomorphism

~ ==SC,

(13) Cr = [X*(T) = X*(T7))
induces a composed map
1 S CH) S (X (T) — XH(T) 5 XH(2)
where the latter isomorphism is defined as followstkgl— k| for k € X*(T°°). We computetr
explicitly. .

Let (Dr, frsc) € kerdi. Since Pi¢T) = 0, there exists a rational functiofy € k(T)gﬂ1 such that
le(fT) = —Dt. Set fTsc = frsc- p*(fT) S R(Tsc):l Then dl\( FTSC) =0 and fTsc(e) = 1. By
Rosenlicht's lemmafrss € X*(T°°). Moreover (0, frx) € kerd} and (0, frs) = (Dr, frsc) + d@(fr).
The construction of the isomorphisii_{13) then implies tHaD¢, frsc) € #1(C+) corresponds to
cl(frsc) € AL([XH(T) — X*(T°9). The image of difrsc) in X*(Z) is

fraclz = frse- p*(fr)lz = freelz -
Thus the mapr is given by c[Dr, frsc) — frs|z.
Now we see that the composed map

B: X*(Z) - lCy) A i Cr) T X (2)

is given by
X = (Dg, fgse) = (i"(Dg), (1% (fese)) = (i%)" (fose)z -
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Clearly we have(i*0)*(fise)|z = faselz. By Lemmal4IBfL|z = —x (with additive notation). We
see that our composed m#pis given byx — —x, hence it is an isomorphism. Sincg and 17 are
isomorphisms, we conclude that is an isomorphism. This completes the proof of Thedrerm 4.8

Remark4.15 A different proof of the existence of an isomorphism Ug = 5 (G)P was proposed in
[CTOg].

5. UPIC OF TORSORS AND THE ELEMENTARY OBSTRUCTION

Lemma 5.1. Let X and Y be smooth geometrically integral k-varietiessufize that Y ik-rational.
Then the canonical morphism

{ . UPic(X) @ UPic(Y) — UPic(X xY)
induced by the projectionsxpand p; from X x Y to the corresponding factors, is a quasi-isomorphism.
Proof. By Rosenlicht’'s lemme [FI73, Lemma 2.1] the map

%) UX)aU(Y) = UX xY)

is an isomorphism. By a lemma of Colliot-Thélene and Saf€IS77, Lemme 11 p. 188] the map

A1) Pic(X) @ Pic(Y) — Pig(X xY)
is an isomorphism. Thug is a quasi-isomorphism. 0

For ak-torsor X under a connected linear algebr&igroup G it was shown by Sansuc thiat(X) =
U(G) = X*(G) and Pi¢X) = Pic(G). Sansuc’s result extends to UPic, and so does his proof.

Lemmab’.2. Let¢: X x G — X be a k-morphism defining a right action of a connected liradgebraic
k-group G on a smooth geometrically integral k-variety Xefih
(i) The canonical morphism
. UPic(X) @ UPi¢(G) — UPic(X x G)
is a quasi-isomorphism.
(i) Denote by
Ts: UPic(X x G) = UPic¢(X) @ UPi¢(G) — UPic(G)
the projection. Then
¢ =m0 ¢*: UPig(X) — UPi¢(X x G) — UPic(G)
is a canonical morphism, functorial ifX, G) and equal, for any x€ X (k) to ay , whereay,: G — X'is

the k-morphism defined lay, (g) = xog for ge G.
(i) If in addition X is a torsor of G over k, ther is an isomorphism in the derived category.

Proof. (i) SinceG is k-rational, by Lemm&35lZ is a quasi-isomorphism.
(i) Takexg € X (k). Letiy, be thek-morphismG — X x G defined byiy, (9) = (X0,9). Thenpgoiy, =id
andpx oiy, is the constant ma@ — {xo} € X. Henceiy = 1 and, sincey, = ¢ oiy,, we get

ay =iy 0C¢ =TGo¢" = ¢.
(i) By [San81, Lemmes 6.4, 6.5(i), 6.6(i)] the morphism#°(¢): U(X) — X*(G) and
AY(¢): Pic(X) — Pic(G) are isomorphisms, hendgeis an isomorphism in the derived category.]
As a corollary we obtain a canonical isomorphism betweertatget of the elementary obstruction
(Definition[2.10) and the abelian Galois cohomolddjy(k,G) :=H'(k, (T — T]).

Corollary 5.3. Let X be a k-torsor under a connected linear algebraic k-gr&@ We have a canonical
isomorphism _ _

Ext (UPic(X),Gm) ~ Hiy(k,G)
which is functorial in(G, X) and in k.

Proof. By Lemma [52(iii) Ext(UPic(X),Gm) = Ext(UPic(G),Gm). By Corollary [49
Ext (UPIC(G), Gm) = Hiy(k, G). 0
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Let abt: HY(k,G) — H1(k,G) be the abelianization map constructed in [Bor98]. FhetarsorX of
G, let [X] denote its class i 1(k,G). We write [X]ap:= ab'([X]) € H}(k,G). We shall prove that the
elementary obstructioe(X) coincides up to sign with thg]ap. For semisimple groups this was proved
by Skorobogatov [Sko01, p. 54]. For tori this was proved byssa [San81, (6.7.3), (6.7.4)] (see also
Skorobogatovi[Sko01, Lemma 2.4.3]). First we give Sanspiasf for tori with details added.

Lemma 5.4(Sansuc) Let T be a torus over k and let X be a k-torsor under T, deterchyea cocycle
C: 0 — Cg: Gal(k/k) — T (k). Consider the extension

(14) 1-K —KkX]* = X*T)—1

The class €X) of this extension ifExt!(X*(T),k™) corresponds under the isomorphism of Lenima 1.5
Ext'(X*(T),K*) =H(k,T)

to the class of the cocycle't.

Proof. We regardX (k) asT (k) with the twisted Galois actioor xt = ¢4 - at, wheret € T (k). Similarly
we regardk[X]* ask[T]* with the twisted Galois action, etc. In all cases we use thatium o to
denote the twisted Galois action.

Let x € X*(T). We compute&*x. Fort € T (k) we have

(7 x)(oxt) = 0(x(1)),
hence
(TX)(t) = a(x(0 7 xt)) = a(X(Cg-1-0 M) =
a(x(0 Y (cs'))) = Tx(c5't) = Tx(csh) - Ox ().

Thus
Tx=7x(cgh)-X.

Now let ¢: X*(T) — Kk[X]* be the standard (non-equivariant) splitting correspandia the
identification ofX with T. By abuse of notation we denote this splitting by~ x. Then the extension
classe(X) € H1(k,Homz (X*(T),k")) is represented by the cocyale— a¢ - ¢ 1.

Since

" -1 w01 -
(@)(X)=""(¢(° x)=""(° x)=x(cs") X,

we see thag(X) is represented by the cocycle

o 09t = (X x(cph)) € Homz (X*(T),K"),

which corresponds to the cocyate— ¢, under the identificatiof (k) ~ Homz (X*(T),k”) given by
— (X — x(t)) fort € T(k). O

Theorem 5.5. Let X be a torsor under a linear algebraic group G over k. Themedntary obstruction
class &X) € Ext'(UPic(X),k™) corresponds te-[X]a» € H1(k, G) under the canonical isomorphism of
Corollary[5.3

Ext (UPic(X),Gm) ~ Hl (k,G).

Proof. Without loss of generality we may assume t@sis reductive.

As in [Kot86, p. 369] (compare [BK0O, Lemma 1.1.4(i)]), wenstruct an epimorphisra: H — G,
whereH is a reductivek-group with H®S simply connected, together withkatorsor Xy underH such
thata. (Xy) ~ X. By functoriality of the isomorphism of Corollafy 5.3, inder to prove the theorem for
G andX, it is sufficient to prove it foH andX.

SinceHSSis simply connected, the homomorphigth— H'™" induces an isomorphisii}, (k,H) ~
HLi(k,H®") = Hi(k,H""), cf. [Bor98, Example 2.12(2)]. We see that the functowaldf the
isomorphism of Corollary_5]3 implies that it is sufficient poove the theorem for torsors under tori,
which was done in Lemnia3.4. O
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Corollary 5.6. LetY be a smooth compactification of a torsor X under a comdelitear algebraic

group G over k. Let S be thegkbn-Severi torus of Y, i.e. the k-torus S such X&tS) = Pic(Y). Then
Ext!(UPic(Y),Gm) = H?(k,S) and we have a canonical injection

Héb(k7 G) — Hz(k7 S)
sending[X]ap € H3(k,G) to —e(Y) € H?(k,S).

Proof. By Corollary[2.17 the open embeddifg X — Y induces an injectiof, : Ext'(UPic(X),Gp,) —
Ext'(UPic(Y),Gm). By Corollary[5.3 Ext(UPic(X), Gm) = H2(k,G). Since UPi¢Y) = Pic(Y)[—1], we
have Ext(UPic(Y),Gm) = Ex?(Pic(Y),Gm) = H?(k,S) (we use LemmBa1l5). By Theordm B.5takes
[X]apto —e(Y). O

Proposition 5.7. For (a smooth compactification of) atorsor X under a conngditeear algebraic group
G over a p-adic field k, the elementary obstruction is the atlstruction to the existence of k-rational
points.

Proof. We will first show that the vanishing & X) implies the existence oflarational point onX. Let
ab': H1(k,G) — H2,(k,G) denote the abelianization map bf [Bor98]. We have an exaptesece

Hi(k,G%9) — H(k,G) 2 Hik, G),

see [Bor98, (3.10.1)]. By Theorem 5.5%IX]) = —e(X), and by assumptioa(X) = 0. By Kneser's
theoremH(k, G5¢) = 0. We conclude thdX] = 0. ThusX has a-point.

Now we will show that for a smooth compactificatidh of X the vanishing ofe(Y) implies the
existence of &-rational point. By Corollary 2.17 the vanishing efY) implies the vanishing o&(X).
As above, this implies that (k) # 0, henceY (k) # 0. O

Proposition 5.8. For (a smooth compactification of) a torsor X under a conngtiteear algebraic group
G over a number field k, the elementary obstruction is the ob$truction to the Hasse principle.

Proof. First assume thaX(k,) # 0 for all placesv of k, and assume tha(X) = 0. Clearly [X] €
I1'(k,G), wherellI'(k,G) is the Tate-Shafarevich kernel f@&. By Theoreni 55 at{[X]) = —e(X).
Clearlye(X) € 111}, (k, G), where

1IZ5(k, G) = ker | Hap(k, G) — [ Hap(ky, G) | -
\Y

By [Bor98, Thm. 5.12] the induced map jah I11'(k,G) — 111}, (k,G) is bijective (here the Hasse
principle for semisimple simply connected groups, due teséan, Harder and Chernousov, plays a major
role in the proof). We see th&] = 0, henceX (k) # 0.

Now letY be a smooth compactification oketorsorX. Assume thag(Y) = 0 and thaty (k,) # 0 for
all v. By Corollary[2.17e(X) = 0 because(Y) = 0. SinceY is smooth, we havX(k,) # 0 for all v. As
above we see that(k) # 0, henceY (k) # 0. O

For other proofs of Propositions 5.7 dnd]5.8 $ee [BCTS06].
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