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EXTENDED PICARD COMPLEXES AND LINEAR ALGEBRAIC GROUPS

MIKHAIL BOROVOI AND JOOST VAN HAMEL

ABSTRACT. For a smooth geometrically integral varietyX over a fieldk of characteristic 0, we introduce
and investigate the extended Picard complex UPic(X). It is a certain complex of Galois modules of length 2,

whose zeroth cohomology isk[X]×/k
×

and whose first cohomology is Pic(X), wherek is a fixed algebraic
closure ofk andX is obtained fromX by extension of scalars tok. WhenX is ak-torsor of a connected linear
k-groupG, we compute UPic(X) = UPic(G) (in the derived category) in terms of the algebraic fundamental
groupπ1(G). As an application we compute the elementary obstruction for suchX.

INTRODUCTION

Throughout the paper,k denotes a field of characteristic 0 andk is a fixed algebraic closure ofk. By a
k-variety we mean a geometrically integralk-variety. If X is ak-variety, we writeX for X×k k.

Let G be a connected reductivek-group. Let

ρ : Gsc
։ Gss →֒ G

be Deligne’s homomorphism, whereGss is the derived subgroup ofG (it is semisimple) andGsc is the
universal covering ofGss (it is simply connected). LetT be a maximal torus ofG (defined overk) and
let Tsc := ρ−1(T) be the corresponding maximal torus ofGsc. The 2-term complex of tori

Tsc ρ
−−→ T

(with Tsc in degree−1) plays an important role in the study of the arithmetic of reductive groups. For
example, the Galois hypercohomologyH i(k,Tsc→ T) of this complex is the abelian Galois cohomology
of G (cf. [Bor98]). The corresponding Galois module

π1(G) := X∗(T)/ρ∗ X∗(T
sc
)

(whereX∗ denotes the cocharacter group of a torus) is the algebraic fundamental group ofG (loc. cit.).
The related group of multiplicative type overC with holomorphic Gal(k/k)-action

Z(Ĝ) := Hom(π1(G),C×) = ker[X∗(T)⊗C× → X∗(T
sc
)⊗C×]

(whereX∗ denotes the character group) is the center of a connected Langlands dual groupĜ for G,
considered by Kottwitz [Kot84].

Clearly, the above constructions rely on the linear algebraic group structure ofG. However we show in
this paper that in fact they are related to a very natural geometric/cohomological construction that works
for an arbitrary smooth geometrically integralk-varietyX. Namely, we consider the cone UPic(X) of the
morphism

Gm(k) → τ≤1RΓ(X,Gm)

in the derived category of discrete Galois modules. More explicitly, this cone is represented by the 2-term
complex

k(X)
×
/k

×
→ Div(X)
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2 MIKHAIL BOROVOI AND JOOST VAN HAMEL

(with k(X)
×
/k

×
in degree 0), wherek(X) denotes the field of rational functions onX, and Div(X) is

the divisor group ofX. It follows from the definitions that the cohomology groupsH i of the complex
UPic(X) vanish fori 6= 0,1, and

H
0(UPic(X)) = U(X) := k[X]×/k

×

H
1(UPic(X)) = Pic(X)

wherek[X] is the ring of regular functions onX. We see that UPic(X) can be regarded as a 2-extension
of the Picard group Pic(X) by U(X). We shall call UPic(X) the extended Picard complex of X. The
importance of the extended Picard complex lies in the fact that UPic(X) contains more information than
U(G) and Pic(G) separately.

Let G be an arbitrary connected lineark-group, not necessarily reductive. We writeGu for the

unipotent radical ofG, and setGred = G/Gu (it is reductive). We defineπ1(G) := π1(G
red

). This means
the following. Let

ρ : Gsc
։ Gss →֒ Gred

be Deligne’s homomorphism, whereGss is the derived subgroup ofGred andGsc is the universal covering
of Gss. Let T be a maximal torus ofGred and letTsc := ρ−1(T) be the corresponding maximal torus of
Gsc. Thenπ1(G) = X∗(T)/ρ∗ X∗(T

sc
).

Consider the derived dual complex toπ1(G), which by definition is given by

π1(G)D = (X∗(T) → X∗(T
sc
)) (with X∗(T) in degree 0).

By Rosenlicht’s lemma [Ros61] we have U(G) = X∗(G). By a formula of Voskresenskĭı [Vos69],

Fossum–Iversen [FI73] and Popov [Pop74], we have Pic(G) ≃ X∗(ker[ρ : G
sc
→ G

red
]). From these

results one can easily obtain that

H
i(UPic(G)) ≃ H

i(π1(G)D) for i = 0,1.

The central result of this paper is that UPic(G) andπ1(G)D themselves are isomorphic in the derived
category.

Theorem 1 (Theorem 4.8). For a connected group G over a field k of characteristic0, there is a
canonical isomorphism, functorial in G,

UPic(G)
∼
→ π1(G)D

in the derived category of discrete Galois modules.

Both Rosenlicht’s lemma and the vanishing ofU(G) and Pic(G) for a semisimple simply connected
groupG are used in the proof.

We also prove a version of Theorem 1 for torsors.

Proposition 2 (Lemma 5.2(iii)). Let G be a connected group over a field k of characteristic0, and let X
be a k-torsor under G. There is a canonical isomorphism, functorial in G and X,

UPic(X)
∼
→ UPic(G)

in the derived category of discrete Galois modules.

Corollary 3. Let G be a connected group over a field k of characteristic0, and let X be a k-torsor under
G. There is a canonical isomorphism, functorial in G and X,

UPic(X)
∼
→ π1(G)D

in the derived category of discrete Galois modules.

This central result gives a good conceptual explanation of many existing results in the literature
concerning the striking relationship between the arithmetic of a linear algebraic groupG and the Galois
modulesX∗(G) and Pic(G).
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Picard group and Brauer group.

Proposition 4 (Corollary 2.20(i)). Let X be a smooth geometrically integral variety over k. Thenthere
is a canonical injection

Pic(X) →֒ H1(k,UPic(X))

which is an isomorphism if X(k) 6= /0 or if Br(k) = 0.

Corollary 5. For a connected linear algebraic group G over k we have a canonical isomorphism

Pic(G)
∼
→ H1(k,π1(G)D).

Proof. The corollary follows immediately from Proposition 4 and Theorem 1. �

Let X be a smooth geometrically integral variety overk. Let Br(X) = H2
ét(X,Gm) be the Brauer group

of X, and let Br1(X) be the kernel of the map Br(X) → Br(X). We write Bra(X) for the cokernel of the
canonical homomorphism Br(k) → Br1(X).

Proposition 6 (Corollary 2.20(ii)). Let X be a smooth geometrically integral variety over k. There is a
canonical injection

Bra(X) →֒ H2(k,UPic(X))

which is an isomorphism if X(k) 6= /0 or H3(k,k
×
) = 0.

Corollary 7. For a connected linear algebraic group over k we have a canonical isomorphism

Bra(G)
∼
→ H2(k,π1(G)D)

Proof. This follows immediately from Proposition 6 and Theorem 1. �

Note that Corollaries 5 and 7 are versions of results of Kottwitz [Kot84, 2.4]. Kottwitz proved that for
a connected reductivek-groupG we have

Pic(G) = π0(Z(Ĝ)g), Bra(G) = H1(k,Z(Ĝ)),

whereg = Gal(k/k).

UPic and smooth compactifications.

Proposition 8 (Proposition 2.13). Let Y be a smooth compactification of a smooth geometrically integral
k-variety X. Then we have a distinguished triangle

Pic(Y)[−1]
j∗

−−→ UPic(X) → Z
1

Y−X → Pic(Y)

where the morphism j∗ is induced by the inclusion map j: X →Y, andZ 1
Y−X is the permutation module

of divisors in the complement ofX in Y.

We see that Pic(Y) is very close to UPic(X): up to translation, the difference between them is a
permutation module.

If C is a complex of Gal(k/k)-modules, we write

X
i
ω(k,C) = ker

[

H i(k,C) → ∏
γ

H i(γ ,C)

]

whereH i(k,C) is the corresponding Galois hypercohomology group, andγ runs over all closed procyclic
subgroups of Gal(k/k).

Proposition 9 (Corollary 2.16). Let Y be a smooth compactification of a smooth k-variety X. Then there
is a canonical isomorphism

X
1
ω(k,Pic(Y))

∼
→ X

2
ω(k,UPic(X)).

Proposition 9 follows easily from Proposition 8.
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Corollary 10. Let Y be a smooth compactification of a k-torsor X under a connected linear k-group G.
There is a canonical isomorphism

X
1
ω(k,Pic(Y)) ≃ X

2
ω(k,π1(G)D)

Proof. The corollary follows immediately from Proposition 9 and Corollary 3. �

Note that we haveH1(k,Pic(Y)) = X
1
ω(k,Pic(Y)) (see [CTK98, Prop. 3.2], [BK04, Cor. 3.4]). Thus

we have a new proof of the fact that

H1(k,Pic(Y)) ≃X
2
ω(k,π1(G)D),

cf. [BK00, Thm. 2.4].

Elementary obstruction. Let X be a smooth geometrically integralk-variety. We have an extension of
complexes of Galois modules

0→ k
×
→

(

k(X)
×
→ Div(X)

)

→
(

k(X)
×
/k

×
→ Div(X)

)

→ 0.

It defines an elemente(X) ∈ Ext1(UPic(X),k
×
). If X has ak-point, then this extension splits (in the

derived category), hencee(X) = 0. We shall calle(X) theelementary obstructionto the existence of a
k-point in X, since it is a variant of the original elementary obstruction of Colliot-Thélène and Sansuc
[CTS87, Déf. 2.2.1] which lives in Ext1(k(X)

×
/k

×
,k

×
).

Now let G be a connected lineark-group and letX be ak-torsor underG. By Corollary 3 we have
UPic(X) = π1(G)D. Using Lemma 1.5 below, we obtain

Ext1(UPic(X),k
×
) = H1(k,Hom(π1(G)D,k

×
)) = H1(k,Tsc→ T)

(whereTsc is in degree−1). Recall that the first abelian Galois cohomology group ofG is by definition
the abelian groupH1

ab(k,G) := H1(k,Tsc → T), so the above identification gives use(X) ∈ H1
ab(k,G).

Here we compare the elementary obstructione(X) ∈ H1
ab(k,G) with the image of the cohomology class

[X] ∈ H1(k,G) of the torsorX under the abelianization map ab1 : H1(k,G) → H1
ab(k,G) constructed in

[Bor98].

Theorem 11(Theorem 5.5). Let X be a k-torsor under a connected linear k-group G. With notation as
above, we have e(X) = ab1([X]).

The theorem allows us to translate existing results on abelian Galois cohomology of connectedk-
groups to results on the elementary obstruction for torsors. We simultaneously obtain results on smooth
compactifications of torsors, since Proposition 8 implies that the elementary obstructione(Y) for a
smooth compactificationY of a smooth varietyX vanishes if and only if the elementary obstruction
e(X) for X vanishes.

Proposition 12(Proposition 5.7). For (a smooth compactification of) a torsor under a connectedlinear
algebraic group G over a p-adic field k, the elementary obstruction is the only obstruction to the existence
of k-rational points.

Proposition 13(Proposition 5.8). For (a smooth compactification of) a torsor under a connectedlinear
algebraic group G over a number field k, the elementary obstruction is the only obstruction to the Hasse
principle.

Corollary 14 (Sansuc [San81], Cor. 8.7). For a smooth compactification Y of a torsor X under a
connected linear algebraic group G over a number field k, the Brauer–Manin obstruction is the only
obstruction to the Hasse principle.

Proof. Assume thatY has points over all the completions ofk. By [Sko01, Prop. 6.1.4] the vanishing
of the Brauer–Manin obstruction implies that the elementary obstruction vanishes, and we see from
Proposition 13 thatY has ak-point. �
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1. PRELIMINARIES

Throughout this paper,k will be a field of characteristic zero. Letk denote a fixed algebraic closure
of k. For a varietyX overk we denote byDb(Xét) the derived category of complexes of sheaves on the
(small) étale site overX with bounded cohomology. We write

RΓX/k := Rϕ∗ : D+(Xét) → D+(két).

whereϕ : X → Speck denotes the structure morphism. We shall not distinguish between the category
of étale sheaves on Speck and the category of discrete Galois modules. We shall alwaysassume our
varieties to be geometrically integral.

Let Gm be the multiplicative group. We shall denote an étale sheafrepresented by a group scheme
by the same symbol as the group scheme itself. For a varietyX overk write X = X×k k. We define the
following Galois modules:

U(X) := (ΓX/kGm)/Gm = k[X]×/k
×

Pic(X) := R1ΓX/kGm = H1(X,Gm).

These Galois modules are contravariantly functorial inX.
In this paper we shall be mostly interested in acomplexof Galois modules that combines U(X) and

Pic(X). For this we want to take the objectτ≤1RΓX/kGm in Db(két) moduloGm (i.e. modulok
×

), where
RΓX/k is the derived functor, andτ≤1 is the truncation functor. To make this precise, we shall introduce
some terminology and notation. For definitions of derived categories, triangulated categories, derived
functors, truncation functors etc. we refer to original works [Ver77], [Ver96], [BBD82], and textbooks
[Ive86], [GM96], [Wei94] (see also [GM99]).

1.1. Cones and fibres.Let f : P→ Q be a morphism of complexes of objects of an abelian categoryA .
We denote by

〈P→ Q]

theconeof f , i.e., the complex with the object in degreei equal to

Pi+1⊕Qi,

and differential given by the matrix
(

−dP 0
− f dQ

)

,

which denotes the homomorphism(p,q) 7→ (−dP(p),− f (p)+dQ(q)). We adopt the convention that the
diagrams of the form

(1) P
f

−−→ Q

(

0
id

)

−−→ 〈P→ Q]

(

id 0
)

−−→ P[1]

are distinguished triangles.
Similarly, we denote by

[P→ Q〉

the complex with the object in degreei equal to

Pi ⊕Qi−1,
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and differential given by the matrix

(2)

(

dP 0
f −dQ

)

,

which denotes the homomorphism(p,q) 7→ (dP(p), f (p)− dQ(q)). We call [P → Q〉 the fibre (or co-
cone) of f . Then

〈P→ Q] = [P→ Q〉[1],

and we have a distinguished triangle

(3) [P→ Q〉

(

−id 0
)

−−→ P
f

−−→ Q

(

0
id

)

−−→ [P→ Q〉[1].

We have[P→ 0〉 = P, and〈0→ Q] = Q.

Remark1.2. Note that our sign convention for the differentials in the cone corresponds to [Ive86, I.4],
but is different from other sources, such as [GM96, III.3.2]. For example, in the latter the cone has
differential

(

−dP 0
f dQ

)

.

The choice of signs also has an influence on the class of distinguished triangles. Indeed, consider the
following diagram

(4) P
f

−−→ Q

(

0
id

)

−−→CGM( f )
(

id 0
)

−−→ P[1]

where we writeCGM( f ) for the cone as defined in [GM96]. Then this diagram is a distinguished triangle
in D(A ) in the convention of [GM96] (cf. Def. III.3.4 and Lemma III.3.3 in loc. cit.). However, in our
convention we would need to change the last homomorphism of diagram (4) to

(

−id 0
)

in order to have
a distinguished triangle.

1.3. Let f : P → Q be a morphism in the derived categoryDb(A ). We define a cone〈P → Q] as the
third vertex of a distinguished triangle (1). Similarly, wedefine a fibre[P → Q〉 as the third vertex of
a distinguished triangle (3). It is well known that in general in a derived category (or in a triangulated
category) a cone and a fibre are defined only up to a non-canonical isomorphism. However we shall
prove, that all the cones and fibres that we shall consider, will be defined up to acanonicalisomorphism
(we shall use [BBD82, Prop. 1.1.9]).

1.4. Ext and Galois cohomology.In order to compute the elementary obstruction to the existence of
a rational point ink-variety X, we need the following lemma, which is probably well-known (compare
for example the closely related result [Mil86, Theorem 0.3 and Example 0.8]). We are grateful for J.
Bernstein for proving this lemma.

Lemma 1.5. Let M• be a bounded complex of torsion free finitely generated (overZ) discreteGal(k/k)-
modules. Then for all integers i we have canonical isomorphisms

Exti(M•,k
×
) = H i(k,Hom•

Z(M•,k
×
)).

Let g be a profinite group. By ag-module we mean a discreteg-module. By a torsion free finitely
generatedg-module we mean ag-module which is torsion free and finitely generated overZ. Lemma 1.5
follows from the following Lemma 1.6.

Lemma 1.6. Let A be ag-module, B ag-module, and let M• be a complex of torsion free finitely generated
g-modules. Then there are canonical isomorphisms

Exti
g
(A,Hom•

Z(M•,B)) = Exti
g
(A⊗

Z
M•,B).

To obtain Lemma 1.5 we just takeA = Z, B = k
×

in Lemma 1.6.
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Proof of Lemma 1.6.First letM be a finitely generatedg-module. We have a canonical isomorphism

HomZ(A,HomZ(M,B)) = HomZ(A⊗
Z

M,B).

Takingg-invariants, we obtain

Homg(A,HomZ(M,B)) = Homg(A⊗
Z

M,B).

If M• is a complex of torsion free finitely generatedg-modules, we obtain similarly

Hom•
g(A,Hom•

Z(M•,B)) = Hom•
g(A⊗

Z
M•,B).

Now let I • be an injective resolution ofB in the category of discreteg-modules. Again

Hom•
g
(A,Hom•

Z(M•, I •)) = Hom•
g
(A⊗

Z
M•, I •).

By a definition of Exti we have

H
i(Hom•

g(A⊗
Z

M•, I •)) = Extig(A⊗
Z

M•,B).

To prove Lemma 1.6 it suffices to prove that

H
i(Hom•

g(A,Hom•
Z(M•, I •))) = Extig(A,Hom•

Z(M•,B)).

This follows from the next lemma. �

Lemma 1.7. Hom•
Z(M•, I •) is an injective resolution ofHom•

Z(M•,B).

Proof. Since M• is a bounded complex of torsion free finitely generated modules, we see that
Hom•

Z(M•, I •) is a resolution of Hom•Z(M•,B). This is an injective resolution, since for any torsion-
free finitely generatedg-moduleM and an injectiveg-moduleI , theg-module HomZ(M, I) is injective
(see for example [Mil86, Lemma 0.5]). This completes the proofs of Lemmas 1.7, 1.6, and 1.5. �

2. THE EXTENDED PICARD COMPLEX

2.1. Let X be a geometrically integralk-variety. Consider the cone

UPic(X) := 〈Gm → τ≤1RΓX/kGm].

In more detail: we can representτ≤1RΓX/kGm as a complex in degrees 0 and 1. We have a
homomorphismi : Gm → H0(X,Gm), which induces a morphismi∗ : Gm → τ≤1RΓX/kGm. Then
UPic(X) is a cone of this map. Note that the mapi is injective, henceH −1(UPic(X)) = 0, and
UPic(X)[−1] ∈Ob(Db(két)

≥1). It follows that Hom(Gm,UPic(X)[−1]) = 0, so by [BBD82, Prop. 1.1.9]
UPic(X) is defined up to a canonical isomorphism. We call UPic(X) theextended Picard complexof a
varietyX. We have a canonical distinguished triangle

(5) Gm → τ≤1RΓX/kGm → UPic(X) → Gm[1].

Note that

H
0(UPic(X)) = U(X),

H
1(UPic(X)) = Pic(X),

H
i(UPic(X)) = 0 for i 6= 0,1.

Hence UPic(X) is indeed a combination of Pic(X) andU(X). In particular, if X is projective, then
UPic(X) = Pic(X)[−1].

The construction of the complex UPic(X) is functorial in X in the derived category. Indeed, a
morphism ofk-varieties f : X → Y induces a pull-back morphismf ∗ : τ≤1RΓY/kGm → τ≤1RΓX/kGm,
hence by [BBD82, Prop. 1.1.9] a canonical morphism

f ∗ : UPic(Y) → UPic(X).
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2.2. An explicit presentation of UPic.AssumeX to be nonsingular. We write Div(X) for the Galois
module of divisors onX, andk(X) for the rational function field ofX. The divisor map

k(X)
× div
−−→ Div(X)

has kernel equal tok[X]× and cokernel equal to Pic(X). We write KDiv(X) for the complex of Galois

modules[k(X)
× div
−−→ Div(X)〉. We show below that UPic(X) ≃ 〈k

×
→ KDiv(X)]

For this, we need the following fact, which should be well-known to experts, but for which we do not
have an explicit reference.

Lemma 2.3. There is a canonical isomorphism

KDiv(X)
∼
→ τ≤1RΓX/kGm .

To prove Lemma 2.3 we need a construction.

Construction 2.4. Let K be a complex of sheaves onX, K = K0 → K1 → . . . . We write ΓX/kK =

ΓX/kK
0 → ΓX/kK

1 → . . . . By definition of a right derived functor (see for example [GM96, Def. III.6.6]),
we have a homomorphism

ΓX/kK → RΓX/kK

Now assume that we have a morphismA→ B of sheaves onX. Then we have a distinguished triangle

[A→ B〉 → A→ B→ [A→ B〉[1],

a morphism of triangles

[ΓX/kA→ ΓX/kB〉 //

��

ΓX/kA //

��

ΓX/kB //

��

[ΓX/kA→ ΓX/kB〉[1]

��

RΓX/k[A→ B〉 // RΓX/kA // RΓX/kB // RΓX/k[A→ B〉[1]

and a commutative diagram with exact rows

H 0[ΓX/kA→ ΓX/kB〉 //

��

ΓX/kA //

��

ΓX/kB //

��

H 1[ΓX/kA→ ΓX/kB〉[1] //

��

0

��

R0ΓX/k[A→ B〉 // R0ΓX/kA // R0ΓX/kB // R1ΓX/k[A→ B〉 // R1ΓX/kA

Proof of Lemma 2.3.By [Gro68, II.1] we have a resolution

0→ Gm → K
×

X → D ivX → 0

of the sheafGm by the sheafK ×
X of invertible rational functions and the sheafD ivX of Cartier divisors.

Hence we get a canonical isomorphism

(6) RΓX/kGm ≃ RΓX/k[K
×

X → D ivX〉.

We haveR0ΓX/kK
×

X = k(X)
×

andR0ΓX/kD ivX = Div(X). Applying Construction 2.4 to the morphism
of sheavesK ×

X → D ivX, we obtain a canonical morphism

(7) [k(X)
× div
−−→ Div(X)〉 → RΓX/kGm

and a commutative diagram with exact rows

0 // H 0(KDiv(X)) //

��

k(X)
× //

≃

��

Div(X) //

≃

��

H 1(KDiv(X)) //

��

0

0 // R0ΓX/kGm // R0ΓX/kK
×

X
// R0ΓX/kD ivX // R1ΓX/kGm // R1ΓX/kK

×
X



EXTENDED PICARD COMPLEXES AND LINEAR ALGEBRAIC GROUPS 9

(we use the isomorphism (6)). By Hilbert 90 in Grothendieck’s form we haveR1ΓX/kK
×

X = 0
(cf. [Gro68, II, Lemme 1.6]). Hence the five lemma gives us that the vertical arrowsH i(KDiv(X)) →
RiΓX/kGm for i = 0,1 are isomorphisms. In other words, the morphism (7) inducesan isomorphism

(8) [k(X)
× div
−−→ Div(X)〉

∼
→ τ≤1RΓX/kGm

in the derived category. �

Corollary 2.5. There is a canonical isomorphism

〈k
×
→ KDiv(X)]

∼
→ UPic(X).

Proof. We have a natural commutative diagram in the derived category of Galois modules

Gm

��

// τ≤1RΓX/kGm

��

k
× // KDiv(X)

of which the vertical arrows are isomorphisms. The mapk
×
→ k[X]× = H 0(KDiv(X)) is injective. Now

our corollary follows from [BBD82, Prop. 1.1.9] (similar tothe argument in 2.1). �

Remark2.6. Observe that

〈k
×
→ KDiv(X)] ≃ [k(X)

×
/k

×
→ Div(X)〉.

We shall write KDiv(X)/k
×

for [k(X)
×
/k

×
→ Div(X)〉. Then by Corollary 2.5 we have KDiv(X)/k

×
≃

UPic(X).

Remark2.7. The complex KDiv(X)/k
×

is not functorial inX in the category of complexes. Indeed,
neitherk(X)

×
/k

×
nor Div(X) are functorial inX.

2.8. Splitting.
Let X be a nonsingulark-variety. Assume thatX has ak-point x. We set

Div(X)x = {D ∈ Div(X)| x /∈ supp(D)}

k(X)
×
x = { f ∈ k(X)

×
| div( f ) ∈ Div(X)x}

KDiv(X)x = [k(X)
×
x → Div(X)x〉

By a well-known moving lemma, the composed map

Div(X)x → Div(X) → Pic(X)

is surjective. It follows that the morphism of complexes

KDiv(X)x → KDiv(X)

is a quasi-isomorphism.
Set

k(X)
×
x,1 = { f ∈ k(X)

×
| f (x) = 1}

KDiv(X)x,1 = [k(X)
×
x,1 → Div(X)x〉

We have an isomorphism

k
×
⊕k(X)

×
x,1

∼
→ k(X)

×
x

given by

(c, f ) 7→ c f where c∈ k
×
, f ∈ k(X)

×
x,1.

Hence we obtain an isomorphism

k
×
⊕KDiv(X)x,1

∼
→ KDiv(X)x .
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We see that the cone〈k
×
→ KDiv(X)x] is canonically quasi-isomorphic to KDiv(X)x,1. Thus UPic(X)≃

KDiv(X)x,1.
Let f : X →Y be a morphism of nonsingulark-varieties, and letx∈ X(k). Sety = f (x) ∈Y(k). Then

we have a morphism of complexes

f ∗ : KDiv(Y)y,1 → KDiv(X)x,1 .

We see that the complex KDiv(X)x,1 is functorial in(X,x) in the category of complexes.

Lemma 2.9. Let X be a nonsingular k-variety having a k-point x. Then the triangle (5) of 2.1 splits, i.e.
the third morphismUPic(X) → Gm[1] in this triangle is 0.

Proof. If X has ak-point x, then the triangle (5) is isomorphic to the split triangle

k
×
→ k

×
⊕KDiv(X)x,1 → KDiv(X)x,1 → k

×
[1]

with obvious morphisms, where the third morphism is 0. Hencethe third morphism in the triangle (5)
is 0. �

The lemma shows that the triangle (5) can provide a cohomological obstruction to the existence of a
k-rational point.

Definition 2.10. Let X be a nonsingular variety overk. We define theelementary obstruction

e(X) ∈ Ext1(UPic(X),Gm)

to be the classe(X) of the triangle (5).

2.11. We calle(X) the elementary obstruction, because it is closely related to the elementary obstruction
ob(X) ∈ Ext1(k(X)

×
/k

×
,k

×
) of Colliot-Thélène and Sansuc [CTS87, Déf. 2.2.1]. Indeed, by definition

ob(X) is the class of the extension

0→ k
×
→ k(X)

×
→ k(X)

×
/k

×
→ 0,

whereas under the identification UPic(X)≃ KDiv(X)/k
×

of Corollary 2.5,e(X) is the extension class of
the triangle associated to the short exact sequence of complexes

0→ k
×
→ KDiv(X) → KDiv(X)/k

×
→ 0.

Hencee(X) is the image of the class ob(X) under the homomorphism

(9) Ext1(k(X)
×
/k

×
,k

×
) → Ext1(KDiv(X)/k

×
,k

×
)

induced by the natural map KDiv(X)/k
×
→ k(X)

×
/k

×
.

Lemma 2.12. For a nonsingular k-variety X, we have e(X) = 0 if and only ifob(X) = 0.

Proof. The homomorphism (9) fits into an exact sequence of Ext-groups

(10) Ext1(Div(X),k
×
) → Ext1(k(X)

×
/k

×
,k

×
) → Ext1

(

[k(X)
×
/k

×
→ Div(X)〉,k

×
)

.

induced by the exact sequence of complexes

0→ Div(X)[−1] → [k(X)
×
/k

×
→ Div(X)〉 → k(X)

×
/k

×
→ 0

Since Div(X) is a direct sum of permutation modules, Lemma 1.5 gives that Ext1(Div(X),k
×
) is a

direct product of theH1-groups of quasi-trivial tori, hence Ext1(Div(X),k
×
) = 0, so we see from the

exact sequence (10) that the homomorphism (9) is injective,from which the statement follows. �

Now we investigate how UPic changes under open embeddings.

Proposition 2.13.Let X⊂Y be an open k-subvariety of a nonsingular k-variety Y . Let j: X →֒Y denote
the inclusion map. Then we have a distinguished triangle

UPic(Y)
j∗

−−→ UPic(X) → Z
1

Y−X → UPic(Y)[1]

whereZ 1
Y−X is the permutation module of divisors in the complement ofX inY .
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Proof. Clearly we have a short exact sequence of complexes

0→ Z
1

Y−X[−1] → KDiv(Y)/k
× j∗
−−→ KDiv(X)/k

×
→ 0,

whence we obtain distinguished triangles

Z
1

Y−X[−1] → KDiv(Y)/k
× j∗
−−→ KDiv(X)/k

×
→ Z

1
Y−X

and

KDiv(Y)/k
× j∗
−−→ KDiv(X)/k

×
−−→ Z

1
Y−X −−→ (KDiv(Y)/k

×
)[1]

�

Remark2.14. Let X ⊂ Y be an openk-subvariety of a nonsingular completek-varietyY. Proposition
2.13 implies that UPic(X) is non-canonically isomorphic to the fibre

[

Z 1
Y−X → Pic(Y)

〉

. Skorobogatov
actually gave a canonical isomorphism in the derived category UPic(X)

∼
→

[

Z 1
Y−X → Pic(Y)

〉

(cf. [CT06,
Rem. B.2.1(2)]).

By X
i
ω(k,M) we denote the subgroup ofH i(k,M) of elements that map to zero inH i(γ ,M) for every

closed procyclic subgroupγ ⊂ Gal(k/k). Recall that for a permutation moduleP we haveH1(k,P) = 0
andX

2
ω(k,P) = 0 (cf. [BK00, 1.2.1]).

Corollary 2.15. Let X⊂Y be an open k-subvariety of a nonsingular k-variety Y . Then the restriction
mapUPic(Y) → UPic(X) induces an injection

H2(k,UPic(Y)) →֒ H2(k,UPic(X))

and an isomorphism

X
2
ω(k,UPic(Y))

∼
→ X

2
ω(k,UPic(X)).

Proof. By Proposition 2.13 we have an exact sequence

H1(k,Z 1
Y−X) → H2(k,UPic(Y)) → H2(k,UPic(X)) → H2(k,Z 1

Y−X),

whereZ 1
Y−X is a permutation Galois module. Now the injectivity of the two maps follows from the

vanishing ofH1(k,Z 1
Y−X). The surjectivity of theX2

ω -map follows from the vanishing ofX2
ω(k,Z 1

Y−X)
and an easy diagram chase. �

Corollary 2.16. Let X⊂ Y be an open k-subvariety of a nonsingular complete k-variety Y . Then the
restriction mapPic(Y)[−1] = UPic(Y) → UPic(X) induces an injection

H1(k,Pic(Y)) →֒ H2(k,UPic(X))

and an isomorphism

X
1
ω(k,Pic(Y))

∼
→ X

2
ω(k,UPic(X)).

Corollary 2.17. Let X⊂Y be an open k-subvariety of a nonsingular k-variety Y . Let j: X →֒Y denote
the inclusion map. Then the induced map

j∗ : Ext1(UPic(X),Gm) → Ext1(UPic(Y),Gm)

is injective. In particular, the elementary obstruction e(X) vanishes if and only if e(Y) vanishes.

Proof. Applying the functor Ext to the distinguished triangle of Proposition 2.13, we obtain an exact
sequence

Ext1(Z 1
Y−X,Gm) → Ext1(UPic(X),Gm)

j∗
−−→ Ext1(UPic(Y),Gm).

By Lemma 1.5 Ext1(Z 1
Y−X,Gm) = H1(k,P), whereP is thek-torus such thatX∗(P) = Z 1

Y−X. Since
Z 1

Y−X is a permutation module, we see thatP is a quasi-trivial torus, henceH1(k,P) = 0, and therefore
the homomorphismj∗ is injective. �
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2.18. UPic, the Picard group and the Brauer group.Let X be a nonsingular variety overk. Let Br(X) =
H2(X,Gm) denote the (cohomological) Brauer group ofX, let Br1(X) denote the kernel of the map
Br(X) → Br(X), and let Bra(X) denote the cokernel of the map Br(k) → Br1(X).

We have equalities

Pic(X) = H1(X,Gm) = H1(k,RΓX/kGm) = H1(k,τ≤1RΓX/kGm)

Br(X) = H2(X,Gm) = H2(k,RΓX/kGm) = H2(k,τ≤2RΓX/kGm).

From the distinguished triangle

τ≤1RΓX/kGm → τ≤2RΓX/kGm → R2ΓX/kGm[−2] → τ≤1RΓX/kGm[1]

we obtain a Galois cohomology exact sequence

0→ H2(k,τ≤1RΓX/kGm) → H2(k,τ≤2RΓX/kGm) → H0(k,R2ΓX/kGm).

SinceH2(k,τ≤2RΓX/kGm) = Br(X), andH0(k,R2ΓX/kGm) = Br(X)Gal(k/k), it follows that

Br1(X) = H2(k,τ≤1RΓX/kGm).

Proposition 2.19. Let X be a nonsingular variety over k. We have an exact sequence

0 → Pic(X) → H1(k,UPic(X)) → Br(k) → Br1(X) → H2(k,UPic(X)) → H3(k,Gm),

in which the homomorphisms H1(k,UPic(X))→ Br(k) and H2(k,UPic(X)) → H3(k,Gm) are zero when
X(k) 6= /0.

Proof. We obtain the exact sequence by taking Galois cohomology of the triangle (5) of 2.1 and applying
Hilbert’s Theorem 90 to the termH1(k,Gm). For the caseX(k) 6= /0 we apply Lemma 2.9. �

Corollary 2.20. Let X be a smooth geometrically integral variety over k.

(i) There is a canonical injection

Pic(X) →֒ H1(k,UPic(X))

which is an isomorphism if X(k) 6= /0 or if Br(k) = 0.
(ii) There is a canonical injection

Bra(X) →֒ H2(k,UPic(X))

which is an isomorphism if X(k) 6= /0 or H3(k,Gm) = 0.

3. PICARD GROUPS, INVERTIBLE FUNCTIONS, AND THE ALGEBRAIC FUNDAMENTAL GROUP

3.1. Let G be a connected linear algebraick-group. As in [Bor98] we writeGu ⊂ G for the unipotent
radical ofG, Gred for the reductive groupG/Gu, Gss for the derived group ofGred (it is semisimple),Gtor

for the torusGred/Gss, andGsc for the universal covering ofGss (it is simply connected). The composed
map

ρ : Gsc
։ Gss →֒ Gred

has finite kernel
Z := kerρ ,

which is central inGsc, and the cokernel ofρ is equal to the torusGtor. We write

X∗(G) = Homk(G,Gm)

for the character group ofG. We have

X∗(G) = X∗(G
tor

).

For a torusT we write
X∗(T) = Homk(Gm,T)

for the cocharacter group ofT. Note that the underlying abelian groups of the Galois modulesX∗(G)
andX∗(T) are free.
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As in [Bor98] we define the algebraic fundamental groupπ1(G) as follows. LetT ⊂Gred be a maximal
torus. SetTsc = ρ−1(T), it is a maximal torus inGsc. Set

π1(G) = X∗(T)/ρ∗ X∗(T
sc
).

It is a Galois module; it does not depend on the choice ofT ⊂G; it does not change under inner twistings

of G. It follows from the definition, thatπ1(G) = π1(G
red

).
We define the derived dual toπ1(G) by

π1(G)D = [X∗(T)
ρ∗

−−→ X∗(T
sc
)〉.

In this section we shall recall classical results that give isomorphisms

H
0(UPic(G)) = U(G) = kerρ∗ = H

0(π1(G)D),

and

H
1(UPic(G)) = Pic(G) = cokerρ∗ = H

1(π1(G)D).

Lemma 3.2(Rosenlicht). For a connected linear algebraic group G over a perfect field k, the obvious
mapX∗(G) → U(G) is an isomorphism which is functorial in G.

Proof. See [Ros61], or [FI73, Cor. 2.2], or [KKV89, Prop. 1.2] �

Corollary 3.3. For a connected linear k-group G we have a canonical isomorphism

U(G) ≃ H
0(π1(G)D).

Proof. Clearly,X∗(G
tor

) ≃ X∗(G), henceX∗(G
tor

) ≃U(G). On the other hand, the identificationGtor =
T/ρ(Tsc) gives an isomorphism

X∗(G
tor

) ≃ ker[X∗(T) → X∗(T
sc
)] = H

0(π1(G)D).

�

We shall now consider the identificationH 1(UPic(G)) = H 1(π1(G)D). We first make a reduction to
Gss using the following lemma of Fossum–Iversen and Sansuc.

Lemma 3.4. Let 1→ G′ → G→ G′′ → 1 be an exact sequence of connected linear k-groups. Then we
have an exact sequence

0→ X∗(G
′′
) → X∗(G) → X∗(G

′
) → Pic(G

′′
) → Pic(G) → Pic(G

′
) → 0.

Proof. See [San81, (6.11.4)]. In the case whenH1(K,G′) = 0 for any extensionK of k, this exact
sequence was obtained in [FI73, Prop. 3.1]. �

Corollary 3.5. Let G be a linear algebraic group over k. Then the canonical maps r: G → Gred and
Gss→ Gred induce a natural isomorphism

Pic(G
ss
) ≃ Pic(G).

Proof. We first apply Lemma 3.4 to the short exact sequence

1→ Gu → G→ Gred→ 1,

and then to the short exact sequence

1→ Gss→ Gred→ Gtor → 1.

using the fact thatX∗(G
u
) = 0, Pic(G

u
) = 0, and Pic(Gtor) = 0. �

We need the following construction of [Pop74,§2] (see also [FI73, p. 275] and [KKLV89, Example
2.1]).
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Construction 3.6. Let G be a connected lineark-group. LetH ⊂ G be ak-subgroup, not necessarily
connected. SetX = G/H. We construct a morphism of Galois modules

c: X(H) → Pic(X)

as follows. Letχ ∈ X(H). Consider the embedding

H →֒ G×Gm, h 7→ (h,χ(h)−1).

SetY = (G×Gm)/H, this quotient exists by Chevalley’s theorem, see for example [Spr98, Thm. 5.5.5].
We have a canonical mapY → X = G/H. ClearlyY is a torsor underGm overX, which admits a local
section (in Zariski topology) by Hilbert 90. Since the groupG×Gm acts transitively onY andX, we
conclude that the torsorY → X is locally trivial in Zariski topology. From the principalGm-bundle
Y we construct (using the transition functions ofY) a linear bundle onX which we denote byL(χ).
Alternatively, we can constructL(χ) directly as the quotient(G×Ga)/H of G×Ga under the right
action ofH given by

(g,a) ·h = (gh,aχ(h)−1),

whereg∈ G, a∈ Ga, h∈ H.
We denote byc(χ) the class ofL(χ) in Pic(X). In terms of divisor classes, this means the following.

Let ψX be a rational section ofL(χ). SetD = div(ψX). We setc(χ) = cl(D) ∈ Pic(X), where cl(D)
denotes the class of the divisorD.

Note that a rational sectionψX of L(χ) overX lifts canonically to a rational functionψG onG. Namely,
the graph ofψG in G×Ga is the preimage of the graph ofψX in L(χ) with respect to the quotient map
G×Ga → L(χ).

Lemma 3.7. [Pop74, Thm. 4], [KKV89, Prop. 3.2]Let G be a connected linear k-group, and let H be a
k-subgroup of G (not necessarily connected). Then the sequence

X∗(G) → X∗(H)
c

−−→ Pic(G/H) → Pic(G)

is exact.

Corollary 3.8. Let G be a connected semisimple k-group. We regard G as a homogeneous space G=
Gsc/Z, where Z= kerρ . Then we have an isomorphism

c: X∗(Z)
∼
→ Pic(G),

where c is the homomorphism of Construction 3.6.

Proof. The corollary follows from Lemma 3.7. We use the facts thatX∗(G
sc
) = 0 and Pic(G

sc
) = 0. �

Remark3.9. The equality Pic(G
sc
) = 0 and the existence of an isomorphismX∗(Z) ≃ Pic(G) for a

semisimplek-groupG were proved by Voskresenskĭı [Vos69], Fossum and Iversen [FI73, Cor. 4.6], and
Popov [Pop74] (see also [Vos98, 4.3]).

Corollary 3.10. For any connected linear k-group G we have a canonical isomorphism

X∗(Z)
∼
→ Pic(G)

where Z= kerρ .

Proof. By Corollary 3.5, we have an isomorphism Pic(G
ss
)

∼
→ Pic(G). By Corollary 3.8 we have an

isomorphismX∗(Z)
∼
→ Pic(G

ss
). �

Corollary 3.11. For any connected linear k-group G we have a canonical isomorphism Pic(G) ≃
H 1(π1(G)D).

Proof. Indeed,

X∗(Z) = X∗(kerρ) = H
1([X∗(T)

ρ∗

−−→ X∗(Tsc)〉 = H
1(π1(G)D).

�
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4. THE COMPARISON THEOREM

We shall now construct a canonical isomorphism

κG : UPic(G) → π1(G)D

for any connected lineark-groupG.
We first make a reduction to the reductive case.

Lemma 4.1. Let G be a connected linear algebraic group over k. Then the canonical homomorphism
r : G→ Gred induces an isomorphism

r∗ : UPic(G
red

)
∼
→ UPic(G).

Proof. By Lemma 3.4 we have an exact sequence

0→ X∗(G
red

) → X∗(G) → X∗(G
u
) → Pic(G

red
) → Pic(G) → Pic(G

u
) → 0

whereX∗(G
u
) = 0 and Pic(G

u
) = 0. It follows that the mapr induces isomorphismsX∗(G

red
)

∼
→ X∗(G)

and Pic(G
red

)
∼
→ Pic(G). We see that the morphismr∗ : UPic(G

red
) → UPic(G) induces isomorphisms

onH 0 andH 1, hence it is an isomorphism. �

Lemma 4.2. For any torus T over k we haveUPic(T) ≃ X∗(T).

Proof. This follows from Rosenlicht’s lemma (Lemma 3.2), since Pic(T) = 0. �

Lemma 4.3. Let G be a connected linear algebraic group over k such that Gss is simply connected,
then we have canonical isomorphismsUPic(G) = X∗(G) = X∗(G

tor
). In particular, UPic(G) = 0 if G is

semi-simple and simply connected.

Proof. We haveX∗(G) = X∗(G
tor

) (for any connectedG). By Lemma 3.10 Pic(G) = 0, hence UPic(G) =
X∗(G). �

4.4. In this subsection and the next one we identify UPic(G) with KDiv(G)e,1 as in 2.8, wheree is the
unit element ofG. We write KDiv(G)1 for KDiv(G)e,1. Note thatG 7→ KDiv(G)1 is a functor from the
category of connected lineark-groups to the category of complexes of Galois modules.

For a maximal torusT in a connected reductivek-groupG we have a commutative diagram

Tsc
ρT

//

isc

��

T

i
��

Gsc
ρ

// G

(wherei is the inclusion homomorphism), hence a commutative diagram of complexes

(11) KDiv(G)1
ρ∗

//

i∗

��

KDiv(G
sc
)1

(isc)∗

��

KDiv(T)1
ρ∗

T
// KDiv(T

sc
)1

and a morphism of complexes

λ = i∗⊕ (isc)∗ : [KDiv(G)1 → KDiv(G
sc
)1〉 → [KDiv(T)1 → KDiv(T

sc
)1〉.

Consider the fibre[KDiv(G)1 → KDiv(G
sc
)1〉. The canonical morphism

[KDiv(G)1 → KDiv(G
sc
)1〉 → KDiv(G)1

is an isomorphism in the derived category, because KDiv(G
sc
)1 ≃ 0 by Lemma 4.3.
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Consider the fibre[KDiv(T)1 → KDiv(T
sc
)1〉. The commutative diagram of complexes

X∗(T) //

��

X∗(T
sc
)

��

KDiv(T)1
// KDiv(T

sc
)1

in which the vertical arrows are isomorphisms in the derivedcategory, induces a morphism of complexes

[X∗(T) → X∗(T
sc
)〉 → [KDiv(T)1 → KDiv(T

sc
)1〉

which is an isomorphism in the derived category.

Construction 4.5. For a reductivek-group G we define a morphismκG : UPic(G) → π1(G)D as the
composition

UPic(G)
∼
→ [KDiv(G)1 → KDiv(G

sc
)1〉

λ
−−→ [KDiv(T)1 → KDiv(T

sc
)1〉

∼
→ [X∗(T) → X∗(T

sc
)〉 = π1(G)D.

For a general connected lineark-groupG (not necessarily reductive) we defineκG : UPic(G) → π1(G)D

as the composition

UPic(G)
∼
→ UPic(G

red
) → π1(G

red
)D = π1(G)D.

Remark4.6. Using [BBD82, Prop. 1.1.9], one can show that all the fibres and morphisms of fibres that
we defined in 4.4 and 4.5 using an explicit representation by complexes and morphisms of complexes,
do not depend on this representation. We use the fact that Pic(G) is a torsion group (by Corollary 3.10),
hence

HomDb(két)(UPic(G)[1],UPic(T
sc
)) = Hom(Pic(G),X∗(T

sc
)) = 0,

and so [BBD82, Prop. 1.1.9] can be applied.

4.7. Functoriality. Let ϕ : G1 → G2 be a homomorphism of connected lineark-groups. Consider the
induced homomorphismsϕ red: Gred

1 → Gred
2 andϕsc: Gsc

1 → Gsc
2 . Choose maximal toriT1 ⊂ Gred

1 and
T2 ⊂ Gred

2 such thatϕ red(T1) ⊂ T2. Let Tsc
1 (resp.Tsc

2 ) be the preimage ofT1 in Gsc
1 (resp. ofT2 in Gsc

2 ).
We have homomorphismsϕ∗ : T1 → T2 andϕsc

∗ : Tsc
1 → Tsc

2 . We obtain a commutative diagram in the
derived category

KDiv(G2)1
ϕ∗

//

κG2

��

KDiv(G1)1

κG1

��

[X∗(T2) → X∗(T
sc
2 )〉

ϕ∗

// [X∗(T1) → X∗(T
sc
1 )〉

Thus the morphismκG : UPic(G) → π1(G)D is functorial inG.

The following theorem is the main result of this paper.

Theorem 4.8. With notation as above, for a connected linear algebraic group G over a field k of
characteristic 0, the canonical morphismκG : UPic(G) → π1(G)D is an isomorphism.

Before proving the theorem, let us first mention two corollaries.

Corollary 4.9. The canonical isomorphismκG induces canonical isomorphisms

Exti(UPic(G),Gm) ≃ H i
ab(k,G),

where Hi
ab(k,G) := H i(k,〈Tsc→ T]).

Proof. By Theorem 4.8 Exti(UPic(G),Gm) = Exti(π1(G)D,Gm). By Lemma 1.5 Exti(π1(G)D,Gm) =
H i(k,〈Tsc→ T]). �
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Corollary 4.10. Let 1→ G′ → G→ G′′ → 1 be an exact sequence of connected linear k-groups. Then
we have a distinguished triangle

UPic(G
′′
) → UPic(G) → UPic(G

′
) → UPic(G

′′
)[1].

Proof. Indeed, by [Bor98, Lemma 1.5] (see also [BK04, Lemma 3.7]) wehave an exact sequence

0→ π1(G
′
) → π1(G) → π1(G

′′
) → 0,

hence a distinguished triangle

π1(G
′′
)D → π1(G)D → π1(G

′
)D → π1(G

′′
)D[1],

and the assertion follows from Theorem 4.8. �

Remark4.11. This triangle strengthens Lemma 3.4. Note that it does not give a new proof, since the
lemma was used in the proof of Theorem 4.8, hence in the proof of this corollary.

4.12. Proof of Theorem 4.8.We may and shall assume thatG is reductive. Recall that

KDiv(G)1 = [k(G)×e,1 → Div(G)e〉,

where

k(G)×e,1 = { f ∈ k(G)×| f (e) = 1},

Div(G)e = {D ∈ Div(G)| e /∈ supp(D)}.

From the diagram (11) we obtain a morphism of complexes

λ = i∗⊕ (isc)∗ : C•
G →C•

T ,

whereC•
G andC•

T are the complexes introduced in 4.4:

C•
G = [KDiv(G)1 → KDiv(G

sc
)1〉,

C•
T = [KDiv(T)1 → KDiv(Tsc)1〉.

In other words,

C•
G = KDiv(G)1⊕KDiv(G

sc
)1[−1],

C•
T = KDiv(T)1⊕KDiv(Tsc)1[−1],

with differentials given by the matrix of formula (2) in 1.1.
To prove the theorem, it suffices to prove thatλ is a quasi-isomorphism. We must prove that the maps

λ 0 : H
0(C•

G) → H
0(C•

T) andλ 1 : H
1(C•

G) → H
1(C•

T)

are isomorphisms.
We prove thatλ 0 is an isomorphism. Using Rosenlicht’s lemma, we see immediately that

H
0(C•

G) = ker[ρ∗ : X∗(G) → X∗(G
sc
)],

H
0(C•

T) = ker[ρ∗
T : X∗(T) → X∗(T

sc
)],

andλ 0 : H 0(C•
G) → H 0(C•

T) is the map induced by the restriction mapi∗ : X∗(G) → X∗(T). Now it is
clear thatλ 0 is an isomorphism.

We prove thatλ 1 is an isomorphism. WriteZ = ker ρ . Consider the composed map

σG : X∗(Z)
c

−−→ Pic(G
ss
)

∼
→ H

1(KDiv(G)1)
∼
→ H

1(C•
G).

Here the last isomorphism is induced by the isomorphism KDiv(G)1
∼
→C•

G in the derived category and
the mapc is the map of Construction 3.6. The mapσG is an isomorphism, because it is a composition of
isomorphisms. We computeσG explicitly.

We have

C1
G = Div(G)e⊕k(G

sc
)×e,1

kerd1
G = {(DG, fGsc) ∈ Div(G)e⊕k(G

sc
)×e,1 | ρ∗(DG) = div( fGsc)}
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whered1
G : C1

G →C2
G is the differential inC•

G.
Let χ ∈ X∗(Z). Define a right action ofZ on G

sc
×Ga by (g,a) ∗ z = (gz,χ(z)−1a), whereg ∈

G
sc
,a ∈ Ga,z∈ Z. SetEss= L(χ) = (G

sc
×Ga)/Z, thenEss is a linear bundle overG

ss
= G

sc
/Z. By

definition cl(Ess) = c(χ) ∈ Pic(G
ss
). Since we have a canonical isomorphism Pic(G)

∼
→ Pic(G

ss
), our

Ess comes from a unique (up to an isomorphism) line bundleE overG. Let ϕ be a rational section of
E such thatϕ(e) 6= 0,∞. SetDG = div(ϕ), then cl(DG) is the image ofχ in Pic(G) = H 1(KDiv(G)1).
Set DGsc = ρ∗(DG). Since Pic(G

sc
) = 0, there existsfGsc on G

sc
such thatDGsc = div( fGsc). Since

eG /∈ supp(DG), we see thatfGsc(eGsc) 6= 0,∞. Set f ′Gsc = fGsc/ fGsc(eGsc). Then(DG, f ′Gsc) ∈ ker d1
G and

cl(DG, f ′Gsc) = σG(χ) ∈ H 1(C•
G).

We need a lemma.

Lemma 4.13. The restriction of f′Gsc to Z isχ−1.

Proof of Lemma 4.13.Consider the sectionρ∗(ϕ) of ρ∗E. By the construction ofEss we have a
canonical trivialization

µ : G
sc
×Ga

∼
→ ρ∗E

which mapsρ∗(ϕ) to someψ = µ∗(ρ∗(ϕ)). We have

(12) ψ(gz) = χ(z)−1ψ(g) for all g∈ G
sc
, z∈ Z

becauseϕ |Gss is a rational section ofEss. But

DGsc = ρ∗(DG) = div(ρ∗(ϕ)) = div(ψ),

so we may takefGsc = ψ . SinceU(G
sc
) = X∗(G

sc
) = 0, there exists, up to a constant, only one rational

function fGsc on G
sc

such thatDGsc = div( fGsc). Using (12), we obtain that for any suchfGsc we have

f ′Gsc(z) = fGsc(z)/ fGsc(e) = ψ(z)/ψ(e) = χ(z)−1.

�

4.14. Proof of Theorem 4.8 (cont.). We have

C1
T = Div(T)e⊕k(T

sc
)×e,1,

kerd1
T = {(DT , fTsc)| ρ∗

T(DT) = div( fTsc)},

whered1
T : C1

T →C2
T is the differential inC•

T . The canonical isomorphism

(13) C•
T

∼
→ [X∗(T) → X∗(T

sc
)〉

induces a composed map

τT : H
1(C•

T)
∼
→ H

1([X∗(T) → X∗(T
sc
)〉)

∼
→ X∗(Z)

where the latter isomorphism is defined as follows: cl(κ) 7→ κ |Z for κ ∈ X∗(T
sc
). We computeτT

explicitly.
Let (DT , fTsc) ∈ ker d1

T . Since Pic(T) = 0, there exists a rational functionfT ∈ k(T)×e,1 such that

div( fT) = −DT . Set f̃Tsc = fTsc · ρ∗( fT) ∈ k(T
sc
)×e,1. Then div( f̃Tsc) = 0 and f̃Tsc(e) = 1. By

Rosenlicht’s lemmaf̃Tsc ∈ X∗(T
sc
). Moreover(0, f̃Tsc) ∈ kerd1

T and (0, f̃Tsc) = (DT , fTsc) + d0
T( fT).

The construction of the isomorphism (13) then implies that cl(DT , fTsc) ∈ H 1(C•
T) corresponds to

cl( f̃Tsc) ∈ H 1([X∗(T) → X∗(T
sc
〉). The image of cl( f̃Tsc) in X∗(Z) is

f̃Tsc|Z = fTsc ·ρ∗( fT)|Z = fTsc|Z .

Thus the mapτT is given by cl(DT , fTsc) 7→ fTsc|Z.
Now we see that the composed map

β : X∗(Z)
σG−−→ H

1(C•
G)

λ1

−−→ H
1(C•

T)
τT−−→ X∗(Z)

is given by
χ 7→ (DG, f ′Gsc) 7→ (i∗(DG),(isc)∗( f ′Gsc)) 7→ (isc)∗( f ′Gsc)|Z .
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Clearly we have(isc)∗( f ′Gsc)|Z = f ′Gsc|Z. By Lemma 4.13f ′Gsc|Z = −χ (with additive notation). We
see that our composed mapβ is given byχ 7→ −χ , hence it is an isomorphism. SinceσG andτT are
isomorphisms, we conclude thatλ 1 is an isomorphism. This completes the proof of Theorem 4.8.�

Remark4.15. A different proof of the existence of an isomorphism UPic(G)
∼
→ π1(G)D was proposed in

[CT06].

5. UPIC OF TORSORS AND THE ELEMENTARY OBSTRUCTION

Lemma 5.1. Let X and Y be smooth geometrically integral k-varieties. Assume that Y isk-rational.
Then the canonical morphism

ζ : UPic(X)⊕UPic(Y) → UPic(X×Y)

induced by the projections pX and pY from X×Y to the corresponding factors, is a quasi-isomorphism.

Proof. By Rosenlicht’s lemma [FI73, Lemma 2.1] the map

H
0(ζ ) : U(X)⊕U(Y) →U(X×Y)

is an isomorphism. By a lemma of Colliot-Thélène and Sansuc [CTS77, Lemme 11 p. 188] the map

H
1(ζ ) : Pic(X)⊕Pic(Y) → Pic(X×Y)

is an isomorphism. Thusζ is a quasi-isomorphism. �

For ak-torsorX under a connected linear algebraick-groupG it was shown by Sansuc thatU(X) =
U(G) = X∗(G) and Pic(X) = Pic(G). Sansuc’s result extends to UPic, and so does his proof.

Lemma 5.2. Letς : X×G→ X be a k-morphism defining a right action of a connected linearalgebraic
k-group G on a smooth geometrically integral k-variety X. Then

(i) The canonical morphism

ζ : UPic(X)⊕UPic(G) → UPic(X×G)

is a quasi-isomorphism.
(ii) Denote by

πG : UPic(X×G) = UPic(X)⊕UPic(G) → UPic(G)

the projection. Then
ϕ = πG◦ ς ∗ : UPic(X) → UPic(X×G) → UPic(G)

is a canonical morphism, functorial in(X,G) and equal, for any x0 ∈ X(k) to α∗
x0

, whereαx0 : G→ X is
the k-morphism defined byαx0(g) = x0g for g∈ G.
(iii) If in addition X is a torsor of G over k, thenϕ is an isomorphism in the derived category.

Proof. (i) SinceG is k-rational, by Lemma 5.1ζ is a quasi-isomorphism.
(ii) Takex0 ∈X(k). Let ix0 be thek-morphismG→X×Gdefined byix0(g) = (x0,g). ThenpG◦ ix0 = id

andpX ◦ ix0 is the constant mapG→{x0} ∈ X. Hencei∗x0
= πG and, sinceαx0 = ς ◦ ix0, we get

α∗
x0

= i∗x0
◦ ς ∗ = πG◦ ς ∗ = ϕ .

(iii) By [San81, Lemmes 6.4, 6.5(ii), 6.6(i)] the morphismsH 0(ϕ) : U(X) → X∗(G) and
H 1(ϕ) : Pic(X) → Pic(G) are isomorphisms, henceϕ is an isomorphism in the derived category.�

As a corollary we obtain a canonical isomorphism between thetarget of the elementary obstruction
(Definition 2.10) and the abelian Galois cohomologyH i

ab(k,G) := H i(k,〈Tsc→ T]).

Corollary 5.3. Let X be a k-torsor under a connected linear algebraic k-group G. We have a canonical
isomorphism

Exti(UPic(X),Gm) ≃ H i
ab(k,G)

which is functorial in(G,X) and in k.

Proof. By Lemma 5.2(iii) Exti(UPic(X),Gm) = Exti(UPic(G),Gm). By Corollary 4.9
Exti(UPic(G),Gm) = H i

ab(k,G). �
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Let ab1 : H1(k,G) → H1
ab(k,G) be the abelianization map constructed in [Bor98]. For ak-torsorX of

G, let [X] denote its class inH1(k,G). We write [X]ab := ab1([X]) ∈ H1
ab(k,G). We shall prove that the

elementary obstructione(X) coincides up to sign with the[X]ab. For semisimple groups this was proved
by Skorobogatov [Sko01, p. 54]. For tori this was proved by Sansuc [San81, (6.7.3), (6.7.4)] (see also
Skorobogatov [Sko01, Lemma 2.4.3]). First we give Sansuc’sproof for tori with details added.

Lemma 5.4(Sansuc). Let T be a torus over k and let X be a k-torsor under T , determined by a cocycle
c: σ 7→ cσ : Gal(k/k) → T(k). Consider the extension

(14) 1→ k
×
→ k[X]× → X∗(T) → 1

The class e(X) of this extension inExt1(X∗(T),k
×
) corresponds under the isomorphism of Lemma 1.5

Ext1(X∗(T),k
×
) = H1(k,T)

to the class of the cocycle c−1.

Proof. We regardX(k) asT(k) with the twisted Galois actionσ ∗ t = cσ ·σ t, wheret ∈ T(k). Similarly
we regardk[X]× ask[T]× with the twisted Galois action, etc. In all cases we use the notation σ∗ to
denote the twisted Galois action.

Let χ ∈ X∗(T). We computeσ∗χ . For t ∈ T(k) we have

(σ∗χ)(σ ∗ t) = σ(χ(t)),

hence

(σ∗χ)(t) = σ(χ(σ−1∗ t)) = σ(χ(cσ−1 ·σ−1t)) =

= σ(χ(σ−1(c−1
σ t))) = σ χ(c−1

σ t) = σ χ(c−1
σ ) · σ χ(t).

Thus
σ∗χ = σ χ(c−1

σ ) · σ χ .

Now let ϕ : X∗(T) → k[X]× be the standard (non-equivariant) splitting corresponding to the
identification ofX with T. By abuse of notation we denote this splitting byχ 7→ χ . Then the extension
classe(X) ∈ H1(k,HomZ(X∗(T),k

×
)) is represented by the cocycleσ 7→ σϕ ·ϕ−1.

Since
(σϕ)(χ) = σ∗(ϕ(σ−1

χ)) = σ∗(σ−1
χ) = χ(c−1

σ ) ·χ ,

we see thate(X) is represented by the cocycle

σ 7→ σϕ ·ϕ−1 = (χ 7→ χ(c−1
σ )) ∈ HomZ(X∗(T),k

×
),

which corresponds to the cocycleσ 7→ c−1
σ under the identificationT(k) ≃ HomZ(X∗(T),k

×
) given by

t 7→ (χ 7→ χ(t)) for t ∈ T(k). �

Theorem 5.5. Let X be a torsor under a linear algebraic group G over k. The elementary obstruction
class e(X) ∈ Ext1(UPic(X),k

×
) corresponds to−[X]ab∈ H1

ab(k,G) under the canonical isomorphism of
Corollary 5.3

Exti(UPic(X),Gm) ≃ H i
ab(k,G).

Proof. Without loss of generality we may assume thatG is reductive.
As in [Kot86, p. 369] (compare [BK00, Lemma 1.1.4(i)]), we construct an epimorphismα : H → G,

whereH is a reductivek-group withHss simply connected, together with ak-torsorXH underH such
thatα∗(XH)≃ X. By functoriality of the isomorphism of Corollary 5.3, in order to prove the theorem for
G andX, it is sufficient to prove it forH andXH .

SinceHss is simply connected, the homomorphismH → H tor induces an isomorphismH1
ab(k,H) ≃

H1
ab(k,H

tor) = H1(k,H tor), cf. [Bor98, Example 2.12(2)]. We see that the functoriality of the
isomorphism of Corollary 5.3 implies that it is sufficient toprove the theorem for torsors under tori,
which was done in Lemma 5.4. �
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Corollary 5.6. Let Y be a smooth compactification of a torsor X under a connected linear algebraic
group G over k. Let S be the Néron-Severi torus of Y , i.e. the k-torus S such thatX∗(S) = Pic(Y). Then
Ext1(UPic(Y),Gm) = H2(k,S) and we have a canonical injection

H1
ab(k,G) →֒ H2(k,S)

sending[X]ab∈ H1
ab(k,G) to −e(Y) ∈ H2(k,S).

Proof. By Corollary 2.17 the open embeddingj : X →֒Y induces an injectionj∗ : Ext1(UPic(X),Gm) →֒
Ext1(UPic(Y),Gm). By Corollary 5.3 Ext1(UPic(X),Gm) = H1

ab(k,G). Since UPic(Y) = Pic(Y)[−1], we
have Ext1(UPic(Y),Gm) = Ext2(Pic(Y),Gm) = H2(k,S) (we use Lemma 1.5). By Theorem 5.5j∗ takes
[X]ab to−e(Y). �

Proposition 5.7. For (a smooth compactification of) a torsor X under a connected linear algebraic group
G over a p-adic field k, the elementary obstruction is the onlyobstruction to the existence of k-rational
points.

Proof. We will first show that the vanishing ofe(X) implies the existence of ak-rational point onX. Let
ab1 : H1(k,G) → H1

ab(k,G) denote the abelianization map of [Bor98]. We have an exact sequence

H1(k,Gsc) → H1(k,G)
ab1

−−→ H1
ab(k,G),

see [Bor98, (3.10.1)]. By Theorem 5.5 ab1([X]) = −e(X), and by assumptione(X) = 0. By Kneser’s
theoremH1(k,Gsc) = 0. We conclude that[X] = 0. ThusX has ak-point.

Now we will show that for a smooth compactificationY of X the vanishing ofe(Y) implies the
existence of ak-rational point. By Corollary 2.17 the vanishing ofe(Y) implies the vanishing ofe(X).
As above, this implies thatX(k) 6= /0, henceY(k) 6= /0. �

Proposition 5.8. For (a smooth compactification of) a torsor X under a connected linear algebraic group
G over a number field k, the elementary obstruction is the onlyobstruction to the Hasse principle.

Proof. First assume thatX(kv) 6= /0 for all placesv of k, and assume thate(X) = 0. Clearly [X] ∈
X

1(k,G), whereX
1(k,G) is the Tate-Shafarevich kernel forG. By Theorem 5.5 ab1([X]) = −e(X).

Clearlye(X) ∈X
1
ab(k,G), where

X
1
ab(k,G) := ker

[

H1
ab(k,G) → ∏

v
H1

ab(kv,G)

]

.

By [Bor98, Thm. 5.12] the induced map ab1
X

: X
1(k,G) → X

1
ab(k,G) is bijective (here the Hasse

principle for semisimple simply connected groups, due to Kneser, Harder and Chernousov, plays a major
role in the proof). We see that[X] = 0, henceX(k) 6= /0.

Now letY be a smooth compactification of ak-torsorX. Assume thate(Y) = 0 and thatY(kv) 6= /0 for
all v. By Corollary 2.17e(X) = 0 becausee(Y) = 0. SinceY is smooth, we haveX(kv) 6= /0 for all v. As
above we see thatX(k) 6= /0, henceY(k) 6= /0. �

For other proofs of Propositions 5.7 and 5.8 see [BCTS06].
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