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�Lojasiewicz exponents and resolution of singularities

C. Bivià-Ausina and S. Encinas

Abstract. We show an effective method to compute the �Lojasiewicz expo-
nent of an arbitrary sheaf of ideals of OX , where X is a non-singular
scheme. This method is based on the algorithm of resolution of singular-
ities.
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1. Introduction. Given an analytic function f : (Cn, 0) → (C, 0) with an iso-
lated singularity at the origin, the effective computation of the �Lojasiewicz
exponent L0(f) of f is a problem that has been approached from both alge-
braic and analytic techniques (see for instance [1,6,13,15]). This number is
defined as the infimum of those real numbers α > 0 such that

‖x‖α � C‖∇f(x)‖,
for some constant C > 0 and all x belonging to some open neighbourhood of
the origin in C

n, where ∇f denotes the gradient of f . One of the most sig-
nificant applications of L0(f) is the result of Teissier [17, p. 280] stating that
the degree of topological determinacy of f is equal to [L0(f)] + 1, where [a]
denotes the integer part of a number a ∈ R. Let us denote by jrf the r-jet of
f , that is, the sum of all terms of the Taylor expansion of f around the origin
of degree � r. Then the degree of topological determinacy of f is defined as
the minimum of those r � 1 such that for all g ∈ On verifying that jrf = jrg,
we have that f and g are topologically equivalent, that is, there exists a germ
of homeomorphism ϕ : (Cn, 0)→ (Cn, 0) such that f = g ◦ ϕ.

Let us denote by On the ring of analytic functions f : (Cn, 0) → C. The
definition of �Lojasiewicz exponent of functions with an isolated singularity is
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extended naturally to ideals of On of finite colength. Let I be an ideal of On.
In this article we apply the explicit construction of a log-resolution of I given
in [2] to compute effectively the �Lojasiewicz exponent L0(I) of I provided that
I has finite colength. We consider the problem of computing L0(I) in a more
general setting, that is, we substitute I by a sheaf of ideals in a non-singular
scheme.

As an application of the main result, we compute the �Lojasiewicz exponent,
and consequently the degree of topological determinacy, of a function such
that L0(f) can not be computed by means of the existing literature about this
subject.

2. Order functions. In this section we recall some known facts concerning the
integral closure of ideals and its relation with reduced orders. We will denote
by R a Noetherian ring.

Definition 2.1. Let R̄0 = {a ∈ R | a � 0} ∪ {∞} and let us consider a function
ρ : R → R̄0. We say that ρ is an order function if the following conditions
hold:

(i) ρ(f + g) � min{ρ(f), ρ(g)}, for all f, g ∈ R.
(ii) ρ(fg) � ρ(f) + ρ(g), for all f, g ∈ R.

(iii) ρ(0) =∞ and ρ(1) = 0.

Let I ⊆ R be an ideal and let f ∈ R. It is well known, and also easy to
prove, that the function

νI(f) = sup{m ∈ N | f ∈ Im}
is an order function. Let J ⊆ R be an ideal and set

νI(J) = sup{m ∈ N | J ⊆ Im}.
If f1, . . . , fs are generators of J , then it can be checked that

νI(J) = min{νI(f1), . . . , νI(fs)}.
Proposition 2.2. [16][14, Section 0.2] Let I ⊆ R be an ideal with I 	= R. Then
the sequence {

νI(fn)
n

}∞

n=1

has a limit in R̄0. Moreover the function ν̄I : R→ R̄0 defined by

ν̄I(f) = lim
n→∞

νI(fn)
n

is an order function.

The number ν̄I(f) is called the reduced order of f with respect to I. It
is proved in [14] that ν̄I(f) ∈ Q+ ∪ {∞}, for all f ∈ R. We will show this
result using the existence of embedded desingularization of schemes and log-
resolution of ideals.
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Remark 2.3. The sequence
{

un = νI(fn)
n

}∞

n=1
is not an increasing sequence,

in general. However, it is straightforward to see that, for any integer i � 2, the
subsequence {uin}∞n=1 is increasing, so that

ν̄I(f) = lim
n→∞

νI(fn)
n

= sup
{

νI(fn)
n

| n ∈ N

}

and nν̄I(f) � νI(fn) for all n. In particular ν̄I(f) � νI(f), for all f ∈ R.

Lemma 2.4. [14, 0.2.9] Let I and J be ideals of R and let p, q be positive
integers. Then

ν̄Ip(Jq)(x) =
q

p
ν̄I(J).

For an ideal I of R we will denote by Ī the integral closure of I.

Lemma 2.5. [14, 1.15][11, p. 138] Let R be a Noetherian ring and let I, J be
ideals of R. If J ⊆ Ī, then νI(J) � 1.

Definition 2.6. Let I ⊆ R be an ideal. We define the function µI : R→ R̄0 as

µI(f) = sup
{

p

q
∈ Q+ | fq ∈ Ip

}
.

As a consequence of [11, Proposition 10.5.2] (see also [14, Section 4.2]) the
set of rational numbers involved in Definition 2.6 does not depend on the
representatives p, q of the rational number p

q .
Let us consider the graded ring R[T ], with the usual graduation on T . Let

R[IT ] ⊆ R[T ] be the subring R[IT ] = ⊕nInTn. Let f ∈ R, we have that f ∈ Ī
if and only if the homogeneous element fT ∈ R[T ] is in the integral closure
of the ring R[IT ] in R[T ]. It is well known (see, for instance, [11, p. 95]) that
this integral closure is

R[IT ] =
⊕

n

InTn ⊆ R[T ].

Lemma 2.7. If fq ∈ Ī and gq ∈ Ī then (f + g)q ∈ Ī.

Proof. By assumption fqT and gqT are integral over R[IT ]. We observe that
the ring extension R[T ] ⊆ R[T

1
q ] is finite. Then fT

1
q and gT

1
q are integral over

R[IT ] ⊆ R[T
1
q ]. Therefore (f + g)T

1
q is integral over R[IT ]. Thus (f + g)qT is

integral over R[IT ] and we conclude that (f + g)q ∈ Ī. �

Proposition 2.8. Let I be an ideal of R. Then µI is an order function.

Proof. The fact that µI satisfies condition (i) of Definition 2.1 follows as a
direct application of Lemma 2.7. Conditions (ii) and (iii) follow easily from
the definition of µI . �
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3. Resolution of singularities and integral closure. In this section, X will
denote an integral separated scheme of finite type over a field k, where the
characteristic of k is zero.

If I ⊆ OX is a sheaf of ideals then the integral closure I is a sheaf of
ideals such that for every point x ∈ X, the ideal Ix is the integral closure of
Ix ⊆ OX,x.

The next result is well known and its proof can be found, for instance, in
[11, p. 133].

Lemma 3.1. Let R be a Noetherian domain. Denote by K the field of frac-
tions of R. Let I ⊆ R be an ideal. For every valuation ring Rv ⊆ K set
Iv = (IRv) ∩ R. Then the integral closure of I is Ī =

⋂
v Iv, where the inter-

section ranges on all valuation rings in K with center in R.

Proposition 3.2. Let ϕ : X ′ → X be a proper birational morphism and let
I ⊆ OX be a sheaf of ideals. Then I = (IOX′) ∩ OX .

Proof. It is a consequence of Lemma 3.1 and the valuative criterion of prop-
erness [9, Theorem 4.7, Section II]. �

Definition 3.3. A desingularization of X is a proper birational morphism ϕ :
X ′ → X such that
(i) X ′ is non-singular;

(ii) the morphism ϕ is an isomorphism outside the singular locus of X. That
is, if U = X\Sing(X) and U ′ = ϕ−1(U), then U ′ ∼= U via ϕ.

Assume that X ⊆W , where W is a non-singular scheme. An embedded desin-
gularization of X ⊆ W is a proper birational morphism Π : W ′ → W such
that

(i) W ′ is non-singular;
(ii) the morphism Π is an isomorphism outside the singular locus of X. That

is, if U = W \Sing(X) and U ′ = Π−1(U), then U ′ ∼= U via Π;
(iii) W ′\U ′ is a simple divisor with normal crossings: W ′\U ′ = H1∪· · ·∪Hr;
(iv) if X ′ ⊆ W ′ is the strict transform of X in W ′ then X ′ is non-singular

and has only normal crossings with the divisor W ′\U ′.

Definition 3.4. Let W be non-singular scheme. A log-resolution of an ideal
I ⊆ OW is a proper birational morphism Π : W ′ →W such that

(i) W ′ is non-singular,
(ii) Π is an isomorphism outside the support of I. If U = W \Supp(I) and

U ′ = Π−1(U) then U ′ ∼= U via Π.
(iii) W ′\U ′ is a simple divisor with normal crossings: W ′\U ′ = H1∪· · ·∪Hr.
(iv) The total transform of I in W ′ is a monomial with support in W ′ \ U ′

IOW ′ = I(H1)a1 · · · I(Hr)ar . (3.1)

Remark 3.5. It was proved by Hironaka in [10] that embedded desingular-
izations and log-resolutions do exist without restriction on the dimension of
schemes over a field of characteristic zero. In fact, Hironaka proved that the
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morphism Π may be obtained as a sequence of blowing-ups along regular
centers.

The proof in [10] is existential. Constructive proofs may be found in [18]
and also in [3]. If the characteristic of the ground field k is positive, then res-
olution of singularities is an open problem for general dimension. The reader
may found more details in [8]. We refer to [2] for constructive proofs of embed-
ded desingularization of schemes, log-resolution of ideals and (non-embedded)
desingularization of schemes.

Algorithms implementing resolution of singularities (in characteristic zero)
in the computer are available for explicit computations. We will use the imple-
mentation of [4] available at http://www.risc.uni-linz.ac.at/projects/basic/
adjoints/blowup and implemented in Singular [7] and Maple. There is another
implementation of resolution of singularities in [5] also implemented in Singu-
lar.

Proposition 3.6. Let us consider a log-resolution of I ⊆ OW , as in Defini-
tion 3.4. Then

Im = I(H1)ma1 · · · I(Hr)mar ∩ OW ,

for any integer m � 1.

Proof. It is a consequence of Proposition 3.2 and the fact that locally principal
ideals are integrally closed. �

4. The reduced order of a sheaf and �Lojasiewicz exponents. As in the previous
section, here X will denote an integral separated scheme of finite type over a
field k.

Definition 4.1. Let I,J ⊆ OX be two sheaves of ideals. We define two func-
tions ν̄I(J ) : X → R̄0 and µI(J ) : X → R̄0 as follows

ν̄I(J )(x) = ν̄Ix
(Jx) = inf

f∈Jx

ν̄Ix
(f), µI(J )(x) = µIx

(Jx) = inf
f∈Jx

µIx
(f),

for all x ∈ X.

We say that a function µ : X → R∪{∞} is lower-semicontinuous if for any
α ∈ R, the set Fα = {x ∈ X | µ(x) � α} is closed. Analogously, we say that µ
is upper-semicontinuous when the set Gα = {x ∈ X | µ(x) � α} is closed, for
all α ∈ R.

Lemma 4.2. Assume that X is non-singular and that H1, . . . , Hr are non-
singular irreducible hypersurfaces having only normal crossings. Let λ1, . . . , λr

∈ R̄0 and let N̄ = N ∪ {∞}. Let us consider the function λi : X → N̄ given by

λi(x) =

{
λi, if x ∈ Hi,
∞, otherwise.

Then the function λ : X → N̄ defined by λ = min{λi | i = 1, . . . , N} is
lower-semicontinuous.

http://www.risc.uni-linz.ac.at/projects/basic/adjoints/blowup
http://www.risc.uni-linz.ac.at/projects/basic/adjoints/blowup
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Proof. Let α ∈ R̄0 and let us consider the set Fα = {x ∈ X | λ(x) � α}.
We observe that Fα is the union of the hypersurfaces Hi such that λi � α.
Therefore Fα is closed and the result follows. �

Let I,J ⊆ OX be two sheaves of ideals. Let Π′ : X ′′ → X be a desingu-
larization of X (in the sense of Definition 3.3) and let Π′′ : X ′ → X ′′ be a
log-resolution of IOX′′ (as in Definition 3.4), so that

IOX′ = I(H1)a1 · · · I(Hr)ar , (4.1)

for some positive integers a1, . . . , ar. The total transform JOX′ can be expre-
ssed as

JOX′ = I(H1)b1 · · · I(Hr)brJ ′, (4.2)

where J ′ ⊆ OX′ and J ′ 	⊆ I(Hi), for all i = 1, . . . , r.

Proposition 4.3. In the setup described above, let us consider the function
λ = min{ bi

ai
| i = 1, . . . , r}. Then

µI(J )(x) = min
{
λ(x′) | x′ ∈ Π−1(x)

}
,

for all x ∈ X, and the function µI(J ) is lower-semicontinuous.

Proof. Let p, q be positive integers. We observe that (J q)x ⊆ (Ip)x if and only
if (J qOX′)x′ ⊆ (IpOX′)x′ , for all x′ ∈ Π−1(x). Moreover, according to (4.1)
and (4.2), we have the following equivalences:

(J qOX′)x′ ⊆ (IpOX′)x′ ⇐⇒ (I(H1)qb1 · · · I(Hr)qbrJ ′q)x′

⊆ (I(H1)pa1 · · · I(Hr)par )x′

⇐⇒
(

bi

ai

)
(x′) � p

q
, i = 1, . . . , r

⇐⇒ λ(x′) � p

q
.

Hence

µI(J )(x) � p

q
⇐⇒ λ(x′) � p

q , for all x′ ∈ Π−1(x),

and we have µI(J )(x) = min{λ(x′) | x′ ∈ Π−1(x)}.
The lower-semicontinuity of µI(J ) follows from the properness of Π. �
As an immediate consequence of the previous theorem we obtain the fol-

lowing result.

Corollary 4.4. The value µI(J )(x) is rational, for every x ∈ X.

Theorem 4.5. Let I,J ⊆ OX be two sheaves of ideals. Then the functions
ν̄I(J ) and µI(J ) are equal.

Proof. We use the same notation as in Proposition 4.3. Let us fix a point
x ∈ X. First we prove that µI(J ) � ν̄I(J ).

Set cn = νI(J n)(x), for all n � 1. We observe that

ν̄I(J )(x) = sup
n∈N

cn

n
.
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By definition we have J n ⊆ Icn ⊆ Icn , which implies that

µI(J )(x) � cn

n
, for all n ∈ N.

Therefore

µI(J )(x) � ν̄I(J ).

Conversely, set p
q = µI(J )(x). This implies that J q

x ⊆ Ip
x. By Lemma 2.5 we

have that ν̄Ip(J q)(x) � 1 and from Lemma 2.4 we obtain ν̄I(J )(x) � p
q . �

Corollary 4.6. The value ν̄I(J )(x) is rational, for every x ∈ X.

Definition 4.7. Let X be a scheme as above with structure of complex variety.
Let I ⊆ OX be a coherent sheaf of ideals and K ⊆ X be a compact set. Let
f ∈ Γ(X,OX). The �Lojasiewicz exponent of f with respect to I at K, denoted
by θK(f, I), is defined as the infimum of those θ ∈ R+ such that there exists
an open set U ⊆ C

n such that K ⊆ U and a constant C � 0 such that

|f(x)|θ � C · sup
g∈Γ(U,I)

|g(x)|,

for all x ∈ U .
If J ⊆ OX is a sheaf of ideals, then

θK(J , I) = sup
f∈Γ(X,J )

θK(f, I).

Theorem 4.8. [14, 6.3] Under the hypothesis of the previous definition we have

θK(J , I) =
1

ν̄I(J )(K)
,

where ν̄I(J )(K) = min{ν̄I(J )(x) | x ∈ K}.
As a direct consequence of the previous theorem and of Corollary 4.6 we

obtain that the �Lojasiewicz exponent θK(J , I) is a rational number.

Definition 4.9. Let I,J ⊆ OX be two sheaves of ideals. We define the function
θ(J , I) : X → Q as follows:

θ(J , I)(x) = θ{x}(J , I),

for all x ∈ X.

From Proposition 4.3 and Theorem 4.8 we obtain that the function θ(J , I) :
X → Q is upper-semicontinuous.

5. Computation of �Lojasiewicz exponents for isolated singularities. Let W be
an scheme with structure a regular analytic variety. Let I be a sheaf of ideals
in OW such that Supp(I) = {x}, where x ∈ W . We define the �Lojasiewicz
exponent of I at x as Lx(I) = θ(J , I)(x) where J is the sheaf of ideals

Jy =
{

mx if y = x
1 if y 	= x.

Theorem 5.1. The �Lojasiewicz exponent of I is determined by the total trans-
form of mx via the log-resolution of I.
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Proof. Let us consider a log-resolution of I as in Definition 3.4. The morphism
W ′ →W is a sequence of blowing-ups along regular centers:

W = W0 ←−W1 ←− · · · ←−Wr = W ′.

We observe that the first blowing-up must have Supp(I) as center. Therefore
JOW1 = mxOW1 = I(H1) and the total transform of mx is a monomial, that
is

mxOW ′ = I(H1)b1 · · · I(Hr)br ,

for some positive integers b1, . . . , br.
Let us suppose that the total transform of I in W ′ is written as in (3.1).

Then, we obtain the following equivalences:

mp
x ⊆ Iq ⇐⇒ I(H1)pb1 · · · I(Hr)pbr ⊆ I(H1)qa1 · · · I(Hr)qar

⇐⇒ pbi � qai, i = 1, . . . , r

⇐⇒ p

q
� ai

bi
, i = 1, . . . , r.

Then, we conclude that

L
x
(I) = max

{
ai

bi
, i = 1, . . . , r

}
. (5.1)

�

By (5.1), the problem of computing Lx(I) reduces to determine the inte-
gers ai, bi, for i = 1, . . . , r, which in turn, come from determining the total
transform of mx via the log-resolution of I. Next we expose some examples in
the ring On of holomorphic gems f : (Cn, 0)→ C.

Example 1. Let us consider the ideal I of O3 generated by the polynomials

g1 = x4 + xyz + y4

g2 = xy2z

g3 = y5 + z5.

Then, applying relation (5.1), it follows that L0(I) = 5 + 5
6 . Let us denote

by e(I) the Samuel multiplicity of I. The same value for L0(I) is obtained
by following the approach explained in Section 4 of [1], since e(I) equals the
Rees mixed multiplicity of the ideals I1 = 〈x4, xyz, y4〉, I2 = 〈xy2z〉 and
I3 = 〈y5, z5〉, which is equal to 80.

Example 2. Let us consider the function f ∈ O3 given by f(x, y, z) = y6 +z4 +
x(x−3z)2 and let us denote by µ(f) the Milnor number of f . We observe that
f is a Newton degenerate function in the sense of [12]. Moreover µ(f) = 25,
whereas the Newton number of the Newton polyhedron of f is equal to 20.
Therefore, the �Lojasiewicz exponent of f can not be computed using the tech-
nique explained in [1] via mixed multiplicities of monomial ideals.

Using relation (5.1) we obtain

L0(∇f) = 5.
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Therefore, by virtue of [17], the degree of topological determinacy of f is
given by

[L0(∇f)] + 1 = 6.

The examples above have been computed with the program avalaible at
http://www.math.arq.uva.es/sencinas/ingles.html
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Norm. Sup. (4) 22 (1989), 1–32.

C. Bivià-Ausina
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