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Abstract. In this paper, we define a horospherical transform for a semisimple symmetric space Y .
A natural double fibration is used to assign a more geometrical space Ξ of horospheres to Y . The
horospherical transform relates certain integrable analytic functions on Y to analytic functions on
Ξ by fiber integration. We determine the kernel of the horospherical transform and establish that
the transform is injective on functions belonging to the most continuous spectrum of Y .
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1. Introduction

This paper is about the horospherical (Radon) transform on semisimple groups and their ho-
mogeneous spaces. This transform was introduced by Gelfand and Graev in their seminal paper
[6], where they treat the case of a complex semisimple group in detail and lay the foundation for
considering the horospherical transform for other homogeneous spaces, in particular, Riemannian
symmetric spaces of noncompact type.

The aim of this paper is to define the horospherical transform for an arbitrary semisimple
symmetric space and establish its basic properties.

Let us turn to the subject proper of this paper. By Y = G/H we denote a semisimple irreducible
real symmetric variety (space).∗

We consider the space L2(Y ) of functions on Y square integrable with respect to the G-invariant
measure. This Hilbert space has the natural decomposition

L2(Y ) = L2
mc(Y ) ⊕ L2

mc(Y )⊥

into the most continuous part and its orthogonal complement.
We also need the space A := L1(Y )ω of analytic vectors of the left regular representation of G

on L1(Y ). Further, we set

Amc := A ∩ L2
mc(Y ) and A ⊥

mc := A ∩ L2
mc(Y )⊥.

We believe that Amc is dense in L2(Y )mc and A ⊥
mc is dense in the subspace of L2(Y )⊥mc cor-

responding to the principal series representations induced from integrable representations of the
corresponding Levi subgroups. It would be of interest to prove this fact and similar facts for the
case in which A is replaced by other function spaces.

We are interested in the open domain Ξ = G/(M ∩H)N in the parameter space of generic real
horospheres, where MAN is a minimal σθ-invariant∗∗ parabolic subgroup of G.

By Cω
0 (Ξ) we denote the space of analytic functions on Ξ vanishing at infinity. In this paper,

we prove the following facts:
• The mapping

R : A → Cω
0 (Ξ), f �→

(
gMHN �→

∫
N

f(gnH) dn

)
,

∗This means that G is a connected real semisimple Lie group and H is the fixed point subgroup of an involutive
automorphism σ of G such that there does not exist a σ-stable normal subgroup L of G with 0 < dim L < dim G.

∗∗ θ is a Cartan involution commuting with σ .



31

is well defined. (We refer to R as the (minimal) horospherical transform.)
• R|A ⊥

mc
= 0.

• R|Amc∩S (Y ) is injective.∗

Acknowledgements. The above results are motivated by discussions with Simon Gindikin
during my stay at IAS in October 2006. I am happy to acknowledge his input and the hospitality
of IAS.

I would like to thank Henrik Schlichtkrull for pointing out a mistake and several inaccuracies
in an earlier version of the paper. Also I thank the anonymous referee for pointing out a mistake
and for his useful requests for more detail.

2. Real Symmetric Varieties

2.1. Notation. The objective of this section is to introduce notation and recall some facts
regarding real symmetric varieties.

Let GC be a simply connected complex linear algebraic group whose Lie algebra gC is semisim-
ple. We fix a real form G of GC ; this means that G is the fixed point set of an involutive antiholo-
morphic automorphism σ of GC and that the complexification of g, the Lie algebra of G, coincides
with gC .

Now let τ be a second involutive automorphism of GC commuting with σ. In particular, τ(G) =
G. We write HC := Gτ

C
and H := Gτ for the respective fixed point groups of τ in GC and

G. Note that HC is always connected but H is usually not; the simplest example of (GC, G) =
(Sl(2, C),Sl(2, R)) and (HC, H) = (SO(1, 1; C),SO(1, 1; R)) illustrates the situation.

Using G and H , we form the homogeneous space Y = G/H ; we refer to Y as a real (semi-
simple) symmetric variety (or space). From now on, we denote the standard base point in Y by
yo = H . We write YC = GC/HC for the complexification of Y and, whenever convenient, view Y
as a subspace of YC via the embedding

Y ↪→ YC, gH �→ gHC.

At this point, it is useful to introduce notation for infinitesimal objects. Lie groups will always
be denoted by uppercase Latin letters, e.g., G, H , K , etc., and the corresponding Lie algebras by
lowercase German letters, e.g., g, h, k, etc. If τ is an automorphism of a Lie group G, then we use
the same symbol τ for the derived automorphism dτ(1) of the Lie algebra g. By q we denote the
(−1)-eigenspace of τ in g. Note that the H -module q can naturally be identified with the tangent
space TyoY of Y at the base point.

From now on, we assume that Y is irreducible, i.e., that the only τ -invariant ideals in g are
{0} and g. In practice, this means that G is simple except for the case G/H = (H × H)/H � H .

Recall that the maximal compact subgroups K ⊂ G are in a one-to-one correspondence with the
Cartan involutions θ : G → G. The correspondence is given by K = Gθ . We form the Riemannian
symmetric space X = G/K of noncompact type and denote by xo = K the standard base point
of X . As before, we write θ for the derived involution on g. Let p ⊂ g be the (−1)-eigenspace of θ.
We identify the K -module p with TxoX .

According to Berger, we can (and will) assume that K is τ -invariant. This implies that both
p and k are τ -invariant. Let us fix a maximal Abelian subspace a ⊂ q ∩ p. Note that a is unique
modulo conjugation by H ∩ K ; see [13, Lemma 7.1.5]. Set A = exp(a).

Next, consider the centralizer ZG(A) of A. First, we note that ZG(A) is reductive and admits
the natural decomposition

ZG(A) = A × M,

(cf. [10, Proposition 7.82 (a)]). The Lie algebra of M is m = zg(a)∩a⊥ , where a⊥ is the orthogonal
complement of a in g with respect to the Cartan–Killing form κ on g. If M0 is the connected

∗S (Y ) is the Schwartz space of rapidly decaying functions.
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component of unity in M , then M = M0F , where F ⊂ M ∩ K is an elementary finite 2-group
(cf. [10, Proposition 7.82 (d) and Theorem 7.52]).

Remark 2.1. If a is maximal Abelian subspace in p, then, as follows from the explicit de-
scription of F in [10, Theorem 7.52], F ⊂ H . In general, however, the τ -invariant group F is not
contained in H .

We write mns for the noncompact semisimple part of m and note that

mns ⊂ h (2.1)

(cf. [13, Lemma 7.1.4]). Set MH = M ∩ H = ZH(A), and let m = mh + mq be the decomposition
of m into the (±1)-eigenspaces. Note that mh is the Lie algebra of MH . Then (2.1) implies that
mq ⊂ k and hence the set Mq = exp(mq) is compact. Moreover,

M/F = MHMq/F, and MH ∩ Mq is discrete.

Consider the root space decomposition of g with respect to a. For α ∈ a∗ , let

gα = {X ∈ g | ∀Y ∈ a [Y,X] = α(Y )X}
and

Σ = {α ∈ a∗ \ {0} | gα 	= {0}}.
It is known that Σ is a (possibly nonreduced) root system, cf. [13, Proposition 7.2.1]. Hence we can
fix a positive root system Σ+ ⊂ Σ and define the corresponding nilpotent subalgebra

n :=
⊕

α∈Σ+

gα.

Set N := exp(n). Note that τ(n) = θ(n). We have the decomposition

g = a ⊕ m ⊕ n ⊕ τ(n).

We shift our focus to the real flag manifold of G associated with A and Σ+ . We define Pmin :=
MAN and note that Pmin is a minimal θτ -invariant parabolic subgroup of G.

The decomposition of the flag manifold G/Pmin into open H -orbits is important in the theory
of H -spherical representations of G. To describe this decomposition, we need some facts about
Weyl groups.

Let W be the Weyl group of the root system Σ. The Weyl group admits the analytic realization

W = NK(a)/ZK(a)

and contains the natural subgroup

WH := NH∩K(a)/ZH∩K(a).

Knowing W and WH , we can find the decomposition of G into open (Pmin × H)-cosets (cf. [12]),

G
.= 
w∈W/WH

PminwH, (2.2)

where .= stands for equality up to a finite union of strictly lower-dimensional (Pmin × H)-orbits.
2.2. Horospheres. This subsection deals with horospheres on the symmetric variety Y . By

a (generic) horosphere on Y we understand an orbit of maximum dimension (i.e. dimN ) of a
subgroup conjugate to N . The set of all horospheres will be denoted by Hor(Y ). Note that G
naturally acts on Hor(Y ) on the left.

Our goal is to show that Hor(Y ) is a connected analytic manifold. To this end, we define

Gh := {x ∈ G | Nx · yo ∈ Hor(Y )}
and note the following immediate things:

• Gh is open, right H -invariant, and left Pmin-invariant.
• Gh contains the open Pmin × H -cosets PminwH , where w ∈ W /WH ; see (2.2). In particular,

Gh is dense.
• Hor(Y ) = {gNx · yo | g ∈ G, x ∈ Gh}.
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• (Infinitesimal characterization) Gh = {x ∈ G | A d(x−1)n ∩ h = {0}}.
Remark 2.2. The set Gh is in general larger then the disjoint union

⋃
w∈W /WH

PminwH (which
is an open dense subset of G). In particular, it is connected, as we show below. For example,
if G = Sl(2, R), H = SO(1, 1; R), and Pmin is the subgroup of upper triangular matrices with
determinant 1, then h and n, which are both one-dimensional, cannot be conjugate. Thus, by the
infinitesimal characterization given above, one has Gh = G in this case.

Next, we provide charts for Hor(Y ). To this end, we introduce the G-manifold Ξ = G/MHN
and define the G-equivariant mapping

E : Ξ → Hor(Y ), ξ = gMHN �→ E(ξ) = gN · yo.

As in [9, Proposition 2.1], one verifies that E is an injection. Now we move our chart by elements
x ∈ Gh . Set L := MA, Lx = x−1Lx, Lx

H := Lx ∩ H , Nx := x−1Nx, and Ξx := G/Lx
HNx . Then

the mapping
Ex : G/Lx

HNx → Hor(Y ), gLxNx �→ gNx · yo

is G-equivariant and injective. It is immediate that (Ex, Ξx)x∈Gh
form an analytic atlas for Hor(Y ).

Lemma 2.3. Hor(Y ) is connected.

Proof. It suffices to show that Gh is connected. We know that Gh is an open dense (Pmin×H)-
invariant subset of G. Now there are only finitely many orbits of Pmin × H in G, and these are
described explicitly; see [12].

Since Gh contains all open orbits, it suffices to show that Gh contains all codimension one orbits.
This, in turn, follows from the explicit description of all orbits in [12, Th. 3 (i)]: if PmincH ⊂ G
is not open, then [12] implies that A d(c)a ∩ h 	= {0}. In particular, if PmincH is of codimension
one, then A d(c)(m + a + n) ∩ h = A d(c)a ∩ h, and therefore, A d(c)n ∩ h = {0}. Our infinitesimal
characterization completes the proof.

Finally, we discuss polar coordinates on Ξ. The mapping

K/(MH ∩ K) × A → Ξ, (k(MH ∩ K), a) �→ kaMHN (2.3)

is a diffeomorphism. We shall often treat A as subspace of Ξ with the embedding

A ↪→ Ξ, a �→ aMHN.

3. Function Spaces and Definition of the Horospherical Transform

Consider the left regular representation L of G on L1(Y ):

[L(g)f ](y) = f(g−1y) (y ∈ Y )

for g ∈ G and f ∈ L1(Y ). Let A := L1(Y )ω be the subspace of analytic vectors for L. The
condition f ∈ A means that f ∈ Cω(Y ) and there exists an open neighborhood U of 1 in GC such
that f extends holomorphically to the subset

UG · yo ⊂ YC = GC/HC

(here we assume that Y is embedded in YC via gH �→ gHC) in such a way that

sup
c∈C

‖f(c · )‖L1(Y ) < ∞ (3.1)

for all compact C ⊂ U (cf. [7, Proposition A.2.1]). For an open neighborhood U of 1 in GC , we
denote by AU the space of holomorphic functions on UG · yo that satisfy (3.1) for all compact
C ⊂ U . Note that AU can be viewed as a closed subspace of O(U, L1(Y )) and hence is a Fréchet
space. Moreover,

A =
⋃
U

AU
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with the continuous embeddings

AU → AV , f �→ f |V G·yo ,

for V ⊂ U . This way, we equip A with the structure of a locally convex space.
Note that the representation L defines an analytic action of G on A .
3.1. Definition of the horospherical transform. We start from a crucial technical fact.

Lemma 3.1. Let f ∈ A . Then the following assertions hold :
(i) sup a∈A

k∈K

∫
N |f(kan · yo)| dn < ∞.

(ii) sup a∈A
k∈K

a−2ρ
∫
N |f(kna · yo)| dn < ∞.

Proof. (i) Let f ∈ A . Let Ba ⊂ a and Bn ⊂ n be balls centered at zero. Set

UA := exp(Ba + iBa) ⊂ AC, UN := exp(iBn) exp(Bn) ⊂ NC.

If Ba and Bn are sufficiently small, then f extends to a holomorphic function in a neighborhood
of KUNUAG · yo such that

sup
c∈KUNUA

‖f(c · )‖L1(Y ) < ∞.

To simplify the notation, let us assume that M ⊂ H ; this does not reduce generality, since the
complement MqF of MH in M is compact by (2.1). Then the mapping

NA → Y, na �→ na · yo,

is an open embedding. In particular, NA · yo ⊂ Y is open. It follows that UAUNAN · yo ⊂ YC is
open, and we can assume that UAUNAN ⊂ ACNC is embedded in YC . Take a k ∈ K and define
a holomorphic function F on UNUAAN by setting F (z) := f(kz · yo). In particular, we obtain a
constant C > 0 such that

|F (an)| � C

∫
UNUA

|F (n′a′an)| da′ dn′

for all an ∈ AN , where da′ and dn′ are Haar measures on AC and NC (Bergman’s estimate). Let
dy be the Haar measure on Y . Note that the restriction of dy to AN is equal to da dn, where da
and dn are the Haar measures on A and N , respectively. Therefore,∫

N
|F (an)|dn � C

∫
UNUA

∫
N
|F (n′a′an)| da′ dn′ dn

� C

∫
UN

∫
Ba

∫
A

∫
N
|F (n′ exp(iX)a′an)| dn′ dX da′ dn

� C

∫
UN

∫
Ba

∫
Y
|f(kn′ exp(iX)y)| dn′ dX dy

� C · vol(UN ) · vol(Ba) sup
c∈KUAUN

‖f(c · )‖L1(Y ) < ∞.

Note that the last expression does not depend on a ∈ A and k ∈ K . This proves (i). Now (ii) is
just a change of variables away from (i):∫

N
|f(kna · yo)| dn =

∫
N
|f(kaa−1na · yo)| dn = a2ρ

∫
N
|f(kan · yo)| dn. �

For any f ∈ A , we define the horospherical transform R(f) of f on Ξ by setting

R(f)(gMHN) :=
∫

N
f(gn · yo) dn.

By the previous lemma, the integral is absolutely convergent.
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Let Cω
0 (Ξ) be the space of analytic functions on Ξ vanishing at infinity. In view of (2.3), the

condition that F vanishes at infinity means that

lim
a→∞
a∈A

sup
k∈K

|F (kaMHN)| = 0.

Proposition 3.2. The following assertions hold :
(i) For all f ∈ A , one has R(f) ∈ Cω

0 (Ξ).
(ii) The mapping R : A → L1(Ξ)ω ⊂ Cω

0 (Ξ) is continuous.

Proof. (i) As before, we can assume without loss of generality that M ⊂ H , because the part
of M not in H is compact by (2.1). First, let us show that F := R(f)|A ∈ Cω

0 . Indeed, since
f ∈ L1(Y ) and dy|AN = da dn, it follows that F ∈ L1(A). Moreover, F ∈ L1(A)ω ; i.e., F is
an analytic vector for the regular representation of A on L1(A). Therefore, the standard Sobolev
lemma implies that F ∈ Cω

0 (A).
Finally, the introduction of the additional parameter k varying in the compact group K causes

no further difficulties.
(ii) This follows from (i) and the last (and crucial) estimate in the proof of Lemma 3.1(i).
Remark 3.3. In fact, one can define the horospherical transform in such a way that the

transform of any function will be defined on the entire horosphere space Hor(Y ). Let us return to
the set Gh ⊂ G and the parameter space Ξx = G/Lx

HNx for each x ∈ Gh . For every f ∈ A , one
then defines

Rx(f)(gLx
HNx) =

∫
N

f(gx−1nx · yo) dn.

As we have seen above, the resulting function Rx(f) lies in Cω
0 (Ξx)∩L1(Ξx). As a result, we obtain

a well-defined G-mapping
R : A → Cω(Hor(Y )).

4. The Kernel of the Horospherical Transform: Discrete Spectrum

In this section, we show that the intersection of the discrete spectrum of the representation of
G on L2(Y ) with A lies in the kernel of R . In fact, we show even more: the intersection of A
with the orthogonal complement of the most continuous spectrum lies in the kernel.

Recall the minimal θτ -invariant parabolic subgroup

Pmin = MAN.

In the sequel, we use the symbol Q to denote a θτ -invariant parabolic subgroup that contains Pmin .
There are finitely many such subgroups. Let

Q = MQAQNQ

be the standard factorization of Q. Note that
• MQ ⊃ M
• AQ ⊂ A
• NQ ⊂ N

One says that two parabolic subgroups Q and Q′ are associated if there exists an n ∈ NK(A) such
that nAQn−1 = AQ′ . This induces an equivalence relation ∼ on parabolic subgroups, and we write
[Q] for the corresponding equivalence classes. If the context is clear, we simply omit the brackets
and write Q instead of [Q].

It follows from the Plancherel theorem ([3], [5]) that

L2(Y ) =
⊕

Q⊃Pmin/∼
L2(Y )Q,

where L2(Y )Q = L2(Y )[Q] stands for the part corresponding to representations induced from Q by
discrete series representations of the groups MQ/MQ ∩wHw−1 , where w runs over representatives
of elements of W /WH .
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Since A ⊂ Cω
0 (Y ) (see [11]), we observe that A ⊂ L2(Y ). However, A may not be dense in

L2(Y ): it has no components in the part of L2(Y )Q corresponding to the representations induced
from nonintegrable discrete series representations of MQ/MQ ∩ wHw−1 .

Let AQ = L2(Y )Q ∩ A . For the extreme choices of Q, we use the special notation

L2(Y )disc := L2(Y )G and L2(Y )mc := L2(Y )Pmin

and speak of the discrete and most continuous parts, respectively, of the square integrable spectrum.
In a similar way, we define Adisc and Amc . We believe that

Amc ⊂ L2(Y )mc is dense.

(The heuristic reason in favor of this is that M/M ∩ H is compact.)
Theorem 4.1. R(Adisc) = {0}.

Proof. The proof is the same as for the group space; see [14, Theorem 7.2.2] for a useful
exposition.

Let f ∈ Adisc . We have to show that R(f) = 0. Since R is continuous (Proposition 3.2), we
can use standard density arguments to reduce the assertion to the case in which f belongs to a
single discrete series representation and is K -finite. Let

V = U (gC)f

be the corresponding Harish-Chandra module, and set T := [R|V ]|A . Then T factors through the
Jacquet module j(V ) = V/nV . Recall that j(V ) is an admissible finitely generated (M, a)-module.
Hence

dimU (a)T (f) < ∞.

Consequently,
T (f)(a) =

∑
µ

aµpµ(log a) (a ∈ A),

where µ runs over a finite subset in a∗
C

and pµ is a polynomial (see [14, 8.A.2.10]). Since T (f) ∈
Cω

0 (A), we conclude that T (f) = 0, and hence R(f) = 0 by the K -finiteness of f .
As a consequence of the preceding theorem, we obtain the main result of this subsection.
Theorem 4.2. Let Q � Pmin . Then R(AQ) = {0}.

Proof. If Q = G, then this is just the previous theorem. The general case will be reduced to
that. Suppose that Pmin � Q � G. We define ΞQ = G/(MQ ∩ H)NQ and, just as in (2.3), obtain
a diffeomorphic parameterization [K ×MQ∩K MQ/MQ ∩ H] × A → ΞQ .

As in Section 3.1, we conclude that the mapping

RQ : A → L1(ΞQ)ω, f �→
(

g(MQ ∩ H)NQ �→
∫

NQ

f(gnH) dn

)
,

is well-defined, G-equivariant, and continuous.
Next, observe that

N = NQ � NQ,

where {1} 	= NQ ⊂ MQ . As before, the mapping

RQ : L1(ΞQ)ω → L1(Ξ)ω, f �→
(

gMHN �→
∫

NQ

f(gn(MQ ∩ H)NQ) dn

)
,

is well-defined, equivariant, and continuous.
Now note that

R = RQ ◦ RQ. (4.1)
Now let f ∈ AQ . Without loss of generality, we can assume that f belongs to a wave packet

induced from a discrete series representation σ realized in L2(MQ/MQ ∩ H).
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Note that MQ/MQ ∩ H is naturally embedded in ΞQ and that the restrictions of functions in
L1(ΞQ)ω to MQ/MQ ∩H remain integrable. Hence the restriction of F := RQ(f) to MQ/MQ ∩H
is integrable as well.

We claim that F |MQ/MQ∩H belongs to the σ-isotypical class. First, note that L1(ΞQ)ω ⊂
L2(ΞQ). By stage induction,

L2(ΞQ) = IndG
(MQ∩H)NQ

triv � IndG
MQNQ

L2(MQ/MQ ∩ H).

Thus, if L2(MQ/MQ ∩ H) =
∫ ⊕

cMQ
mπHπ dµ(π) is the Plancherel decomposition, then we have the

G-module isomorphism

L2(ΞQ) �
∫ ⊕

M̂Q

mπ IndG
MQNQ

Hπ dµ(π).

Now note that AQ acts on ΞQ on the right and this action commutes with that of G. (See the
next section for a detailed discussion for Q = Pmin .) This gives a further disintegration of the left
regular representation LQ of G on L2(ΞQ):

LQ �
∫ ⊕

cMQ

mπ

∫ ⊕

ia∗Q
IndG

MQAQNQ
[π ⊗ (−λ − ρQ) ⊗ 1] dλ dµ(π).

Since RQ is G-equivariant, we conclude that RQ(f) ∈ IndG
MQNQ

σ.
Our claim, combined with the previous theorem, implies that

RQ(F )|MQ/MHNQ = 0.

By the equivariance of RQ and RQ , we can replace f (and hence F ) by any of its G-translates.
Consequently, RQ(F ) = 0, as desired.

5. Restriction of the Horospherical Transform to the Most Continuous Spectrum

The objective of this section is to show that R is faithful on the most continuous spectrum.
Recall a few facts on the spectrum of the representation of G on L2(Ξ) and the most contin-

uous spectrum on Y . We start from the “horocyclic picture.” The homogeneous space Ξ carries a
G-invariant measure. Consequently, left shifts by G in the argument of a function on Ξ define a
unitary representation, say, L, of G on L2(Ξ); namely,

(L(g)f)(ξ) = f(g−1 · ξ) (f ∈ L2(Ξ), g ∈ G, ξ ∈ Ξ).

It is important to note that the G-action on Ξ admits a commuting right action of A,

ξ · a = gaMN (ξ = gMHN ∈ Ξ, a ∈ A),

because A normalizes MHN . Therefore, the formula

(R(a)f)(ξ) = aρ · f(ξ · a) (f ∈ L2(Ξ), a ∈ A, ξ ∈ Ξ)

defines a unitary representation (R, L2(Ξ)) of A commuting with L. Accordingly, we define the
A-Fourier transform of an appropriate function f on Ξ by the formula

FA(f)(λ, gMHN) :=
∫

A
[R(a)f ](gMHN)aλ da (λ ∈ ia∗).

For λ ∈ a∗
C
, we set

L2(Ξ)λ :=
{

f : G → C | f is measurable, f( · man) = a−ρ−λf( · ) ∀man ∈ MHAN,∫
K
|f(k)|2 dk < ∞

}
.
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Likewise, by C∞(Ξ)λ we denote the space of smooth elements in L2(Ξ)λ . The disintegration of
L2(Ξ) is then given by

L2(Ξ) �
∫ ⊕

ia∗
L2(Ξ)λ dλ,

where the isomorphism is given by the A-Fourier transform

f �→ (λ �→ FA(f)(λ, · )).
Now recall the Plancherel decomposition for the most continuous spectrum (cf. [1]). First, we

make some general remarks. For a representation π of a group L on some topological vector space
V , by π∗ we denote the dual representation on the (strong) topological dual V ∗ of V .

Let σ ∈ M̂/MH , and let Vσ be the unitary representation module for σ.
For each λ ∈ a∗

C
, we define

Hσ,λ :=
{

f : G → Vσ | f is measurable, f( · man) = a−ρ−λσ(m)−1f( · ) ∀man ∈ Pmin,

∫
K
〈f(k), f(k)〉σ dk < ∞

}
.

The group G acts on Hσ,λ by left translations, and the Hilbert-space representation thus obtained
will be denoted by πσ,λ .

Remark 5.1. The relationship between the representations on Hσ,λ and L2(Ξ)λ is as follows.
If µσ is an MH -fixed element in V ∗

σ (unique up to a scalar factor), then the mapping

Hσ,λ → L2(Ξ)λ, f �→ µσ(f),

is a G-equivariant injection. This mapping can be made isometric by an appropriate scaling of µσ .
By stage induction, one therefore obtains an isometric identification

⊕̂
σ∈M̂/MH

Hσ,λ = L2(Ξ)λ.

Sometimes, it is useful to realize Hσ,λ as Vσ -valued functions on N := θ(N); we then speak of
a noncompact realization. Define a weight function on N by

wλ(n) = a2Re λ,

where a ∈ A is determined by the condition n ∈ KaN . Then the mapping

Hσ,λ → L2(N, wλ(n) dn) ⊗ Vσ, f �→ f |N ,

is an isometric isomorphism.
Note that
• πσ,λ is irreducible for generic λ.
• πσ,λ is unitary for λ ∈ ia∗ .
• The dual representation of πσ,λ is canonically isomorphic to πσ∗,−λ ; the pairing is given by

〈f, g〉 :=
∫

N
(f(n), g(n))σ dn,

where f ∈ Hσ,λ , g ∈ Hσ∗,−λ , and ( · , · )σ is the natural pairing between Vσ and V ∗
σ .

Next, recall the description of H -fixed elements in the distribution module (H ∞
σ,λ)∗ . First, for

each w ∈ WH\W we set
V ∗(σ, w) := (V ∗

σ )w−1MHw.

Note that this space is one-dimensional. Let

V ∗(σ) :=
⊕

w∈WH\W
V ∗(σ, w) � C

|WH\W |.
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For w ∈ WH\W , we consider the orthogonal projection

V ∗(σ) → V ∗(σ, w), η �→ ηw,

In what follows, we write Reλ >> 0 if

(Re λ − ρ)(α∨) > 0 ∀α ∈ Σ+.

Then the formula

j(σ∗,−λ)(η)(g) =

{
a−ρ+λσ∗(m−1)ηw if g = hwman ∈ HwMAN,

0 otherwise

defines a continuous H -fixed element in Hσ∗,−λ for Re λ >> 0. We can meromorphically continue
j(σ∗, · ) in the variable λ and obtain the identity

j(σ∗,−λ)(V ∗(σ)) = ((H ∞
σ,λ)∗)H

for generic λ. For large λ, the inverse mapping j−1 is given by

((H ∞
σ,λ)∗)H � ν �→ (ν(w))w∈WH\W ∈ V ∗(σ).

For a smooth vector v ∈ Hσ,λ and η ∈ V (σ∗), we obtain a smooth function on Y = G/H by
setting

Fv,η(gH) = 〈πσ,λ(g−1)v, j(σ∗,−λ)(η)〉.
By the Plancherel theorem for L2(Y )mc (e.g., see [1]), there exists a meromorphic mapping

a∗C → Gl(V (σ∗)), λ �→ C(σ, λ),

such that the mapping

Φ:
⊕̂

σ∈M̂/MH

∫ ⊕

ia∗+
Hσ,λ ⊗ V ∗(σ) dλ → L2(Y )mc

defined on the smooth vectors by the formula
∑

σ

(vσ,λ ⊗ η)λ �→
(

gH �→
∑
σ

∫
ia∗+

Fvσ,λ,j0(σ∗,−λ)(η)(gH) dλ

)
,

where j0(σ, λ) := j(σ, λ) ◦ C(σ, λ), extends to be a unitary G-equivalence. Here a∗+ is a Weyl
chamber in a∗ .

Remark 5.2. Suppose that W = WH . (This happens in the group case.) Then V (σ∗) is
one-dimensional, and we can use Remark 5.1 to obtain the following isomorphism:

⊕̂
σ∈M̂/MH

∫ ⊕

ia∗+
Hσ,λ ⊗ V (σ∗) dλ �

∫
ia∗+

L2(Ξ)λ dλ.

Hence we can view Φ as a mapping defined on a subspace of L2(Ξ).

The inverse of Φ is the most continuous Fourier transform F (or Fmc). For f ∈ L2(Y )mc ∩
L1(Y ), the Fourier transform is given by

F (f)(σ, λ, η)(g) :=
∫

Y
f(y)j0(σ, λ)(η)(y−1g) dy,

where σ ∈ M̂/MH , λ ∈ ia∗ , and η ∈ (V ∗(σ))∗ � V (σ∗). As a last piece of information, we need to
relate the Fourier transform and the horospherical transform.

5.1. The relation between the Fourier transform and the horospherical trans-
form. Now we can describe the relation between R and F . Let Fw

A be FA considered on
Ξw = G/MHNw . Let f ∈ C∞

c (Y ).
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We unwind the definitions:

F (f)(σ, λ, η)(g) =
∫

Y
f(gy)j0(σ, λ)(η)(y−1) dy

=
∑

w∈W/WH

∫
ANM/wMHw−1

f(ganmw · yo)j0(σ, λ)(η)(w−1m−1a−1n−1) da dn dm

=
∑

w∈W/WH

∫
AM/wMHw−1

Rw(f)(gmawMHNw)aρ+λj0(σ, λ)(w−1m−1) da dm

=
∑

w∈W/WH

∫
M/wMHw−1

[Fw
A ◦ Rw](f)(w−1λ, gmwMHNw)j0(σ, λ)(w−1m−1) dm

=
∑

w∈W/WH

∫
M/wMHw−1

[Fw
A ◦ Rw](f)(w−1λ, gmwMHNw)σ(m)j0(σ, λ)(η)(w−1) dm.

Note that j0(σ, λ)(η) is a distribution, so that a priori the evaluation j0(σ, λ)(η)(w−1) makes sense
only if Reλ is sufficiently small. This problem can be overcome by the meromorphic continuation of
j(σ, λ). This meromorphic continuation can actually be obtained by an iterative procedure starting
from small Re λ and providing larger values with the use of a differential operator with polynomial
coefficients [4]. This allows us to replace C∞

c (Y ) by the Schwartz space S (Y ) of rapidly decaying
functions. (See [2, Sec. 12]; this space should not be confused with the Harish-Chandra–Schwartz
space C (Y ) considered later in this section.) Thus, we have proved the following assertion.

Lemma 5.3. Let f ∈ S (Y ). Then

F (f)(σ, λ, η)(g)

=
∑

w∈W /WH

∫
M/wMHw−1

[Fw
A ◦ Rw](f)(w−1λ, gmwMHNw)σ(m)j0(σ, λ)(η)(w−1) dm

for all σ ∈ M̂/MH and λ ∈ ia∗+ .
Remark 5.4. The special case of W = WH is of particular interest. Then the above-mentioned

formula is simplified as follows:

F (f)(σ, λ, η)(g) =
∫

M/MH

[FA ◦ R](f)(λ, gmMHN)σ(m)j0(σ, λ)(η)(1) dm.

Theorem 5.5. The restriction of R to Amc ∩ S (Y ) is injective.

Proof. Let f ∈ Amc ∩ S (Y ). Suppose that R(f) = 0. By Remark 3.3, we conclude that
Rw(f) = 0 for all w. Hence the last lemma implies that F (f) = 0. Since the Fourier transform is
injective on S (Y ) (see [2, Cor. 12.7]), we obtain f = 0.

Remark 5.6. It is very likely that S (Y )∩Amc is dense in Amc , but I cannot indicate a reference
at the moment. Were this established, the theorem above would imply that the restriction of R to
Amc is injective.

5.2. Concluding remarks.
5.2.1. The group case. It is instructive to see what the results in this paper mean for a semisimple

group G viewed as a symmetric space, i.e., represented as

G � (G × G)/∆(G),

where ∆(G) = {(g, g) | g ∈ G} is the diagonal subgroup. If P = MAN is a minimal parabolic
subgroup of G and P = MAN is its standard opposite (i.e. the image under the corresponding
Cartan involution), then the parameter space for the horospheres is given by

Ξ = (G × G)/∆(MA)(N × N).
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In this case, our function space A is the space of analytic vectors for the left-right regular
representation of G × G on L1(G). Thus, for f ∈ A one has

R(f)((g, h)∆(MA)(N × N)) =
∫

N×N
f(gnnh−1) dn dn.

5.2.2. Further steps. Returning to our more general situation of Y = G/H , consider the double
fibration

G/MH

����
��

��
��

�

����
��

��
��

�

Ξ Y .

(5.1)

Associated with R is the dual transform R∨ between appropriate function spaces F (Ξ) and F (Y )
on Ξ and Y ,

F (Ξ) → F (Y ), R∨(φ)(gH) =
∫

H/MH

φ(gh · MHN) d(hMH).

For f ∈ Amc , one can ask whether there exists a pseudo-differential operator D such that f =
R∨(DR(f)). For Y = Sl(2, R)/SO(1, 1), this was considered in [8], where it was shown that D
exists. For the case in which Y is a group, one can expect that D is actually a differential operator.

5.2.3. Horospherical transform on Schwartz spaces. One can ask to what extent R can be
defined on the Schwartz space of Y . For some classes of spaces Y , this seems to be possible, and
we comment on this in more detail below. First, recall the definition of the Schwartz space.

We use the decomposition
G = KAH, (5.2)

often referred to as the polar decomposition of G (with respect to H and K ). Accordingly, every
g ∈ G can be written as g = kgaghg with kg ∈ K etc. It is important to note that ag is unique
modulo WH . Therefore,

‖gH‖ := | log ag| (g ∈ G)
is well defined provided that | · | is the norm defined by the Killing form on p. An alternative,
often useful description of ‖ · ‖ is as follows:

‖y‖ =
1
4
| log[yτ(y)−1θ(yτ(y)−1)−1]| (y ∈ Y ). (5.3)

For u ∈ U (g), let Lu be the corresponding differential operator on Y ; i.e.

(Luf)(y) =
d

dt

∣∣∣
t=0

f(exp(−tu)y), u ∈ g,

for any function f differentiable at y. With these preliminaries, one defines the Harish-Chandra–
Schwartz space of Y as follows:

C (Y ) = {f ∈ C∞(Y ) | ∀u ∈ U (g) ∀n ∈ N sup
y∈Y

Θ(y)(1 + ‖y‖)n|(Luf)(y)| < ∞},

where Θ(gH) = φ0(gτ(g)−1)−1/2 and φ0 is the Harish-Chandra basis spherical function.
It is easily seen that C (Y ) equipped with an obvious family of defining seminorms is a Fréchet

space. Moreover, it is G-invariant, and the action of G on C (Y ) is smooth. Note that C (Y ) ⊂ L2(Y )
is a dense subspace.

Let BC∞(Ξ) be the space of bounded smooth functions on Ξ.
In the context of the definition of R on C (Y ), consider the following basic example.
Lemma 5.7. Let Y = Sl(2, R)/SO(1, 1) and f ∈ C (Y ). Then the following assertions hold :
(i) The integral

∫
N f(nH) dn is absolutely convergent.

(ii) The formula

gMHN �→
∫

N
f(gnH) dn
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defines a function in BC∞(Ξ).

Proof. Let A be the diagonal subgroup of G (with positive entries), and let N =
(

1 R

0 1

)
.

(i) For x ∈ R and nx =
(

1 x
0 1

)
, we should determine ax ∈ A such that nx ∈ KaxH . We use

(5.3) and start:

zx := nxτ(nx)−1 =
(

1 x
0 1

)
·
(

1 0
−x 1

)
=

(
1 − x2 −x

x 1

)
,

and hence

yx := zxθ(zx)−1 =
(

1 − x2 −x
x 1

)
·
(

1 − x2 x
−x 1

)
=

(
(1 − x2)2 + x2 ∗

∗ 1 + x2

)
.

For large |x|, we have log |yx| = | log yx|. Furthermore, up to an irrelevant constant,

|yx| = [tr(yxyx)]1/2 � 1
2
[(1 − x2)2 + x2 + 1 + x2] � 1

2
[x4 + 1].

Therefore, for large |x| we have

‖nx‖ � 1
4

log(x4/2 + 1/2).

From Harish-Chandra’s basic estimates of φ0 and our computation of zx , we further obtain
Θ(nx) � |x|. Therefore, for f ∈ C (Y ) the function x �→ |f(nxH)| grows slower than 1/(|x|·| log x|N )
with any fixed N > 0 for large |x|. This shows (i).

(ii) Let f ∈ C (Y ) and set F := R(f). From the proof of (i), we know that F is smooth. It
remains to show that F is bounded. Since G = KAH , we see that it suffices to show that F |A is
bounded. We do so by a straightforward computation. For t > 0, set

at =
(

t 0
0 1/t

)
.

Then

atnx =
(

t tx
0 1/t

)

and hence

zt,x := atnxτ(atnx)−1 =
(

t tx
0 1/t

)
·
(

t 0
−tx 1/t

)
=

(
t2(1 − x2) −x

x 1/t2

)
.

It follows that

yt,x = zt,xθ(zt,x)−1 =
(

t4(1 − x2)2 + x2 ∗
∗ 1/t4 + x2

)
.

For t � 1, we conclude that

‖atnx‖ � log

({
c1t

4 if |x| � 1/2,

c2t
4x4 − c3 if |x| � 1/2

)
,

and for |t| < 1 one has
‖atnx‖ � log |x|.

From this, we obtain (ii).
This example is somewhat specific. One might expect that the horospherical transform on C (Y )

converges whenever the real ranks of G and of Y coincide.
For groups, it is not hard to show that R(f) does not converge for general f ∈ C (G); the

integrability of f is needed.
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