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Abstract. We show that if a co-dimension two knot is deform-spun from a
lower-dimensional co-dimension 2 knot, there are constraints on the Alexander
polynomials. In particular this shows, for all n, that not all co-dimension 2
knots in Sn are deform-spun from knots in Sn−1.

In co-dimension 2 knot theory [6], typically the term ‘n-knot’ denotes a mani-
fold pair (Sn+2, K) where K is the image of a smooth embedding f : Sn → Sn+2.
An n-ball pair is a pair (Dn+2, J) where J is the image of a smooth embedding
f : Dn → Dn+2 such that f−1(∂Dn+2) = ∂Dn. Every n-knot K is isotopic to a
union (Sn+2, K) = (Dn+2, J)∪∂ (Dn+2, Dn) for some unique isotopy class of n-ball
pair (Dn+2, J) provided we consider K to be oriented. Let Diff(Dn+2, J) denote the
group of diffeomorphisms of an n-ball pair (Dn+2, J). That is, f ∈ Diff(Dn+2, J)
means that f is a diffeomorphism of Dn+2 which restricts to the identity on
∂Dn+2 = Sn+1, is isotopic to the identity (rel boundary) as a diffeomorphism
of Dn+1, and f preserves J , f(J) = J . We say an n-knot (Sn+2, K) is deform-
spun from an (n− 1)-knot (Sn+1, K ′) = (Dn+1, J ′)∪∂ (Dn+1, Dn−1) if there exists
g ∈ Diff(Dn+1, J ′) such that the pair

(

(Dn+1, J ′) ×g S1
)

∪∂

(

(Sn, Sn−1) × D2
)

is

diffeomorphic to the pair (Sn+2, K). Here (Dn+1, J ′) ×g S1 is the bundle over
S1 with fibre (Dn+1, J ′) and monodromy given by g, ie: (Dn+1, J ′) ×g S1 =
((Dn+1, J ′) × R)/Z where Z acts diagonally, by g on (Dn+1, J ′) and as the group
of universal covering transformations for R → S1.

To picture a deform-spun knot, let gt be a null-isotopy of g, ie: g0 = g, g1 =
IdDn+1 and gt is a diffeomorphism of Dn+1 which restricts to the identity on ∂Dn+2

for all 0 ≤ t ≤ 1. Consider Sn+2 to be the union of a great n-sphere Sn and a
disjoint trivial vector bundle over S1. Identify this trivial vector bundle over S1

with S1 × int(Dn+1), and identify S1 with R/Z. We assume that the inclusion
S1 × int(Dn+1) → Sn+2 extends to a map S1 × Dn+1 → Sn+2 such that the
restriction S1 ×Sn → Sn+2 factors as projection onto the great sphere Sn followed
by inclusion Sn → Sn+2. Then the set {(t, x) ∈ S1 × int(Dn+1) : x = gt(p), p ∈
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{t} × int(Dn+1)
Sn

Figure 1

int(J ′)} is a subset of Sn+2 whose closure is an n-knot. This is the deform-spun
knot, see Figure 1.

The main observation of this paper is that if K is an n-knot, deform-spun from
an (n− 1)-knot K ′, then there is a relationship between the Alexander modules of
K and K ′ which give rise to constraints on the Alexander polynomials ∆1, · · · , ∆n

of K.

Theorem 0.1. Let K be a n-knot which is deform-spun, then there exist poly-
nomials qi ∈ Λ = Q[t±1] = Q[Z] for i = 0, 1, · · · , n which satisfy qi+1qi = ∆i+1

(q0 = qn = 1) and qn−i = qi for all i, where we use the convention qi(t) = qi(t
−1).

An elementary consequence of this theorem is that for each n ≥ 2, not every n-
knot is deform-spun from an (n− 1)-knot. This follows from the work of Levine [4]
who gave a characterization of the Alexander modules of co-dimension 2 knots. In
particular Levine shows that an n knot has Alexander polynomials ∆1, · · · , ∆n ∈ Λ
which satisfy the relations ∆i(1) 6= 0, ∆i = ∆n−i for all i. Moreover, these relations
are complete in the sense that given any n polynomials which satisfy these relations,
there is an n-knot which has the specified Alexander polynomials. The case n = 2
has a particularly simple example. Theorem 0.1 states that if K is deform-spun,
then ∆1 = ∆1, yet there are 2-knots such that ∆1 is not symmetric. See example
10 of Fox’s Quick Trip [2], which describes a 2-knot such that ∆1(t) = 2t − 1.

Litherland’s deform-spinning construction has its origin in papers of Fox and
Zeeman. Fox’s ‘Rolling’ [3] paper gave a heuristic outline of the notion eventually
called deform-spinning, as a graphing process from a ‘relative 2-dimensional braid
group’ which nowadays is frequently called the fundamental group of the space
of knots, or (in a slightly different setting) the mapping class group of the knot
complement [1]. Zeeman proved that the complements of co-dimension two n-twist-
spun knots fibre over S1 provided n 6= 0 [8]. Litherland [7] went on to formulate a
general situation where deform-spun knot complements fibre over S1. Specifically,
Litherland proved that if the diffeomorphism g : (Dn+1, J ′) → (Dn+1, J ′) preserves
a Seifert surface for the knot (Sn+1, K ′) corresponding to the (n − 1)-disc pair
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(Dn+1, J ′), then the deform-spun knot associated to the diffeomorphism M ◦ g :
(Dn+1, J ′) → (Dn+1, J ′) has a complement which fibres over S1, provided M :
(Dn+1, J ′) → (Dn+1, J ′) is a non-zero power of the meridional Dehn twist about
J ′.

This paper was largely motivated by a result in ‘high’ co-dimension knot theory.
In the paper [1] the first author gave a new proof of Haefliger’s theorem, that the
monoid of isotopy classes of smooth embeddings of Sj in Sn is a group, provided
n−j > 2. The heart of the proof is showing that if n−j > 2 then every knot (Sn, K)
(where K ≃ Sj) is deform-spun from a lower-dimensional knot (Sn−1, K ′), where
K ′ ≃ Sj−1. Moreover, all knots (Sn, K) are i-fold deform-spun for i = 2(n− j)−4,
in the sense that one obtains (Sn, K) be iterating the deform-spinning process i
times. So in a sense this paper represents an investigation of the extreme case
n − j = 2. A second motivation is the observation that frequently the groups
π0Diff(D3, J ′) ((D3, J ′) a 1-ball pair) are quite large [1], in the sense that their
classifying spaces all have the homotopy-type of finite-dimensional manifolds, but
the dimension of these manifolds can be arbitrarily large. So there are many ways
to construct 2-knots by deform-spinning a 1-knot. As far as the authors know, this
paper represents the first known obstructions to knots being deform-spun.

1. Asymmetry obstruction

Given a co-dimension 2 knot K in Sn+2, the complement of the knot, CK is
a homology S1. Let C̃K denote the universal abelian cover of CK , ie: the cover
corresponding to the kernel of the abelianization map π1CK → Z, and consider
Hi(C̃K ; Q) to be a module over the group-ring of covering transformations Λ =

Q[Z] = Q[t, t−1], this is called the i-th Alexander module of K. Hi(C̃K ; Q) is

a finitely-generated torsion Λ-module [4] for each i, so Hi(C̃K ; Q) ≃
⊕

j Λ/pj for

some collection of polynomials pj . The product of these polynomials
∏

j pj is called
the i-th Alexander polynomial of K, or the order ideal of the i-th Alexander module
Hi(C̃K ; Q), denoted ∆i. In general, the order ideal of a finitely generated torsion
Λ-module M will be denoted ∆M . A theorem of Levine’s [4] is that Poincaré
Duality combined with the Universal Coefficient Theorem induces an isomorphism

Hi(C̃K ; Q) ≃ ExtΛ(Hn+1−i(C̃K ; Q), Λ). Here, if M is a Λ-module, M denotes the
conjugate Λ-module. This is a module whose underlying Q-vector space is M , but
where action of the generator t on M is defined as the action of t−1 on M . Thus,
the only Alexander polynomials of K which can be non-trivial are ∆1, · · · , ∆n, and
they satisfy the relation ∆i = ∆n+1−i for all i.

We collect some elementary results about Λ-modules that will be of use in the
proof of Theorem 0.1. To state the lemma, let Q(Λ) denote the field of fractions of
Λ, ie: the field which consists of rational Laurent polynomials.

Lemma 1.1. (a) (see [6] 7.2.7) Given a short exact sequence of finitely gen-
erated torsion Λ-modules

0 → H1 → H → H2 → 0

the order ideals satisfy ∆H1
∆H2

= ∆H .
(b) (see [4] Proposition 4.1) Let H be a finitely-generated torsion Λ-module.

There is a natural isomorphism of Λ-modules

ExtΛ(H, Λ) ≃ HomΛ(H, Q(Λ)/Λ).
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(c) With the same setup as (b), there is a natural isomorphism of Q-vector
spaces

HomΛ(H, Q(Λ)/Λ) ≃ HomQ(H, Q)

where we interpret Λ ⊂ Q(Λ) as the rational Laurent polynomials with
denominator 1.

(d) Let g : H → H be a Λ-linear map, where H is a finitely-generated torsion
Λ-module. Let g∗ : ExtΛ(H, Λ) → ExtΛ(H, Λ) the Ext-dual of g. Then
ker(g) and ker(g∗) have the same order ideals.

Proof. (of item (c)) Consider a rational polynomial p
q
∈ Q(Λ). The division algo-

rithm allows us to write p = sq + r for Laurent polynomials s, r ∈ Λ where r ∈ Q[t]
and deg(r) < deg(q). To ensure that r is unique, we demand that GCD(p, q) = 1,
q ∈ Q[t] and the constant coefficient of q is 1. Define a function Q(Λ)/Λ → Q

by sending p
q

to the constant coefficient of r. Composition with this map is a

Q-linear homomorphism HomΛ(H, Q(Λ)/Λ) → HomQ(H, Q) which is natural and
respects connect-sum decompositions of the domain H . Thus to verify that it is an
isomorphism, we need to only check it on a torsion Λ-module with one generator.

HomΛ(Λ/p, Q(Λ)/Λ) → HomQ(Λ/p, Q)

In this case the target space has dimension deg(p); the basis given by the dual basis
to the polynomials ti for 0 ≤ i < deg(p). The domain also has dimension deg(p),
with basis given by homomorphisms that send 1 to ti/p where 0 ≤ i < deg(p).
Hence the map is a bijection between these basis vectors.

To prove item (d), consider the ‘prime factorization’ of H . Let P ⊂ Λ be the
prime factors of the order ideal ∆H . Given p ∈ P let Hp ⊂ H be the sub-module
of elements of H killed by a power of p, thus

⊕

p∈P Hp ≃ H . g must respect the
splitting, so we have maps gp such that:

g =
⊕

p∈P

gp : Hp → Hp.

Thus,

∆ker(g) =
∏

p∈P

∆ker(gp).

Let dp ∈ Z be defined so that ∆ker(gp) = pdp . By part (c), g and g∗ can be thought
of as the HomQ(·, Q)-duals of each other, thus ker(g) and ker(g∗) have the same
dimension as Q-vector spaces, and so dimQ(ker(gp)) = deg(p)dp, and ∆ker(gp) is
determined by the rank of ker(gp) as a Q-vector space. Hence ker(g) and ker(g∗)
have the same order ideals. �

Remark. Although they have the same order ideals, in general the two kernels are
not isomorphic as Λ-modules. An example is given by g : Λ/p⊕Λ/p2 → Λ/p⊕Λ/p2

defined by g(a, b) = (0, pa). In this case, ker(g) ≃ Λ/p2, while ker(g∗) ≃
⊕

2 Λ/p.

Proof. (of Theorem 0.1) Let CK be the complement of an open tubular neighbour-
hood of K ⊂ Sn+2, and CK′ the complement of an open tubular neighbourhood of
K ′ ⊂ Sn+1. As in the introduction, let g : (Dn+1, J ′) → (Dn+1, J ′) be the diffeo-
morphism for the deform-spinning construction of K from K ′, so we can isotope
g so that it preserves a regular neighbourhood of J ′ ∪ Sn, therefore g restricts to
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a diffeomorphism of CK′ (which we can think of as the complement of an open
regular neighbourhood of Sn ∪ J ′ in Dn+1), giving a diffeomorphism

CK ≃ (CK′ ×g S1) ∪νS1×S1 ((νS1) × D2).

where νS1 is a trivial Dn−1-bundle over S1 (a meridian of ∂CK′). The decomposi-

tion lifts to the universal abelian covering space, giving the isomorphism H1(C̃K ; Q) ≃
coker(I − g1∗) and short exact sequences

0 → coker(gi∗ − I) → Hi(C̃K ; Q) → ker(g(i−1)∗ − I) → 0, i > 1

with gi∗ : Hi(C̃K′ ; Q) → Hi(C̃K′ ; Q) the induced map coming from g̃ : C̃K′ → C̃K′ .
Let qi be the order ideal of coker(gi∗ − I).

The map gi∗ − I : Hi(C̃K′ ; Q) → Hi(C̃K′ ; Q) give rise to a canonical short exact
sequence

0 → ker(gi∗ − I) → Hi(C̃K′ ; Q) → img(gi∗ − I) → 0

and the inclusion img(gi∗ − I) → Hi(C̃K′ ; Q) to another

0 → img(gi∗ − I) → Hi(C̃K′ ; Q) → coker(gi∗ − I) → 0.

Lemma 1.1 (a) applied to our short exact sequences tells us that ∆i = qiqi−1.
We now reconsider the proof of the symmetry of the Alexander polynomial of a

knot in S3 [5, 6], or more precisely, the isomorphism Hi(C̃K′ ; Q) ≃ Hn−i(C̃K′ ; Q)
derived from Poincaré Duality [4], paying special attention to naturality with re-
spect to diffeomorphisms g ∈ Diff(CK′), with an eye towards proving the symmetry
conditions qn−i = qi.

(1) Hi(C̃K′ ; Q) ≃ Hi(C̃K′ , ∂; Q): this is a natural isomorphism coming from
the long exact sequence of a pair.

(2) Hi(C̃K′ , ∂; Q) ≃ Hn+1−i(C̃K′ ; Q): this is the Poincaré duality isomorphism;
it is also natural, although it reverses arrows [4].

(3) Hn+1−i(C̃K′ ; Q) ≃ ExtΛ(Hn−i(C̃K′ ; Q), Λ): this is a natural isomorphism
coming from the universal coefficient theorem [4].

(4) ExtΛ(Hn−i(C̃K′ ; Q), Λ) ≃ Hn−i(C̃K′ ; Q). This last result uses that both
modules have a square presentation matrix, with one being the transpose of
the other. Since Λ is a principal ideal domain, the presentation matrices are
equivalent to the same diagonal matrices. This isomorphism is not natural.

Thus we have a non-natural isomorphism Hi(C̃K ; Q) ≃ Hn−i(C̃K ; Q). The natural
part of the isomorphism can be expressed by the commutative diagram

Hi(C̃K) //

g∗

��

Hi(C̃K , ∂)
PD

//

g∗

��

Hn+1−i(C̃K) ExtΛ

(

Hn−i(C̃K), Λ
)

UCT
oo

Hi(C̃K) // Hi(C̃K , ∂)
PD

// Hn+1−i(C̃K)

g∗

OO

ExtΛ

(

Hn−i(C̃K), Λ
)

(g∗)∗

OO

UCT
oo

This gives us an isomorphism of Λ-modules ker(I − gi∗) ≃ ker(I − (g−1
(n−i)∗)

∗),
so

ker(I − gi∗) ≃ ker(I − (g−1
(n−i)∗)

∗) = ker(I − (g(n−i)∗)
∗).

Lemma 1.1 (d), tells us that ker(I − (g(n−i)∗)
∗) and ker(I − g(n−i)∗) have the same

order ideals. Thus, qi = qn−i. �
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2. Comments and questions

Levine [4] has a complete characterization of the Alexander modules of co-
dimension two knots. A natural question would be, could one derive further other
obstructions to deform-spinning from the Alexander modules of knots? The pri-
mary aspect of Levine’s work that we’ve neglected is the Z-torsion submodule of
Hi(C̃K ; Z). Simple experiments show that when K ⊂ Sn+2 is deform-spun from
a knot K ′ ⊂ Sn+1, the Alexander modules of K can have Z-torsion, even when
the Alexander modules of K ′ do not. Moreover, twist-spinning sufficies to produce
many such examples. So any torsion obstructions to deform-spinning, if they exist,
would likely be fairly subtle.

In co-dimension larger than two, deform-spinning is the boundary map in the
pseudo-isotopy long exact sequence for embedding spaces and diffeomorphism groups
[1]. Moreover, Cerf’s Pseudoisotopy Theorem states that, in the case of diffeomor-
phism groups of discs, this map is onto, provided the dimension of the disc is 6 or
larger. So one might expect an analogy.

Question 2.1. Is there a simple characterization of deform-spun co-dimension two
knots K ⊂ Sn+2 (provided n is large)?

One would certainly expect more obstructions to deform-spinning than the ones
in this paper. For example, let K1 and K2 be two otherwise unrelated 2-knots
such that ∆K1

(t) = 2 − t and ∆K2
(t) = 2t − 1. Their connect sum has Alexander

polynomial ∆K1#K2
(t) = −2t2 + 3t− 2 which is symmetric, but we have no reason

to expect K1#K2 is deform-spun.
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