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NEW CONSTRUCTIONS OF SLICE LINKS
TIM COCHRAN, STEFAN FRIEDL AND PETER TEICHNER

Asstract. We use techniques of Freedman and Teichner [FT] to proveautiger certain
circumstances the multi-infection of a slice link is agdices (not necessarily smoothly
slice). We provide a general context for proving links afeesthat includes many of the
previously known results.

1. INTRODUCTION

A link of m componentis the image of a flat embeddir®f 11 --- 11 St — S3 of the
ordered disjoint union of oriented copies of the circl&!. Two such links are called
concordantf there exists a flat embedding

(S*H---1USYH) x[0,1] — S®x[0,1]

which restricts to the given links at the ends. A link is cdl{éopologically)sliceif it is
concordant to the triviain-component link or, equivalently, if it bounds a flat embedydi
of mdisjointslicedisksD?11 - - - 11 D? — D*. In the special case = 1 we refer to the link
as a knot. If the embeddings above are required G°heor smooth then these notions are
calledsmoothly concordardndsmoothly slice

The study of link concordance was initiated by Fox and Milimothe early 196G aris-
ing from their study of isolated singularities of 2-spheireg-manifolds. It is now known
that specific questions about link concordance are equivedevhether or not the surgery
and s-cobordism theorems (that hold true in higher dimessibold true for topological
4-manifolds. Moreover, the fierence between a link being topologically slice and being
smoothly slice can be viewed as “atomic” for the existencenaitiple differential struc-
tures on a fixed topological 4-manifold.

There is only one known way to construct a smoothly slice, lirdmely as the boundary
of a set ofribbon disks[Ro90]. The known constructions of (topologically) sliaakis
are also fairly limited. In 1982 Michael Freedman proved thray knot with Alexander
polynomial 1 is slice([F85]. It is known that some of these tsncannot be smoothly
slice and hence cannot arise from the ribbon constructiogedman/[F85, F88] and later
Freedman and Teichner [FT] gave other techniques showatgthie Whitehead doubles
of various links are slice. The 4-dimensional surgery amolssrdism theorems (for all
fundamental groups) are in fact equivalent to ffee sliceness of Whitehead doubles of
all links with vanishing linking numbers, see [FQ90]. Herdirk is freely slice if the
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complement of some set of slice disksif has free fundamental group. However, it is
conjectured that:

Conjecture 1.1. The Whitehead double of a link is freely slice if and only & timk is
homotopically trivial (i.e. has vanishing non-repeatingiér u-invariants).

Since vanishing linking numbers corresponds to vanishingdvl invariants of length 2,
the above conjecture (applied to, say, the Borromean ringsjd imply that one of those
theorems does not hold for free groups. The conjecture iwkrior links with one or two
components [([F&8]) but is widely open for all other cases,lthrder part being the “only
if” direction. Continuing the history of constructions falice links, the second two authors
recently found a new technique for knots, including examhat are not ribbon knots, do
not have Alexander polynomial 1 and are not Whitehead deyBid 05, FrTO6].

In the present paper we discuss a method of constructing ktiks that generalizes
many of the above. The construction begins with a ribbon kndéihk and modifies it by a
procedure called multi-infection(previously callednfection by a string lin§C04, p. 385]
and atangle sunfCQ94, Section 1]) which generalizes the classical s&atlbnstruction.
Special cases of this construction have been used extgnsinee the late 1970’s to exhibit
interesting examples of knots and links that aoeslice[Gi83,[L05,[COT03, COT04, HO6,
Ci06]. Therefore the present paper complements thesdsgegiving hope for an eventual
complete resolution of the question of when this constamatesults in a slice knot or link.
Our result also provides a method of producing interestiagrgles for testing the new
obstructions to a knot or link being smoothly slice [OS030&aVIO05%, BW05, GRSQ7].

In order to state our main theorem we now define the multieiinde of a link by a string
link. By anr—multi—diskE we mean the oriented di€k® together withr ordered embedded
open disksE,, . . ., E, (cf. Figure[1.2). Given a link. c S® we say thatamap : E — S°

Ficure 1.2. Multi—disk.

of anr—multi—disk intoS?2 is properif it is an embedding such that the image of the multi—
disk (which we denote b§,) intersects the link components transversely and onlyen th
images of the disk&, ..., E, as in Figurd_L]3. Now led = J;,...,J, ¢ D?x[0,1]

be an (unoriented)-component string link. Then we can thicken Bp c S* using the
orientation ofE,, and tieJ into L alongE,, (cf. Figure[1.4). We call the resulting link the
multi—infection ofL by J alongE, and denote it byt(L, J E,). We refer to Section 212
for a more formal definition. We will always refer to the imagfethe boundary curves of
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Ficure 1.4. Multi-infection ofL by J.

o(Eq),...,0(E) by ny,...,n.. Note that in the case = 1, the multi—infection of a link_
by a string knot] along a 1-multi-disk, depends only on the curveand on the closure
J. In fact the resulting link is just the satellite link afwith companion and axisy, that
we denotd (L, J, ).

We can now state our main theorem which is an application etelchniques of [ET]
(see also[[KO3]). We refer to [M57] for the definition of theinvariants for links. For
string links, these can actually be defined without indeteaicy but we will not need that
fact here since the vanishing of thenvariants up to a certain length is well defined and
depends only on the link closure of the string link, compagrife[2.2.

Theorem 1.5.Let D = D411 --1ID,, — D*be slice disksforalinkLin% Lety : E — S°®
be a proper map of an r—multi—disk such thgt. . ., 7, bound a set of immersed disksn
D* \ D in general position. Let ¢ be the total number of intersattind self-intersection
points of they; and let J be an r—component string link with vanishing Milpeinvariants
up to (and including) lengtBc.

Then the multi-infection(L, J, E,) of L by J alongE, is also slice.

It is not hard to show that the theorem holds ¢ot 0. We will therefore assume below
thatc > 0 and in particular that the string linkhas trivial linking numbers (i.eu-invariants
of length 2).

Note that, in the case= 1, Jis a knot, and hence all Milnorjs-invariants ofJ are zero.
In this case Theorem 1.5 simplifies to the following.
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Corollary 1.6. Let D= Dy 11 ---1I D,,, — D* be slice disks for alink L in & Letn be a
closed curve in 8\ L, unknotted in 8, such that; is trivial in 7;(D* \ D). Then for any
knotJ the satellite link (L, J, n) is slice.

We note that our proof of Theorem 1.5 would go through undemitbaker assumption
thatJ has trivial linking numbers if the 4-dimensional surgergsence were exact for all
fundamental groups. The latter is still an open problem. \&& the assumption on the
vanishing of higher Milnor-invariants af to get ourselves into the;,-null setting where
Freedman and Quinn [FQ90] proved a surgery theorem up tdardism. Conversely, if
our theorem were true under this weaker assumptiohtben the surgery sequence would
be exact and the s-cobordism theorem would hold for ariftarddamental groups. This
follows from the following discussion and the comments be@onjecturé 1J1.

Remark.An important special case of the theorem is wheis the trivial link andD is

a set of slice disks coming from disks in 3-space. Take m and choosey; in such a
way that (;, ;) form Whitehead links in disjoint 3-balls. Then there ar@iolos immersed
disksé; boundingn; each having exactly one self-intersection and no othergatgions.
This means that = min the above theorem. Using the symmetry of the Whitehedd lin
one can redraw the picture so that #die in a plane that also contains a multi—digkIt

is then not hard to see that the multi-infecti¢h, J, E,) is the Whitehead double of the
closure ofJ. Our theorem thus implies that this Whitehead double i{feslice if the
u-invariants ofJ vanish up to length@a. Theorem 3.1 in([ET] gives the same result with
the better boundn + 1 rather than &. This is the best known result concerning the “if”
part of Conjecturé 111 above (the Conjecture implies that 1 can be improved ton).
Note that our current theorem vastly generalizes this vpegial case and hence it is not
surprising that we need a slightly stronger assumption erittk J in the general setting.

Theoren_1b places conditions on both the lihkhaving vanishing Milnor invariants
up to a certain length) and the curvigg} (being null-homotopic irD* \ D). In general
both these conditions are necessary. For example, inlcase J are knotsih = r = 1),
if the condition ony is relaxed then in many cased., J, E,) is provablynot slice despite
the fact that all the Milnor invariants vanish fdr In the case thdt is a link, even if the
n; are null-homotopic, in general some conditionbis necessary. Examples are given in
Sectiori 4.

Theoren_Lb gives a very general method to prove that linksshee links. Yet the
theorem applies only to links obtained by multi-infectidaring from a known slice link,
which a priori seems like a very special class. In fact, upriosth concordance, it is not a
restrictive class. The following observation, proven it®mn[3, shows that, up to smooth
concordancegveryalgebraically slice knot can be obtained from a ribbon knby multi-
infection on a set of curves;} that lie in the commutator subgroupof(S® \ L) (suchs;
are at least candidates to be null-homotopic in the extefieome set of slice disks fdar).

Proposition 1.7. Suppose/ is any algebraically slice boundary link (for example any
algebraically slice knot). Ther is smoothly concordant to a link | which is of the form
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I(L, J E,) where L is a ribbon link, J is a string link with linking numisezero and they;
lie in the intersection of the terms of the lower central esrofr;(S3 \ L).

Note that, by Stallings’ theorem, a curygthat is null-homotopic in the exterior of some
set of slice disks must lie in the intersection of the lowertca series of the link group.

2. Proor oF TueoreMm[1.5

2.1. A sliceness criterion. We start the proof of Theorem 1.5 by recalling the following
well-known criterion for links that asserts that a libks slice if and only ifM_, the 3-
manifold obtained fronL by zero-framed Dehn surgery, is the boundary of a 4-manifold
meeting certain homological criteria. The strategy of awob will be to construct such a
4-manifold for the zero surgery on the limi., J, E,) obtained by infection as in Theorem
[L.5.

Proposition 2.1. Alink L = Ly IT--- I Ly, is slice if and only if there exists a 4—manifold
W such that

(1) OW = My,

(2) m1(W) is normally generated by images of meridians of L,

(3) Hl(VV) = Zm,

(4) Hy(W) = 0.

Proof. LetL = Ly II--- I L, be a link inS® and letD = D, II --- I D, be a union of
slice disks forL. Let W := D*\ vD wherevD is a tubular neighborhood dd, which
exists becausP is assumed to be locally flat. It is easy to see Wedatisfies the required
properties.

Conversely, given suctW we add a 2—handle &/ along a meridian of each component
of L and call the resulting manifoM/’. Using the properties (1) to (4) we can easily see that
oW = S3, (W) = 0, andH»(W’) = 0. HenceW’ is homeomorphic t®* by Freedman’s
solution of the topological Poincaré conjecture in dimenst. Moreover the cocores of
the 2—handles iV’ form a disjoint union of slice disks for the componentd_of O

2.2. Multi—infections and bounding 4—manifolds. The starting point of Theorem 1.5 is
a slice linkL. ThusM_ is the boundary of a 4-manifold), = D*\ vD, 11 --- 11 vDy,
that satisfies the properties of that Proposifion 2.1. Oal goto produce a 4 manifold
whose boundary ib, sz, that satisfies these properties. This will establishitfiat], E,)

is slice. In this subsection, as a preliminary step we willibit a canonical cobordism
betweenM,, Mz, and a third manifoldVj, the zero surgery on the link obtained by
closing up the string linkl, as shown in Figure 2.2.

First we give a more formal definition of the multi-infectioha link. LetL c S2 be
an arbitrary link andp : E — S* be a proper map of an-multi—disk. Recall thag, is
the image of that disk and we denote By the complement of the subdisks irng,. LetJ
be an arbitrary-component string link as in Figure 2.2. Note thBg ( E,) (as shown in
Figure[1.B) is a 2-disk with subdisks deleted and sB/\ E,) x [0, 1] (as shown in the
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Ficure 2.2. String link and its closure.

center of Figuré_114) may be viewed as a copy of the exteriah@trivial r-component
string link. This manifold has the same boundary as the extef ther-component string
link J, denoted D?x[0, 1]\ vJ). Thus we can alteB® (in the complement dof) by deleting
the exterior of this triviak-string link and inserting the exterior of the (nontrivialying
link J. This should be done in such a way as to equate the meridiaremgitudes of these
two string links. Recall that the meridians of the triviaisg link are the boundary curves
of p(E1), ..., ¢(E;) that we denote by, ...,n. We claim that the resulting manifold is
homeomorphic t&2 since

(S® N Int((E, \ E,) x [0,1])) U (D?x[0, 1] \ vJ)
(S*\E, x[0,1]) U ((D?x[0, 1] \ vJ) U (E, x [0, 1]))
S8,

1l

The last homeomorphism follows from the observation thafpitevious space is the union
of two 3—balls. Finally we define the linKL, J, E,) to be the image of the link under this
homeomorphism. It is easy to see that this formal definitgmeas with the more intuitive
definition in the introduction. In the sequel, we often abae (L, J E,) by I.

This definition yields a description of the multi-infectias: deleting the exterior of
a trivial string link and inserting the exterior of a nonwvtal string link. Since this dele-
tion/insertion occurs in the complementlofit applies equally to the zero-framed surgery
manifoldsM; andM,. That is

M, = (M_ \ {exterior of trivial string link) U (exterior ofJ).

From now on assume that we are in the situation of The@rem Aesel is a slice link
and letw, = D*\vD;1I---1IvD,. Recall thavW,_ = M, contains a copy of the exterior of
the trivialr-string link, the handlebod§f = (E, \ E,) x[0, 1] as in the center of Figufe_1.4.
Furthermore we claim thail ; also contains a canonical copyléf In fact M5 decomposes
as the union of the exterior of the string lidkand the exterior of a triviat-component
string link. To see this, vied? x [0, 1] as a submanifold d8® via the standard embedding
and letB? x [0, 1] denote the complementary 3-ball. View the string lihiis contained in
D2 x [0, 1] and regard the remainder dfas a trivial string link T, contained irB? x [0, 1].
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Clearly then
(S3\vJ) = (D?x[0, 1]\ vJ) U (B® x [0, 1] \ vT).
Since
M; = (S3\vJ) U (Ul u3 x D?),
M; decomposes intd?x[0, 1] \ vJ), the exterior of the string link, and the handlebody
(B*x [0,1]\vT) U (Ul_; uj x D?) = (B*x [0, 1] \ vT)

The last homeomorphism follows from the fact that eaghx D? is attached only along
p; X AwhereA s an arc indD?. Namely, it is the arc running alonp, rather thenJ. It
follows that the fundamental group of this handlebody isftee group onus, ..., u, the
meridians ofT andJ. We now form a 4-manifold

N =W_ U (M;x[0,1])
as shown schematically in Figure .3, by identifyifigthe copy of the trivial string link

Ficure 2.3.

exterior indW_ with the copy inM; x {0} (shown dashed in Figure 2.3) in a way such that
the curvesy; on the former get identified to the meridigms of the latter. This is done in
such a way that the “new” boundary component created isgeldl, since it is obtained
from M, be deleting the trivial string link exterior and insertirgetexterior ofJ.

A key observation is that the curvgswhich are equated to the meridignf J live in
H c dW, andare null-homotopic in Wby hypothesis.

If J were itself a slice link then we would know thit; were the boundary of some
4-manifoldW that satisfies the conditions of Proposition 2.1. We coudshthse thidV to
cap df Mj; c dN, resulting in 4-manifoldN” whose boundary i, and which satisfies the
conditions of Proposition 2.1, proving that the infectewkll were slice. This establishes
the following (previously known) very special case of Treuf1.5 which holds without
any hypotheses on the curvgs
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Corollary 2.4. The link obtained by a multi-infection of a slice link L usimgtring link J
whose closure is a slice link, is again a slice link.

However, in generaM; will not bound a 4-manifold that satisfies Proposition] 2.4. |
this case we must be more clever and make use of our hypotheslesr; curves.

Lemma 2.5. N satisfies the following conditions:

. d(N) = M, I —M3,

. 11(N) is normally generated by the meridians of I,
. H1(M,) — H1(N) is an isomorphism,

. H2(M3;) — Hz(N) is an isomorphism,

. 11(Mj) — m1(N) is the zero map.

O wWNPRE

Proof. Nis the union oW_andMj x [0, 1] glued alondgH. Note also thaty;} is a basis for
the first homology ofl. Therefore the Mayer-Vietoris sequence becomes

0 — Ho(WL) @ Ha(Mj5x[0,1]) — Ha(N)
- @®_Zyi — Hi(W) @ Hi(M5x[0,1]) — Hi(N) — O

Sinced;_,Zu; —s H1(Mj) and sinceH,(W,) = 0, it follows thatHy(Mj3) — Ha(N) is an
isomorphism, establishing (4). Singe= n; dies inHy(W,) it also follows thatH;(W,) —
H1(N) is an isomorphism. But(W,) = H,(M,) = Z™ generated by the meridians bf
Clearly these same meridians are a basidHpof the infected link exterior and thus for
H:(M,). This establishes (3).

In order to prove (5) note that the map

(i) = m(H) — 71 (M x [0, 1])

is surjective and the map

(mi) = m(H) — w1 (W)
is the zero map. When gluing the two copiesthfthe meridiang; are identified with the
ni, establishing (5). By the Seifert-van Kampen theorem weshav

m1(N) = 71(WL) =i} n1(Mj).

Moreoverr;(W,) is normally generated by the meridians of the linkandz,(Mj) is nor-
mally generated byy;} which are trivial in7,(W,). Thusni(N) is normally generated by
the meridians of establishing (2). m|

2.3. Conclusion of the proof. We show how the proof of a theorem of Freedman and
Teichner can be used to altdrto a 4-manifold,N’, whose boundary i#1, and which
satisfies Propositidn 2.1. We strongly encourage the reaadeve pages 547-549 of [FT]
available.

Recall the situation shown on the right-hand side of FiguB et M denote a collar
on theMj; boundary component as indicated by the shaded portion deftdeand side of
Figurel2.6.
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FiGure 2.6.

A note of caution is in order. We shall shortly appeal to th&@aieof a proof in[[FT]. In
that proof, theM; -boundary component df is capped & by a 4-manifold that is called
M. But in fact this “cap” is not important to the proof (sincesthtrategy is to replace it
anyway). Therefore we omit the cap. Our colMrwill play the role ofM and ourN will
play the role ofN in [ET].

Leto*M denote the “outer” boundary component of the colfarRecall thatr; (0* M) =
nm1(Mj;) is normally generated by its meridia@s= 7, . . ., ur = n, and by assumption these
curves bound immersed dis&sn W, wherec is the total number of intersections and self-
intersections. One such disk is shown schematically orettiside of Figuré 2]6. We now
closely follow the proof of[[FT, p. 547] using the same natati In accordance with that
notation, set; = n; = uj. Let My be a regular neighborhood ™ U {6;} — N as shown
schematically on the right-hand side of Figuré 2.6 by theleHgortion ofN. Now discard
M; and consideN \ M, the unshaded part of the figure. The latter has a new boundary
componentg*M;. The strategy is to produce, using the proofin/[FT], anothenanifold
Ms with M3 = 9*M; and use it to plug up this hole M \ M;. Then, letting

N’ = (N AN M]_) U;)Ms Mg,
we see thatN’ = M, and we will verify thatN’ also satisfies the other conditions of
Propositio 2.1, establishing thiats a slice link.
Lemma 2.7. There exists d-manifold My, with M3 = 9*M; such that

1. The inclusion of the boundary induces an isomorphisi@Ms) = Hi(M3).
2. M3 is homotopy equivalent to a wedge of c circles where thesksicorrespond
precisely to the double point loops among the

Before constructingvs, we prove that its existence will enable us to finish the piadof
Theoreni Lb.

Lemma 2.8. Using the inclusion induced maps, the following statemkeald:
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1. Hy(N \ M;) — H;(N) is an isomorphism,

2. Hy(0*M1) — Hy(N \ M,) is surjective,

3. m(N \ M,) is normally generated by the meridians of | and the meridiaithe
diskss;.

Proof. First note that, sinc# is a collar,N \ M; = N \ Ujvéd;, wherevd; is a (closed)
regular neighborhood @&. Then excision and Poincaré duality give isomorphisms

Hp(N, N\ My) = Hp(N, N \ Ujvsi) = Hp(Uivdi, 8 (Uivéi)) = H*P(Uivéi, Uiv(86;))

where we have decomposed the boundguyvs;) of the regular neighborhood into the two
relevant parts. The latter groups are given by

A if p=2
Hp(N, N \ My) = H¥P(Uve;, Uiv(067)) = 4 Z° if p=3,
0 else.

For p = 2, generators are given by transverse disks tasthend forp = 3, each inter-
section pointP contributes a generator via a solid torlisin a small neighborhood d?
(whose boundary is the well known @&brd torus and which intersects the double point
loop exactly once). Thus the long exact sequence of the Hal ( M;) becomes

7° = Ho(N \ My) = Ha(N) 5 Z" = Hi(N ~ M) = Hy(N) - 0,

wherer is given by the algebraic intersection numbers with theoted;. Thus the com-
position of Hy(Mj3) = Hy(N) (see (4) of Lemma_ 215) with is given by the matrix of
intersection numbers of cappeti-8eifert surfaces fod, with theds; = y;. Sincey; is a
meridian ofjj, this matrix is the identity with respect to these bases (axetused that the
linking numbers of]J are zero). Thug is an isomorphism and (1) above follows. It also
follows thatH,(N \ M,) is generated by the Glord toridTp and since these clearly lie in
0" My, statement (2) also follows.

For (3), recall from property (2) of Lemnia 2.5 thai(N) is normally generated by the
meridians ofl. Any homotopies ifN may be assumed to hit transversely, so (3) follows
immediately.

|

Now, assuming we have constructeld as in Lemma 2]7, we claim:
Lemma 2.9. N’ = (N \ M;) Uyu, M3 satisfies the conditions of Proposition2.1.
Proof. Consider the Mayer-Vietoris sequence kr= (N \ M;) U M3:
H1(9"M1) 5 Hi(N \ My) @ Hi(Mg) — Hi(N') > 0.
By property (1) of Lemma2l'hi,(0* My) = Hi(Ms). It follows thaty is injective and that
Hi(N \ My) = Hy(N),
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and so by properties (3) of LemrnaR.5 and (1) of Lerima 2.8
Hi(M;) = Hi(N) = Hy(N \ Myp) = Hy(N).

This establishes condition (3) of Propositionl2.1. Moreoseamining Mayer-Vietoris
again:
Ha(0* My) — Ha(N \ Mp) @ Ha(M3) — Ho(N') — Hy(0*My) 5

wherey is injective andH,(M3) = 0 by property (2) of Lemma2.7. Thu(N \ M;) —
H,(N’) is surjective. Thus by property (2) of Leminal2.8,

H2(0" M) — Ha(N N Mp) — Hy(N)

is surjective. Since any class kp(N’) is carried byo*M; = M3z andH,(M3) = O, it
follows thatH,(N’) = 0, establishing condition (4) of Proposition2.1.
Finally considerr;(N’) which, by the Seifert-Van Kampen theorem, equals

71 (N N\ My) #7,+my) T1(M3).

The mapr,(0*M,) — 71(M3) is surjective because the double point loops come from the
boundary. Thereforer;(N \ M;) — m1(N’) is also surjective. Property (3) of Lemimal2.8
implies thatr,(N’) is normally generated by the meridiansiodnd the meridians of the
disks¢;. But the meridians of the disks live on the Clitford tori and hence intersect triv-
ially with the solid toriTp from Lemmd 2.8. In the construction &f; it will become clear
that intersections witfip give the isomorphism of; M3 with the free group oo generators.
Therefore, the meridians ) map trivially tor; M3 and thusr;(N’) is normally generated

by the meridians of alone. Thud\’ satisfies all the conditions of Proposition|2.1. O

This concludes the proof thatis slice and hence the proof of Theoreml 1.5, modulo the
proof of Lemmad 2.17.

2.4. Using the proof in[ET] to construct Ms. [ET], p. 548] explains how to draw a “Kirby
diagram” for the 3-manifold*M; as follows. First consider the abstract 4-manifold ob-
tained fromM by addingr 2—handles alongy, f;)) c 0*M = Mj using framingsf; induced
from the ;. This isnot embedded ifN. Let X denote the resulting homology sphere
obtained as the top boundary, i.& is obtained fromMj; by fi—framed surgery on the
meridiansy; as shown in parA of Figure[Z.1D (only one component dfis shown). Let
{my, ..., m} denote a set of meridians for tlig, ..., v;}, also shown in par of the figure.

Let L denote the linkmy, ...,m} ¢ £ andX_ denote the O—framed surgery an— X.
Meridians of this link are callegl and are shown dashed in p&bf the figure. Pictures
A throughD illustrate a proof of the observation in [FT, p. 547] that= Mj; = *M by
a map that sends a meridional $f, ..., i} to {y1, ..., 7:}. This observation will be used
later. This is seen by first sliding each componé&rdver the corresponding O—framed
which results in parB of Figure[2.10. Then the O—frameqd cancels with the—framed
vi, yielding partD of the figure.

To obtain a description a¥*M; from X, one must take into account the self-plumbings
of the¢;.
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Ficure 2.10.

Lemma 2.11. There exists &-manifold M, with fundamental group free on ¢ generators
and withdM, = 9*M; such that

1. The inclusion of the boundary induces an isomorphisi@M,) = Hi(M,).
2. m;M; is a freeZ[x;M,]-module with hyperbolic intersection form.

Proof. In [FT, Figugres 4.1-4.3], a “Kirby calculus” descriptioh® M, is obtained, viewed
as handles attached to the unique contractible 4-mardfaldh boundank. Let M, denote
the 4-manifold given byl [FT, Figure 4.3]. It is obtained frafrby attachingc 1-handles
and Z 2-handles t& = dZ in a way thatoM, = dM;. Moreover, the 2-handles go ho-
motopically trivially over the 1-handles, implying the &ment for the fundamental group.
Moreover, it follows thatM, is homotopy equivalent to a wedge ofcircles and 2 2-
spheres, in particular,M, is a freeZ[r;M,]-module of rank 2. Finally, the figure clearly
shows that the 2-handles generate a hyperbolic form,df which by the homology long
exact sequence for the pam¢, 0M,) implies (1). m|

If surgery worked over the free group, we could remove theehlyplic form onm,M,
to get a manifoldM; with the desired properties of Lemrhal2.7. We actually justidhe
surgery to work up to s-cobordism (rel. boundary) and thisifact a theorem in the
m-null case [FQ90]. This condition means that the union of the imadeall immersed
2-spheres representing the hyperbolic form maps triviaily, into the 4-manifold. In the
case ofM,, the 2-spheres are made from the cores of the 2-handlegh&vgeith null-
homotopies of the attaching circlesZn SinceZ is simply connected, it stices to keep
those 2 null-homotopiegslisjointto make the union of all 2-sphereg-null.

This is where our assumption on the Milnor invariantsJofomes in: The above 2-
handles are attached to a number of parallel copies of tbiesm where the total number
is precisely 2. We now claim that we can replace [FT, Lemma 4.2] by

Lemma 2.12. Any link consisting o2c untwisted parallel copies of the componeniom
L = {m,...,m} in X bounds a set of disjointly immersed disks in Z. Here we meatr2th
is the sum of the number of parallels, of m.
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Given this Lemma, we can eliminate all the second homologiMefby the z;-null
surgery theorem up to s-cobordism. This gives the 4-mahN&J that is homotopy equiv-
alent to a wedge of circles and satisfies Lemima 2.7. The angunteks exactly like in the
paragraph just below Lemma 4.2 in [FT]. This concludes tlwpof Lemmd 2.7, modulo
the proof of Proof of Lemma2.12.

Proof of Lemma 2.12The Lemma is vacuously true far= 0, so assume > 1. By [FT,
Lemma 2.7], the conclusion of the Lemma is equivalent to tiopgrty that

(2.13) All 4 — invariants of length less than or equal \&nish forlL.

Milnor’s invariants for links in homology 3-spheres are defi in the exactly same way as
for links in S3, see[[FT]. Now leF be the free group ongenerators anB — m,(X\ L) be
the meridional map. The vanishing of thdanvariants ofL is equivalent to the following
three statements:

(214) F/F2C+1 = ﬂl(z N\ L)/ﬂ'l(z AN L)zc+]_
(2.15) F/Fac = m(E0)/mi(Z)2
(216) Hz(ZL) - HZ(ﬂl(ZL)/ﬂ-l(ZL)ZC—l) is the trivial map

The equivalence df 2,18, 2114 and 2.15 is standard for links®i[M57]. For links in
general homology spheres most of this is derived_inl [FT, iBec]. In particular the
equivalence df Z.14 and 2]16 is established there using,[Dif&orem 1.1]. Now we have
reached the key point: the desired propérty 2.16 depengsoarthe zero surgery, , not

on L itself (indeed it only depends am(X.)). At this point we only have to recall our
previous observation tha = Mj. Therefore each of the above conditions is equivalent
to the requirement that theinvariants of length less than or equal \&nish forJ. But

this was the assumption of our Theorem 1.5. |

3. Proor oF ProprosiTion[I.1

SupposeL is an algebraically slice boundary link sfcomponents. We give the proofin
the case thaf is a knot. The proof for a boundary link is identical. Sin€és algebraically
slice, there is a genusSeifert surfac& which is in “disk-band” form, as suggested by the
left-hand side of Figure 3.1, where the-bands” are untwisted and such that the lihk
formed by the cores of these bands has zero linking numbérs.isTpossible since we can
choose ther-bands to generate a metabolizer of the Seifert form.

It is well-known that ifJ is (smoothly) slice the is (smoothly) slice (since then the
Seifert surface could be “surgered” to a disk using the slisks forJ). Letyp : E — S8
denote arr-multi-disk that hits eacle-band once transversely as suggested on the right-
hand side of Figure_3.1. By thickening Wpwe arrive at the local picture shown in the
left-most part of Figuré 312, of a 2-cable of the triviastring link T.

Let J denote the-string link formed by the cores of the-bands in theexterior of the
thickenedE. Suppose we replace the 2-cableToby the 2-cable of the string link J
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Ficure 3.1.
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FiGure 3.2.

as shown in the second frame of Figlrel 3.2, and call the reglhotL. ThenL is a
knot that admits a disk-band form whogebands form a link that is the closure e0#J.
Since the latter is a ribbon link, is a smoothly slice knot (actually a ribbon knot although
this takes a little more work to show). On the other hand, sappve replac@ by the
2-cable of the string link-J#J, as shown in the third frame of Figure B.2, and denote
this knot byl. Thenl is obtained from the ribbon kndt by a multi-infection using the
string link J as indicated by the equivalence of the third and fourth frafeFigure 3.2
(the knot in the fourth frame clearly filers from the knot in the second frame by a tangle
insertion-deletion). Moreover since the string linkand—J#J are smoothly concordant,
their 2-cables are also smoothly concordant. It follows tha knot/ is concordant to the
knotl (just alter the product concordance frofito itself by the string link concordance).
Thus, the original knof is smoothly concordant to the knbtvhich is obtained from the
slice knotL by infection using). The curvedn;} are meridians to the-bands and hence
lie in the exterior of a system of Seifert surfaces that eixHitas a boundary link. Then

it is well known that they lie in the intersection of the terofg¢he lower central series of
m1(S® \ L), since the Seifert surfaces can be used to construct a neapéalge of circles
that sends the; to the wedge point. This concludes the proof of Propositigh 1
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4. EXAMPLES

In this section we give several examples of the applicahilftTheoreni 1.6 and Corol-
lary[L.8. In Sectiofll we explained how, given any lthkrheoreni L could be applied to
classes ofinks much more general than Whitehead doubled.df the current section we
restrict to the case thditis a knot.

LetL c S®be alink and lefy ¢ S®\ L be a closed curve which is the trivial knot$7.
The curve; bounds an embedded disk& which intersectd. transversely and extending
this disk so that lies in the interior we get an embedded 1-multi-disk Let J be a
knot and letd be a string knot such that its closureds Recall that, in this case, all of
Milnor’s z—invariants ofJ are zero. We can form the infection link_, J, E,). Itis easy to
see that this link only depends grandJ, and we therefore denote it b{L, J, 7). As we
have mentioned, in the literatut€L, J,n) is sometimes called the satellite link bfwith
companion] and axis;.

4.1. Infection of ribbon knots by a knot. In this section we compare Theoréml1.5 with
the two previously known slicing theorems:

(1) If Kis a knot withAk(t) = 1, thenK is slice ([E85]).

(2) If Kis a knot withAk (t) = (2t — 1)(t — 2) and if a certain non—commutative Blanch-

field pairing vanishes, thel is slice ([FrT05]).
We first consider Figurie 4.1. The shaded region in Figured).is(part of a ribbon disk

D for a ribbon knotk. Figure[4.1 (b) shows a curvewhich is clearly the unknot i°.
Note thatp is homotopically equivalent to a curve linking the ribbosldD once without

Y
1

(@) (b) (€)

Ficure 4.1. Infection by a knot.

intersecting it (cf. Figur@ 411 (c)). Itis therefore cledaty is homotopically trivial in
D* \ D. It follows immediately from Corollar{ 116 tha{K, J, n) is slice for any knotl.

(1) Now consider Figure_4.2, it shows two isotopic picturesthe linkn U K. In the
special case thdd is the trivial ribbon disk for the unkndg, it follows immediately from
Figure[4.2 (b) that(K, J, ) is the Whitehead double af Therefore Corollarf 116 gives
another proof that the Whitehead double of any khistslice. Note though that there exist
many Alexander polynomial knots which are not Whiteheadbdiesi(e.g. the Kinoshita—
Terasaka knot), and to which Theorem| 1.5 a priori does ndyapp

(2) We consider Figure 4.3 (a). The krif is the ribbon knot 6 As we saw above,
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Ficure 4.3. The knot$; andK, with curvesn; andns,.

the knotl = I(Ky, J, ;) is slice for any knotl. Note thatA, (t) = Ak, (t) = (2t — 1)(t - 2).
In fact [FrTO5, Proposition 7.4] also applies to show that slice. We point out that in
[FrTO5, Figure 1.5] a dferent andncorrectcurven was chosen (cf. also the correction in
[ErT06]).

(3) We now turn to Figure4l3 (b). By the above discusdien | (K», J, 1) is slice for
any knotJ. Note thatA, (t) = Ag,(t) = (2t — 3)(2t" — 3). In particular neither of the two
previous slicing theorems can be applied directly.

Remark.All of the knots in Figuré 43| (K;, J, ni), 1 = 1,2, are in fact smoothly concordant
to the Whitehead doubl&/hJ). Indeed, by “cutting the ribbon band” and cappingj o
the trivial component that splitsfip one constructs a smooth ribbon concordance from
1(K;, J. ,1i) to the case in Figurle 4.2 (b) where the knot is the Whiteheadhie ofJ. For
manyJ the knotWh(J) is known not to be smoothly slice, in particular for sukthe knots
1(K;, J, ;) are slice buhot smoothly slice

4.2. Satellite links. We now turn to the study of satellite links. We first point oata-
ray of examples from the literature that illustrate the appanecessity of the conditions
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in Theoren_1b. First we give examples illustrating the ssitg of the conditions on the
ni. If we takeL = L; II L, to be the trivial link andy as in Figuréd_ 4} then it is easy to

Ficure 4.4. Satellite construction with the figure 8 knot, andl the trivial
2—component link.

see that; is a non—trivial element, namely it is the commutater, k;] in the free group
7 (S3\ L1 I Ly) = m(D* \ D1 11 Dy) = (X4, %) whereD; 11 D, is the obvious slice disk
for the trivial link. Hence Theorem 1.5 does not apply. Imtléa many cases it is known
thatI(L, J, ) (which is just the Bing double Bingj of a knotJ) is not slice. For exam-
ple Bing() is known to fail to be slice ifJ is not an algebraically slice knat [CLRO7].
Even if J is an algebraically slice knot, there are many examples evhigther-order sig-
natures obstruct Bindj from being a slice link[CHLO7]. Much more generally,jfis
taken to beanyhomotopically essential (unknotted) circle in the exteabthe trivial link,
then these same invariants obstrl(tt, J, ) from being slice[[HO8, Theorem 5.4, Corol-
lary 5.6] [CHLO7, Theorem 5.8 [ChO7]. Included among thesamples are the so-called
iterated Bing doubles al. Therefore for these examples it seems likely ikt J, ) will
be slice if and only if eithen is null-homotopic o] is itself a slice knot.

Even if5 is null-homotopic, the link(L, J, ) can fail to be slice. If we take to be the
trivial 2-component link and take,, 7, to be curves as in Figufe 4.1, then, as previously
observed|(L, J,n) is Wh(J). But the Whitehead double of the Hopf link is known not to
be slice (cf. [F88]). Thus some condition on the lififs necessary in general.

On the other hand consider the following very general examphe shaded region in
Figure[4.5 (a) is part of two ribbon disk andD, for alink L = L IT L,. Figure[4.5 (b)
shows a curvey. If we view n as a knot inS® we see that the kinks af cancel with the
twists, hence; c S3 is the unknot inS3. Note that after resolving the self-intersections
of n we can contract in the complement ok to the trivial knot, in particulag is homo-
topically trivial in D% \ D. It now follows immediately from Corollary 116 tha(L, J, ) is
topologically slice for any knod. Also note that is unknotted in the complement of each
component, in particular if has components, andL,, thenl (L, J, ) also has components
L, andL,, albeit linked dfferently.

In the very special case thhtis the trivial link andD; andD, are disjointly embedded
disks, then one can see thét, J, n) is the Bing double of the Whitehead doubleofit is
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(@)

Ficure 4.5. Infection of a link by a knot.

well-known that this link is in general not smoothly slicee Véfer to [Ci06] to a summary
of known obstructions to the Bing double of a Whitehead deldaing smoothly slice.

REFERENCES

[BWO5] A. Beliakova and S. WehrliCategorification of the colored Jones polynomial and Ras®isn-
variant of links Preprint (2005), arXiv:math. AR510382.

[ChO7] J. C. Chalink concordance, homology cobordism, and Hirzebructetyyersection form defects
from towers of iterated p-coverBreprint (2007), arXiy0705.0088,2007.

[CLRO7] J. C. Cha, C. Livingston and D. RubermaAlgebraic and Heegard-Floer invariants of
knots with slice Bing doublego appear in Math. Proc. Cambridge Phil. Soc., PreprinO720
http;//xxx.lanl.goyabgmath.GT70612419.

[Ci06] D. CimasoniSlicing Bing doublesAlgebr. Geom. Topol. 6, 2395-2415 (2006).

[CO4] T. CochranNoncommutative Knot Theagmlgebraic and Geometric Topology 4, 347-398 (2004)

[CHLO6] T. Cochran, S. Harvey and C. Leidignot concordance and Blanchfield dualit@berwolfach
Reports 3, no. 3 (2006)

[CHLO7] T. Cochran, S. Harvey and C. Leidgnot concordance and Blanchfield dualif§yreprint (2007),
http;//front. math.ucdavis.edd705.3987

[CGOO01] Tim D. Cochran, A. Gerges and K. Obrehn surgery equivalence relations on 3-manifoldath.
Proc. Cambridge Philos. Soc. 131, no.1, 97-127 (2001)

[CO94] T. Cochran and K. OrHomology Boundary Links and Blanchfield Forms: Concorddlessifica-
tion and new tangle-theoretic constructiofi®pology 33, 397-427 (1994)

[COTO3] T. Cochran, K. Orr and P. Teichn&mnot concordance, Whitney towers anddignaturesAnn. of
Math. (2) 157, no. 2: 433-519 (2003)

[COTO04] T. Cochran, K. Orr and P. Teichn&tructure in the classical knot concordance gro@omment.
Math. Helv. 79, no. 1: 105-123 (2004)

[D75] W. Dwyer, Homology, Massey products and maps between grolif2ure Appl. Algebra 6 (1975),
no. 2, 177-190.

[F85] M. H. FreedmanA new technique for the link slice problemventiones Mathematicae (3), 80: 453—
465 (1985)

[F88] M. H. Freedman, Whiteheads a slice link Invent. Math. 94, no.1: 175-182 (1988)

[FQ90] M. Freedman, F. Quinnlopology of 4-manifoldsPrinceton Mathematical Series, 39. Princeton
University Press, Princeton, NJ (1990)

[FT] M. Freedman, P. Teichner;shanifold topology. Il. Dwyer’s filtration and surgery kesls, Invent. Math.
122, no. 3, 531-557 (1995)


http://xxx.lanl.gov/abs/math.GT/0612419
http://front.math.ucdavis.edu/0705.3987

NEW CONSTRUCTIONS OF SLICE LINKS 19

[FrTO5] S. Friedl, P. Teichnemlew topologically slice knotg<seometry and Topology, Volume 9 (2005)
Paper no. 48, 2129-2158.

[FrTO6] S. Friedl, P. Teichneorrection to ‘New topologically slice knotsGeometry and Topology, Vol-
ume 10 (2006) 3001-3004.

[Gi83] P. M. Gilmer,Slice knots in &, Quart. J. Math. Oxford Ser. (2), The Quarterly Journal otidanat-
ics. Oxford. Second Series (34), n0.135: 305-322 (1983)

[GRSO07] E. Grigshy, D. Ruberman and S. Stept concordance and Heegaard Floer homology invariants
in branched coverPreprint (2007)

[HO6] S. HarveyHomology Cobordism Invariants of 3-Manifolds and the CachOrr-Teichner Filtration
of the Link Concordance Groypreprint (2006)

[KO3] V. Krushkal, Dwyer's filtration and topology of 4-manifold#lath. Res. Lett. 10 (2003), no. 2-3,
247-251.

[MOO05] C. Manolescu and B. Owen&,concordance invariant from the Floer homology of doubkertwhed
covers Preprint (2005), arXiv:math. GU508065, to appear in Inter. Math. Res. Not.

[LO5] C. Livingston,A survey of classical knot concordanttandbook of knot theory, Elsevier B. V., Am-
sterdam, 319-347 (2005).

[M54] J. Milnor, Link groups Ann. of Math. (2) 59, (1954), 177-195

[M57] J. Milnor, Isotopy of linksAlgebraic geometry and topology. A symposium in honor of &schetz,
pp. 280-306 (1957)

[0S03] P. Ozsvath and Z. Szabképer homology and the four-ball genuSeom. Topol. 7: 615-639 (2003)

[Ra04] J. A. RasmusseiKhovanov homology and the slice genpseprint, math.G0402131 (2004), to
appear in Invent. Math.

[R090] D. RolfsenKnots and LinksAmerican Math.Soc., Providence, Rhode Island (1990)

[T82] W. P. ThurstonThree dimensional manifolds, Kleinian groups and hypeddometry Bull. Amer.
Math. Soc. 6 (1982)

Rice University, Houston, TX 77005
E-mail addresscochran@rice.edu

UNIVERSITE DU QUEBEC A MONTREAL, MONTREAL, QUEBEC
E-mail addressfriedl@alumni.brandeis.edu

UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720
E-mail addressteichner@math.berkeley.edu


http://de.arxiv.org/abs/math/0402131

	1. Introduction
	2. Proof of Theorem 1.5
	2.1. A sliceness criterion
	2.2. Multi–infections and bounding 4–manifolds
	2.3. Conclusion of the proof
	2.4. Using the proof in FnT95 to construct M3

	3. Proof of Proposition 1.7
	4. Examples
	4.1. Infection of ribbon knots by a knot
	4.2. Satellite links

	References

