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NEW CONSTRUCTIONS OF SLICE LINKS

TIM COCHRAN, STEFAN FRIEDL AND PETER TEICHNER

Abstract. We use techniques of Freedman and Teichner [FT] to prove that under certain
circumstances the multi-infection of a slice link is again slice (not necessarily smoothly
slice). We provide a general context for proving links are slice that includes many of the
previously known results.

1. Introduction

A link of m componentsis the image of a flat embeddingS1 ∐ · · · ∐ S1 ֒→ S3 of the
ordered disjoint union ofm oriented copies of the circleS1. Two such links are called
concordantif there exists a flat embedding

(S1 ∐ · · · ∐ S1) × [0, 1] ֒→ S3 × [0, 1]

which restricts to the given links at the ends. A link is called (topologically)slice if it is
concordant to the trivialm–component link or, equivalently, if it bounds a flat embedding
of mdisjointslicedisksD2∐ · · · ∐D2 ֒→ D4. In the special casem= 1 we refer to the link
as a knot. If the embeddings above are required to beC∞, or smooth, then these notions are
calledsmoothly concordantandsmoothly slice.

The study of link concordance was initiated by Fox and Milnorin the early 1960′s aris-
ing from their study of isolated singularities of 2-spheresin 4-manifolds. It is now known
that specific questions about link concordance are equivalent to whether or not the surgery
and s-cobordism theorems (that hold true in higher dimensions) hold true for topological
4-manifolds. Moreover, the difference between a link being topologically slice and being
smoothly slice can be viewed as “atomic” for the existence ofmultiple differential struc-
tures on a fixed topological 4-manifold.

There is only one known way to construct a smoothly slice link, namely as the boundary
of a set ofribbon disks[Ro90]. The known constructions of (topologically) slice links
are also fairly limited. In 1982 Michael Freedman proved that any knot with Alexander
polynomial 1 is slice [F85]. It is known that some of these knots cannot be smoothly
slice and hence cannot arise from the ribbon construction. Freedman [F85, F88] and later
Freedman and Teichner [FT] gave other techniques showing that theWhitehead doubles
of various links are slice. The 4-dimensional surgery and s-cobordism theorems (for all
fundamental groups) are in fact equivalent to thefree sliceness of Whitehead doubles of
all links with vanishing linking numbers, see [FQ90]. Here alink is freely slice if the
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complement of some set of slice disks inD4 has free fundamental group. However, it is
conjectured that:

Conjecture 1.1. The Whitehead double of a link is freely slice if and only if the link is
homotopically trivial (i.e. has vanishing non-repeating Milnor µ̄-invariants).

Since vanishing linking numbers corresponds to vanishing Milnor invariants of length 2,
the above conjecture (applied to, say, the Borromean rings)would imply that one of those
theorems does not hold for free groups. The conjecture is known for links with one or two
components ([F88]) but is widely open for all other cases, the harder part being the “only
if” direction. Continuing the history of constructions forslice links, the second two authors
recently found a new technique for knots, including examples that are not ribbon knots, do
not have Alexander polynomial 1 and are not Whitehead doubles [FrT05, FrT06].

In the present paper we discuss a method of constructing slice links that generalizes
many of the above. The construction begins with a ribbon knotor link and modifies it by a
procedure called amulti-infection(previously calledinfection by a string link[C04, p. 385]
and atangle sum[CO94, Section 1]) which generalizes the classical satellite construction.
Special cases of this construction have been used extensively since the late 1970’s to exhibit
interesting examples of knots and links that arenot slice[Gi83, L05, COT03, COT04, H06,
Ci06]. Therefore the present paper complements these results, giving hope for an eventual
complete resolution of the question of when this construction results in a slice knot or link.
Our result also provides a method of producing interesting examples for testing the new
obstructions to a knot or link being smoothly slice [OS03, Ra04, MO05, BW05, GRS07].

In order to state our main theorem we now define the multi-infection of a link by a string
link. By anr–multi–diskEwe mean the oriented diskD2 together withr ordered embedded
open disksE1, . . . ,Er (cf. Figure 1.2). Given a linkL ⊂ S3 we say that a mapϕ : E → S3

η η η
r2

1

ΕΕΕ
1 2 r

Ε

Figure 1.2. Multi–disk.

of anr–multi–disk intoS3 is properif it is an embedding such that the image of the multi–
disk (which we denote byEϕ) intersects the link components transversely and only in the
images of the disksE1, . . . ,Er as in Figure 1.3. Now letJ = J1, . . . , Jr ⊂ D2 × [0, 1]
be an (unoriented)r-component string link. Then we can thicken upEϕ ⊂ S3 using the
orientation ofEϕ, and tieJ into L alongEϕ (cf. Figure 1.4). We call the resulting link the
multi–infection ofL by J alongEϕ and denote it byI (L, J,Eϕ). We refer to Section 2.2
for a more formal definition. We will always refer to the imageof the boundary curves of



NEW CONSTRUCTIONS OF SLICE LINKS 3

Εϕ

Figure 1.3. Properly embedded multi–disk.
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I(L,J,Eϕ)

Figure 1.4. Multi-infection ofL by J.

ϕ(E1), . . . , ϕ(Er) by η1, . . . , ηr . Note that in the caser = 1, the multi–infection of a linkL
by a string knotJ along a 1–multi–diskEϕ depends only on the curveη and on the closure
Ĵ. In fact the resulting link is just the satellite link ofL with companionĴ and axisη, that
we denoteI (L, Ĵ, η).

We can now state our main theorem which is an application of the techniques of [FT]
(see also [K03]). We refer to [M57] for the definition of the ¯µ–invariants for links. For
string links, these can actually be defined without indeterminacy but we will not need that
fact here since the vanishing of the ¯µ-invariants up to a certain length is well defined and
depends only on the link closure of the string link, compare Figure 2.2.

Theorem 1.5.Let D= D1∐· · ·∐Dm ֒→ D4 be slice disks for a link L in S3. Letϕ : E→ S3

be a proper map of an r–multi–disk such thatη1, . . . , ηr bound a set of immersed disksδi in
D4
r D in general position. Let c be the total number of intersection and self–intersection

points of theδi and let J be an r–component string link with vanishing Milnorµ̄–invariants
up to (and including) length2c.

Then the multi–infection I(L, J,Eϕ) of L by J alongEϕ is also slice.

It is not hard to show that the theorem holds forc = 0. We will therefore assume below
thatc > 0 and in particular that the string linkJ has trivial linking numbers (i.e. ¯µ-invariants
of length 2).

Note that, in the caser = 1, Ĵ is a knot, and hence all Milnor’s ¯µ–invariants ofĴ are zero.
In this case Theorem 1.5 simplifies to the following.
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Corollary 1.6. Let D = D1 ∐ · · · ∐ Dm ֒→ D4 be slice disks for a link L in S3. Letη be a
closed curve in S3 r L, unknotted in S3, such thatη is trivial in π1(D4

r D). Then for any
knot Ĵ the satellite link I(L, Ĵ, η) is slice.

We note that our proof of Theorem 1.5 would go through under the weaker assumption
thatJ has trivial linking numbers if the 4-dimensional surgery sequence were exact for all
fundamental groups. The latter is still an open problem. We use the assumption on the
vanishing of higher Milnor-invariants ofJ to get ourselves into theπ1-null setting where
Freedman and Quinn [FQ90] proved a surgery theorem up to s-cobordism. Conversely, if
our theorem were true under this weaker assumption onJ then the surgery sequence would
be exact and the s-cobordism theorem would hold for arbitrary fundamental groups. This
follows from the following discussion and the comments below Conjecture 1.1.

Remark.An important special case of the theorem is whenL is the trivial link andD is
a set of slice disks coming from disks in 3-space. Taker = m and chooseηi in such a
way that (Li , ηi) form Whitehead links in disjoint 3-balls. Then there are obvious immersed
disksδi boundingηi each having exactly one self-intersection and no other intersections.
This means thatc = m in the above theorem. Using the symmetry of the Whitehead link,
one can redraw the picture so that theηi lie in a plane that also contains a multi–diskE. It
is then not hard to see that the multi–infectionI (L, J,Eϕ) is the Whitehead double of the
closure ofJ. Our theorem thus implies that this Whitehead double is (freely) slice if the
µ̄-invariants ofJ vanish up to length 2m. Theorem 3.1 in [FT] gives the same result with
the better boundm+ 1 rather than 2m. This is the best known result concerning the “if”
part of Conjecture 1.1 above (the Conjecture implies thatm+ 1 can be improved tom).
Note that our current theorem vastly generalizes this very special case and hence it is not
surprising that we need a slightly stronger assumption on the link J in the general setting.

Theorem 1.5 places conditions on both the linkJ (having vanishing Milnor invariants
up to a certain length) and the curves{ηi} (being null-homotopic inD4

r D). In general
both these conditions are necessary. For example, in caseL andJ are knots (m = r = 1),
if the condition onη is relaxed then in many casesI (L, J,Eϕ) is provablynot slice, despite
the fact that all the Milnor invariants vanish forJ. In the case thatL is a link, even if the
ηi are null-homotopic, in general some condition onJ is necessary. Examples are given in
Section 4.

Theorem 1.5 gives a very general method to prove that links are slice links. Yet the
theorem applies only to links obtained by multi-infection starting from a known slice link,
which a priori seems like a very special class. In fact, up to smooth concordance, it is not a
restrictive class. The following observation, proven in Section 3, shows that, up to smooth
concordance,everyalgebraically slice knot can be obtained from a ribbon knotL by multi-
infection on a set of curves{ηi} that lie in the commutator subgroup ofπ1(S3

r L) (suchηi

are at least candidates to be null-homotopic in the exteriorof some set of slice disks forL).

Proposition 1.7. SupposeL is any algebraically slice boundary link (for example any
algebraically slice knot). ThenL is smoothly concordant to a link I which is of the form
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I (L, J,Eϕ) where L is a ribbon link, J is a string link with linking numbers zero and theηi

lie in the intersection of the terms of the lower central series ofπ1(S3
r L).

Note that, by Stallings’ theorem, a curveηi that is null-homotopic in the exterior of some
set of slice disks must lie in the intersection of the lower central series of the link group.

2. Proof of Theorem 1.5

2.1. A sliceness criterion. We start the proof of Theorem 1.5 by recalling the following
well–known criterion for links that asserts that a linkL is slice if and only ifML, the 3-
manifold obtained fromL by zero-framed Dehn surgery, is the boundary of a 4-manifold
meeting certain homological criteria. The strategy of our proof will be to construct such a
4-manifold for the zero surgery on the linkI (L, J,Eϕ) obtained by infection as in Theorem
1.5.

Proposition 2.1. A link L = L1 ∐ · · · ∐ Lm is slice if and only if there exists a 4–manifold
W such that

(1) ∂W = ML,
(2) π1(W) is normally generated by images of meridians of L,
(3) H1(W) � Zm,
(4) H2(W) = 0.

Proof. Let L = L1 ∐ · · · ∐ Lm be a link inS3 and letD = D1 ∐ · · · ∐ Dm be a union of
slice disks forL. Let W := D4

r νD whereνD is a tubular neighborhood ofD, which
exists becauseD is assumed to be locally flat. It is easy to see thatW satisfies the required
properties.

Conversely, given suchW we add a 2–handle toW along a meridian of each component
of L and call the resulting manifoldW′. Using the properties (1) to (4) we can easily see that
∂W′ = S3, π1(W′) = 0, andH2(W′) = 0. HenceW′ is homeomorphic toD4 by Freedman’s
solution of the topological Poincaré conjecture in dimension 4. Moreover the cocores of
the 2–handles inW′ form a disjoint union of slice disks for the components ofL. �

2.2. Multi–infections and bounding 4–manifolds. The starting point of Theorem 1.5 is
a slice linkL. ThusML is the boundary of a 4-manifold,WL ≡ D4

r νD1 ∐ · · · ∐ νDr ,
that satisfies the properties of that Proposition 2.1. Our goal is to produce a 4 manifold
whose boundary isMI(L,J,Eϕ) that satisfies these properties. This will establish thatI (L, J,Eϕ)
is slice. In this subsection, as a preliminary step we will exhibit a canonical cobordism
betweenML, MI(L,J,Eϕ) and a third manifoldMĴ, the zero surgery on the link obtained by
closing up the string linkJ, as shown in Figure 2.2.

First we give a more formal definition of the multi–infectionof a link. Let L ⊂ S3 be
an arbitrary link andϕ : E → S3 be a proper map of anr–multi–disk. Recall thatEϕ is
the image of that disk and we denote byEϕ the complement of ther subdisks inEϕ. Let J
be an arbitraryr-component string link as in Figure 2.2. Note that (Eϕ r Eϕ) (as shown in
Figure 1.3) is a 2-disk withr subdisks deleted and so (Eϕ r Eϕ) × [0, 1] (as shown in the
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Figure 2.2. String link and its closure.

center of Figure 1.4) may be viewed as a copy of the exterior ofthe trivial r-component
string link. This manifold has the same boundary as the exterior of ther-component string
link J, denoted

(

D2×[0, 1]rνJ
)

. Thus we can alterS3 (in the complement ofL) by deleting
the exterior of this trivialr-string link and inserting the exterior of the (nontrivial)string
link J. This should be done in such a way as to equate the meridians and longitudes of these
two string links. Recall that the meridians of the trivial string link are the boundary curves
of ϕ(E1), . . . , ϕ(Er) that we denote byη1, . . . , ηr . We claim that the resulting manifold is
homeomorphic toS3 since

(

S3
r Int((Eϕ r Eϕ) × [0, 1])

)

∪
(

D2×[0, 1] r νJ
)

=
(

S3
r Eϕ × [0, 1]

)

∪
(

(D2×[0, 1] r νJ) ∪ (Eϕ × [0, 1])
)

� S3.

The last homeomorphism follows from the observation that the previous space is the union
of two 3–balls. Finally we define the linkI (L, J,Eϕ) to be the image of the linkL under this
homeomorphism. It is easy to see that this formal definition agrees with the more intuitive
definition in the introduction. In the sequel, we often abbreviate I (L, J,Eϕ) by I .

This definition yields a description of the multi–infectionas: deleting the exterior of
a trivial string link and inserting the exterior of a non-trivial string link. Since this dele-
tion/insertion occurs in the complement ofL, it applies equally to the zero-framed surgery
manifoldsML andMI . That is

MI =
(

ML r {exterior of trivial string link}
)

∪
(

exterior ofJ
)

.

From now on assume that we are in the situation of Theorem 1.5 whereL is a slice link
and letWL = D4

rνD1∐· · ·∐νDr . Recall that∂WL = ML contains a copy of the exterior of
the trivial r-string link, the handlebodyH ≡ (EϕrEϕ)× [0, 1] as in the center of Figure 1.4.
Furthermore we claim thatMĴ also contains a canonical copy ofH. In fact MĴ decomposes
as the union of the exterior of the string linkJ and the exterior of a trivialr-component
string link. To see this, viewD2× [0, 1] as a submanifold ofS3 via the standard embedding
and letB2 × [0, 1] denote the complementary 3-ball. View the string linkJ as contained in
D2 × [0, 1] and regard the remainder ofĴ as a trivial string link,T, contained inB2× [0, 1].
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Clearly then
(S3
r νĴ) = (D2×[0, 1] r νJ) ∪ (B2 × [0, 1] r νT).

Since
MĴ =

(

S3
r νĴ
)

∪
(

∪r
i=1 µĴi

× D2),

MĴ decomposes into (D2×[0, 1] r νJ), the exterior of the string linkJ, and the handlebody

(B2 × [0, 1] r νT) ∪
(

∪r
i=1 µĴi

× D2)
� (B2 × [0, 1] r νT)

The last homeomorphism follows from the fact that eachµĴi
× D2 is attached only along

µĴi
× A whereA is an arc in∂D2. Namely, it is the arc running alongT, rather thenJ. It

follows that the fundamental group of this handlebody is thefree group onµ1, . . . , µr , the
meridians ofT and Ĵ. We now form a 4-manifold

N =WL ∪ (MĴ × [0, 1])

as shown schematically in Figure 2.3, by identifyingH, the copy of the trivial string link

WL

MĴ × [0, 1]

H
MĴ MI

N

Figure 2.3.

exterior in∂WL with the copy inMĴ × {0} (shown dashed in Figure 2.3) in a way such that
the curvesηi on the former get identified to the meridiansµĴi

of the latter. This is done in
such a way that the “new” boundary component created is preciselyMI since it is obtained
from ML be deleting the trivial string link exterior and inserting the exterior ofJ.

A key observation is that the curvesηi which are equated to the meridiansµi of J live in
H ⊂ ∂WL andare null-homotopic in WL by hypothesis.

If Ĵ were itself a slice link then we would know thatMĴ were the boundary of some
4-manifoldW that satisfies the conditions of Proposition 2.1. We could then use thisW to
cap off MĴ ⊂ ∂N, resulting in 4-manifoldN′ whose boundary isMI and which satisfies the
conditions of Proposition 2.1, proving that the infected link I were slice. This establishes
the following (previously known) very special case of Theorem 1.5 which holds without
any hypotheses on the curvesηi.
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Corollary 2.4. The link obtained by a multi-infection of a slice link L usinga string link J
whose closure is a slice link, is again a slice link.

However, in generalMĴ will not bound a 4-manifold that satisfies Proposition 2.1. In
this case we must be more clever and make use of our hypotheseson theηi curves.

Lemma 2.5. N satisfies the following conditions:

1. ∂(N) = MI ∐ −MĴ,
2. π1(N) is normally generated by the meridians of I,
3. H1(MI )→ H1(N) is an isomorphism,
4. H2(MĴ)→ H2(N) is an isomorphism,
5. π1(MĴ)→ π1(N) is the zero map.

Proof. N is the union ofWL andMĴ × [0, 1] glued alongH. Note also that{µi} is a basis for
the first homology ofH. Therefore the Mayer–Vietoris sequence becomes

0 → H2(WL) ⊕ H2(MĴ × [0, 1]) → H2(N)
→ ⊕r

i=1Zµi → H1(WL) ⊕ H1(MĴ × [0, 1]) → H1(N) → 0.

Since⊕r
i=1ZµĴi

�

−−→ H1(MĴ) and sinceH2(WL) = 0, it follows thatH2(MĴ) → H2(N) is an
isomorphism, establishing (4). Sinceµi = ηi dies inH1(WL) it also follows thatH1(WL) →
H1(N) is an isomorphism. ButH1(WL) � H1(ML) � Zm generated by the meridians ofL.
Clearly these same meridians are a basis forH1 of the infected link exterior and thus for
H1(MI ). This establishes (3).

In order to prove (5) note that the map

〈µi〉 � π1(H)→ π1(MĴ × [0, 1])

is surjective and the map
〈ηi〉 � π1(H)→ π1(WL)

is the zero map. When gluing the two copies ofH, the meridiansµi are identified with the
ηi, establishing (5). By the Seifert-van Kampen theorem we have

π1(N) = π1(WL) ∗{ηi=µi } π1(MĴ).

Moreoverπ1(WI ) is normally generated by the meridians of the linkI , andπ1(MĴ) is nor-
mally generated by{ηi} which are trivial inπ1(WL). Thusπ1(N) is normally generated by
the meridians ofI establishing (2). �

2.3. Conclusion of the proof. We show how the proof of a theorem of Freedman and
Teichner can be used to alterN to a 4-manifold,N′, whose boundary isMI and which
satisfies Proposition 2.1. We strongly encourage the readerto have pages 547–549 of [FT]
available.

Recall the situation shown on the right-hand side of Figure 2.3. Let M denote a collar
on theMĴ boundary component as indicated by the shaded portion on theleft-hand side of
Figure 2.6.
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N

MI

δi

N r M1

MĴ

∂+M1

Figure 2.6.

A note of caution is in order. We shall shortly appeal to the details of a proof in [FT]. In
that proof, theMĴ -boundary component ofN is capped off by a 4-manifold that is called
M. But in fact this “cap” is not important to the proof (since the strategy is to replace it
anyway). Therefore we omit the cap. Our collarM will play the role ofM and ourN will
play the role ofN in [FT].

Let ∂+M denote the “outer” boundary component of the collarM. Recall thatπ1(∂+M) =
π1(MĴ) is normally generated by its meridiansµi = η1, . . . , µr = ηr and by assumption these
curves bound immersed disksδi in WL wherec is the total number of intersections and self-
intersections. One such disk is shown schematically on the left side of Figure 2.6. We now
closely follow the proof of [FT, p. 547] using the same notation. In accordance with that
notation, setγi = ηi = µi. Let M1 be a regular neighborhood ofM ∪ {δi} ֒→ N as shown
schematically on the right-hand side of Figure 2.6 by the shaded portion ofN. Now discard
M1 and considerN r M1, the unshaded part of the figure. The latter has a new boundary
component,∂+M1. The strategy is to produce, using the proof in [FT], another4–manifold
M3 with ∂M3 = ∂

+M1 and use it to plug up this hole inN r M1. Then, letting

N′ = (N r M1) ∪∂M3 M3,

we see that∂N′ = MI and we will verify thatN′ also satisfies the other conditions of
Proposition 2.1, establishing thatI is a slice link.

Lemma 2.7. There exists a4-manifold M3 with ∂M3 = ∂
+M1 such that

1. The inclusion of the boundary induces an isomorphism H1(∂M3) � H1(M3).
2. M3 is homotopy equivalent to a wedge of c circles where these circles correspond

precisely to the double point loops among theδi.

Before constructingM3, we prove that its existence will enable us to finish the proofof
Theorem 1.5.

Lemma 2.8. Using the inclusion induced maps, the following statementshold:
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1. H1(N r M1)→ H1(N) is an isomorphism,
2. H2(∂+M1)→ H2(N r M1) is surjective,
3. π1(N r M1) is normally generated by the meridians of I and the meridiansof the

disksδi.

Proof. First note that, sinceM is a collar,N r M1 � N r ∪iνδi, whereνδi is a (closed)
regular neighborhood ofδi. Then excision and Poincaré duality give isomorphisms

Hp(N,N r M1) � Hp(N,N r ∪iνδi) � Hp(∪iνδi , ∂
′(∪iνδi)) � H4−p(∪iνδi ,∪iν(∂δi))

where we have decomposed the boundary∂(∪iνδi) of the regular neighborhood into the two
relevant parts. The latter groups are given by

Hp(N,N r M1) � H4−p(∪iνδi ,∪iν(∂δi)) �























Z
r if p = 2,

Z
c if p = 3,

0 else.

For p = 2, generators are given by transverse disks to theδi and for p = 3, each inter-
section pointP contributes a generator via a solid torusTP in a small neighborhood ofP
(whose boundary is the well known Clifford torus and which intersects the double point
loop exactly once). Thus the long exact sequence of the pair (N,N r M1) becomes

Z
c→ H2(N r M1)→ H2(N)

π
→ Zr → H1(N r M1)→ H1(N) → 0,

whereπ is given by the algebraic intersection numbers with the variousδi. Thus the com-
position of H2(MĴ) � H2(N) (see (4) of Lemma 2.5) withπ is given by the matrix of
intersection numbers of capped-off Seifert surfaces for̂Ji with the∂δ j = γ j. Sinceγ j is a
meridian ofĴj, this matrix is the identity with respect to these bases (we have used that the
linking numbers ofĴ are zero). Thusπ is an isomorphism and (1) above follows. It also
follows thatH2(N r M1) is generated by the Clifford tori∂TP and since these clearly lie in
∂+M1, statement (2) also follows.

For (3), recall from property (2) of Lemma 2.5 thatπ1(N) is normally generated by the
meridians ofI . Any homotopies inN may be assumed to hitδi transversely, so (3) follows
immediately.

�

Now, assuming we have constructedM3 as in Lemma 2.7, we claim:

Lemma 2.9. N′ = (N r M1) ∪∂M3 M3 satisfies the conditions of Proposition 2.1.

Proof. Consider the Mayer-Vietoris sequence forN′ = (N r M1) ∪ M3:

H1(∂
+M1)

ψ
→ H1(N r M1) ⊕ H1(M3)→ H1(N

′)→ 0.

By property (1) of Lemma 2.7,H1(∂+M1) � H1(M3). It follows thatψ is injective and that

H1(N r M1) � H1(N
′),
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and so by properties (3) of Lemma 2.5 and (1) of Lemma 2.8

H1(MI ) � H1(N) � H1(N r M1) � H1(N
′).

This establishes condition (3) of Proposition 2.1. Moreover examining Mayer-Vietoris
again:

H2(∂
+M1)→ H2(N r M1) ⊕ H2(M3)→ H2(N

′)→ H1(∂
+M1)

ψ
→

whereψ is injective andH2(M3) = 0 by property (2) of Lemma 2.7. ThusH2(N r M1) →
H2(N′) is surjective. Thus by property (2) of Lemma 2.8,

H2(∂
+M1)→ H2(N r M1)→ H2(N

′)

is surjective. Since any class inH2(N′) is carried by∂+M1 = ∂M3 andH2(M3) = 0, it
follows thatH2(N′) = 0, establishing condition (4) of Proposition 2.1.

Finally considerπ1(N′) which, by the Seifert-Van Kampen theorem, equals

π1(N r M1) ∗π1(∂+M1) π1(M3).

The mapπ1(∂+M1) → π1(M3) is surjective because the double point loops come from the
boundary. Therefore,π1(N r M1) → π1(N′) is also surjective. Property (3) of Lemma 2.8
implies thatπ1(N′) is normally generated by the meridians ofI and the meridians of the
disksδi. But the meridians of the disksδi live on the Clifford tori and hence intersect triv-
ially with the solid toriTP from Lemma 2.8. In the construction ofM3 it will become clear
that intersections withTP give the isomorphism ofπ1M3 with the free group onc generators.
Therefore, the meridians toδi map trivially toπ1M3 and thusπ1(N′) is normally generated
by the meridians ofI alone. ThusN′ satisfies all the conditions of Proposition 2.1. �

This concludes the proof thatI is slice and hence the proof of Theorem 1.5, modulo the
proof of Lemma 2.7.

2.4. Using the proof in [FT] to construct M3. [FT, p. 548] explains how to draw a “Kirby
diagram” for the 3-manifold∂+M1 as follows. First consider the abstract 4-manifold ob-
tained fromM by addingr 2–handles along (γi, fi) ⊂ ∂+M = MĴ using framingsfi induced
from the δi. This is not embedded inN. Let Σ denote the resulting homology sphere
obtained as the top boundary, i.e.Σ is obtained fromMĴ by fi–framed surgery on the
meridiansγi as shown in partA of Figure 2.10 (only one component ofĴ is shown). Let
{m1, ...,mr} denote a set of meridians for the{γ1, ..., γr}, also shown in partA of the figure.

Let L denote the link{m1, ...,mr} ⊂ Σ andΣL denote the 0–framed surgery onL ֒→ Σ.
Meridians of this link are calledµ′i and are shown dashed in partA of the figure. Pictures
A throughD illustrate a proof of the observation in [FT, p. 547] thatΣL � MĴ = ∂

+M by
a map that sends a meridional set{µ′1, ..., µ

′
r} to {γ1, ..., γr}. This observation will be used

later. This is seen by first sliding each componentĴi over the corresponding 0–framedmi

which results in partB of Figure 2.10. Then the 0–framedmi cancels with thefi–framed
γi, yielding partD of the figure.

To obtain a description of∂+M1 from Σ, one must take into account the self-plumbings
of theδi.
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A B C D

Ĵi Ĵi

γi
0

fi

µ′i
µ′i

mi

fi

0 0 00

Figure 2.10.

Lemma 2.11. There exists a4-manifold M2 with fundamental group free on c generators
and with∂M2 = ∂

+M1 such that

1. The inclusion of the boundary induces an isomorphism H1(∂M2) � H1(M2).
2. π2M2 is a freeZ[π1M2]-module with hyperbolic intersection form.

Proof. In [FT, Figugres 4.1-4.3], a “Kirby calculus” description of ∂+M1 is obtained, viewed
as handles attached to the unique contractible 4-manifoldZ with boundaryΣ. Let M2 denote
the 4-manifold given by [FT, Figure 4.3]. It is obtained fromZ by attachingc 1-handles
and 2c 2-handles toΣ = ∂Z in a way that∂M2 = ∂M1. Moreover, the 2-handles go ho-
motopically trivially over the 1-handles, implying the statement for the fundamental group.
Moreover, it follows thatM2 is homotopy equivalent to a wedge ofc circles and 2c 2-
spheres, in particularπ2M2 is a freeZ[π1M2]-module of rank 2c. Finally, the figure clearly
shows that the 2-handles generate a hyperbolic form onπ2M2 which by the homology long
exact sequence for the pair (M2, ∂M2) implies (1). �

If surgery worked over the free group, we could remove the hyperbolic form onπ2M2

to get a manifoldM3 with the desired properties of Lemma 2.7. We actually just need
surgery to work up to s-cobordism (rel. boundary) and this isin fact a theorem in the
π1-null case [FQ90]. This condition means that the union of the images of all immersed
2-spheres representing the hyperbolic form maps triviallyonπ1 into the 4-manifold. In the
case ofM2, the 2-spheres are made from the cores of the 2-handles, together with null-
homotopies of the attaching circles inZ. SinceZ is simply connected, it suffices to keep
those 2c null-homotopiesdisjoint to make the union of all 2-spheresπ1-null.

This is where our assumption on the Milnor invariants ofJ comes in: The above 2-
handles are attached to a number of parallel copies of the circlesmi where the total number
is precisely 2c. We now claim that we can replace [FT, Lemma 4.2] by

Lemma 2.12. Any link consisting of2c untwisted parallel copies of the components mi of
L = {m1, ...,mr} in Σ bounds a set of disjointly immersed disks in Z. Here we mean that 2c
is the sum of the number of parallels, ci, of mi.



NEW CONSTRUCTIONS OF SLICE LINKS 13

Given this Lemma, we can eliminate all the second homology ofM2 by the π1-null
surgery theorem up to s-cobordism. This gives the 4-manifold M3 that is homotopy equiv-
alent to a wedge of circles and satisfies Lemma 2.7. The argument works exactly like in the
paragraph just below Lemma 4.2 in [FT]. This concludes the proof of Lemma 2.7, modulo
the proof of Proof of Lemma 2.12.

Proof of Lemma 2.12.The Lemma is vacuously true forc = 0, so assumec ≥ 1. By [FT,
Lemma 2.7], the conclusion of the Lemma is equivalent to the property that

(2.13) All µ̄ − invariants of length less than or equal to 2c vanish forL.

Milnor’s invariants for links in homology 3-spheres are defined in the exactly same way as
for links in S3, see [FT]. Now letF be the free group onr generators andF → π1(ΣrL) be
the meridional map. The vanishing of the ¯µ-invariants ofL is equivalent to the following
three statements:

(2.14) F/F2c+1 � π1(Σ r L)/π1(Σ r L)2c+1

(2.15) F/F2c � π1(ΣL)/π1(ΣL)2c

(2.16) H2(ΣL)→ H2(π1(ΣL)/π1(ΣL)2c−1) is the trivial map.

The equivalence of 2.13, 2.14 and 2.15 is standard for links in S3 [M57]. For links in
general homology spheres most of this is derived in [FT, Section 2]. In particular the
equivalence of 2.14 and 2.16 is established there using [D75, Theorem 1.1]. Now we have
reached the key point: the desired property 2.16 depends only on the zero surgeryΣL, not
on L itself (indeed it only depends onπ1(ΣL)). At this point we only have to recall our
previous observation thatΣL � MĴ. Therefore each of the above conditions is equivalent
to the requirement that the ¯µ-invariants of length less than or equal to 2c vanish forĴ. But
this was the assumption of our Theorem 1.5. �

3. Proof of Proposition 1.7

SupposeL is an algebraically slice boundary link ofmcomponents. We give the proof in
the case thatL is a knot. The proof for a boundary link is identical. SinceL is algebraically
slice, there is a genusr Seifert surfaceΣ which is in “disk-band” form, as suggested by the
left-hand side of Figure 3.1, where the “α-bands” are untwisted and such that the linkĴ
formed by the cores of these bands has zero linking numbers. This is possible since we can
choose theα-bands to generate a metabolizer of the Seifert form.

It is well-known that if Ĵ is (smoothly) slice thenL is (smoothly) slice (since then the
Seifert surface could be “surgered” to a disk using the slicedisks for Ĵ). Let ϕ : E → S3

denote anr-multi-disk that hits eachα-band once transversely as suggested on the right-
hand side of Figure 3.1. By thickening upE we arrive at the local picture shown in the
left-most part of Figure 3.2, of a 2-cable of the trivialr-string linkT.

Let J denote ther-string link formed by the cores of theα-bands in theexterior of the
thickenedE. Suppose we replace the 2-cable ofT by the 2-cable of the string link−J
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Ĵ1 Ĵ2 Ĵ2Ĵ1

E

Figure 3.1.

L

T

L I I

−J −J#J �

−J

J

Figure 3.2.

as shown in the second frame of Figure 3.2, and call the resulting knot L. ThenL is a
knot that admits a disk-band form whoseα-bands form a link that is the closure of−J#J.
Since the latter is a ribbon link,L is a smoothly slice knot (actually a ribbon knot although
this takes a little more work to show). On the other hand, suppose we replaceT by the
2-cable of the string link−J#J, as shown in the third frame of Figure 3.2, and denote
this knot byI . ThenI is obtained from the ribbon knotL by a multi-infection using the
string link J as indicated by the equivalence of the third and fourth frames of Figure 3.2
(the knot in the fourth frame clearly differs from the knot in the second frame by a tangle
insertion-deletion). Moreover since the string linksT and−J#J are smoothly concordant,
their 2-cables are also smoothly concordant. It follows that the knotL is concordant to the
knot I (just alter the product concordance fromL to itself by the string link concordance).
Thus, the original knotL is smoothly concordant to the knotI which is obtained from the
slice knotL by infection usingJ. The curves{ηi} are meridians to theα-bands and hence
lie in the exterior of a system of Seifert surfaces that exhibit L as a boundary link. Then
it is well known that they lie in the intersection of the termsof the lower central series of
π1(S3

r L), since the Seifert surfaces can be used to construct a map toa wedge of circles
that sends theηi to the wedge point. This concludes the proof of Proposition 1.7.
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4. Examples

In this section we give several examples of the applicability of Theorem 1.5 and Corol-
lary 1.6. In Section 1 we explained how, given any linkĴ, Theorem 1.5 could be applied to
classes oflinksmuch more general than Whitehead doubles ofĴ. In the current section we
restrict to the case that̂J is a knot.

Let L ⊂ S3 be a link and letη ⊂ S3
r L be a closed curve which is the trivial knot inS3.

The curveη bounds an embedded disk inS3 which intersectsL transversely and extending
this disk so thatη lies in the interior we get an embedded 1–multi–diskEϕ. Let Ĵ be a
knot and letJ be a string knot such that its closure isĴ. Recall that, in this case, all of
Milnor’s µ̄–invariants ofĴ are zero. We can form the infection linkI (L, J,Eϕ). It is easy to
see that this link only depends onη and Ĵ, and we therefore denote it byI (L, Ĵ, η). As we
have mentioned, in the literatureI (L, Ĵ, η) is sometimes called the satellite link ofL with
companionĴ and axisη.

4.1. Infection of ribbon knots by a knot. In this section we compare Theorem 1.5 with
the two previously known slicing theorems:

(1) If K is a knot with∆K(t) = 1, thenK is slice ([F85]).
(2) If K is a knot with∆K(t) = (2t−1)(t−2) and if a certain non–commutative Blanch-

field pairing vanishes, thenK is slice ([FrT05]).

We first consider Figure 4.1. The shaded region in Figure 4.1 (a) is part of a ribbon disk
D for a ribbon knotK. Figure 4.1 (b) shows a curveη which is clearly the unknot inS3.
Note thatη is homotopically equivalent to a curve linking the ribbon disk D once without

D η
(a) (b) (c)

Figure 4.1. Infection by a knot.

intersecting it (cf. Figure 4.1 (c)). It is therefore clear that η is homotopically trivial in
D4
r D. It follows immediately from Corollary 1.6 thatI (K, Ĵ, η) is slice for any knotĴ.

(1) Now consider Figure 4.2, it shows two isotopic pictures for the linkη ∪ K. In the
special case thatD is the trivial ribbon disk for the unknotK, it follows immediately from
Figure 4.2 (b) thatI (K, Ĵ, η) is the Whitehead double of̂J. Therefore Corollary 1.6 gives
another proof that the Whitehead double of any knotĴ is slice. Note though that there exist
many Alexander polynomial knots which are not Whitehead doubles (e.g. the Kinoshita–
Terasaka knot), and to which Theorem 1.5 a priori does not apply.

(2) We consider Figure 4.3 (a). The knotK1 is the ribbon knot 61. As we saw above,
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η

η

(a) (b)

Figure 4.2. Isotopy ofK ∪ η.

K

1

1

η

K 2

η
2

Figure 4.3. The knotsK1 andK2 with curvesη1 andη2.

the knotI = I (K1, Ĵ, η1) is slice for any knotĴ. Note that∆I (t) = ∆K1(t) = (2t − 1)(t − 2).
In fact [FrT05, Proposition 7.4] also applies to show thatI is slice. We point out that in
[FrT05, Figure 1.5] a different andincorrectcurveη was chosen (cf. also the correction in
[FrT06]).

(3) We now turn to Figure 4.3 (b). By the above discussionI = I (K2, Ĵ, η2) is slice for
any knotĴ. Note that∆I (t) = ∆K2(t) = (2t − 3)(2t−1 − 3). In particular neither of the two
previous slicing theorems can be applied directly.

Remark.All of the knots in Figure 4.3,I (Ki , Ĵ, ηi), i = 1, 2, are in fact smoothly concordant
to the Whitehead doubleWh(Ĵ). Indeed, by “cutting the ribbon band” and capping off
the trivial component that splits off, one constructs a smooth ribbon concordance from
I (Ki , Ĵ, ηi) to the case in Figure 4.2 (b) where the knot is the Whitehead double of Ĵ. For
manyĴ, the knotWh(Ĵ) is known not to be smoothly slice, in particular for suchĴ the knots
I (Ki , Ĵ, ηi) are slice butnot smoothly slice.

4.2. Satellite links. We now turn to the study of satellite links. We first point out an ar-
ray of examples from the literature that illustrate the apparent necessity of the conditions
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in Theorem 1.5. First we give examples illustrating the necessity of the conditions on the
ηi. If we takeL = L1 ∐ L2 to be the trivial link andη as in Figure 4.4 then it is easy to

L2

L1
η

I(L,J,η)

Figure 4.4. Satellite construction witĥJ the figure 8 knot, andL the trivial
2–component link.

see thatη is a non–trivial element, namely it is the commutator [x1, x2] in the free group
π1(S3

r L1 ∐ L2) = π1(D4
r D1 ∐ D2) = 〈x1, x2〉 whereD1 ∐ D2 is the obvious slice disk

for the trivial link. Hence Theorem 1.5 does not apply. Indeed, in many cases it is known
that I (L, Ĵ, η) (which is just the Bing double Bing(̂J) of a knot Ĵ) is not slice. For exam-
ple Bing(Ĵ) is known to fail to be slice ifĴ is not an algebraically slice knot [CLR07].
Even if Ĵ is an algebraically slice knot, there are many examples where higher-order sig-
natures obstruct Bing(̂J) from being a slice link [CHL07]. Much more generally, ifη is
taken to beanyhomotopically essential (unknotted) circle in the exterior of the trivial link,
then these same invariants obstructI (L, Ĵ, η) from being slice [H06, Theorem 5.4, Corol-
lary 5.6] [CHL07, Theorem 5.8] [Ch07]. Included among theseexamples are the so-called
iterated Bing doubles of̂J. Therefore for these examples it seems likely thatI (L, Ĵ, η) will
be slice if and only if eitherη is null-homotopic orĴ is itself a slice knot.

Even ifη is null-homotopic, the linkI (L, Ĵ, η) can fail to be slice. If we takeL to be the
trivial 2-component link and takeη1, η2 to be curves as in Figure 4.1, then, as previously
observed,I (L, Ĵ, η) is Wh(Ĵ). But the Whitehead double of the Hopf link is known not to
be slice (cf. [F88]). Thus some condition on the linkĴ is necessary in general.

On the other hand consider the following very general example. The shaded region in
Figure 4.5 (a) is part of two ribbon disksD1 andD2 for a link L = L1 ∐ L2. Figure 4.5 (b)
shows a curveη. If we view η as a knot inS3 we see that the kinks ofη cancel with the
twists, henceη ⊂ S3 is the unknot inS3. Note that after resolving the self–intersections
of η we can contractη in the complement ofL to the trivial knot, in particularη is homo-
topically trivial in D4

r D. It now follows immediately from Corollary 1.6 thatI (L, Ĵ, η) is
topologically slice for any knot̂J. Also note thatη is unknotted in the complement of each
component, in particular ifL has componentsL1 andL2, thenI (L, Ĵ, η) also has components
L1 andL2, albeit linked differently.

In the very special case thatL is the trivial link andD1 andD2 are disjointly embedded
disks, then one can see thatI (L, Ĵ, η) is the Bing double of the Whitehead double ofĴ. It is
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D
1

D
2 2 η

2

(a) (b)

Figure 4.5. Infection of a link by a knot.

well–known that this link is in general not smoothly slice. We refer to [Ci06] to a summary
of known obstructions to the Bing double of a Whitehead double being smoothly slice.
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