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On the homology of the space of knots

R. BUDNEY
F. R. GOHEN*

Consider the space of ‘long knots’ IR" KCn 1. This is the space of knots as
studied by V. Vassiliev. Based on previous wosk12], it follows that the rational
homology of K3 ; is free Gerstenhaber-Poisson algebra. A partial desonijut

a basis is given here. In addition, the mpdiomology of this space is a ‘free,
restricted Gerstenhaber-Poisson algebra’. Recursivicappn of this theorem
allows us to deduce that therepstorsion of all orders in the integral homology
of Kgyl.

This leads to some natural questions about the homotopydf/plee space of
long knots inR" for n > 3, as well as consequences for the space of smooth
embeddings of' in S* and embeddings d8' in R3.

knots, embeddings, spaces, cubes, homology

1 Introduction

The purpose of this paper is to give homological propertieh® classical spaces of
smooth ‘long’ embedding&’s 1 = Emb®, R®) and smooth embeddings Engh(S?).
Some results here also apply to the embedding spacesE®H( and ‘long’ embed-
ding spacesCpj = Emb!, R"), with the main results focused on the 3-dimensional
casej =1,n=3.

The approach here to these homological problems followsntework of Hatcher
[23, 24] and Budney 5, 7]. The homotopy type of the components of E8hE&®)
and IC3 1 are understood completely in terms of configuration spacebé plane,
Stiefel manifolds, isometry groups of certain hyperbdli&icomplements and various
natural iterated bundle operations. Many of the homoldgicaperties of bothiCz 1,
and Embg, S%) follow from combining this information together with ei@r work of
Cohen [L2] on configuration spaces.

The spaceC,, 1 admits the structure of ad -space induced by concatenation of ‘long’
embeddings. In addition, thid-space structure fotC3 ; was shown to extend to a free
C2-space in the sense of May, with “generating set" given bystieze of prime long
knots [B].

One consequence is that the homotopy type of the space okluotg is determined
completely by the homotopy type of the prime long knots. infation concerning
spaces of prime long knots is combined with bundle theotitstructions to give
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a large contribution to the homology groups for spaces ofj lknots, as well as
EmbE, S%).

The structure of a graded analogue of a Poisson algebra, ssdPeGerstenhaber
algebra, arises in the work here. An introduction to Poissgebras is given inl[l],
pages 177-182 while some applications are giverd#hpages 215-216 andi9]. A
Poisson-Gerstenhaber algel#fxas a graded commutative algebra o¥@miven by A,

in gradationn together with a graded skew symmetric bilinear map

{= =} A ®A — Aspq1

which satisfies the following wherg| denotes the degree of an elemarih A:

(1) the Jacobi identity
{a {b.c}} = (-1 {{a by, ¢} + (—1)Pl9H {{a, ¢}, b}
where the signs will be typically omitted with the above vaiit as
{{a,{b,c}} = (£1){{a b}, c} + (+1){{a c}, b}.
(2) the Leibniz formula
{a-b,c} =a-{b,c} + (-1)"¥b{a,c}.

A standard example of such a Gerstenhaber-Poisson algefieen by the rational
homology algebra of)?(X) for X a bouquet of spheres of dimension at least 318 |
in which the precise axioms are recorded.

The modp homology of K31 has more detailed structure, and is, loosely speaking,
a ‘free restricted Gerstenhaber-Poisson algebra’ withitiaddl! structure satisfied by
free Co-spaces]2), freely generated on the mgahomology of the subspace of prime
long knots.

The main results of the current article are TheofieBon the structure of the homology

of KC3 1, Propositionl.4 concerning implications for the space of smooth embeddings
of St in S, Propositionl.5, a homological characterization of the unknot, as well as
Theorem9.1on the minimali such thatH;(K3 1; Z) containsp-torsion.

Definition 1.1 Kpnj = {f : Rl — R" : f is an embedding arfdxy, %o, - - - %) =
(X1, %2,- -+ ,%,0,---,0) for |x] > 1}. K1 is traditionally called the space of long
knots inR", andC,; the space of long-knots inR". Given an element < ICy
the connected-component &,; containingf is denotedfC,;(f). Two knots are
considered equivalent if they are in the same connected aoemp ofiCp,; (That is the
knots are isotopic).

Let X = {f € K31 : f is prime}, where the word ‘prime’ is used in the traditional
sense of Schuber#], that is X is the union of the connected componentskaf;
which contain knots that are not connected sums of two or monetrivial knots, nor
are they allowed to contain the unknot.
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Theorem 1.2 [6] The spaceCz 1 is homotopy equivalent to
C(R?, X 1T {+})

that is the labelled configuration space of points in the @laifth labels inXj 1T {x}.
Furthermore, the following hold:

(1) Each path-component &3 is aK(r, 1).

(2) The path-components 6(n) x s, (Xic)" for all n, and thus the path-components

of K31 are given by
n
Ca(n) x3, [ [ Kaalh)
i=1

for certain choices ofy, - - - ,f, € Xx, and Young subgroupss .

The above theorem can be thought of as a generalization ob8dfs Theorem which
states thatro/C3 1 is a free commutative monoid on countably-infinite many gatees
[43]. Schubert’s theorem is about the monoid structurer@ds ; induced by the cubes
action, while the above theorem is space-levekan .

In general, Ky 1 is a homotopy-associativel -space with multiplication induced by
concatenation. This multiplication gives a product opgerat

Hs(Ch,1) ® Hy(ICh,1) — Hst(Ch 1)
SinceK3 1 admits the action of the operad of little 2-cubes, there imdnced map
0:S"x K31 x Ka1— Kaz
together with an operation in homology with any coefficients

Hs(IC3.1) ® Hi(K31) — Hitst(K31)
which is denoted, up to sign, by

{o, B} = Mla, ) = 0.(0 ® o ® P)

for o in He(K31), B in Hi(K31) and ¢ € Hy(Sh) the fundamental class. These
operations satisfy the structure of a graded Poisson algflrwhich the bracket
operation\y(«, ) is called the Browder operation idZ].

The next result uses the product operation above as welleabrdicket operation
{a, B} = M(a, ), and follows by interweaving the results b2, and [L2]. We will
use the notatiofi’, = Z/pZ to denote the field witlp elements, whep is a prime. To
state these results, additional information given by thiveetors from graded vector
spacesV over a fieldF are described next with complete details given in Sedion

(1) If the characteristic of the field is O then the value of finector on objectsv/
is the symmetric algebra generated by an algebraicallyusjgnded’ free Lie
algebra generated by the suspensioV pand denoted

o Lo

This last algebra is a free Gerstenhaber-Poisson algebra.
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(2) For the fieldF, the value of the functor on objects is the symmetric algebra
generated by an algebraically ‘desuspended’ free, modsteiceed Lie algebra
generated by the suspension\bfand denoted

o LOeW)]].
This last algebra is a graded version of a free restricteclgebra.

(3) For the fieldF, (p an odd prime), then the value of the functor on obje¢ts
is the symmetric algebra generated by an algebraicallyusfmnded" moghr
free restricted Lie algebra generated by the suspensidhmiis an additional
summand as described in Sect®rand denoted

o 1LP[(V)] & o 2WP[o(V)]].

Theorem 1.3 The homology ofCs 1 satisfies the following properties.

(1) The rational homology o3 1 is a free Gerstenhaber-Poisson algebra generated
by V = H.(Xi; Q).

(2) The homology ofkC3 1 with I, coefficients is a free restricted Gerstenhaber-
Poisson algebra generated¥Yy= H..(Xi; Fp) as described inifZ].

(3) There are isomorphisms of Hopf algebras

@ Ho Lo — Hu(K31;Q) for V = H.(Xi; Q),

(b) o LP[e(V)]] — H.(K31;F2) for V = H.(Xk; F2), and

© o P[o(V)] @ 2WP[o(V)]] — H.(K31;Fp) for V = H,(Xi; Fp) in
casep is an odd prime.

These isomorphisms specialize to an identification of tmediogy of each path-
component oK3 1 with the one ambiguity that the homology of the components
of knots arising from hyperbolic satellite operations isgigen in a closed form
here. More information is described in Sect@n

(4) The integer homology oKz 1 has p-torsion of arbitrarily large order (with
examples listed in Sectidb) and6).

A primary development in this paper is our recursive apfiticeof the above theorem.
Let Kc C K31 denote the subspace #fs; consisting of all cable knots. There is
a homotopy-equivalencé x St x K31 — K. Let Ks C K31 denote the subspace
of K31 which are connect-sums of any number of cable knots. There tisea
homotopy-equivalenc€, (K¢ LI {*}) — Ks. The composite of the two maps is a
homotopy-equivalenc€,((Z x S x K31) U {*}) — Ks. SinceKs is a collection of
path-components of3 1, this map can be iterated, giving a the homologyk@fs,
as a Gerstenhaber-Poisson algebra, a fractal-like steucithese statements will be
justified in Sectiong and3, and explored more fully in Sectiorfsand10.

These results lead to some natural questions about théusewd the homology of the
higher-dimensional embedding spadés: (n > 4) studied recently by Sinhat§],
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\olic [5]], Lambrechts 32] as well as othersl], 10, 17, 30, 41]. Constructions related
to these questions are also addressed here.

By Theoreml.3, there is arbitrarily larg@-torsion in the homology of3 1. Examples
of Theoreml.3for knots whose path-components have higher 2-torsiorein ithteger
homology is given next. This higher torsion can be regardea eoarse “measure” of
the “complexity" of a knot's JSJ-decomposition.

(1) LetK31(f) denote the path-component of a torus khofThusCz 1(f) has the
homotopy type of a circleZ4, 7].
(2) Given any spac, and a strictly positive integet, define

E(q7 X) = ConfGRZ, q) qu x4

Assume thatCz 1(f) has the homotopy type &. E(4, K31(f)) has the property
that

(@) Ha(E@4, K31(f) = Z/2Z,

(b) Hs(E(4,K3.(f)) =0,

(c) Hs(S' x E(4, K31(f))) is isomorphic toZ /27.

(d) FurthermoreE(2%,S' x E(4, K31(f))) has the homotopy type of a path-
componentkCz 1(g) for a long knotg as given in §], and has torsion of
order 21 in its integer homology by Sectid® and7. In this caseg is
a connected-sum offZopies of the same summand, and that summand is
a p/g-cable of a connected sum of four copies of the same torus knot
the language off],

g = ((TPIApH?) aSPD) AgsaH?

The elements of this notation is described in detaibirahd is summarized
in Section2.

(e) A second example iE(2%, K31(h))) whereh = TC:DxW and W is the
Whitehead link. In this case,

Kai(h) ~ S' x (St x5, S
whereS' x5, St is the Klein bottle 7. H1(K31(h)) = Z/2Z © Z2.

A more complete description of the homology /6§ 1 is given in Section$, and6.
The homology of each path-component is given in terms of fédrad.3 as well as
filtrations of the values of the functors listed in that trexar

Consider the subspacekz 1 of K31 consisting of the union of the components of
K31 corresponding to knots which can be obtained from torussknat iterations
of the operations given by cabling and connected-sum. Theséhe knots whose
complements are ‘graph manifolds’ ie: a union of Seiferefddl manifolds. The
structure of the homology of K31 is described in SectiohO. This is our primary
source ofp"-torsion inH..(K3 1; Z).

A further consequence of Theoreh? is the next result which follows directly, and is
proven in Sectiod. Let Emh.(S', S") denote the space of smooth pointed embeddings.
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Proposition 1.4 The groupSQ(n — 1) acts naturally oriC, 1 (rotations that fix the
‘long axis’), and there are morphisms of bundles for whicbheaertical map is a
homotopy equivalence:

SQn) xsan-1) Kn.1 —L . san+1) xsan-1) Kn1 —— SQn+ 1)/SAN)

[ [ s
Emb(sts) —— Emb@E, ) — g
Thus, there is a bundle
SAn + 1) xsgn-1) Kn1 — SAn+ 1)/SAn — 1)
with fibre ICr 1. Furthermore, there is a homeomorphism
EmbE, §) — S x Emh, (S, )
for which Emb,(S', S%) denotes the space of smooth pointed embeddings, and the

bundle
K31 — Emb (S, S¥) — &

is the induced bundle with fibr€z 1 from the bundle

sSqQ2) — SO3) — &

Section4 gives precise relationships (such as the above proposibietween the
homotopy-type of the embedding spadés;, Emb@S, S") and Embg, R").

Notice thatthe homological properties of each path comptthess give knot invariants.
This is illustrated by the following proposition.

Proposition 1.5 (1) A knotf : St — S* is the unknot if and only if its component
in EmbS', S%) contains n&®-torsion in its 1st homology group.
(2) Alongknotf : Rt — R3in K34 is the ‘long unknot’ if and only if its component
has trivial first homology group.
(3) An embedding ofS' in R3 is the unknot if and only if its component in
EmbSt, R3) has torsion first homology group. It is also true if and only if
its 2nd homology group is trivial.

Theorem 1.6 Let K31(f) denote a path-component Kk 1. Then
H1(K31(f); Z)
is a finite direct-sum of copies @ andZ./27..
In addition, a characterization of the componentskaf; such thatHq(KC31(f); Z)
contains 2-torsion is given in Secti@n A precise identification of those knotssuch

that H1(KC3 1(f); Z) contains aZ /27 summand is also given. In Secti@nthe least
degree in which odg torsion inH..(K3 1; Z) occurs is as follow.
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Theorem 1.7 Letf denote a long knot anglan odd prime. IH;(KC3 1(f); Z) contains
Z7./pZ, theni > 2p — 2.

Much recent progress has been made on the structure of spheeasheddings via
finite-dimensional model spaces and approximations. Sdrttésowas first given by
Vassiliev 0] and has been the subject of further study via the Goodwiléculus of
Embeddings by Sinhatp], Volic [51] Lambrechts 32], or conomological techniques
such as Bott-Taubes integras 0]

The Gerstenhaber-Poisson algebra above was first corsidarthe E2-level of the
Vassiliev spectral sequence by Tourtchid8][ Related progress is given in work of
Altshuler-Freidel 1], Bar-Natan ], Cattaneo, Cotta-Ramusino-Longod], Kohno
[30], Kontsevich B1], Lescop B3], Polyak-Viro [40], Sakai B1], Watanabe 2] as
well as others.

This paper takes the direction of using Gramain and Hatshechniques for under-
standing the homotopy type @31, one component at a timé&§, 24]. The central
construction of Hatcher2f] is to consider the components of the knot space as the
classifying space of the mapping class group of the knot ¢ement. One then stud-

ies how such a mapping class group acts on the JSJ-tree ohtlheedmplement as

in [5, 7], using Hatcher's results on the homotopy type of diffeopiism groups

of Haken manifolds 21] to assemble an answer. Thus most of the results here are
complementary to the results of the authors mentioned ipréégous two paragraphs.

The authors would like to thank the University of Tokyo, thesMPlanck Institute
for Mathematics in Bonn, Institut des HautEtudes Scientifiques, the Institute for
Advanced Study, the Pacific Institute of Mathematics andAhmeerican Institute of
Mathematics for partial support during the preparatiorh@ paper.
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2 Notation, labelling components

Whitney [56] showed that the embedding spacg; is connected fon > 2j + 1. By
work of Wu [53], Ky is also connected provided boti>> 2j andj > 1. ThatKp 1 is
also connected fon = 1 is elementary. The fact tht, ; is connected is equivalent
to the smooth Alexander/Schoenflies theorem in dimensionm2co-dimension 3
and higher. Haefliger20] vastly generalized Whitney’s result, proving thiah; is
connected providedr2> 3j + 3, andmg/Cp is non-trivial for Zn = 3j + 3. This work
has recently been extended by the first author to a computatithe first non-trivial
homotopy group ofCp; provided 2 — 3] — 3 > 0 [8].

When 4 < 3j + 3 the spacéC,,j could potentially have many connected components.
mo/Cnj was shown to be a group by Haeflig@0[ providedn —j > 2, whereas it

is only a monoid forn —j < 2. A fundamental example is the spakig i which
has countably infinite many components, and no inverseseimibnoidmoXs 1 [44].
Givenf € Kpj, let ICqj(f) denote the path-component &f,j containingf .

We will use the notation EC(D"1) as defined inf] for the space of framed long
knots inR". Given a compact manifolt¥, define

ECk, M) = {f € EmHRX x M, R¥ x M), supg(f) c IX x M}.

Here the support of , supg(f) is defined bysupgf) = {x € Rk x M : f(X) # x}
andl = [-1,1]. EC(3,D""1) is not homotopy equivalent i, in general, but as
described in%] there is a fibration

QSQn —1) — EC(L, D" Y — Kn1

which splits at the fibre (via a 2-cubes map) foe {1, 2, 3}, allowing us to think of
K31 as a sub 2-cubes object of ECD¥).

This section collects information on the indexing of the poments ofiC3 1 which is
given in terms of the ‘companionship tree’ classificatiokiobts, an application of the
Jaco-Shalen-Johannson (JSJ) decomposition of knot corepts. The indexing that
we will use is described in detail i6]. Aspects of this indexing have been partially
described before in the works of Budnéy},[Eisenbud and Neumani4], Schubert
[44], and the unpublished work of Bonahon and Siebenm&prag well as the survey
work of Kawauchi R8]. Indeed, the results ir6] should be thought of as a uniqueness
statement for Schubert’s satellite operations that heritescin 44]. In the book by
Eisenbud-Neumanrif] this method of indexing is called the splice decompositibn
links, but is specialized to the case of links in homologyesph whose complements
are graph manifolds. A terse statement of the result§]igizen next suffice for the
applications here. More complete as well as more speciforrimdtion is given in ).

Definition 2.1 An n-component link inS® is a compact, connected, orientel,
dimensional submanifold & consisting of path components labelled with distinct
numbers from the s€l0, 1,2, --- ,n— 1}. Thus the notatioh. = (Lo, L1,--- ,Ln-1)

is used frequently fon-component links. A knoK (in S*) is al1-component link.
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An n-component linkL is the unlink if there exists disjointly embedde®-discs
D = (Do, D1, -+ ,Dn_1) in S* whose boundary ik, 9D = (0Dg, ODy, - - - ,0Dp_1) =
(Lo,L1,--- ,Ln_1) = L.

Forn> 0 an(n+ 1)-component link. = (Lo, L1,--- , L) is said to be a KGL (knot
generating link) if the sublinkL,,L,, - - - ,Ly) is the unlink.

Given an(n + 1)-component KGLL andn knotsJ = (J1,J»,--- ,Jy) in S° there is
an operation called splicing defined 6] fjvhich produces a knod<L in S*. Here
is a rough statement of the splicing construction. Bix= (D1, --- ,Dp) n disjointly
embedded discs I8 such thabD = (L1, Ly, --- ,Ly). Letvp : [—o00,00] x D? — S
be a closed tubular neighbourhood®f LetC,, be the complement of an open tubular
neighbourhood ofL1, - - - ,L,) in S, and defindR : C, — S to be unique continuous
function which is the identity outsideng(D), and on the image afy define it to be
the conjugaterp o (Jy U - -- Jp) o vp*, whered; € EC(1, D?) is the framed long knot
in the homotopy-fibre of the mapC(1, D?) — QSQ(2) corresponding td; under the
mapEC(1,D?) — K31 — EmbES!, S%). JiL is defined to be the image b under
the embeddindr. See f] for details.

Example 2.2 Let W denote the Whitehead link artg the figure-8 knot.

K = Fg=W

Figure 1: Whitehead double and companionship tree

The role of splicing is that it is an operation that takes kremidKGL's as input and
produces a knot of greater ‘complexity’ in the sense thattmepanionship trees of the
input data is spliced together to produce the companiortsbépof J<L. We proceed
to make these ideas more precise.

Definition 2.3 The Hopf link H* is the2-component link inS® given by
{@,0eC?:2€C la|=1}U{(02):2cC, |z =1} CS
whereS® is regarded the unit sphere @7

If one takes a connected-summtopies of the Hopf link along a common component,
one obtains thép + 1)-component link, which we will call thép + 1)-component
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keychain linkHP (see Figure2).

Figure 2: Hopf link and keychain link

P 2mik
(@,0) € C2: 2] = 1} U U{iz(eT,zz) =1} c S
k=1

For any(p,q) € Z x N, the(p, q)-Seifert link S®9 js defined to be
1
{(2,0) € C?: |z7| =1} U{(z1,22) € C?: |&a| = |z2| = ﬁ,zg =2}c$

The (p, g) -Seifert link hasGCD(p, q) + 1 components (see Figug.

Figure 3: Seifert link

For any(p,q) € Z x N, GCD(p, q) = 1, the(p, q)-torus knotT®9 js
1
2,2)cC?: |a|l=|n=-—==8}cS
{(z, ) 21| = |2 \/EZE %}

Theorem 2.4 [6] Given a knotK in S® there is a finite, labelled, rooted tree-valued
invariant ofK denotedGy having the following properties:
(1) Each vertex of the tree is labelled by a link and any link fréva following list
is admissible:
(@) Torus knotsT®9 for p/q € Q, GCD(p,q) = 1, q > 2.
(b) Seifert linksS®9 for GCD(p,q) = 1, q > 1.
(c) Keychain linksHP for p > 2.
(d) Hyperbolic KGLs.
(e) The unknot.
(2) Given any vertex inGg, the number of children of the vertex is one less than
the number of components of the link that decorates thexerte
(3) Ifany vertex is decorated by a keychain Iik#e, none of its children are allowed
to be decorated by keychain links.
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(4)

(5)

(6)

(7)

A vertex of the treeGk can be decorated by the unknot if and only if the tree
Gk consists of only one vertex.

If one changes all the labels on the tfeg by substituting for each vertex label
L its complementC_ one obtainsax, the JSJ-tree ok [6]. This is the tree
whose vertex set is the set of path components of the knotleomemtCy  split
along its JSJ-tori, and the edges are the JSJ-tdziof

If Gk consists of more than one vertex, thén= J<xL where the root ofzk is
labelled byL andGj are the subtrees rooted at the childre.ah Gy .

The number of vertices dbk is one more than the number of tori in the JSJ-
decomposition of the complement &f in S*. Thus for exampleGg is a
one-vertex tree if and only KK is either hyperbolic, a torus knot, or the unknot.

The above properties 1 through 4 are complete, in the seasamly tree satisfying
properties 1 through 4 is realizable & for some knotK. Gk is known as the
companionship tree df.

Given a vertex of Gk, there is a maximal subtree @i rooted atv, and this subtree
is the companionship tree of a unique knoSh K. K, is called a companion knot

oK.

Item (6) implies that if one writes down the ‘postorder’ (eese Polish) listing ofsx,

one is simply writingK as an iterated splice knot where all the KGL's used in sgiicin
come from the list (1). Thu&g could simply be considered a precise way to specify
K as a splice of atoroidal KGLSs.

Unlike links with Seifert-fibred complements, hyperboliGKs have no known canon-
ical enumeration.

Some elementary examples of hyperbolic KGLs are:

the figure-8 knot
the Whitehead link
the Borromean rings

Hyperbolic KGLs of arbitrarily many components are knowretast by the work of
Kanenobu 27]. For details on the hyperbolic structures, see for exartipdextbook
of Thurston #8].

(

% </
)
A trefoil knot K = T(-32)

Gk =K T(-32)5q517,2)
Figure 4: Trefoil and (17,2)-cable

<y

%
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Fe (TG, Fg)aH2)aS172)
Figure 5: Cable of connect sum of trefoil and figure-8 knot

@)
)

Figures4 and5 give examples of knot& and the associated tré&c, and the corre-
sponding splice notation, whelg denotes the figure-8 knot. L& = (Bg, B1, By)
denote the Borromean rings, and B be the 3-component link i8® obtained from
B by doingi Dehn twists about the spanning discB®f andj Dehn twists about the

spanning disc foBs,.
ff@% & ©
&%)

(Fe, TGI)aB Gy (Fg, TE2)Bo 3 Gk
Figure 6: Various Borromean splices

The spaces EC(D"~1) admit an action of the operad of little 2-cub&$. [Using the
connectedness df, 1 for n > 4 together with the cubes action one can prove that
EC(1, DY) has the homotopy type of a 2-fold loop spaceffior 4. At present it is
not known what the 2-fold de-looping of EC@" 1) is. Recently, P. Salvatord3]

has constructed an action of the operad of 2-cubek,pnfor all n > 4.

The previously described fibre bundle
Emb@E, §¥) — SQ4)/SA2)

whose fibre inclusion : K31 — EmbE, S°) is induced by the one-point compacti-
fication is explored more deeply in SectidnFor the purpose of this section and the
study of the components df3; and Embg', S*) respectively, we note that the inclu-
sion K31 — EmbE, S%) induces bijection on path-components. Thus, our indexing
of mpEmb(S!, S*) above by companionship tre@ is also an indexing ofoKs ; .

3 The homotopy type ofK31

A detailed description of the homotopy type &k 1 is given in this section. This
description is given in terms of the splicing operations escdbed in Sectio2. A
good general reference for these results is the wdtk [

(1) If f is the unknot theriC3 1(f) is contractible by work of Hatchegf].
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()

3)

(4)

If f is ap/g-cabling ofg then by work of HatcherZ4], there is a homotopy
equivalence
St x K31(9) — Kaaf).

We consider a torus knot to be a cable of the unknot, so we ammiclg all
non-trivial torus knots satisfy K3 1(f) ~ St.

If f = (f1,f2, -+, fo)<xH" where {f; : i € {1,2,--- ,n}} are the prime sum-
mands off andn > 2, then there is a homotopy equivalence

n
Ca(n) x3, [ [ Kaah) — Kaalf)

i=1
where ¥ C X, is the Young subgroup corresponding to the partitionof
{1,2,---,n} given by i ~ j & K31(fi)) = K31(fj). This result originally
appears ing].
If a knotf = (f1,f2,--- ,fa)<iL whereL is a hyperbolic KGL then there is a
homotopy-equivalence:

n
St x (SCXZ) X p H/Cs,l(fi)> — Kaa(f).
i=1
we defineA;s as a subgroup dB_. B, is the subgroup of the group of hyperbolic
isometries of the complement afin S* which:

o extend to diffeomorphisms &.
e the extensions presenls, and its orientation (ie: they act on the cusp
corresponding tdo by translations).
e put together, the above two properties imply there is an eldibg B, —
Diff(S%; L, Lo).
It is a non-trivial fact [] that the composite is an embedding of grols—
Diff(S* L,Lo) — Diff T(Lg) where Difft(Lg) is the group of orientation-
preserving diffeomorphisms dfy. RegardB, as a finite subgroup d8Q(2).
There is a representation Bf given by the compositeB, — Diff(S*, L, Lg) —
Diff(L_, L) — moDiff(U[,Li) = %7 where we identifymoDiff( LI, L;) with
¥}, the signed symmetric group dd, 2, - - - ,n}. ¥y acts onk’3 ; by permuta-
tion of factors. ¥, acts onk’sz 1 by knot inversion — fix an axis perpendicular to
the long axis, and rotate a knot lyabout this axis, this is knot inversion. Stated
another way, the group of rotations which preserve the laigy (2) ¢ SQ(3),
acts onfCz ;1 by conjugation. Fix an element € O(2) \ SO2), thenw acts as
an involution onkCsz 1, thus defining an action of,; on K3 1. These two actions
extend to an action afif on K3 ;. As is the subgroup oB that preserves the
path-componenf i, KC31(fi) of K5 ;.

As mentioned in part (4) abovés 1 is naturally anO(2)-space. Parts (1), (2) and (3)
above all areO(2)-equivariant homotopy equivalences, as showr7]n Case (4) is
only an SQ(2)-equivariant homotopy-equivalence, although the homgaclass ofw
acting onCs 1 is computed.
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4 Relations among various spaces

The goal of this section is to compare the homotopy typesespaces:

L4 ’Cn,l
° Emb(Sl, 81)
e EmbE,RM

The space of pointed, smooth embeddings HSh S") will be a useful auxiliary space.
Relationships between the embedding spédcgs Emb@, S") and Embg, R") will
also be listed.

Proposition 4.1 For alln > 1 there are morphisms of fibrations for which each
vertical map is a homotopy equivalence:

SQn) xsan_1)Kn1 —— SAN+ 1) xsgn_1) Kn1 —— SQn + 1)/SAN)

o o s

Emh(s,s) — EmbE!, S - g

Kni —— SQN) xson-1) Kn1 —2— SON)/SOMn — 1)

I - I

Kni ——  Emb(shs) —— g1

Proof Consider the map®, : SQn + 1) x Kn1 — EmbES', ") obtained from the
natural SQ(n + 1)-action on Emi®, S") together with the natural inclusiokin; —
Emb@ES, S"). Notice that the ma®, is SQn — 1)-equivariant and thus there is an
induced map

On,:8An+1) Xson-1) Kn1 — Emb(Sl, .

Consider the natural fibrations
Emb. (S, S") — EmbE,S") — S,

and
Kn1— EmQ(Sl, S — S

The first map is a fibration by the isotopy extension theorendeéd, Palais proved
that in general ‘restriction maps’ are locally trivial fibkrindles B9. The map
Emb.(SH,S") — S is the composition of the restriction map En®',S") —
Emb,(U,S") with the homotopy equivalence Eq®,S") — S ! given by the
derivative at+ where U is some closed interval neighbourhood ofin St. Thus
there is a map of fibrations:
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SQn) xsan-1) Kn1 —— SAN+ 1) xson_1) Kn1 —— SQn+ 1)/SAN)

len len ll
Emh(s,s) — EmbE, ) . g

as well as

Kn1 —— SQN) xsqn-1) Kn1 —— SAN)/SON — 1)
E Jen E
Kni ——  Emb(s,S) —— g1
The map®©y, : SAN) xsqn-1) Kn1 — Emb.(S', ") is thus a homotopy equivalence.
Hence the map
On:SAN + 1) xsqn-1) Kn1 — EmbE,, S

is also a homotopy equivalence. O

Restrict attention to the special case givermby: 3.

Corollary 4.2 There is a homeomorphism
S x Emb, (S, $®) — EmbE,, S).
Furthermore, the bundle
K31 — Emb(Sh S — &
is the induced bundle with fibri€s 1 from the bundle
SQ2) — SOB3) — &

whereSQ(2) acts onCs 1 by rotation aboutthe long axis, as previously describedisTh
up to a homotopy-equivalendemb, (St, S°) is the union of two copies db? x K31
along their common boundary, where the gluing i Ks1 — St x K31 is given
by (z.f) — (z,22.f) € St x K31, where we identifyS' = SQ2) and its action by
rotation about the long axis.

Observe that Propositioh 1 generalizes to a proposition about the embedding spaces
Emb@E, S"). We skip the proof as it is essentially the same as Propaositil

Proposition 4.3 Providedn — | > 1, there is a homotopy-equivalenc@Q(n +
l) Xsqn—j) ICnJ — Emb(S, Sn)
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Givenf € Kpj, let f € Emb@,S") be the one-point compactification 6f Con-
sider S' to be the one-point compactification @". The inclusionR" — S
induces an inclusion EmB(R") — Emb@,S"). This inclusion induces a bijec-
tion moEmb@,R") — mEmMbE,S") providedn —j > 2. Givenf € Knj let
fe Emb@,R") be such thaf is isotopic (inS") to f. These conventions give us
a one-to-one correspondence betwegit,j, mEmbE, S") and rogEmb@E, R") for
n—j>2.

If f € Knj is along knot, letX; denote the component ofin Emb@E, D") and letC;
denote the complement of an open tubular neighbourhoddimfs'. Givenf Khj
define Gt x Knj(f) = {(p,9) : 9 € Knj,p € Cq, whereg isotopic tof }, and define
C x ICnj to be the union of the spac€s x ICnj(f) for all f € Cp

Proposition 4.4 Providedh—j > 0, Emb@, R") is homotopy-equivalent to the space
SAN) xsan-j) (C % Knj). In particular the componend of Emb@, R") have the
homotopy-type oSQN) xsgn-j) (Cr x Knj(f)). SQn —j) € SAQn) acts onSQAn)
as the subgroup fixing g-dimensional subspace, al@0n — j) acts onCs x Ky}
diagonally.

Proof See Proposition 2.2 o8]. ]

5 On the homology ofCo(X 1T {x})

The purpose of this section is to recall the homology of
Co(X I {x})

for X not necessarily path-connected. These results will therdnebined with
Theoreml.2to obtain Theorem.3. The spaceX is assumed to be compactly generated
and weak Hausdorff as a topological spat8;the base-poin{x} is non-degenerate
by construction.

Formal constructions are given next for whighs a field and all modules are assumed
to be vector spaces ovér. LetV denote a graded vector space which splits as a direct
sum

V=V, .pV_

for which V. consists of the elements concentrated in even degreeg_andnsists of
the elements concentrated in odd degrees.cl(&) denote the “algebraic suspension”
of V. That iso(V) is the moduleV with all degrees raised by one. In addition, define
a"(V) = a(c""1(V)). The “algebraic desuspension” bf denoteds—1(V) is defined
by requiringo(c—1(V)) = V.

Next consider the free Lie algebra

Lo(V)]
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and, if F = I, the free restricted Lie algebra ovigg denotedL®[o(V)]. In this last
case, consider the natural inclusion

j i Llo(V)] — LP[o(V)]

with co-kernel denotedWP[s (V)] (for which L[o(V)] is the free Lie algebra defined
over the field[F,). The definition of a restricted Lie algebra is given in Jemwils
book “Lie Algebras" p6] with graded restricted Lie algebras treated38][ Graded
restricted Lie algebras may be regarded as the module oftjmenelements in the
tensor algebra[o(V)] defined over the field",. Notice thate—1(cV) = V, but that
o~ L[(V)] is not isomorphic td_[V] in general.

Let E[V_] denote the exterior algebra generated\ay and let[F[V.] denote the
polynomial algebra generated by . Consider the symmetric algeb&V] defined
as follows:

(1) Forthe fieldQ, V] = E[V_] ® F[V4].
(2) For the fieldF,, V] = F[V], the polynomial algebra generated Wy
(3) For the fieldF, with p an odd prime JV] = E[V_] ® F[V4].

We describe the homology @ (X IT {x}) with coefficients in the field (11, (2) F»
and (3)F, for p and odd prime.

Consider case (1). Lat = H,(X, Q), and form the symmetric algeb&ic —1L[o(H.(X; Q)]].
By [12], there is an isomorphism of Hopf algebras

o Lo(H G Q)N — Ha(C2(X 1T {+}); Q)
with co-product determined by that &f,(X; Q).

The analogous theorem fé, is given as follows. LeV = H.(X;F2), and form the
symmetric algebra
o L[ (H (X F2)]-

By [12], there is an isomorphism of Hopf algebras
So Lo (H.0GF)] — Ho(Co(X 1L {4}); F2)

with co-product determined by that &f.(X;F,). Remark: The role of the restriction
in a restricted Lie algebra ové, is to create the Araki-Kudo-Dyer-Lashof operation,
the operation which sends an elemeft) to Q1(c(Vv)).

The result for odd primep with Fy, is given as follows. LeV = H..(X; Fp), and form
the symmetric algebra

o ULP[o(V)] & o 2WP[(V)]].
By [12], there is an isomorphism of Hopf algebras
o LP[o(V)] & 0 PWP[o(V)]] — Ha(Ca(X 1T {}); Fp)
with coproduct determined by that &f.(X; Fp).
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6 On the homology ofK3 1

Recall the homotopy equivalence of Theor&rg,

C(R?, Xic I {x}) — Ka1

Thus there are isomorphisms of Hopf algebras

(1) o 'L — H.(K31;Q) for V = H.(Xc; Q),

(2) So'L2o(V)]] — H.(Ka1;F2) for V = H.(Xx; F2) and

(3) o LP[o(V)] @ o 2WP[(V_)]] for V = H.(Xi; Fp) for odd primesp.
Further information concerning the the homologyXaf is given in SectioriO.

Thus the above isomorphisms give the homologyCgf; with field coefficients. The
first and second parts of Theoret3 follow. The proof of Theoreni.3 will be
concluded in Sectioi in which higher torsion is constructed.

Notice that the spacé (X 1I{x}) is naturally a disjoint union oK with another space.
Thus, there is a natural direct sum decomposition of graéetbvs spaces

H.(OGF) © TOGF) — Ho(Co(X 1T {+}); F))
for a choice of graded vector space
['(X; F)
which is functor ofH, (X; F).

The constructio'(X; FF) is used in SectiofOto describe the homology of the subspace
of K31 generated by torus knots, as well as the operations of ctetheams, cablings
and the action of the little two-cubes.

7 Higher p-torsion in the integer homology of K3 1

One way in which higher ordep-torsion in the homology 0fC3 1 arises is summa-
rized next. The way in which little cube,(n) are related to configuration spaces
Conf(R?,n) is as follows. There are mag®(n) — Conf(R?,n) which are both
homotopy equivalences and equivariant with respect to ttieraof the symmetric
group X, [37). Thus it suffices to exhibit higher torsion in the integentawogy of
Conf(R?, n) xx, X" for certain choices of spaces= K3,1(f). Since the construction
Conf(R?, n) xx, X" occurs numerous times below, it is convenient to define

En(X) = Conf(R?,n) xx, X"

as given in the Introduction.
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Given a prime long knot, consider the path-componek 1(g) where
g = #f = fApxH"

Here #f denotes the connected-sumrotopies of the same kndt, with the splice
notation from Sectio2 given. There are homotopy equivalences

K31(g) — Conf(R?,n) xx, Kz1(f)" = EL(K31(f)).

First considerp-torsion of order exactlyp obtained from the equivariant cohomology
of Conf(R?, p) as constructed inlp].
Proposition 7.1 LetY denote any connected CW-complex.

(1) If Hx_1(Y;Fp) is non-zero, theif, is a direct summand of

Hopi—2(Conf(®?, p) xs, YP; Z).
(2) If Z)p°Z is a direct summand dfix—1(Y; Z), then
Haty —1(Ep (Y); Z) = Hay —1(Conf®?,p') xx, YP;Z)
has a7 /p5+t97 -summand.
(3) There is a homotopy equivalence
En(K31(f)) — K3 1(#nf).

(4) Thus if K3 1(f) has any non-trivial mog- homology in degre@t — 1, thenIF,
is a direct summand of

Hapt—2(Ep(K3.1(f)); Z).

Hence
Hopt—2(K31(#pf); Z) = Fp ® A

for some abelian groug.
(5) Furthermore, ifZ./p°Z is a direct summand dfix_1(K3 1(f); Z), then

Haty —1(Ey (K3.1(F)); Z) = Hoy —1(Ka1(#y T); Z) = Z/p"' Z @ A
for some abelian group.
Assume that
Hi(K3a(f); Z2) = Z/p°Z © A
for some abelian group. LabelthisZ/p°Z-summand (ambiguously) by f.j,Z/p°Z >

Example 7.2 By [24] or [7] if f is a non-trivial torus knot, theikCz 1(f) has the
homotopy type of a circle. A direct application of Propasiti7.1 gives that

Hap—2(Conf®?, p)xs;, (K3.1(F)) " Z) = Hop_2(Ka 1(#f); Z) =< #of, 2p—2,F, > BA

for some abelian group.



20 R. Budney and F. R. Cohen*

Next, consider the prime kndt given by a cabling of .

Example 7.3 The examples here arise by an iterated cabling construagdallows.
Let /3 € Q satisfy 8 > 1 with GCD(«, ) = 1. h = S is the o/ 5-cabling
of f.

There is a homotopy equivalence
Kaa(f) x S" = Kaa(h) = Kaa(foas?)
as described in Sectidh
Next, consider am-fold iterated cablinghy, of f defined by
o hy =faSE@,
o hi1 =hS©@A fori > 1, defined recursively.
Then there are homotopy equivalences
Ka1(hm) — Kaa(f) x (SH™.
Assume that
Ho—1(K31(f)); Fp) =< £,2t — 1, Fp > A

for some abelian group.. Then the integer homology €3 1(hm) = K31(f) x (SH™
has a summand denoted (ambiguously) by

<f,2t — 1, Fp > @H.((SH™ Z).

Thusifm> 1, there are elements of ordeiin both odd as well as even degrees in the
integer homology ofCz 1(hm)). If mis “large”, then there are many elements of order
exactly p which are of both odd and even degree. This fussiness cangeparity of
degrees has consequences for higher torsion in homology.

The above remarks give examples of long knots with torsiaraér exactlyp concen-
trated in odd degrees for the integer homology of their gatfmponents. One choice
of f is a torus knot. The next proposition shows thebrsion of order exactly in the
homology ofC3 1(g) gives rise highep®-torsion in the homology of other components
related components as follows.

Recall that Exampl&.3 provides instances of prime kndtssuch that
Ho_1(KC31(f); Z) =< f,2t — 1,Fp, > ®A

for some abelian group. Consider the long knag given by thep®-fold connected
sum
g= prleals = #psf

as used in the next Proposition.
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Proposition 7.4 Letf denote a prime long knot such that
Ha—1(K31(f); Z) =< f,2t — L, Fp > @A
for some abelian groug. Let
g="f# . # =#sf.
Then
Haps-1(KC3.1(0); Z) =< #pf, 2tp° — 1, Z/p*7Z > @A

for some abelian group.

Proof Assume that the integer homology &% 1(f) has a non-trivialF, summand in
degree 2—1 as guaranteed by examf@l&. Thus, in the mods reduction of the integer
homology ofC31(f), there are classesof degree 2— 1, the modp reduction of a
class of ordep, as well as a clasgin degree 2which corresponds to the contribution
forced byx in the “Tor" term in the classical universal coefficient The.

SinceHy_1(K31(f); Z) has aFp-summand, there are elements in the nposbmology
of K31(f) with
(1) xin Ha 1(K31(f); Fp),
(2) yin Ha 1(K31(f); Fp) and
(3) the first Bockstein of is X,
pa(y) = x.

A classical computation of the Bockstein spectral sequeges that the £+ 1)-st
Bockstein is defined with

Bsr1(y") = x-y 1P 41

in cases > 1 for which| denotes the indeterminacy of this operation. The Projwsiti
follows as these classes survive in the Bockstein speatience forC(R?, Xy 11

{*}). D
Two concrete examples are listed next.

Example 7.5 (1) Letf denote a non-trivial torus knot with
Hi/C31(f) = Z.

Then the long knot
Hf = f#- - #f

satisfies the property that
K3 1(#pf) = Ep(Kza(f))

with
Hap_2(Ka1(#pf); Z) =< #,f,2p — 2,Z/p'Z > @A

for some abelian group.
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(2) Denote a cable of# by (#pf)mSaﬂ. There are homotopy equivalences
K31((#F)aS*7) — Kaa(#pf) x S
with the property that
Hap_1(Ka.1((#pf )aS™P); Z) =< (#pf )aS™P, 2p — 1, Fp > A
for some abelian group.
(3) Thep®-fold connected sum of {#)><S*7”,

tho (s
has the property that

Hape1 1 (/cg,l (#ps ((#pf)msaﬁ» ;Z> —< #s ((#pf)msaﬁ> 2051, 72/p"17 > A

for some abelian group.

The third part of Theorent.3follows, thus concluding the proof.

8 On H1/C3,1

H.K31 has torsion of all orders, it is natural to ask for the lowestehsioni, ) so
that Hip.n K31 contains torsion of ordep”. This question is answered in this section
for the special case(n) = (2,1). This section contains a proof of Theordné.

The idea of the proof is to descrildé;/C3 1 inductively, component-by-component.
The most complicated case from the point of view of torsiathéshyperbolic satellite
case, since there is currently insufficient control of theresentationB,. — .
In addition, better control over the class of the inversioap H1K31 — H1K31 is
required.

First, the base-case: knots whose JSJ-trees have one.vertex

o If f is a torus knotH1K31(f) ~ Z and f is invertible and theX, action
(inversion action orH1/3 1(f)) is given by multiplication by £1). This is a
direct corollary of [].

o If f is a hyperbolic knoH1/C3 1(f) ~ Z?. In the case that is invertible, the
(inversion) action of¥), on Z? is multiplication by (1). This also follows
immediately from 7].

The next proposition givesl1(K3 1(f); Z) inductively, via the JSJ-tree df. Given a
group G acting on an abelian groufy, let Ag denote the module of co-invariants, the
quotient group ofA modulo the subgroup generated by —g-a: g € G,a € A}.
The following lemma follows from the Leray-Serre spectiedsence for any fibration
with a section.
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Lemma 8.1 Given a fibrationF — E — B with a section, with both the base and the
fibre path-connected, thetyE ~ H1B © (H1F),g.

In principle, one can deduce the following result from thegamtation of the groups
m1(Conf(R?,n)/Y; Z) given by Manfredini 86], alternatively using some elementary
facts about the abelianization of the braid group or fromdéscription in 12]. The
proof is omitted.

Lemma 8.2 LetY be a Young subgroup adf.,. We think of ¥, as the group of
bijections of the sefl1,2,--- ,n}. Letk be the number of distinct orbits &f, and let

f be the number of fixed-points &f acting on{1,2,--- ,n}. Letl = k—f. Then

H1(Conf(R?,n)/Y; Z) is a free-abelian group of rark:- (X) .

Proposition 8.3 Given any componenk’z 1(f) of K31, Hi(K31(f); Z) is finitely-

generated and a direct-sum of groups of the foirand?Z/27.. Moreover, iff is an
invertible knot, the involution oH1(K3 1(f); Z) preserves a splitting dfi1(KC3.1(f); Z)

into a direct sunH,(KC31(f); Z) = V1 @ V2 where the involution acts oNy as the
identity and acts oN, by multiplication by(—1).

Proof The proof is by induction on the height of the JSJ-tred ofThe height one
case was dealt with at the start of this section. The indectiep is as follows.

o Consider the cases thétis a cable ofg, thenH1K31(f) = Z ® H1K31(9)
[7]. In the case that is invertible, the homotopy-equivalencelis-equivariant
with FFo-action onS' x Ky being complex conjugation o8 and the inversion
involution on Kgy. Thus thelF,-action on H.St x K31(9) = Z ® H1K31(9)
is simply the direct sum af',-modulesZ (with the non-trivial involution) and
H1/3 1(g) with its own inversion involution, completing this parttbie inductive
step.

e Consider the case thétis a connected sum of prime knadts fo, - - - , fy with
n> 2. Then by Lemma.1,

n
H1(Kaa(f); Z) = Hi(Conf(R?,n)/Y; Z) & (EB H1 (K31 (fi); Z)) /Y

i=1
where Y is the Young subgroup obl, given by the equivalence relation
I~ ) & Ka(fi) = Kaaf). Hy(Conf@R?,n)/Y;Z) ~ 7+ wherel is
the number of orbits ofY with more than 1 element, ankl is the number
of orbits of Y by Lemma8.2 If f is invertible, the involution action on
Kza(f) ~ Conf(R?,n) xy [T, K31(fi) was described in7] as a map that
preserved the above product structure, acting by mirroectfin along a line
in R2 on Conf(R2,n) and by permutation of the factors éf3(f) combined
with the inversion involution oriCz 1(f;) for eachi € {1,2,--- ,n}. Since the
abelianisation ofri(Conf(R?,n)/Y) was computed entirely in terms of link-
ing numbers, mirror reflection along a line induces multiglion by 1) on
H1(Conf(@R?,n)/Y; Z). This completes this step of the inductive argument.
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e Consider the case of a hyperbolic satellite operation. is ¢hse,H1Ks =
Z? ® (®H1K3a(f))) /A¢ [7). Thus HiK; consists ofZ? direct sum various
groups, one for each orbit @ acting on{1,2,--- ,n}. Denote the orbits by
{1,2,--- ;n} =Y UY2U---UYg. The summand corresponding to orljtis
eitherH1/C31(f) for j € Y; or (H1K31(f;))/X2 depending on whether or néé
has an element that reverses the orientatioly @i not. H1/C3 1(fj))/%> is also
a direct sum of groups of the forid and Z/2Z by the inductive hypothesis.
Now consider the case thétis invertible. By [7] the Y»-action on ks ~
M x (SQ2) xa [, K31(fi)) respects the bundle structure, thus Bf @
(®H1K31(fi)) /As it acts by multiplication by £1) on theZ?-factor. On the
remaining factors it either acts trivially on theth summand if the inversion
symmetry ofL does not reverse the orientationlgf or it acts by inversion on
that summand.

Thus the result follows. D

Corollary 8.4 H1(K31(f); Z) contains2-torsion if and only if there is a hyperbolic
link L so that one of the vertices @¥; is decorated by, and if we letg be the
knot whose JSJ-tree is the subtree rooted,ahenAy must contain an isometry that
reverses the orientation of sorhe

9 The first occurrence of odd torsion

Theorem 9.1 Letf denote a long knot anglan odd prime. IH;(KC31(f); Z) contains
Fp, theni > 2p — 2.

Notice that the Theorem does not assert that there is tonsieh /C3 1(f), but rather

the least dimension in whicp-torsion can possibly occur. There are long knbts
such thatH,/C31(f) is torsion free. Furthermore, there are long kngtsuch that

Hop—2(K3,1(0); Z) contains copies off, by Example7.2 This theorem follows a
classical pattern which is exhibited for bdt{B,, 1) as well asQ"S 1,

Proof It suffices to prove thall;(X3 1; Z) contains nop-torsion fori < 2p — 2.

Since the homology groupd.. K3 1(f) are torsion free for the unknot, torus knots and
hyperbolic knots, it suffices to check that thatorsion cannot occur in dimensions
less than @ — 2 in the following three cases.

(1) The knotf is a cable ofg in which caseXs1(f) ~ St x K31(9).

(2) The knotf is hyperbolically spliced.

(3) The knotf is a connected-sum of knots such that the homology o€ 1(gi)
is p-torsion free in dimensions less thap 2 2.
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Case 1 follows directly from the classicalidneth theorem. Cases 2 and 3 follow
inductively by the next three lemmas. O

Consider thek-fold product Xk with the natural (left) action ot on XK. The
free Ch-space generated by IT + is denotedCn(X II +). Recall that this space is
homotopy-equivalent to the disjoint union of CoRf( k) x s, X* for all k > 0.

Lemma 9.2 Assume thailX is a topological space of the homotopy type of a CW-
complex (alternatively, one can substitute compactly ped, weak Hausdorff for
having the homotopy-type of a CW-complex in this lemma) withp-torsion in
homology of dimensions less thap — 2 for p an odd prime. Then the homology of
Ch(X1I 4) andQ"Y"(X 11 +) also do not have-torsion in homology of dimensions
less thar2p — 2. Thus the homology o€onf(R", k) xx, XX does not have-torsion

in homology of dimensions less th&p — 2.

The proof follows directly from the computations ih7] or can be done classically by
chain level arguments (in the spirit of Nakaoka and Steénrod

Lemma 9.3 Let A = Z/p'Z act on thep' -fold product of a path-connected CW-
complexXP by a cyclic permutation of ordgy’ and onS' freely via a rotation of
orderp". If Hi(X; Z) is p-torsion free and finitely generated for alk q, then

Hi(S' xa X" Z)

is p-torsion free for alf < q.

Proof Consider the space
Sl XA Xpr .

Classically, there are chain equivalences

B, @z C.()%P 22 B, @y C.XP) —— C(St xa XP)
where
(1) A=Z/pZ,
(2) B, denotes the chain complex of rigii{ A]-modules ( chain equivalent to the
total singular chain complex of a circle )

D

- — {0} ZIA]

for which D(1) = 1 — 7 wherer is a generator foA,

ZIA]

(3) C.(X) denotes the total singular chain complex>offor which C;(X) denotes
the singular chains in degréeand

(4) C.(X)®" andC,(X") is given the natural structure of I#{A]-modules.
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SinceX is assumed to be of finite type,
HX)=F &T,

whereF; is a finite direct sum of copies df andT; is a finite direct sum of finite
cyclic groups. Ifi < q, it may be assumed thdi is of order prime top and thus
this summand will not contributg-torsion to the homology of the chain complex
B. @78 C.(X)®P ( Details are omitted ).

Furthermore, there is a map
pi - Fi = Ci(X)
which
(1) induces a map of chains complexes ( with trivial différarfor the source ) and

(2) induces a homology isomorphism in degreées g with coefficients inZ (
the integers localized g meaning those rational numbers with denominators
prime top ).

Thus it suffices to check that the homology of the chain corple
B, Q7IA (G9i<q|:i)®pr

is p-torsion free homology in dimensions less tharor p an odd prime. Sincé;
is free abelian, notice tha199(<qu)‘X’pr is a sum of permutation representations ( over
the integral group ring oA ) each of which are cycli@[A]-modules which have the
following generators.

(1) v®P wherev is an element ifF; of even degree.

(2) v® wherev is an element irF; of odd degree.

(B) i ®V2® --- ® vy where thev; run over a basis for they;qF; with at least

two distinct basis elements appearing.

Thus it suffices to work out the torsion in the chain complex
B. ®za M

where M denotes the free abelian group which is a cy@i@]-module with one of
the elements in (1-3) as generators. These are considexed ne

(1) LetM denote the cycli&[A]-module generated by®" wherev is an element
in F; of either odd or even degree. Sinpds odd, the associated permutation
representation is trivial and thus the chain complex

B. ®@za) M

is isomorphic to B. ®zja Z) ®z M. The homology of this chain complex is
isomorphic toH.(SY) ®z M as a graded abelian group and is thus torsion free.
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(2) LetM denote the cycli&[A]-module generated by; ® Vo ® - - - ® Vyr where
the v; run over a basis for thev;qF; with at least two distinct basis elements
appearing among the. The action ofA = Z/p'Z has isotropy subgroup given
by Z/p°Z for some 0< s < r. Thus the moduléM is isomorphic to to

ZIA ®@z17,)p57) Z
as a leftZ[A]-module and there is an induced isomorphism of chain coxegle
B. RzZ[A] (Z[A] ®Z[Z/pSZ] Z) — B, XzZ[A] M.
Since the chain compleR.. @z(a) (Z[A] ®z(z,/p71 Z) is isomorphic to
B\ ®z1z/pm Z,
the chain complex has torsion free homology.

]

Lemma9.4 Letg= (f1,--- ,fo)<iL wheren > 1, andL a hyperbolic KGL. If for all
j€{1,2,---,n}, HiK31(f;) contains no elements of ordprfor all i < 2p — 2, then
HiK3.1(9) contains no elements of oraprfor i < 2p — 2.

Proof In this case, there is a homotopy equivalence
n
K3a(g) =~ S' x (SCXZ) X Ag H’C3,1(fi)>
i=1
whereAy is a cyclic group acting via permutations on the factor§ i, Kz 1(f).

To determine whether there [s-torsion in the homology ofCz1(g), it suffices to
determine thep-torsion in case?q is replaced by thg-Sylow subgroup oAy given
by H = Z/p"Z as the induced map

n n
St x <SO(Z) XH H/ce,,l(fi)) — st x (sqz) X Ag H/c&l(fi))
i=1 i=1
induces a split epimorphism on tipe-torsion subgroup by a classical transfer argument

ala’ Cartan-Eilenberg.
Consider the covering map

(SCIZ) XH H/C3,1(fi)> — (qu) X A H ’C3,1(fi)>
i=1 i=1

for which the group of covering translations is abelian vgtibup of covering trans-
formationsAs /H.

Homologically, this map is onto the-torsion elements dfi, (SQ2) xa, [TiL; K3,1(fi))
since the composite of the transfer map with the covering: map

n n
H. <SO(2) <a ][ ics,l(fi)> — H, (SO(Z) <a ][ ice,,l(fi))
i=1 i=1
is multiplication by\%] which is coprime top.
The Lemma follows at once from Lemn8e3. O
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10 Onthe subspace generated by cabling and summation

The purpose of this section is to describe the subsfialCg, of K31, consisting of
the path components df3 1 containing the unknot and all knots generated from the
unknot by iterating the cabling and connected-sum operatidn alternate description
of the space&/ K3 1 is that it consists of precisely those long knots whose cemphts
have JSJ-decompoasitions containing only Seifert-fibredifolas.

First define the space
T = Hi<p<q,pg=1K31(f(p, )

wheref (p, g) denotes ag, g)-torus knot. ThusCs 1(f(p, )) has the homotopy type of
St. Consider the James construction

J(T 11 {x}) = Ip<n7"
with 70 = {x}, the base-point. Write
Je = M<n7"
with
(T I {}) = I I {x}.
Spacesy, are specified inductively in terms df: as follows.
* Yo = Co(I LI {x}) and
* Yorr = {([C2(Yn)] — Yn) x Ji)} H Y.

Notice thatY} is naturally a subspace of,1 and that all of these may be regarded as
subspaces of’3 ; in the following way: There are induced maps

IC371 x J(T 11 {*}) — ’C371
induced by cabling.

Define
T’CSJ_ - Unonn

Notice that7 [C3 1 is the subspace of3; which contains the path-components of
p/q-torus knots and which is closed under the operations ofrgglaind sums. That
is, there are induced mapss 1 x J(7 I {+}) — K31 induced by cabling. There is an
induced inclusior7 K31 — K3 1.

The remainder of this section gives features of the homotfgy K3 1. First notice
that homology commutes with inductive co-limits and so ¢hare isomorphisms

Recall the constructiof’(X) as given in sectiob.

To describe the homology of,, restrict to field coefficients.F, Recall the natural
splitting of graded vectors spaces

H.OXF) @ T(X; F) — H.(C2(X); F))
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for a choice of graded vector space
I'(X;F)

which is functor ofH,(X; ) as listed in sectioB. ThusH.(Yn+1) is given in terms of
the constructiol’(X; F) in caseX = Y,,.

Proposition 10.1 The natural map.(Y,) — H.(Yny1) is a split monomorphism.

Notice that the homology off C31 exhibits a fractal-like behaviour reflecting the
geometry in Budney’s theoremd][and iterations of the constructiod¥X) as given in
section5. Namely, this homological behaviour arises by first consideY; = C2(Jx)
together with the homologh. (CZ(X IT {x}); IF) as given in sectiob as follows where

V = H,(X;F).
(1) Yo 1L[o(V]] if the characteristic off is O,
(2) o WL@[a(V)]] if F =T, and
(B) o LP[o(V)] @ o 2WP[a(V)]] if F =T, for odd primesp.
On a simpler note, leRK3 1 denote the subspace &z ; consisting of: all unknots,

torus knots, and all connect-sums of torus knots. ThUS; 1 is a 2-cubes subspace
of K31 and

N’C:g,l ~ (Cy ({*} (] |_| Sl> .
VA
By May [37],
B(NK3 1) ~ Q252 ({*} U | sl>

Z
which has the homotopy-type of

0? (\/ (szvsf’))

Z

where the union and wedge index s&tcorresponds to the isotopy classes of torus
knots. Thus, by the Hilton-Milnor theorem the homotopy grewfB(R/C3 1) contain
the homotopy groups of all spheres (of dimensier?) in profusion.

11 Closed Knots and Homology

The purpose of this section is to use results of the earl@icses to give information
about the space EnB{(, S°). Recall the homeomorphism

S x Emh.(S, ) — EmbE, S)
for which Emh.(St, $°) denotes the pointed embeddings. Thus there are isomorghis

H.(EmbE, $)) — H.(S%) @ H.(Emb,(S', S%))
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by Propositiord.2

Information giving the structure of the bundi& ; — Emb,(S', S*) — S was worked
out earlier. That structure is used to provide informationaerningH,(Emb,(St, $%))
by a Mayer-Vietoris argument.

LetD; andD, be two discs irS? whose union isS? and whose intersection & . LetA;
andA, be the preimages dd, and D, under the projection map Ems', $°) — &,
then bothA; and A; are homeomorphic té&z 1 x D2. Consider the Mayer-Vietoris
sequence for EmiS', S*) = A; U A, whereA; N A, is homeomorphic t& x K3 .

Identify Ay = D? x K31 and A, = D? x K31 then the gluing map frondA; =
St x /C371 — O~y = St x /C371 is the mapSl X /C371 = (t,X) — (t,tZ.X) € St x ’C371.
Thus the Meyer-Vietoris sequence has the form:

- — H, (S x K31) — H.(D? x K31) & H.(D? x K31) — H.(Emb.(S5, ) — - --

where H,(St x K331) is identified withH.K31 © H._1K31 and H.(D? x K3z1) is
identified with H,(K31). The mapHKs1 & Hn_1Ka1 — Hn(Ks1) @ Hn(Ks1) is

given by the 2x 2 matrix < : 22 > where i © SQ2) x K31 — K31 is the
n
SQ2)-action onKz 1 andkn : Hp—1K31 — HnK3 1 satisfieskn(X) = p.(SQ2) x X)

Corollary 11.1 There is a short exact sequence

0 — cokel(2kn) — HaEmb,(S', S°) — ker(2xkn_1) — O.

Corollary 11.2 A knot f : St — S is the unknot if and only if its component
in EmbS', S%) contains no torsion in its homology. Moreover, the comporgra
non-trivial knot inEmb(S, S°) always ha2-torsion in its integral homology.

Proof If f is the unknot, the component bhas the homotopy type &f; > = S$x&
which has no torsion in its homology.

If f is non-trivial, then first consider its long knot componekig 1(f). This has &Z
embedded in its its fundamental group, embedded asthetation around the long
axis [18]. We call the embedding — 713 1(f) the Gramain map. In7] it's shown
that there is a majCs 1(f) — S' which when composed with the Gramain map is not
null-homotopic. It follows thatd1/C3 1(f) contains a copy of the integers, generated by
the Gramain element. Thus since the imageof B generated by twice the Gramain
element,cokel(2x1) must contain 2-torsion. O

The short exact sequence in Corollakg.1is not ideal because it leaves us with
extension problems. We show how the extension problems eavlved using the
techniques of SectioB.

Observe that, if € K31 is a prime knot, then there is 80(2) -equivariant homotopy-
equivalencelCs 1(f) ~ SQ2) x X(f;) where theSQ2)-action onSQ2) x X(f) is a
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product action, given by left-multiplication 08Q2) and the trivial action orX(f)
(hereX(f) is just K3 1(f)/SQ2)). So prime knot components BimK(S!, S°) have the
homotopy type ofS® x SQ(3) x X(f). As mentioned earlier, the unknot component
has the homotopy-type & x 2.

We now investigate the case of a connected-sum®f2 prime knotsf = f1#- - - #f,.

By the above argument, we can assufg (fi) ~ SQ2)xX(f;) for X(fi) = K31(fi)/SQ2).
Thus, the component correspondingftin Emb,(St, S°) has the homotopy-type of
Ca(n) xx, ((SAB) xsqz) SA2)") x [Ty X(f))

We determine the homotopy-type 8((3) xsqp) SO2)" as aXs-space. Consider
SQ2)" to be R"/Z". Let D C R" be the diagonaD = {(t,t,--- ,t) : t € R}. Let

P C R" be the perp oD, ie: P = {(X1,X2, -+ ,%n) : D11 % = O}. ThusP/(PNZ")
isan fi— 1)-dimensional torus, which we will denoBn). We also define a subgroup
Z(n) c P(n). The integer latticeZ" projects (orthogonally) onto a subgroupPfwe
further take the image of this subgroup under the quotiemt Ba» P(n) and denote
this imageZ(n). There is a naturally defined homomorphigin) — SQ(2) given by
considering the embedding(n) — SQ2)" = R"/Z". For every element € Z(n)
there is a unique elemehe SQ2) so thatt.z= 0 € SQ2)".

Proposition 11.3 Providedn > 1,

SQ3) xsq2) SA2)" =~ SA3) xz(n) P()

where the action oZ(n) on SQ(3) is given by the homomorphisrd(n) — SQ2).
Moreover, this is anx,-equivariant homeomorphism where the actionaf on
SQ3) xzm P(n) is a product action, trivial or6Q3) and the natural action on
P(n) c SQ2)". Since the homomorphis@(n) — SQ2) is null-homotopic (as a con-
tinuous function), the above bundle is homeomorphic to ayprtSQ3) x 7 P(n) ~

SQ3) x (P()/Z()).

Corollary 11.4 If f is a connected-sum of prime knotsn > 2, then

SA3) xsqz) K31(f) = SAB) x Ca(n) x5 (P(n)/ Z(n) x HX(fi)>

i=1
whereKC31(f)) = SQ2) x X(fi), so the fibrationSQ3) xsqp) K31(f) — & is just
projection ontcSQ(3) then ontoS?.

We now perform the analogous computations for EBhiiR3). Propositiord.4 gives
us the analogous bundié x K3; — EmbES!, R3) — S*. Decomposings? as the
union of two discs, one gets a Meyer-Vietoris sequence

-+ — Hy(S' < (CxK31)) — Hi(CxK31)@H.(CxK31) — H.(EmbE,R3) — - -

which splits into short exact sequences as in Corolldnt:
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0 — cokel2x),) — HEmbE!, R3) — ker(2x,_;) — 0

wherexy, : Hn—1(C x K31) — Hn(C x K31) is given byp..(SQ2) x -) for the SQ2)
action o on C x Kz1. The bundleC; — Ct x K31(f) — K31 is split, and the
monodromy acts trivially oH.C; sinceCs is a homologyS*t with H1(Cr) generated
by a meridional curve. Thusi.(C x K31) ~ H.S' ® H.K31 andHp(C x K31) =
(HoS! ® HnK31) @ (H1S! @ Hno1K31).

x has a description in terms af, and x,_1. Let a; € H;S' represent the standard
generators ofH;S' for i = 0,1. Thenx(co ® X) = a1 @ X + ag @ kn(X) and
kn(on ® X) = —aq @ kp—1(X). Thus, sy, can be thought of as a mag, : Hyn_2K31 &
Hn-1K31 — Hn-1K31 © HnKC31 given by ki(x,y) = (—#n-1(X) + Y, #n(y)). Since
kno kn_1 = 0, ker(2x},) is given by the solutions to the equatier2xn_1(X) +2y =0
for (x,y) € Hh—2K31 @ Hn-1K31. Thus,

ker(2kp) ~ Hn_2K31 & m2Hn-1K31

where if A is an abelian group ang an integer,7pA is the subgroup oA killed by
multiplication by p. Similarly,

COkeI(ZI{:]) ~ Hn,1K371/2Hn71K371 S Hn’C371

Proposition 11.5 There is a short exact sequence
0 — Hn_1K31/2Hn_1K318HnK31 — HREMbE, R3) — Hp 3K31®7Hn 2K31 — 0

Thus, the component of the unknotEmb(St, R3) is the unique component such that
its first homology group is torsion. It is also the unique comgnt so that its 2nd
homology group is trivial.

Proof The short exact sequence follows from the above obsergtion

That H; of a non-trivial component is non-torsion follows from Posfiion 6.1 of
[7] and the above short exact sequence. THwabf the unknot component is torsion
follows from Propositiord.4 and the results in Sectidh Thus, the component of the
unknot in Emb§', R%) has the homotopy-type &Q3), andH;SQ3) ~ Z,.

The statement abot, follows from Proposition 6.1 ofq] and the above short exact
sequence. O

Propositionl.5 gives a criteria for testing whether a long knot f is the ‘langknot’
which can be modified to to compare two arbitrary long knotsatprocedure involves
forming a ‘difference’ to be defined precisely. Namely, et the case that an arbitrary
long knot admits an inverse. It is necessary to pass to agdti which the inverses
exists in order to ‘take differences’. That ‘world’ is theogip completion ofC3 1,

Q(BK3,1).
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This last space admits inverses up to homotopy. Given twgphkaotsf andg, consider
their classes if2(BK3 1) denoted {], and [g] respectively. Next, consider the product

[f]-[d] ™" € Q(BKs,1).

The path-component of ] - [g] ! € Q(BK31) has vanishing first homology group if
and only iff andg are in the same path-component/of ; .

12 Problems

The purpose of this section is to list problems which aristunadly from the work
above.

(1): Interpret the rational cohomology #ifs 1 in terms of iterated integrals in the sense
of Kohno-Kontsevich-Chen.

(2): Compare the Vassiliev invariants of braids as studigd.kKohno [29] and the
Lie algebra obtained from the descending central serieghfofundamental groups
of the space€>(n) x K3 1(f1) x --- x K31(fn) as well as the induced invariants for
Ca(n) x5 (K3a(f1) x - x K3a(fn)) .

(3): A natural connection between the space of long knotsthednod-2 Steenrod
algebra arises from the “group completion” 6% 1 given 2B(K3 1) [37]. Notice that
the collapse maXx — {*} induces a mam : C(R? X II {x}) — C(R?, ) and
there is an induced map : C(R?, X II {*}) — Z x BO induced by the regular
representation bundle. Thus there are maps

OQB(K31) — Q3" — BO

with composite denoted : (2B(K31) — Z x BO. The Thom spectrum af is a wedge
of Eilenberg-Mac Lane spectidF, and thus the mod-2 co-homology of the Thom
spectrumMQB(KC3 1) is free over the mod-2 Steenrod algebra. Interpret thengtele
operations in terms of knots.

(4): The Goodwillie Calculus mapping space modals}(I") for /C, 1 constructed
by Sinha fi5] have a natural homotopy-associative pairing. This pginnakes
1oAM3(13) into a group, isomorphic to the integers. As an invariardnafts, mo/Cz 1 —
m0AM3(1%) ~ Z is the essentially unique type-2 finite-type invariant obten9]. This
raises the question, do the maps; — AM;(I") factor through the group completion,
Kn1 — QBKn1 — AM;(IM)?

(5): Combine the structures here with that of Khovanov haggl
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