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Kobayashi-Hitchin correspondence for tame harmonic bundles II

Takuro Mochizuki

Abstract

Let X be a smooth projective complex variety with an ample line bundle L, and let D be a simple normal
crossing divisor. We establish the Kobayashi-Hitchin correspondence between tame harmonic bundles on
X −D and µL-stable parabolic λ-flat bundles with trivial characteristic numbers on (X, D). Especially, we
obtain the quasiprojective version of the Corlette-Simpson correspondence between flat bundles and Higgs
bundles.
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1 Introduction

1.1 Main results

We explain the main results in this paper. We do not recall history or background about the study of Kobayashi-
Hitchin correspondence and harmonic bundles, for which we refer to the introductions of [38], [24] or [31], for
example. The notion of regular filtered λ-flat bundles and parabolic λ-flat bundles are explained in Subsection
2.1. (See also Subsections 3.1–3.2 of [31]. But, we also use a slightly different notation and terminology, as is
explained in Subsection 2.1.7.) They are equivalent, and we will not care about the distinction of them. The
notion of filtered local systems is explained in Section 6.

1.1.1 Kobayashi-Hitchin Correspondence

Let X be a smooth complex projective variety with an ample line bundle L. Let D be a normal crossing divisor
of X . Our main purpose is to show the following theorem.

Theorem 1.1 (Theorem 5.15, Proposition 2.52, Proposition 2.53) Let (E∗, D
λ) be a regular filtered λ-

flat bundle on (X, D). We put E := E|X−D. Then, the following conditions are equivalent.

• It is µL-polystable with the trivial characteristic numbers par-degL(E∗) =
∫

X
par-ch2,L(E∗) = 0.

• There exists a pluri-harmonic metric h of (E, Dλ) adapted to the parabolic structure.

Such a metric is unique up to obvious ambiguity.

Remark 1.2 The claims of Theorem 1.1 in the case λ = 0 has already been proved in our previous paper [31].
Hence, we restrict ourselves to the case λ 6= 0 in this paper.

Corollary 1.3 (Corollary 5.17) Let Cpoly
λ denote the category of µL-polystable regular filtered λ-flat bundles

on (X, D) with trivial characteristic numbers. Then, we have the natural equivalence of the categories Cpoly
λ1

≃
Cpoly

λ2
for any λi ∈ C (i = 1, 2). The equivalence preserves the tensor products, direct sums and duals.

Remark 1.4 Let λi ∈ C∗ (i = 1, 2). A λ2-connection Dλ2 = d′′ + (λ2/λ1) · d′ is induced from a λ1-connection

Dλ1 = d′′ + d′. Hence we have the obvious functor Obv : Cpoly
λ1

−→ Cpoly
λ2

. But this is not the same as the above

functor Ξλ1,λ2 .

Especially, we obtain a generalization of the Corlette-Simpson correspondence between flat bundles and
Higgs bundles in the so-called non-abelian Hodge theory.

Corollary 1.5 We have the equivalences of the following two categories:

• The category of µL-polystable regular filtered Higgs bundles on (X, D) with trivial characteristic numbers.

• The category of µL-polystable regular filtered flat bundles on (X, D) with trivial characteristic numbers.

1.1.2 Bogomolov-Gieseker inequality and some formula for the characteristic numbers

Let X , L and D be as above.

2



Theorem 1.6 (Corollary 3.20) Let (E∗, D
λ) be a µL-stable regular filtered λ-flat bundle on (X, D) in codi-

mension two. Then, we have the following inequality holds for the parabolic characteristic numbers for E∗:
∫

X

par-ch2,L(E∗) ≤
∫

X par-c2
1,L(E∗)

2 rankE
. (1)

It is a generalization of the so-called Bogomolov-Gieseker inequality.

In the case λ 6= 0, we also have some formulas about the parabolic Chern characteristic numbers, which are
valid for any parabolic λ-flat bundles in codimension two. One of the formulas can be stated simply, after we see
the correspondence of regular filtered λ-flat sheaves and filtered local systems. Let(E∗, D

λ) be a regular filtered
λ-flat sheaf on (X, D). As is explained in Remark 1.4, we have the obvious correspondence of flat λ-connection
Dλ = d′′ + d′ (λ 6= 0) and flat connection Dλ f = d′′ + λ−1d′. In particular, we obtain the local system L on
X −D from the flat bundle (E∗, D

λ,f )|X−D. Moreover, the parabolic structure of (E∗, D
λ) induces the filtered

structure of L, and we have the more refined claims as in the following proposition.

Proposition 1.7 (Corollary 6.5 and Corollary 6.7) Let C̃(X, D) denote the category of filtered local system
on (X, D), and let Csat

λ (X, D) denote the category of saturated regular filtered λ-flat sheaves on (X, D) for λ 6= 0.

Then, we have the equivalent functor Φλ : C̃(X, D) −→ Csat
λ (X, D) such that par-c1(L∗) = par-c1

(
Φλ(L∗)

)
and∫

X par-ch2,L(L∗) =
∫

X par-ch2,L

(
Φλ(L∗)

)
. The functor Φλ preserves the µL-stability.

Remark 1.8 From Theorem 1.6 and Proposition 1.7, we obtain the Bogomolov-Gieseker inequality for µL-stable
filtered local systems (Corollary 6.8). Such a kind of the inequality is discussed in [41].

Remark 1.9 Let us describe the formula
∫

X
par-ch2,L(L∗) =

∫
X

par-ch2,L(Φ(L∗)) in terms of the c-truncation

(cE∗, D
λ) of saturated regular filtered λ-flat bundle Φλ(L∗). For simplicity, we assume dimX = 2.

∫

X

par-ch2(cE∗) =
1

2

∑

i∈S

∑

u∈KMS(cE∗,i)

(
Re(λ−1α) + a

)2 · r(i, u) · (Di, Di)

+
1

2

∑

i∈S

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(cE∗,P )

(
Re(λ−1αi) + ai

)(
Re(λ−1αj) + aj

)
· r(P, ui, uj). (2)

Here, u = (a, α), ui = (ai, αi) and uj = (aj , αj) denote the KMS-spectra of (cE, Dλ), which are elements of

R × C. We put r(i, u) := rank i GrF,E
u (cE) for u ∈ KMS(cE∗, i), and r(P, ui, uj) := rank P GrF,E

(ui,uj)
(cE|P ) for

(ui, uj) ∈ KMS(cE, P ) and P ∈ Di ∩ Dj. And (Di, Dj) and
(
Di, c1(L)

)
denote the intersection numbers.

We also have some other formulas for
∫

X par-ch2

(
cE∗

)
(Proposition 3.22) or some vanishings for the data

of (cE∗, D
λ) at D (Corollary 3.20 and Proposition 3.22).

1.1.3 Vanishing of the characteristic numbers and existence of the Corlette-Jost-Zuo metric

Due to Proposition 1.7, we obtain the vanishings par-degL(E∗) =
∫

X par-ch2,L(E∗) = 0, when (E∗,∇) cor-
responds to the filtered local system whose parabolic structure is trivial, in other words, Re(α) + a = 0 is
satisfied for any KMS-spectrum u = (a, α) ∈ KMS(i) and for any i ∈ S. We can apply such a consideration
to the canonical prolongation of a flat bundle due to P. Deligne [4]. Let (E,∇) be a flat bundle on X − D.

Then, it is shown that there exists the holomorphic vector bundle Ẽ on X satisfying (i) Ẽ|X−D = E, (ii)

∇Ẽ ⊂ Ẽ ⊗Ω1,0
X (log D), (iii) the real parts of the eigenvalues of Resi(∇) are contained in [0, 1[. In that case, we

have the naturally defined parabolic structure F for which Re(α) + a = 0 are satisfied for any KMS-spectrum

(a, α). Hence, we obtain the vanishing par-degL(Ẽ, F ) =
∫

X par-ch2,L(Ẽ, F ) = 0.
This vanishing is significant to understand the existence theorem of the Corlette-Jost-Zuo metric from the

view point of Kobayashi-Hitchin correspondence. When (E,∇) is semisimple, we know the existence of a tame
pure imaginary pluri-harmonic metric, which we call the Corlette-Jost-Zuo metric. (See [3] for the case D = ∅
and [16] for the general case. See also [30].) Since semisimplicity obviously implies the µL-polystability of

(Ẽ, F ,∇) ([35], for example), we can derive the existence of the Corlette-Jost-Zuo metric from Theorem 1.1 due
to the vanishing of the characteristic numbers.
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1.2 Methods and difficulty

1.2.1 Perturbation of parabolic structure

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X . Let (E, F , Dλ)

be a parabolic λ-flat bundle on (X, D). For any small ǫ > 0, we take an ǫ-perturbation F (ǫ) of the parabolic

structure, and then (E, F (ǫ), Dλ) is graded semisimple (Subsection 2.1.6). It can be shown that the pseudo

curvature of ordinary metrics for (E, F (ǫ), Dλ) (ǫ > 0) satisfy the appropriate finiteness (Section 3). By using

the theorem of Simpson, we can take a Hermitian-Einstein metric h
(ǫ)
HE of (E|X−D, Dλ) which is adapted to

F (ǫ) (ǫ > 0). Then, we can easily derive the Bogomolov-Gieseker inequality (Theorem 1.6). We also obtain the
formulas by calculating the integrals of the characteristic numbers for pseudo curvatures, for example (2).

Let us consider the existence of a pluri-harmonic metric (Theorem 1.1). Ideally, the limit limǫ→0 h
(ǫ)
HE should

give the desired pluri-harmonic metric for the given flat parabolic bundle (E, F , Dλ). However, it is not easy to
show such a convergence. It is the main problem which we have to overcome in this paper.

1.2.2 Difficulty

In [31], we gave an argument to deal with such a convergence problem for the case λ = 0. The argument doesn’t
work in the case λ 6= 0. Let us explain what is the difference heuristically and imprecisely in the case λ = 1.

Since we have par-degL(E, F (ǫ)) = 0, the metrics h
(ǫ)
HE give the harmonic metrics in this case. Recall that a

harmonic metric can be regarded as a harmonic map, at least locally, and that we know a well established
argument for the convergence of a sequence of harmonic maps when the energies are dominated ([8]). In our

case, the energies of h
(ǫ)
HE over X −D are not finite, in general. Even if we consider the energies over a compact

subset Z ⊂ X−D, it is not clear how to derive a uniform estimate which is independent of ǫ. On the other hand,
the Higgs field is fixed for such a convergence problem in the case λ = 0. In particular, the eigenvalues of the
Higgs fields are fixed. Then, we can derive the estimate of the local L2-norm of the Higgs fields independently
from ǫ. Since such L2-norms play the role of the energies, the local convergence can be easily shown in the
Higgs case, although we need some technical argument for global convergence. On the contrary, even the local
convergence is not easy to show in the case λ 6= 0.

1.2.3 Convergences

To attack the problem, we discuss similar convergence problems in the curve case where the Kobayashi-Hitchin
correspondence was established and well understood by the work of C. Simpson [37]. Let C be a smooth
projective curve, and let D be a divisor of C. Let (E, F , Dλ) be a λ-flat stable parabolic bundle on (C, D),

and let F (ǫ) be ǫ-perturbations. Note we have det(E, F , Dλ) = det(E, F (ǫ), Dλ). We can take a sequence of

harmonic metrics h(ǫ) for (E, F (ǫ), Dλ) (ǫ ≥ 0) such that deth(ǫ) = deth(0), due to the result of Simpson.

First, we will show that the sequence {h(ǫ) | ǫ > 0} converges to h(0). Namely, let h
(ǫ)
in (ǫ > 0) be initial

metrics for (E, F (ǫ), Dλ), and let s(ǫ) be the endomorphism determined by h(ǫ) = h
(ǫ)
in · s(ǫ). Then, we can show

the following relations:

M(h
(ǫ)
in , h(ǫ)) ≤ 0,

∣∣log s(ǫ)
∣∣
h
(ǫ)
in

≤ C1,ǫ + C2,ǫ · M(h
(ǫ)
in , h(ǫ)),

∥∥Dλs(ǫ)
∥∥2

L2,h
(ǫ)
in ,ωǫ

≤
∫ ∣∣tr

(
s(ǫ) · G(h

(ǫ)
in )
)∣∣dvolωǫ

.

(3)

Here, M(h
(ǫ)
in , h(ǫ)) denote the Donaldson functionals, and ωǫ denote appropriate metrics of C − D. Hence, if

we show that Ci,ǫ can be taken independently from ǫ for some ωǫ, and if we can construct appropriate family

of initial metrics h
(ǫ)
in such that G(h

(ǫ)
in ) are uniformly bounded with respect to ωǫ and h

(ǫ)
in , then we obtain the

L2
1-boundedness of the family {s(ǫ)}. Then, by using a standard bootstrapping argument, we can show that the

sequence {s(ǫ)} is convergent to the identity in the C∞-sense, i.e., {h(ǫ)} is convergent to h(0) (Section 4).

Next, suppose that we are given hermitian metrics h̃(ǫ) := h(ǫ) · s̃(ǫ) for ǫ > 0, with the following properties:

• det h̃(ǫ) = deth(ǫ).

4



•
∫
|G(h̃(ǫ))|2 −→ 0.

•
∥∥Dλs(ǫ)

∥∥2
< ∞. (We do not need uniform bound.)

Then, we can show that {h̃(ǫ)} is convergent to h(0). (See Subsection 5.1 for more precise claims.)

We apply the above results to our convergence problem explained in Subsection 1.2.1. Due to the standard
Mehta-Ramanathan type theorem (Proposition 2.9), the restriction (E, F , Dλ)|C is also stable for almost every

very ample C ⊂ X . Let hC be a harmonic bundle of (E, F , Dλ)|C . Then, we can show that
{
h

(ǫ)
HE |C

}
is

convergent to hC almost everywhere on C for almost every very ample C ⊂ X , by using the above result.
Therefore, we obtain a metric hV defined almost everywhere on X −D such that hV |C = hC almost everywhere
on C for almost every curve C ⊂ X . With some more additional argument, we can show that hV gives the
desired pluri-harmonic metric, indeed (Subsection 5.2).

Remark 1.10 Perhaps, the argument of this paper can be used in the Higgs case, to show the existence of a
pluri-harmonic metric. However, we remark that the argument for a convergence given in [31] can be applied
in a wider range. In fact, we used it to discuss the convergence of a family of harmonic bundles induced by the
constant multiplication of Higgs fields.
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author is grateful to N. Budur, H. Konno, D. Panov and C. Sevenheck for some discussions. The author thanks
A. Ishii and Y. Tsuchimoto for their constant encouragement. He is grateful to the colleagues of Department of
Mathematics at Kyoto University for their cooperation. The author wrote the first version of this paper during
his stay at Max-Planck Institute for Mathematics. He acknowledges their excellent hospitality and support.

2 Preliminary

2.1 Generality of regular filtered λ-flat sheaf in complex geometry

The notion of a parabolic bundle, filtered bundle and their characteristic numbers are explained in Sections
3.1–3.2 of [31]. We use the notation there.

2.1.1 λ-connection

Let Y be a complex manifold, and let E be an OY -module. Recall that a λ-connection of E is defined to be a
map Dλ : E −→ E ⊗ Ω1,0

Y satisfying the twisted Leibniz rule Dλ(f · s) = f · Dλ(s) + λ · dY (f) · s, where f and
s denote holomorphic sections of OY and E respectively. The maps Dλ : E ⊗ Ωp,0 −→ E ⊗ Ωp+1,0 are induced.
When Dλ ◦ Dλ = 0 is satisfied, it is called flat.

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decom-
position D =

⋃
i∈S Di. Let E∗ =

(
E , {iF

∣∣ i ∈ S}
)

be a c-parabolic sheaf on (X, D) for some c ∈ RS . A flat

logarithmic λ-connection Dλ of E∗ is defined to be a map Dλ : E −→ E ⊗Ω1,0(log D) satisfying the same twisted
Leibniz rule as above, the flatness Dλ ◦ Dλ = 0 and Dλ(iFa) ⊂ iFa ⊗ Ω1,0(log D). Such a tuple (E∗, Dλ) will
be called a regular parabolic λ-flat sheaf. When the underlying c-parabolic sheaf E∗ is a c-parabolic bundle in
codimension k, it is called a regular λ-flat c-parabolic bundle in codimension k.

Remark 2.1 We often omit to state “regular” in this paper, because we always assume regularity. Non-regular
case is discussed in [32].

Let E∗ =
(
E, {cE}

∣∣ c ∈ RS
)

be a filtered sheaf on (X, D). A regular λ-connection of E∗ is a λ-connection

Dλ of E satisfying Dλ
(
cE
)
⊂ cE ⊗Ω1,0

X (log D). A tuple (E∗, D
λ) is called a regular filtered λ-flat sheaf. When

the underlying filtered sheaf is a filtered bundle in codimension k, it is called a regular filtered λ-flat bundle in
codimension k.
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Lemma 2.2 A regular filtered λ-flat sheaf on (X, D) is a regular filtered λ-flat bundle in codimension one.

Proof We have only to check that there exists a subset W ⊂ D with codimX(W ) ≥ 2, such that cE∗ |X\W

is a c-parabolic bundle on (X \ W, D \ W ) for some c. We can take W as
⋃

i6=j Di ∩ Dj ⊂ W , and hence
we may assume D is smooth. Since E = E|X−D is locally free and cE is torsion-free, we can take W ′ ⊂ D
with codimX(W ′) ≥ 2 such that cE|X−W ′ is locally free. We may also take a subset W ′′ ⊂ D \ W ′ with
codimX(W ′′) ≥ 2 such that the parabolic filtration of cE|D\(W ′∪W ′′) is filtration in the category of vector

bundles. Then, W = W ′ ∪ W ′′ gives the desired subset.

When X is an n-dimensional projective variety with an ample line bundle L, we can define the µ-stability,
µ-semistability, and µ-polystability of regular filtered λ-flat sheaves with respect to L, in the standard manner.
“µ-stability with respect to L” will be called µL-stability, in this paper.

2.1.2 KMS-structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D =

⋃
i∈S Di. Let (E∗, D

λ) be a regular filtered λ-flat bundle in codimension one over (X, D). For simplicity, we

consider only the case λ 6= 0. Let us take any element c ∈ RS , and the c-truncation cE∗ of E∗. We would like
to recall the KMS-structure at Di, or more precisely, at the generic point of Di. We may assume that (cE∗, D

λ)
is a c-parabolic bundle. We have the induced filtration iF on cE|Di

. We put i GrF
a (cE) := iFa

(
cE
)/

iF<a

(
cE
)
.

Recall that we use the notation:

Par(cE∗, i) :=
{
a
∣∣ ci − 1 < a ≤ ci,

i GrF
a (cE) 6= 0

}
, Par(E∗, i) :=

⋃

c∈RS

Par(cE∗, i)

Due to the regularity, we have the residue endomorphism Resi(D
λ) on cE|Di

, which preserves the filtration
iF , and hence we have the induced endomorphism GrF Resi(D

λ) of i GrF
(
cE
)
. We remark that the eigenvalues

of Resi(D
λ) are constant on Di. In particular, we obtain the generalized eigen decomposition:

i GrF
a (cE) =

⊕

α∈C

i GrF,E
a,α(cE).

We put KMS
(
cE∗, i

)
:=
{
(a, α) ∈]ci − 1, ci] × C

∣∣ i GrF,E
a,α(cE|Di

) 6= 0
}
. Each element of KMS

(
cE∗, i

)
or

KMS
(
E∗, i

)
:=
⋃

c∈RS KMS
(
cE∗, i

)
is called a KMS-spectrum.

2.1.3 Prolongment of flat subbundle and Mehta-Ramanathan type theorem

To begin with, we recall a well known fact about regular singularity of a connection.

Lemma 2.3 Let E be a holomorphic bundle on a disc ∆, and let ∇ be a logarithmic connection of E on (∆, O),
i.e., ∇(E) ⊂ E ⊗ Ω1,0

∆ (log O). Let f be a flat section of E|∆∗. Then, f naturally gives a meromorphic section

of E.

Corollary 2.4 We put X = ∆z × ∆n
w and D = {0}× ∆n

w. Let E be a holomorphic vector bundle on X and ∇
be the logarithmic connection of E on (X, D). Let e be a flat section of E|X−D.

• e gives a meromorphic section of E.

• Assume that e is holomorphic on E and that e|Q 6= 0 for some Q ∈ D. Then, e|Q′ 6= 0 for any Q′ ∈ D.

Proof We may assume that we have a holomorphic frame v of E. We have the expression e =
∑

fi(z, w) · vi.
When we fix w, then fi(z, w) are meromorphic with respect to z. Thus, we have the least integer j(w) such
that the orders of the poles of fi(z, w) are less than j(w). We put Sj := {w | j(w) ≤ j}. We have D =

⋃
j Sj .

If Sj 6= D, the measure of Sj is 0. Hence, we obtain Sj = D for some j, which means e is meromorphic. Thus,
we obtain the first claim.

Assume that e is holomorphic and that e|Q 6= 0 for some Q ∈ D. Recall that we have the induced connection
D∇ of E|D. Namely, for any holomorphic section f ∈ E|D, take a holomorphic F ∈ E such that F|D = f , and

then D∇(f) := ∇(F )|D is well defined. Since we have D∇(e|D) = 0, we obtain the second claim.
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Corollary 2.5 We put X = ∆n, Di = {zi = 0} and D =
⋃n

i=1 Di. Let (E,∇) be a logarithmic connection on
(X, D), and let e be a flat section on X − D.

• e gives a meromorphic section of E.

• Assume that e is holomorphic. We put D◦
i := Di \

⋃
j 6=i Dj. If e|Q 6= 0 for some Q ∈ D◦

i , we have e|Q′ 6= 0

for any Q′ ∈ D◦
i .

Let X be a complex manifold, and let D be a normal crossing divisor of X . Let (E,∇) be a flat bundle

on X − D. Recall that P. Deligne gave the extension Ẽ of E in [4], such that (i) Ẽ|X−D = E, (ii) ∇(Ẽ) ⊂
Ẽ⊗Ω1,0(log D), (iii) the real parts of the eigenvalues of Resi(∇) are contained in {0 ≤ t < 1}. Such an extension
is unique, or in other words, it is unique as the subsheaf of ι∗E, where ι denotes the inclusion X − D −→ X .
The prolongment can also be done for λ-flat bundle (E, Dλ) on X −D, or more precisely, for the associated flat
bundle (E, Dλ f ).

Lemma 2.6 Let (E∗, D
λ) be a regular filtered λ-flat bundle on (X, D), and we put (E, Dλ) := (E∗, D

λ)|X−D.

Let (Ẽ, Dλ) be the Deligne extension of (E, Dλ). Then, we have E = Ẽ ⊗OX(∗D), where OX(∗D) denotes the
sheaf of meromorphic functions on X whose poles are contained in D.

Proof We have the naturally defined flat section s on Hom(cE, Ẽ)|X−D. Due to Corollary 2.5, s is a meromor-

phic section, and hence we obtain the flat inclusion cE −→ Ẽ⊗O(N ·D) for some large integer N , which induce

the morphism E =
⋃

cE = cE⊗O(∗D) −→ Ẽ⊗O(∗D). Similarly, we obtain the inclusion Ẽ −→ cE⊗O(N ·D),

and Ẽ ⊗O(∗D) −→ E. They are clearly mutually inverse.

Lemma 2.7 Let (E∗, D
λ) be a regular filtered λ-flat sheaf on (X, D), and let (Ẽ, Dλ) be as in the previous

lemma. Then, we have E ≃ Ẽ ⊗O(∗D) naturally.

Proof Due to Lemma 2.2 and Lemma 2.6, there exists a subset W ⊂ D with codimX(W ) ≥ 2 such that

E|X−W ≃ Ẽ ⊗ O(∗D)|X−W . Let us fix c. There exists a large integer N such that we have cE|X−W ⊂
Ẽ⊗O(N ·D)|X−W . Since Ẽ is locally free, we obtain cE ⊂ Ẽ⊗O(N ·D), and thus E ⊂ Ẽ⊗O(∗D). On the other

hand, there exists a large integer N ′ such that Ẽ|X−W ⊂ cE ⊗O(N ′ ·D)|X−W . Hence, Ẽ ⊂ cE
∨∨ ⊗O(N ′ ·D),

where cE
∨∨ denotes the double dual of cE. Hence, we obtain Ẽ ⊗O(∗D) ⊂ cE

∨∨ ⊗ O(∗D). It is easy to see

cE
∨∨ ⊗O(∗D) ≃ cE ⊗O(∗D). Thus we are done.

Lemma 2.8 Let (E∗, D
λ) be a regular filtered λ-flat sheaf on (X, D), and we put (E, Dλ) := (E∗, D

λ)|X−D.
Let E′ be a λ-flat subbundle of E. Then, we have the corresponding regular filtered λ-flat subsheaf E′

∗ ⊂ E∗

such that cE
′ are saturated in cE.

Proof Let Ẽ denote the Deligne extension of (E, Dλ). We have the corresponding subbundle Ẽ′ ⊂ Ẽ. There-

fore, we obtain Ẽ
′

:= Ẽ′ ⊗ O(∗D) ⊂ Ẽ ⊗ O(∗D) = E. For each c, the c-truncation cE
′ is given by the

intersection of cE and E′ in E. Or equivalently, cE
′ can be given by the intersection of cE and Ẽ′(N · D) in

Ẽ(N · D) for sufficiently large N . Thus, we obtain E′
∗ ⊂ E∗.

Let us show the Mehta-Ramanathan type theorem for regular filtered λ-flat sheaves. Let X be a smooth
projective variety with an ample line bundle L and a simple normal crossing divisor D. Let (E∗, D

λ) be a regular
filtered λ-flat sheaf on (X, D). Let N be a sufficiently large number. We can take a generic hyper-plane section
Y of L⊗N satisfying the properties: (i) DY := Y ∩D is simply normal crossing in Y , (ii) π1(Y \D) −→ π1(X\D)
is surjective.

Proposition 2.9 Assume dimX ≥ 2. Then, (E∗, D
λ) is µL-stable, if and only if (E∗, D

λ)|Y is µL-stable.

Proof Let us fix c. If W ⊂ cE destabilizes, the restriction W|Y clearly destabilizes. Hence, the µL-stability

of (cE∗, D
λ)|Y implies the µL-stability of (cE∗, D

λ). Assume that (cE∗, D
λ)|Y is not µL-stable, and let W be

a subsheaf of cE|Y satisfying Dλ(W ) ⊂ W ⊗ Ω1,0
Y (log DY ) and par-deg(W∗)/ rank(W ) ≥ par-deg(cE∗)/ rankE.

7



Let Q be any point of X − D. Take a path γ connecting Q and a point P of Y \ D. By the parallel transport
along the path, we obtain the vector subspace W ′

Q ⊂ E|Q. It is independent of choices of P and γ, and we

obtain the flat subbundle W ′ ⊂ cE|X−D. Due to Lemma 2.8, we obtain the saturated subsheaf W̃ ′ ⊂ cE. By a

general argument, it can be shown that there exists a subset Z ⊂ D with codimX(Z) ≥ 2 such that W̃ ′
∗|X−Z is

a parabolic subbundle of cE|X−Z . Then, it is easy to check that W̃ ′ destabilizes.

2.1.4 Saturated regular filtered λ-flat sheaf

Let X and D be as above. Let (E∗, D
λ) be a regular filtered λ-flat sheaf (λ 6= 0).

Definition 2.10 (E∗, D
λ) is called saturated, if the following conditions are satisfied:

• There exists a subset Z ⊂ D with codimX(Z) ≥ 2, and each aE are determined on aE|X−Z . Namely, for
any open subset U ⊂ X, we have the following:

aE(U) = aE(U \ Z) ∩ E(U). (4)

It is easy to see that a regular filtered λ-flat bundle is saturated.

Lemma 2.11 Let (E∗, D
λ) be a saturated regular filtered λ-sheaf on (X, D). Then, each c-truncation cE is

reflexive.

Proof Recall we have already known that cE∗ is a filtered bundle in codimension one (Lemma 2.2). Let

cE
∨∨ denote the double dual of cE. We have the naturally defined injective map cE −→ cE

∨∨. Due to the
saturatedness, any sections of cE

∨∨ naturally gives sections of cE, i.e., cE is isomorphic to cE
∨∨.

Lemma 2.12 A saturated regular filtered λ-flat sheaf (E∗, D
λ) on (X, D) is a regular filtered λ-flat bundle in

codimension two.

Proof We have only to show that there exists a subset Z ⊂ D with codimX(Z) ≥ 3 such that cE∗ |X−Z is a
c-parabolic bundle on (X −Z, D −Z) for any c. Due to c+bE = cE ⊗O(b ·D), where b ·D =

∑
i∈S bi ·Di, we

have only to show such a claim for finite number of tuples c. Due to Lemma 2.11, there exists a subset Z ′ ⊂ D
with codimX(Z ′) ≥ 3 such that cE|X−Z′ is locally free. Hence, we can assume that cE is locally free from the
beginning.

We have the parabolic filtration iF = {iFa | ci − 1 < a ≤ ci} of cE|Di
. We can take the saturation iF̃a of

iFa. Namely, we put Ga := cE|Di

/
iFa, and let Ga tor denote the torsion-part of Ga. Let πa : cE|Di

−→ Ga

denote the projection, and we put iF̃a := π−1
a

(
Ga tor

)
.

Lemma 2.13 iF̃a = iFa.

Proof By our construction, we have iFa ⊂ iF̃a, and we also know that there exists a subset W ⊂ Di with
codimDi

(W ) ≥ 1 such that iFa |Di−W = iF̃a |Di−W .

Let P be any point of Di. Let g be a germ of a section of iF̃a at P , and let G be a local section of cE on an
open subset Uof P in X such that the germ of the restriction of G to Di gives g. Then, G|U\W gives a section
of c′E on U \ W , where c′ = (c′j) is determined by c′j = cj (j 6= i) and ci = a. Due to the saturatedness, G is a

section of c′E on U . Thus, g is the germ of a section of iFa, and iFa = iF̃a. Hence, we obtain Lemma 2.13.

Let us return to the proof of Lemma 2.12. Due to Lemma 2.13, the associated graded vector bundle
i GrF (cE|Di

) is torsion free. Hence, there exists a subset Z ′′
i ⊂ Di with codimDi

Z ′′
i ≥ 2 such that iF|Di\Z′′

i
is a

filtration in the category of vector bundles on D′′
i \ Z ′′

i . Then, cE∗ |X−Z′′ is a c-parabolic locally free sheaf on

(X − Z ′′, D − Z ′′). Thus we are done.

Remark 2.14 By the correspondence of saturated regular filtered flat bundles and filtered local systems, we can
obtain more concrete picture of the saturated regular filtered flat sheaves. We will see it in Section 6.
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2.1.5 Canonical decomposition

Let
(
E(i)
∗ , Dλ(i)

)
(i = 1, 2) be µL-semistable regular c-parabolic λ-flat sheaves such that µL(E(1)

∗ ) = µL(E(2)
∗ ).

Let f : (E(1)
∗ , Dλ (1)) −→ (E(2)

∗ , Dλ (2)) be a non-trivial morphism. Let (K∗, D
λ
K) denote the kernel of f , which is

naturally equipped with the parabolic structure and the flat λ-connection. Let I denote the image of f , and

Ĩ denote the saturated subsheaf of E(2) generated by I. The parabolic structures of E(1)
∗ and E(2)

∗ induce the
parabolic structures of I and Ĩ, respectively. We denote the induced parabolic flat sheaves by (I∗, Dλ

I) and

(Ĩ∗, Dλ
eI
). The following lemma can be shown by the same argument as the proof of Lemma 3.9 of [31].

Lemma 2.15 (K∗, D
λ
K), (I∗, Dλ

I) and
(
Ĩ∗, Dλ

eI

)
are also µL-semistable such that µL(K∗) = µL(I∗) = µL(Ĩ∗) =

µL(E(i)
∗ ). Moreover, I∗ and Ĩ∗ are isomorphic in codimension one.

Lemma 2.16 Let
(
E(i)
∗ , Dλ (i)

)
(i = 1, 2) be µL-semistable reflexive saturated regular parabolic λ-flat sheaves

such that µL(E(1)
∗ ) = µL(E(2)

∗ ). Assume either one of the following:

1. One of (E(i)
∗ , Dλ (i)) is µL-stable, and rank(E(1)) = rank(E(2)) holds.

2. Both of (E(i)
∗ , Dλ (i)) are µL-stable.

If there is a non-trivial map f : (E(1)
∗ , Dλ (1)) −→ (E(2)

∗ , Dλ (2)), then f is isomorphic.

Proof If (E(1)
∗ , Dλ (1)) is µL-stable, the kernel of f is trivial due to Lemma 2.15. If (E(2)

∗ , Dλ (2)) is µL-stable,
the image of f and E(2) are the same at the generic point of X . Thus, we obtain that f is generically isomorphic
in any case. Then, we obtain that f is isomorphic in codimension one, due to Lemma 3.7 of [31]. Since both of

E(i)
∗ are reflexive and saturated, we obtain that f is isomorphic.

Corollary 2.17 Let (E∗, Dλ) be a µL-polystable reflexive saturated regular parabolic λ-flat sheaf. Then, we have
the unique decomposition:

(E∗, Dλ) =
⊕

j

(
E(j)
∗ , Dλ (j)

)
⊗ Cm(j).

Here, (E(j)
∗ , Dλ (j)) are µL-stable with µL(E(j)

∗ ) = µ(E∗), and they are mutually non-isomorphic. It is called the
canonical decomposition in the rest of the paper.

2.1.6 Perturbation of parabolic structure

Let X be a smooth projective surface with an ample line bundle L, and D be a simple normal crossing divisor
with the irreducible decomposition D =

⋃
i∈S Di. Let (cE, F , Dλ) be a regular c-parabolic λ-flat bundle over

(X, D) for some c ∈ RS . Assume λ 6= 0. We also assume ci 6∈ Par(cE, F , i) for each i ∈ S, for simplicity. Let
Ni denote the nilpotent part of the induced endomorphism GrF Resi(D

λ) on i GrF
a (cE). Before proceeding, we

give a definition of graded semisimplicity, as in the Higgs case.

Definition 2.18 The λ-flat c-parabolic bundle (cE, F , Dλ) is called graded semisimple, if the nilpotent parts
Ni are 0 for any i ∈ S.

We would like to consider perturbation of parabolic structure, as in Subsection 3.4 of [31]. First, we will
recall general construction. Then, we will give two kinds of perturbations.

Let η be a generic point of Di. We have the weight filtration Wη of the nilpotent map Ni,η on i GrF
(
cE
)
η
,

which is indexed by Z. Then, we can extend it to the filtration W of i GrF
(
cE
)

in the category of vector bundles
on Di due to dim Di = 1. By our construction, Ni(Wk) ⊂ Wk−2. The endomorphism Resi(D

λ) preserves the
filtration W on i GrF (cE), and the nilpotent part of the induced endomorphisms on GrW

(
i GrF (cE)

)
are trivial.

Recall that the flat λ-connection Dλ locally induces the λ-connection iDλ of the vector bundle cE|Di
on Di.

Since i GrF (iDλ) commutes with Resi Dλ, it preserves the filtration W .
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Let us take the refinement of the filtration iF . For any a ∈]ci − 1, ci], we have the surjection πa :
iFa(cE|Di

) −→ i GrF
a (cE). We put iF̃a,k := π−1

a (Wk). We use the lexicographic order on ]ci − 1, ci] × Z.

Thus, we obtain the increasing filtration iF̃ indexed by ]ci − 1, ci] × Z. Obviously, the set S̃i :=
{
(a, k) ∈

]ci − 1, ci] × Z
∣∣ i Gr

eF
(a,k) 6= 0

}
is finite.

We explain the perturbation of the weight for the parabolic structure. Let ϕi : S̃i −→]ci − 1, ci] be the
increasing map such that |ϕi(a, k) − a| ≤ C · ǫ for some C > 0. (Since we are interested in the family of

the filtrations F (ǫ) (ǫ > 0), this condition makes sense.) Then, iF̃ and ϕi give the c-parabolic filtration

F (ǫ) =
(
iF (ǫ)

∣∣ i ∈ S
)
. Thus, we obtain the regular c-parabolic λ-flat bundle

(
cE, F (ǫ), Dλ

)
, which are called

the ǫ-perturbation of (cE, F , Dλ). By construction, we have the following convergence in H∗(X, R).

lim
ǫ→0

par-c1(cE, F (ǫ)) = par-c1(cE, F ), lim
ǫ→0

par-ch2(cE, F (ǫ)) = par-ch2(cE, F )

The following proposition is standard. (See Proposition 3.28 of [31], for example.)

Proposition 2.19 Assume that
(
cE, F , Dλ

)
is µL-stable. If ǫ is sufficiently small, then the ǫ-perturbation(

cE, F (ǫ), Dλ
)

is also µL-stable.

We will use two kinds of perturbations ϕi of parabolic weights.

(I) The image of ϕi is contained in Q for each i ∈ S. This perturbation will be used to obtain the formula for
the parabolic characteristic numbers.

(II) For simplicity, we assume ǫ = m−1 and 0 < 10 rankE · ǫ < gap(cE, F ). (See Subsection 3.1 of [31] for
gap.) Let i ∈ S. For each a ∈ Par(cE, F ), we take a′(ǫ, i) ∈ m−1 · Z such that |a′(ǫ, i) − a| < m−1. Let
L(ǫ, i) ∈ R be determined by the following:

L(ǫ, i) · rank(E) :=
∑

(a(ǫ, i) − a) · rank i GrF
a (cE)

Then, we put a(ǫ, i) := a′(ǫ, i)−L(ǫ, i) and ϕ(a, k) := a(ǫ, i)+k · ǫ. By construction, we have the following
equality: ∑

a,k

ϕ(a, k) · rank
(
i GrF

a (cE)
)

=
∑

a

a · rank
(
i Gr

eF
a,k(cE)

)

Hence, we have par-c1(cE, F ) = par-c1(cE, F (ǫ)). For each i, we also have some −1/m < γi ≤ 0 such

that Par(cE, F (ǫ), i) is contained in
{
ci + γi + p/m

∣∣ p ∈ Z≤0, −1 < γi + p/m ≤ 0
}
.

Remark 2.20 The construction given in this subsection is valid, when the base manifold X is a curve.

2.1.7 Remarks about the terminology and the notation

We give some remarks about the terminology “parabolic structure”. Let X be a complex manifold, and let D
be a simple normal crossing divisor of X with the irreducible decomposition D =

⋃
i∈S Di. We often discuss

a regular c-parabolic λ-flat bundle on (X, D) for some c ∈ RS . In our most arguments, a choice of c are not
relevant. In fact, c is fixed to be (0, . . . , 0) in many references where the parabolic structure is discussed. But,
it is sometimes convenient to avoid the case ci ∈ Par(cE∗, i), for example, when we consider a perturbation of
the parabolic structure. That is the main reason why we consider general c-parabolic structure.

In the following argument, we often assume ci 6∈ Par(cE∗, i) implicitly, and we often omit to distinguish c,
and use the terminology “parabolic structure” instead of “c-parabolic structure”, when we do not have to care
about a choice of c. The author hopes that there will be no risk of confusion and that it will reduce unnecessary
complexity of the description.

Relatedly we have the remark about the notation to denote parabolic bundles. We often use the notation
(cE, F ) or cE∗ to denote a c-parabolic bundle, when we would like to distinguish c. The notation “cE” is also
appropriate and useful, when we regard it as a prolongment of the locally free sheaf E on X −D. But, in some
case, a vector bundle is given not only on X − D but also on X from the beginning. And, as is said above,
we will not care about a choice of c. In such a case, we often prefer to using the notation (E, F ) or E∗ for
simplicity of the description.
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2.2 Generality for λ-connection in the C∞-category

We will give some generality for λ-connections. They are straightforward generalization of the argument for
Higgs bundles or flat bundles given in Simpson’s papers (for example [36] and [38]), and hence we will often
omit to give a detailed proof. For simplicity, we will assume λ 6= 0.

2.2.1 The induced operators

Let X be a complex manifold, and (E, Dλ) be a flat λ-connection on X . We have the decomposition of Dλ into
the (0, 1)-part d′′E and the (1, 0)-part d′E . The holomorphic structure of E is given by d′′E . Recall that the twisted
Leibniz rule d′E(f ·v) = λ·∂X(f)v+f ·d′Ev holds for f ∈ C∞(X) and v ∈ C∞(X, E). Let h be a hermitian metric
of E. From d′′E and h, we obtain the (1, 0)-operator δ′E,h determined by ∂h(u, v) = h(d′′Eu, v)+h(u, δ′E,hv). From
d′E and h, we obtain the (0, 1)-operator δ′′E,h determined by λ∂h(u, v) = h(d′Eu, v) + h(u, δ′′E,hv). We remark

δ′′E,h(f · v) = λ · ∂Xf · v + f · δ′′E,h(v). We obtain the following operators:

∂E,h :=
1

1 + |λ|2 (d′′E + λδ′′E,h), ∂E,h :=
1

1 + |λ|2 (λd′E + δ′E,h),

θ†E,h :=
1

1 + |λ|2 (λd′′E − δ′′E,h), θE,h :=
1

1 + |λ|2 (d′E − λδ′E,h).

(5)

It is easy to see that the following Leibniz rule holds:

∂E,h(fs) = ∂Xf · s + f · ∂E,hs, ∂E,h(fs) = ∂Xf · s + f · ∂E,hs.

On the other hand, θ and θ† give the sections of End(E) ⊗ Ω1,0 and End(E) ⊗ Ω0,1 respectively. We also have
the formulas:

d′′E = ∂E,h + λθ†E,h, d′E = λ∂E,h + θE,h, δ′E,h = ∂E,h − λθE,h, δ′′E,h = λ∂E,h − θ†E,h.

Remark 2.21 The index “E, h” is attached to emphasize the bundle E and the metric h. We will often omit
them if there are no risk of confusion.

Remark 2.22 We have the hermitian product (·, ·)h :
(
E ⊗Ω·

)
⊗
(
E ⊗ Ω·

)
−→ Ω· induced by h. For a section

A of End(E) ⊗ Ωp,q, let A†
h denote the section of End(E) ⊗ Ωq,p which is the adjoint of A with respect to h in

the sense
(
A · u, v

)
h

=
(
u, A†

hv
)
h
. The above θ†h is the adjoint of θh in this sense.

We put Dλ ⋆
h := δ′h − δ′′h = ∂h + θ†h − λ(∂h + θh). We have the following formula:

∂h + θh =
Dλ − λDλ ⋆

h

1 + |λ|2 , ∂h + θ†h =
Dλ ⋆

h + λDλ

1 + |λ|2 .

We recall that h is called a pluri-harmonic metric if (∂h + θh)2 = 0 holds, i.e., (E, ∂h, θh) is a Higgs bundle.
The condition is equivalent to

[
Dλ, Dλ ⋆

h

]
= 0. In the following, a λ-flat bundle with pluri-harmonic metric is

called a harmonic bundle.
Let us consider the case where X is provided with a Kahler form ω. For a differential operator A of E ⊗Ω·

of degree one, i.e., A : C∞(X, E ⊗ Ωi) −→ C∞(X, E ⊗ Ωi+1), let A∗ denote a formal adjoint with respect to ω
and h, i.e.,

∫
X(Au, v)h,ω dvolω =

∫
X(u, A∗v)h,ω dvolω hold for any C∞-sections u and v with compact supports.

Here, (·, ·)h,ω denotes the Hermitiann inner product of appropriate vector bundles induced by h and ω.

Lemma 2.23
(
Dλ ⋆

)∗
=

√
−1
[
Λω, Dλ

]
and

(
Dλ
)∗

= −
√
−1
[
Λω, Dλ ⋆

]
.

Proof It follows from the relations ∂∗ =
√
−1[Λω, ∂E ], ∂

∗
= −

√
−1[Λω, ∂E ], θ∗ = −

√
−1[Λω, θ†] and (θ†)∗ =√

−1[Λω, θ].

The Laplacian ∆λ
h,ω : C∞(X, E) −→ C∞(X, E) is defined by ∆λ

h,ω :=
√
−1ΛωDλDλ ⋆.
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Remark 2.24 For the differential operators of functions, ∆λ
ω :=

√
−1Λ(∂+λ∂)◦(∂−λ∂) = (1+|λ|2)

√
−1Λ∂∂ =

(1 + |λ|2)∆′′
ω, where ∆′′

ω denotes the usual Laplacian
√
−1Λω∂∂.

Lemma 2.25 When λ 6= 0, we have λ
−1

∂2
h + λ−1θ2

h = 0 and λ−1∂
2

h + λ
−1

(θ†h)2 = 0.

Proof From the flatness (Dλ)2 = 0, we obtain the following formulas:

(∂h + λθ†h)2 = ∂
2

h + λ∂hθ†h + λ2(θ†h)2 = 0, (6)

(λ∂h + θh)2 = λ2∂2
h + λ∂hθh + θ2

h = 0, (7)
[
∂h + λθ†h, λ∂h + θh

]
= λ

([
∂h , ∂h

]
+
[
θ†h, θh

])
+ ∂hθh + λ2∂hθ†h = 0. (8)

It is easy to see (∂
2

h)†h = −∂2
h, (∂hθ†h)† = ∂hθh and (θ†h)2 = −(θ2

h)†. Therefore, we obtain the following equality
from (6):

− ∂2
h + λ

(
∂hθh

)
− λ

2
θ2

h = 0. (9)

From (7) and (9), we obtain
(
λ + λ

−1)
∂2

h +
(
λ−1 + λ

)
θ2

h = (1 + |λ|2)
(
λ
−1

∂2
h + λ−1θ2

h

)
= 0, which gives the first

formula in the lemma. The second formula can be obtained by taking the adjoint.

Lemma 2.26 When λ 6= 0, we have λ
−1 · ∂hθ†h + λ−1 · ∂hθh = 0 and

[
∂h , ∂h

]
+
[
θh , θ†h

]
= 0.

Proof It is easy to check [∂h, ∂h]†h = −[∂h, ∂h], [θh, θ†h]†h = −[θh, θ†h] and (∂hθh)†h = ∂hθ†h. Hence, we obtain
the following equality from (8):

− [∂h, ∂h] − [θ†h, θh] + λ
−1 · ∂hθ†h + λ · ∂hθh = 0. (10)

The claim of the lemma immediately follows from (8) and (10).

Corollary 2.27 When λ 6= 0, the pluri-harmonicity of the metric h is equivalent to the vanishings θ2
h = 0 and

∂hθh = 0.

2.2.2 Local expression

Let (E, Dλ) be a flat λ-connection, and let h be a C∞-metric. Let v = (v1, . . . , vr) be a holomorphic frame of
E. Let H = H(h, v) denote the hermitian matrix valued function of h with respect to v, i.e., Hi,j = h(vi, vj).
Let us see the local expression of the induced operators.

Let A denote the M(r)-valued (1, 0)-form of Dλ with respect to v, i.e., Dλv = v · A, in other words,
Dλvi =

∑
Aj i · vj . Let B denote the (1, 0)-form of δ′h with respect to v, i.e., δ′hv = v · B, and then we have

∂h(vi, vj) = h
(
vi, δ

′
hvj

)
=
∑

h
(
vi, Bk,jvk

)
. Hence, ∂H = H · B, i.e., we obtain B = H

−1
∂H. Let C denote the

(0, 1)-form of δ′′h with respect to v, i.e., δ′′hv = v ·C, and then we have λ · ∂h(vi, vj) = h(d′vi, vj) + h(vi, δ
′′
hvj) =∑

k h(Ak,ivk, vj) +
∑

k h(vi, Ck,jvk). Hence, λ∂H = tAH + HC, i.e., we obtain C = λ · H−1
∂H − H

−1tAH .
Thus, we obtain the following:

θhv = v · 1

1 + |λ|2 (A − λH
−1

∂H), ∂hv = v · λ

1 + |λ|2 (λ · H−1
∂H − A†

h).

Here, A† denote the adjoint of A with respect to h, i.e., A†
h = H

−1 · tA · H.

2.2.3 Pseudo curvature and the Hermitian-Einstein condition

Assume λ 6= 0. For a flat λ-connection (E, Dλ) with a hermitian metric h, the pseudo curvature G(h, Dλ) is
defined as follows:

G(h, Dλ) :=
[
Dλ, Dλ ⋆

h

]
= − (1 + |λ|2)2

λ
(∂h + θh)2.

Then, a hermitian metric h is a pluri-harmonic metric for (E, Dλ), if and only if G(h, Dλ) = 0 holds. We will
often use the notation G(h) or Gh instead of G(h, Dλ) if there are no risk of confusion.

When X is provided with a Kahler form ω, a Hermitian-Einstein condition for h is ΛωG(h, Dλ)⊥ = 0, where
“⊥” means the trace free part.
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2.2.4 Some relations between curvature and pseudo curvature

By the construction of δ′h, the operator d′′ + δ′h is a unitary connection of (E, h). The curvature of d′′ + δ′h is
denoted by R(d′′, h). We have the following expression of R(d′′, h) due to [d′′, d′] = 0:

R(d′′, h) =
[
d′′, δ′h

]
=
[
d′′, λ−1d′

]
− 1 + |λ|2

λ

[
d′′, θh

]
= −1 + |λ|2

λ

(
∂hθh + λ[θ†h, θh]

)
. (11)

Lemma 2.28 The following equality holds:

tr R(d′′, h) =
1

1 + |λ|2 tr G(Dλ, h) = −1 + |λ|2
λ

∂ tr θh. (12)

Proof From (11), we obtain trR(d′′, h) = −(1 + |λ|2)λ−1 · ∂ tr θh. On the other hand, we have the following:

tr G(h, Dλ) = −
(
1 + |λ|2

)2

λ
tr
(
∂

2

h + ∂hθh + θ2
h

)
= −

(
1 + |λ|2

)2

λ
∂ tr θh.

Here, we have used tr(θ2
h) = 0, which implies tr(∂

2

h) = 0 due to Lemma 2.25. Thus we are done.

Lemma 2.29 In the case dimX = 2, we have the following formula:

tr
(
R(d′′, h)2

)
=

1

(1 + |λ|2)2 tr
(
G(h, Dλ)2

)
− (1 + |λ|2)2

λ
∂ tr(θ2

h · θ†h).

Proof We have the following:

tr
(
G(h, Dλ)2

)
=

(1 + |λ|2)4
λ2

(
tr
(
(∂hθh)2

)
+ 2 tr

(
∂

2

h · θ2
h

))

tr
(
R(h, d′′)2

)
=

(1 + |λ|2)2
λ2

(
tr
(
(∂hθh)2

)
+ 2λ tr

(
∂hθh · [θh, θ†h]

)
+ λ2 tr

(
[θh, θ†h]2

))
.

Since we have tr
(
[θh, θ†h]2

)
= −2 tr

(
θ2

hθ† 2
h

)
and (∂h + λθ†h)2 = ∂

2

h + λ∂hθ†h + λ2θ† 2
h = 0, we obtain the following:

λ2 tr
(
[θh, θ†h]2

)
= −2 tr

(
λ2 · θ2

h · θ† 2
h

)
= 2 tr

(
∂

2

h · θ2
h + λ · ∂hθ†h · θ2

h

)
.

Hence, we have the following equality:

tr
(
R(h, d′′)2

)
=

(
1 + |λ|2

λ

)2 (
tr
(
(∂hθh)2

)
+ 2λ tr

(
∂hθh · [θh, θ†h]

)
+ 2 tr

(
∂

2

h · θ2
h

)
+ 2λ tr

(
∂hθ†h · θ2

h

))
.

We also remark the following:

tr
(
∂hθh · [θh, θ†h]

)
+ tr(θ2

h · ∂hθ†h) = tr
(
(∂hθh) · θh · θ†h

)
+ tr

(
∂hθh · θ†h · θh

)
− tr

(
θh · ∂hθ†h · θh

)

= ∂ tr
(
θh · θ†h · θh

)
= −∂ tr(θ2

h · θ†h). (13)

Then, the claim of the lemma immediately follows.

2.2.5 Change of hermitian metrics

Let hi (i = 1, 2) be hermitian metrics of E. The endomorphism s is determined by h2 = h1 · s, i.e., h2(u, v) =
h1

(
s ·u, v

)
= h1

(
u, s ·v

)
, which is self-adjoint with respect to both of hi. Then, we have the relations δ′h2

=
δ′h1

+ s−1δ′h1
s and δ′′h2

= δ′′h1
+ s−1δ′′h1

s. Therefore, we have the following relations from (5):

∂h2 = ∂h1 +
λ

1 + |λ|2 s−1δ′′h1
s, ∂h2 = ∂h1 +

1

1 + |λ|2 s−1δ′h1
s,
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θ†h2
= θ†h1

− 1

1 + |λ|2 s−1δ′′h2
s, θh2 = θh1 −

λ

1 + |λ|2 s−1δ′h1
s.

We also have Dλ ⋆
h2

= Dλ ⋆
h1

+ s−1Dλ ⋆
h1

s, and thus
[
Dλ, Dλ ⋆

h2

]
=
[
Dλ, Dλ ⋆

h1

]
+ Dλ(s−1) · Dλ ⋆

h1
s + s−1DλDλ ⋆

h1
s. Then,

we obtain the following formula:

∆λ
h1,ωs = s

√
−1
(
ΛωG(h2) − ΛωG(h1)

)
+
√
−1ΛωDλs · s−1Dλ ⋆s. (14)

In particular, we obtain the following formula by taking the trace:

∆λ
ω tr(s) = tr

(
s
√
−1
(
ΛωG(h2) − ΛωG(h1)

))
−
∣∣Dλ(s)s−1/2

∣∣2
h1,ω

. (15)

As in Lemma 3.1 of [36], we can derive the following inequality:

∆λ
ω log tr(s) ≤

∣∣ΛωG(h1)
∣∣
h1

+
∣∣ΛωG(h2)

∣∣
h2

(16)

2.3 Review of existence result of a Hermitian-Einstein metric due to Simpson

2.3.1 Analytic stability of flat λ-bundle

Let X be a complex manifold with a Kahler form ω. In this subsection, we impose the following condition as
in [36].

Condition 2.30

1. The volume of X with respect to ω is finite.

2. There exists a C∞-function φ : X −→ R≥ 0 with the following properties:

• {x ∈ X |φ(x) ≤ a} is compact for any a.

• 0 ≤
√
−1∂∂φ ≤ C · ω, and ∂φ is bounded with respect to ω.

3. There exists a continuous increasing function a : [0,∞[−→ [0,∞[ with the following properties:

• a(0) = 0 and a(t) = t for t ≥ 1.

• Let f be a positive bounded function on X such that ∆ωf ≤ B for some B ∈ R. Then, there exists
a constant C(B), depending only on B, such that supX |f | ≤ C(B) · a

(∫
X
|f | · dvolω

)
. Moreover,

∆ω(f) ≤ 0 implies ∆ω(f) = 0.

Let (E, Dλ) be a λ-flat bundle on X . There are two conditions on the finiteness of the pseudo curvature of
(E, Dλ, h). The stronger one is the following:

sup
∣∣G(h, Dλ)

∣∣
h,ω

< ∞. (17)

The finiteness (17) implies the weaker one:

sup
∣∣ΛωG(h, Dλ)

∣∣
h,ω

< ∞. (18)

When we are given a hermitian metric h of E satisfying the finiteness (18), the degree degω(E, h) is defined
as follows:

degω(E, h) :=

√
−1

2π

∫

X

trG(h, Dλ)

1 + |λ|2 · ωn−1 =

√
−1

2π

∫

X

trR(h, d′′) · ωn−1.

Here, we have used (12). For any λ-flat bundle (V, Dλ
V ) ⊂ (E, Dλ), the restriction hV := h|V induces degω(V, hV ).

As in Lemma 3.2 of [36], we have the Chern-Weil formula. The proof is same.
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Lemma 2.31 Let πV denote the orthogonal projection of E onto V . Then, the following equality holds:

degω(V, hV ) =
1

2π

1

1 + |λ|2
(√

−1

∫

X

tr
(
πV ◦ G(h, Dλ)

)
· ωn−1 −

∫

X

∣∣DλπV

∣∣2
h,ω

)

The value is finite or −∞, when (18) is satisfied.

Definition 2.32 (E, Dλ, h) is defined to be analytically stable with respect to ω, if the inequality

degω(V, hV )

rankV
<

degω(E, h)

rankE

holds for any (V, Dλ
V ) ⊂ (E, Dλ).

2.3.2 Existence theorem of Simpson and some consequence

Proposition 2.33 Let (X, ω) be a Kahler manifold satisfying Condition 2.30, and let (E, Dλ, h0) be a metrized
flat λ-connection satisfying (17). Assume that (E, Dλ, h0) is analytically stable with respect to ω. Then, there
exists a hermitian metric h = h0 · s satisfying the following conditions:

• h and h0 are mutually bounded.

• det(h) = det(h0).

• Dλ(s) is L2 with respect to h0 and ω.

• It satisfies the Hermitian Einstein condition ΛωG(h)⊥ = 0, where G(h)⊥ denotes the trace free part of
G(h).

• The following equalities hold:

∫

Y

tr
(
G(h)2

)
· ωn−2 =

∫

Y

tr
(
G(h0)

2
)
· ωn−2,

∫

Y

tr
(
G(h)⊥ 2

)
· ωn−2 =

∫

Y

tr
(
G(h0)

⊥ 2
)
· ωn−2.

We do not give a proof of this proposition, because we need only minor modification of the proof of Theorem
1, Proposition 3.5 and Lemma 7.4 of [36]. Indeed, we have only to replace D′′, D′ and F (h) with Dλ, Dλ ⋆

and G(h), and to make some obvious modification of positive constant multiplications, as was mentioned by
Simpson himself. (See the page 754 of [37], for example. Remark that “Dc” corresponds to our −Dλ ⋆, and
hence our G(h) is slightly different from his.) The author recommends the reader to read a quite excellent
discussion in [36]. However, we will use some results related with the Donaldson functional, which are obtained
from the proof. Hence, we recall a brief outline of the proof of Proposition 2.33. We will use the notation in
Subsection 2.4.

Let h0 be a metric for (E, Dλ) satisfying the finiteness (18). Let us consider the heat equation for the self
adjoint endomorphisms st with respect to h0:

s−1
t

dst

dt
= −

√
−1ΛωG(ht)

⊥. (19)

A detailed argument to solve (19) is given in Section 6 of [36]. Moreover, ΛωG(ht) is shown to be uniformly
bounded. We do not reproduce them here.

Then, we would like to show the existence of an appropriate subsequence ti → ∞ such that {sti
} converges to

s∞ weakly in Lp
2 locally on X , and we would like to show that h∞ = h0 ·s∞ gives the desired Hermitian-Einstein

metric. For that purpose, Simpson used the Donaldson functional M
(
h0, h0sti

)
. (We recall the definition and

some fundamental property in Subsection 2.4, below.) He showed that there exist positive constants Ci (i = 1, 2)
such that the following holds: (Proposition 5.3 of [36]. We review it in Proposition 2.41. We will use the notation
there in the following.)

sup | log st| ≤ C1 + C2 · M(h0, h0st). (20)
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He also showed (Lemma 7.1 of [36]) that M(h0, h0st) is C1 with respect to t, and that the following formula
holds:

d

dt
M
(
h0, h0st

)
= −

∫

X

∣∣ΛωG(ht)
⊥
∣∣2
ht,ω

≤ 0. (21)

Since we have M(h0, h0) = 0 by definition, we obtain M(h0, h0st) ≤ 0 from (21). Then, we obtain the
boundedness of st from (20). For the solution of (19), we have det(st) = 1. Hence, we also obtain the
boundedness of s−1

t . We also obtain the existence of a subsequence {t′i} such that
∣∣ΛωG(h′

ti
)
∣∣
L2 −→ 0.

From the uniform boundedness of st and ΛωG(ht), we obtain the lower bound of M
(
h0, h0st

)
. (See Corollary

2.40 in this paper, for example.) Moreover, we obtain the uniform bound of
∫

X

∣∣Dλut

∣∣2
h0

due to the positivity

of Ψ given in (26), where st = exp(ut). Due to the boundedness of st and s−1
t , we also obtain the boundedness

of
∫

X

∣∣Dλst

∣∣2
h0

. Then, we obtain the L2
1 boundedness. Hence, we can take a subsequence {t′′i } such that st′′

i

converges to some s∞ weakly in L2
1 locally on X − D. Due to some more excellent additional argument given

in the page 895 of [36], it can be shown that the convergence is weakly Lp
2 locally on X − D, for any p. As a

result, we obtain the Hermitian-Einstein metric.
By the above argument, we can derive the following lemma, which we would like to use in the later discussion.

Lemma 2.34 Let h0 be the hermitian metric satisfying (17). Let hHE be the Hermitian-Einstein metric ob-
tained in Proposition 2.33. Then, we have M

(
h0, hHE

)
≤ 0.

Proof Recall that hHE is obtained as the limit h0 ·s∞ of some sequence {h0sti
}, and we have M(h0, h0 ·sti

) ≤ 0.
We use the formula (25). Let Z be any compact subset of X . The sequence {sti

} converges to s∞ in C0 on Z.
The sequence {ΛωG(hti

)} converges to ΛωG(hHE) weakly in L2 on Z. Therefore, we have the convergence:

lim
ti→∞

∫

Z

tr
(
uti

· ΛωG(hti
)
)
dvolω =

∫

Z

tr
(
u∞ · ΛωG(hHE)

)
dvolω .

Here, ut are given by exp(ut) = st. Since supX |st| and supX |ΛG(ht)| are bounded independently of t, we can
easily obtain the convergence:

lim
ti→∞

∫

X

tr
(
uti

· ΛωG(hti
)
)
dvolω =

∫

X

tr
(
u∞ · ΛωG(hHE)

)
dvolω .

We have the C0-convergence of the sequence {Dλuti
} to Dλu∞. Hence, we have the following inequality due to

Fatou’s lemma: ∫

X

(
Ψ(u∞)Dλu∞, Dλu∞

)
dvolω ≤ lim

∫

X

(
Ψ(uti

)Dλuti
, Dλuti

)
dvolω .

Then, we obtain the desired inequality.

2.3.3 Uniqueness

The following proposition can be shown by an argument similar to the proof of Proposition 2.6 of [31] via the
method in [36]. We state it for the reference in the later discussion.

Proposition 2.35 Let (X, ω) be a complete Kahler manifold satisfying Condition 2.30, and (E, Dλ) be a λ-flat
bundle on X. Let hi (i = 1, 2) be hermitian metrics of E such that ΛωG(hi) = 0. We assume that hi (i = 1, 2)
are mutually bounded. Then, the following holds:

• We have the decomposition of λ-flat bundles (E, Dλ) =
⊕

(Ea, Dλ
a) which is orthogonal with respect to both

of hi (i = 1, 2).

• The restrictions of hi to Ea are denoted by hi,a. Then, there exist positive numbers ba such that h1,a =
ba · h2,a.

Proof Let s be determined by h2 = h1 · s. We can show Dλs = 0 by the argument explained in the proof of
Proposition 2.6 of [31]. Note we are considering the case λ 6= 0. Hence, the eigen decomposition of s is Dλ-flat,
which gives the desired decomposition.
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2.4 Review of Donaldson functional

We recall the Donaldson functional, by following Donaldson and Simpson ([5] and [36]).

2.4.1 Functions of self-adjoint endomorphisms

Let V be a vector space over C with a hermitian metric h. Let S(V, h) denote the set of the endomorphisms
of V which are self-adjoint with respect to h. Let ϕ : R −→ R be a continuous function. Then, ϕ(s) is
naturally defined for any s ∈ S(V, h). Namely, let v1, . . . , vr be the orthogonal base which consists of the
eigen vectors of s, and let v∨1 , . . . , v∨r be the dual base. Then, we have the description s =

∑
κi · v∨i ⊗ vi, and

we put ϕ(s) :=
∑

ϕ(κi) · v∨i ⊗ vi. Thus, we obtain the induced map ϕ : S(V, h) −→ S(V, h), which is well
known to be continuous. To see the continuity, for example, we can argue as follows: Let U(h) denote the
unitary group with respect to h. Take e = (e1, . . . , er) be an orthogonal base of V . Let T denote the set of
endomorphisms of V which is diagonal with respect to the base e. Then, we have the continuous surjective
map π : U(h) × T −→ S(V, h) given by (u, t) 7−→ u · t · u−1. It is easy to check the continuity of the composite
ϕ ◦ π. Since the topology of S(V, h) is same as the induced topology via π, we obtain the continuity. When ϕ
is real analytic given by the convergent power series

∑
aj · tj , then ϕ(s) =

∑
aj · sj . The induced map is real

analytic in this case.
Let Ψ : R × R −→ R be a continuous function. For a self-adjoint map s ∈ S(V, h), let v1, . . . , vr and

v∨1 , . . . , v∨r be as above. Then, we put Ψ(s)(A) =
∑

Ψ(κi, κj) · Ai,j · v∨i ⊗ vj for any endomorphism A =∑
Ai,j ·v∨i ⊗ vj of V . Thus, we obtain Ψ : S(V, h) −→ S(End(V ), h), which is also well known to be continuous.

Here, S(End(V ), h) denotes the set of the self-adjoint endomorphisms of End(V ) with respect to the metric
induced by h. To see the continuity, we can use the same argument as above. When Ψ is real analytic given by
a power series,

∑
bm,ntm1 tn2 , then we have Ψ(s)(A) =

∑
bm,nsm · A · sn, and the induced map is real analytic.

Let ϕ : R −→ R be C1, and let dϕ : R2 −→ R2 denote the continuous function given by dϕ(t1, t2) =
(t1− t2)

−1
(
ϕ(t1)−ϕ(t2)

)
(t1 6= t2) and dϕ(t1, t1) = ϕ′(t1). In this case, the induced map ϕ : S(V, h) −→ S(V, h)

is also C1, and the derivative at s is given by dϕ(s). To see it, we can argue as follows: When ϕ is real analytic,
the claim can be checked by a direct calculation. In general, we can take an approximate sequence ϕi −→ ϕ
by real analytic functions on an appropriate compact neighbourhoods of the eigenvalues of s ∈ S(V, h). The
induced maps ϕi : S(V, h) −→ S(V, h) and dϕi : S(V, h) −→ S(End(V ), h) uniformly converge to ϕ and dϕ on
an appropriate compact neighbourhoods of s. Then, we can derive that ϕ is the integral of the form dϕ by a
general fact.

The construction can be done on manifolds. Namely, let E be a C∞-vector bundle with a hermitian metric
h. Let Sh(E) (or simply Sh) be the bundle of the self-adjoint endomorphisms of (E, h), and let Sh(End(E)) be
the bundle of the self-adjoint endomorphisms of (End(E), h). Then, a continuous function ϕ : R −→ R induces
ϕ : Sh(E) −→ Sh(E), and Ψ : R2 −→ R induces Ψ : Sh(E) −→ Sh(End(E)). We have Dλϕ(s) = dϕ(s)

(
Dλs

)
,

when ϕ is C1.

2.4.2 A closed one form

Let (X, ω) and (E, Dλ) be as in Subsection 2.3.1. Following Simpson [36], we introduce the space P (Sh), which
consists of sections s of Sh(E) satisfying the following finiteness:

‖s‖h,ω,P := sup
X

|s|h + ‖Dλs‖2,h,ω + ‖∆λ
h,ωs‖1,h,ω < ∞.

Here, ‖ · ‖p,h,ω denote the Lp-norm with respect to (h, ω). We will omit to denote ω and h, when there are no
risk of confusion. The following lemma corresponds to Proposition 4.1 (d) in [36]. The proof is same.

Lemma 2.36 Let ϕ and Ψ are analytic functions on R with infinite radius of convergence. Then, ϕ : P (Sh) −→
P (Sh) and Ψ : P (Sh) −→ P (Sh(End(E))) are analytic.

Let h be a metric satisfying (18). Let P+(Sh) denote the set of the self-adjoint positive definite endomor-
phisms s with respect to h such that ‖s‖h,P < ∞ and ‖s−1‖h,P < ∞. Note ‖s‖h,P < ∞ and sup |s−1|h < ∞
imply ‖s−1‖h,P < ∞. We put Ph :=

{
h · s

∣∣ s ∈ P+(Sh)
}
. It is easy to see that any h1 ∈ Ph also satisfies (18)

due to (14). It is also easy to see Ph = Ph1 for h1 ∈ Ph.
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Let P(Sh) denote the space of the self-adjoint endomorphisms s with respect to h such that ‖s‖P,h < ∞. It
is easy to see that P+(Sh) is open in P(Sh). In particular, we obtain the Banach manifold structure of P+(Sh).
By the natural bijection Ph ≃ P+(Sh1) for h1 ∈ Ph, we also obtain the Banach manifold structure of Ph, which
is independent of a choice of h1 ∈ Ph. We have the map P(Sh1) −→ P+(Sh1) given by s 7−→ es (Lemma
2.36). It gives a diffeomorphism around 0 ∈ P(Sh1) and 1 ∈ P+(Sh1). Therefore, the map P(Sh1) −→ Ph by
s 7−→ h1 · es gives a diffeomorphism around 0 and h1. In particular, the tangent space Th1Ph can be naturally
identified with P(Sh1) for any h1 ∈ Ph. We also have the natural isomorphism P(Sh1) ≃ P(Sh) given by
t 7−→ u · t for h1 = h · u ∈ Ph, which gives the local trivialization of the tangent bundle.

For any h1 ∈ Ph and s ∈ Th1Ph, we put as follows:

Φh1(s) :=

∫

X

Φ′
h1

(s) dvolω ∈ C, Φ′
h1

(s) :=
√
−1 tr

(
s · ΛωG(Dλ, h1)

)
.

Then, Φ′ gives the L1(X, Ω1,1
X )-valued one form on Ph, and Φ gives the one form of Ph. The differentiability of

Φ is easy to see.

Lemma 2.37 Φ is a closed one form.

Proof In the following argument, we use the notation Dλ ⋆ instead of Dλ ⋆
h . Let k1, k2 ∈ Ph. They naturally

give the vector field by addition. At any point h1 ∈ Ph, they give the tangent vectors σ = h−1
1 k1 and τ = h−1

1 k2

in Th1Ph = P(Sh1). Hence, we have the following at h + ǫk1:

Φh+ǫk1(k2) =
√
−1

∫
tr
(
(h + ǫk1)

−1 · k2 · G(h + ǫk1)
)
· ωn−1.

We have (h + ǫk1)
−1k2 = (1 + ǫσ)−1τ = τ − ǫστ + (1 + ǫσ)−2ǫ2σ2τ . Remark σ2τ is bounded. We also have the

following:

(1 + ǫσ)
(
G(h + ǫk1) − G(h)

)
= DλDλ ⋆(1 + ǫσ) − Dλ(1 + ǫσ) · (1 + ǫσ)−1Dλ ⋆(1 + ǫσ)

= ǫDλDλ ⋆σ − ǫ2Dλσ · (1 + ǫσ)−1Dλ ⋆σ. (22)

Hence, we have G(h+ ǫk1)−G(h) = ǫDλDλ ⋆σ+ ǫ2R0(ǫ, σ, τ), where R0(ǫ, σ, τ) is an L1-section of End(E)⊗Ω2,
and the L1-norm is bounded independently from ǫ. Therefore, we obtain the following:

Φh+ǫk1(k2) − Φh(k2) =
√
−1

∫
tr
(
(h + ǫk1)

−1 · k2 · G(h + ǫk1)
)
· ωn−1 −

√
−1

∫
tr
(
h−1 · k2 · G(h)

)
· ωn−1

=
√
−1

∫
tr
(
τG(h + ǫk1) − τG(h)

)
· ωn−1 − ǫ

√
−1

∫
tr
(
στG(h + ǫk1)

)
· ωn−1 + ǫ · R1(ǫ, σ, τ)

= ǫ

(√
−1

∫
tr
(
τDλDλ ⋆σ

)
· ωn−1 −

√
−1

∫
tr
(
σ · τ · G(h)

)
· ωn−1

)
+ ǫR2(ǫ, σ, τ). (23)

Here, we have Ri(ǫ, σ, τ) −→ 0 (i = 1, 2) in ǫ → 0, due to ‖σ‖P < ∞ and ‖τ‖P < ∞. Hence, we obtain the
following equality:

dhΦ(σ, τ) =
√
−1

∫ (
tr
(
τDλDλ ⋆σ

)
− tr

(
σDλDλ ⋆τ

))
· ωn−1 −

√
−1

∫
tr
(
[σ, τ ] · G(h)

)
· ωn−1.

We have the following equality, due to [Dλ, Dλ ⋆] = G(h):

(−λ∂ + ∂) tr(τDλσ) + (λ∂ + ∂) tr(σDλ ⋆τ) = tr(Dλ ⋆τDλσ) + tr(τDλ ⋆Dλσ) + tr(DλσDλ ⋆τ) + tr(σDλDλ ⋆τ)

= − tr(τDλDλ ⋆σ) + tr(τ · [G(h), σ]) + tr(σDλDλ ⋆τ) = − tr
(
τDλDλ ⋆σ

)
+ tr(σDλDλ ⋆τ) + tr

(
[σ, τ ] · G(h)

)

(24)

Hence, we obtain dhΦ(σ, τ) = −
√
−1
∫

X

(
(−λ∂ +∂) tr(τDλσ)+(λ∂ +∂) tr(σDλ ⋆τ)

)
·ωn−1. By using ‖σ‖P < ∞

and ‖τ‖P < ∞, we obtain the vanishing of dhΦ(σ, τ), due to Lemma 5.2 of [36].
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2.4.3 Donaldson functional

For h1, h2 ∈ Ph, take a differentiable path γ : [0, 1] −→ Ph such that γ(0) = h1 and γ(1) = h2, and the
Donaldson functional is defined to be M(h1, h2) :=

∫
γ Φ. It is independent of a choice of a base metric ω, in

the case dim X = 1. We have M(h1, h2) + M(h2, h3) = M(h1, h3) by the construction.

Lemma 2.38 When h2 = h1 · es for s ∈ P(Sh1), we have the following formula:

M
(
h1, h2

)
=

√
−1

∫

X

tr
(
sΛωG(h1)

)
dvolω +

∫

X

(
Ψ(s)Dλs, Dλs

)
ω,h1

dvolω . (25)

Here, (·, ·)ω,h1 denotes the hermitian product induced by ω and h1, and Ψ is given as follows:

Ψ(t1, t2) =
et2−t1 − (t2 − t1) − 1

(t2 − t1)2
. (26)

See Subsection 2.4.1 for the meaning of Ψ(s)(Dλs).

Proof Let M ′(h1, h2) denote the right hand side of (25). The following formula immediately follows from the
definition:

∂

∂u
M ′
(
h1e

ts, h1e
(t+u)s

)
|u=0

=

∫

X

√
−1 tr

(
sΛωG(h1e

ts)
)
.

We also have the following equalities:

∂2

∂t∂u
M ′
(
h1e

ts, h1e
(t+u)s

)
|u=0

=
∂2

∂t2
M ′
(
h1, h1e

ts
)
|u=0

=
∂2

∂t∂u
M ′
(
h1, h1e

(t+u)s
)
|u=0

. (27)

The second equality can be shown formally. The first equality can be shown by the argument in the page 883
of [36]. We also have the obvious equality:

∂

∂u
M ′(h1e

ts, h1e
(t+u)s)|t=0,u=0 =

∂

∂u
M ′(h1, h1e

(t+u)s)|t=0,u=0.

Hence, we obtain the following:

∂

∂t
M ′(h1, h1e

ts) =

∫

X

√
−1 tr

(
sΛωG(h1e

ts)
)
.

Thus, M ′(h1, h1e
s) is the integral of Φ′ along the path γ(t) = h1e

ts, and hence M ′(h1, h2) = M(h1, h2).

Remark 2.39 In [36], the formula (25) is adopted to be the definition of the functional. We follow the original
definition of Donaldson [5].

We obtain the following corollary due to the positivity of the function Ψ.

Corollary 2.40 If sup |ΛωG(h)|h < B is satisfied, we have the following inequality:

M(h, hes) ≥
√
−1

∫
tr
(
sΛωG(h)

)
· dvolω ≥ −B

∫
|s|h · dvolω .

In particular, the upper bound of s gives the lower bound of M(h, hes).
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2.4.4 Main estimate

The following key estimate is the counterpart of Proposition 5.3 in [36]. The proof is same.

Proposition 2.41 Fix B > 0. Let (E, Dλ) be a flat λ-connection. Let h be a hermitian metric of E such
that sup

∣∣ΛωG(h, Dλ)
∣∣
h
≤ B. Let (E, Dλ, h) be analytically stable with respect to ω. Then, there exist positive

constants Ci (i = 1, 2) with the following property:

• Let s be any self-adjoint endomorphism satisfying ‖s‖P,h < ∞, tr(s) = 0 and sup
∣∣ΛωG(h · es, Dλ)

∣∣ ≤ B.
Then, the following inequality holds:

sup
X

|s|h ≤ C1 + C2 · M(h, hes)

(Sketch of the proof) The excellent argument given in [36] works in the case of λ-connection without any
essential change. Since we would like to use some minor variants of the proposition (Subsections 2.4.5–2.4.6),
we recall an outline of the proof for the convenience of the reader. To begin with, we remark that we have only
to show the following inequality due to Corollary 2.40:

sup
X

|s|h ≤ C′
1 + C′

2 · max
{
0, M(h, hes)

}
,

As is noticed in Subsection 2.2.5, the inequality ∆λ
ω log tr(es) ≤

∣∣ΛG(h)
∣∣
h

+
∣∣ΛG(hes)

∣∣
hes ≤ 2B holds. Hence,

there exist some constants Ci (i = 3, 4) such that the inequality log tr(es) ≤ C3 + C4 ·
∫

log tr(es) holds for any
s as above, due to Condition 2.30. Since we have C5 + C6 · |s|h ≤ log tr es ≤ C7 + C8 · |s|h for some positive
constants Ci (i = 5, 6, 7, 8), there exist some constants Ci (i = 9, 10) such that the following holds for any s as
above:

sup |s|h ≤ C9 + C10 ·
∫

|s|h. (28)

Assume that the claim of the proposition does not hold, and we will derive a contradiction. Under the
assumption, either one of the following occurs:

Case 1. There exists a sequence {si ∈ P(Sh) | i = 1, 2, · · · , } such that sup |si|h −→ ∞ and M(h, hesi) ≤ 0.

Case 2. There exist sequences {si ∈ P(Sh)} and {C2,i ∈ R} with the following properties:

sup
X

|si| −→ ∞, C2,i −→ ∞, (i −→ ∞)

M(h, hesi) > 0, sup |si|h ≥ C2,iM(h, hesi)

In both cases, we have ‖si‖L1 −→ ∞ due to (28). We put ℓi := ‖si‖L1 and ui := si/ℓi. Clearly we have
‖ui‖L1 = 1, and uniform boundedness supX |ui| < C due to (28). In the following, let L2(Sh) (resp. L2

1(Sh))
denote the space of L2-sections (resp. L2

1-sections) of Sh. The following lemma is one of the keys in the proof
of Proposition 2.41.

Lemma 2.42 After going to an appropriate subsequence, {ui} weakly converges to some u∞ 6= 0 in L2
1(Sh).

Moreover, we have the following inequality, for any C∞-function Φ : R × R −→ R≥ 0 such that Φ(y1, y2) ≤
(y1 − y2)

−1 for y1 > y2:

√
−1

∫
tr
(
u∞ΛωG(h)

)
+

∫

X

(
Φ(u∞)Dλu∞, Dλu∞

)
h,ω

≤ 0.

Proof By considering Φ − ǫ for any small positive number ǫ, we have only to consider the case Φ(y1, y2) <
(y1 − y2)

−1 for y1 > y2. In the both cases, we have the inequalities for some positive constant C, from the
formula (25):

ℓi

√
−1

∫

X

tr
(
uiΛωG(h, Dλ)

)
+ ℓ2

i

∫ (
Ψ(ℓiui)D

λui, D
λui

)
h
≤ ℓi ·

C

C2,i
.
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(In the case 1, we take any sequence {C2,i} such that C2,i −→ ∞). Let Φ be as above. Due to the uniform
boundedness of ui, we may assume that Φ has the compact support. Then, if ℓ is sufficiently large, we have
Φ(λ1, λ2) < ℓΨ(ℓλ1, ℓλ2). Therefore, we obtain the following inequality:

√
−1

∫

X

tr
(
uiΛωG(h, Dλ)

)
+

∫

X

(
Φ(ui)D

λui, D
λui

)
h,ω

≤ C

C2,i
.

Since supX |ui| is bounded independently of i, there exists a function Φ as above which satisfies Φ(ui) = c · id,
moreover, for some small positive number c > 0. Therefore, we obtain the boundedness of {ui} in L2

1. By
taking an appropriate subsequence, {ui} is weakly convergent in L2

1. Let u∞ denote the weak limit. Let Z be
any compact subset of X . Then, {ui} is convergent to u∞ on Z in L2, and hence

∫
Z
|ui| →

∫
Z
|u∞|. Since

sup |ui| are uniformly bounded, we obtain
∫

Z |u∞| 6= 0, if the volume of X − Z is sufficiently small. Thus,

u∞ 6= 0. Similarly, we can show the convergence
∫

tr
(
uiΛG(h, Dλ)

)
−→

∫
tr
(
u∞ΛG(h, Dλ)

)
. Since {ui} are

weakly convergent to u∞ in L2
1, we have the almost everywhere convergence of {ui} and {Dλui} to u∞ and

Dλu∞ respectively. Therefore, the sequence {Φ(ui)D
λui} converges to Φ(u∞)Dλu∞ almost everywhere. Hence,

we have ∫ (
Φ(u∞)Dλu∞, Dλu∞

)
h,ω

≤ lim

∫ (
Φ(ui)D

λui, D
λui

)
h,ω

due to Fatou’s lemma. Thus, we obtain the desired inequality, and the proof of Lemma 2.42 is finished.

We reproduce the rest of the excellent argument given in [36] just for the completeness. We do not use it in
the later argument. The point is that we can derive a contradiction from the existence of the non-trivial section
u∞ as in Lemma 2.42.

Lemma 2.43 The eigenvalues of u∞ are constant, and u∞ has at least two distinct eigenvalues.

Proof To show the constantness of the eigenvalues, we have only to show the constantness of tr
(
ϕ(u∞)

)
for

any C∞-function ϕ : R −→ R. We have
(
∂ + λ∂

)
tr ϕ(u∞) = tr

(
Dλϕ(u∞)

)
= tr

(
dϕ(u∞)Dλu∞

)
. Let N

be any large number. We can take a C∞-function Φ : R × R −→ R such that Φ(y1, y1) = dϕ(y1, y1) and
NΦ2(y1, y2) < (y1 − y2)

−1 for y1 > y2. We obtain tr
(
dϕ(u∞)(Dλu∞)

)
= tr

(
Φ(u∞)Dλu∞

)
due to the first

condition. We obtain the following inequality from Lemma 2.42:

∫

X

|Φ(u∞)Dλu∞|2 ≤ −
√
−1

N

∫

X

tr
(
u∞ΛG(h)

)
.

Therefore,
∣∣(∂ + λ∂) tr ϕ(u∞)

∣∣2
L2 = 0. Thus, the eigenvalues of u∞ are constant. Since tr(u∞) = 0 and u∞ 6= 0,

u∞ has at least two distinct eigenvalues.

Let κ1 < κ2 < · · · < κw denote the constant distinct eigenvalues of u∞. Then, ϕ(u∞) and Φ(u∞) depend
only on the values ϕ(κi) and ϕ(κi, κj) respectively.

Lemma 2.44 Let Φ : R2 −→ R be a C∞-function such that Φ(κi, κj) = 0 for κi > κj. Then, Φ(u∞)(Dλu∞) =
0.

Proof We may replace Φ with Φ1 satisfying Φ1(κi, κj) = 0 for κi > κj and NΦ2
1(y1, y2) < (y1 − y2)

−1 for

y1 > y2. Then, we obtain
∥∥Φ1(u∞)Dλu∞

∥∥2

L2 ≤ C/N due to Lemma 2.42, and hence we obtain Φ(u∞)Dλu∞ =

Φ1(u∞)Dλu∞ = 0.

Let γi denote the open interval ]κi, κi+1[. Let pγ : R −→ [0, 1] be any decreasing C∞-function such that
pγ(κi) = 1 and pγ(κi+1) = 0. We put πγ = pγ(u∞). It is easy to see that πγ is L2

1. Due to p2
γ = pγ , we have

π2
γ = πγ . We have Dλπγ = dp(u∞)Dλu∞. We put Φγ(y1, y2) = (1 − pγ)(y2) · dpγ(y1, y2), and then we have

(1 − πγ) ◦ Dλπγ = Φγ(u∞) ◦ Dλu∞. On the other hand, since we have Φγ(κi, κj) = 0 (κi > κj), we obtain
Φγ(u∞)Dλu∞ = 0 due to Lemma 2.44. Therefore, we obtain (1 − πγ) ◦ Dλπγ = 0.

From (1−πγ)d′′πγ = 0, we obtain a saturated coherent subsheaf Vγ such that πγ is the orthogonal projection
on Vγ due to the result of Uhlenbeck-Yau [45]. From (1 − πγ)d′πγ = 0, the bundle Vγ is Dλ-invariant. Since
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we consider the case λ 6=0, it is easy to see that Vγ is indeed a subbundle of E. Namely, we obtain the λ-flat
subbundle (Vγ , Dλ

Vγ
) ⊂ (E, Dλ).

Let us show degω(Vγ , hγ)/ rankVγ ≥ degω(E, h)/ rankE for some γ, which contradicts the stability assump-
tion of (E, Dλ, h), where hγ := h|Vγ

. From Lemma 2.31, we have

deg(Vγ) =
1

2π

1

1 + |λ|2
(√

−1

∫
tr
(
πγG(h)

)
−
∫

|Dλπγ |2
)

.

We have u∞ = κw · idE −∑ |γ| · πγ , where |γ| denotes the length of γ. We put

W = κw deg(E) −
∑

|γ| · deg(Vγ) =
1

2π

1

1 + |λ|2
(√

−1

∫
tr
(
u∞ΛG(h)

)
+

∫ ∑
|γ| ·

∣∣Dλπγ

∣∣2
)

.

Since Dλπγ = dpγ(u∞)Dλu∞, we have

W =
1

2π

1

1 + |λ|2
(√

−1

∫
tr
(
u∞ΛG(h)

)
+

∫ (∑
|γ| · dpγ(u∞)2 · Dλu∞, Dλu∞

))
.

We can check
∑ |γ|(dpγ)(κi, κj)

2 = (κi − κj)
−1 for κi > κj by a direct argument. Therefore, we obtain

W ≤ 0, due to Lemma 2.42. Namely we obtain κw · deg E ≤ ∑ |γ| · deg(Vγ). On the other hand, we have
0 = tr(u∞) = κw · rankE−∑ |γ| · rankVγ . Therefore, we obtain deg(Vγ)/ rankVγ ≥ deg(E)/ rankE for at least
one of γ, which contradicts with the stability of (E, Dλ, h). Thus, the proof of Proposition 2.41 is finished.

2.4.5 Variant 1 of Proposition 2.41

Let C be a smooth projective curve, and D be a simple divisor. Let (E, Dλ, F ) be a λ-flat bundle on (C, D). Let
η be a sufficiently small positive number such that 10 · η < gap(E, F ). Let ǫ0 be a sufficiently smaller number
than η, for example 10 rank(E)ǫ0 < η. Let ωǫ (0 ≤ ǫ < ǫ0) be a Kahler metric of C − D with the following
conditions:

• Let P ∈ D. Let (U, z) be a holomorphic coordinate around P such that z(P ) = 0. Then, the following
holds for some positive constants Ci (i = 1, 2):

C1 · ωǫ ≤ ǫ2|z|2ǫ dz · dz

|z|2 + η2|z|2η dz · dz

|z|2 ≤ C2 · ωǫ

• ωǫ −→ ω0 for ǫ → 0 in the C∞-sense locally on C − D.

Let F (ǫ) be an ǫ-perturbation of F . See Subsection 2.1.6 for the notion of ǫ-perturbation. We discuss the
surface case there, but it can be applied in the curve case. Suppose that we are given hermitian metrics h(ǫ) for
(E, F (ǫ)) with the following properties:

•
∣∣Λωǫ

G(h(ǫ), Dλ)
∣∣
h(ǫ) ≤ C1, where the constant C1 is independent of ǫ.

• {h(ǫ)} converges to h(0) for ǫ → 0 in the C∞-sense locally on C − D.

Lemma 2.45 Let s(ǫ) be self-adjoint endomorphisms of (E, h(ǫ)) satisfying tr s(ǫ) = 0 and the following prop-
erties:

• ‖s(ǫ)‖P,h(ǫ),ωǫ
< ∞. But we do not assume the uniform boundedness.

•
∣∣Λωǫ

G(h(ǫ)es(ǫ)

, Dλ)
∣∣
h(ǫ) ≤ C1. The constant C1 is independent of ǫ.

Then, there exist constants Ci (i = 3, 4), which are independent of ǫ, with the following property:

sup |s(ǫ)|h(ǫ) ≤ C3 + C4 · M(h(ǫ), h(ǫ)es(ǫ)

).
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(Sketch of a proof) The argument is essentially same as the proof of Proposition 2.41. We assume that the
claim does not hold, and we will derive a contradiction. After going to an appropriate subsequence, either one
of the following holds:

Case 1. M(h(ǫ), h(ǫ)es(ǫ)

) ≤ 0 and supC−D |s(ǫ)|h(ǫ) −→ ∞ for ǫ → 0.

Case 2. M
(
h(ǫ), h(ǫ)es(ǫ))

> 0, sup |s(ǫ)| ≥ C
(ǫ)
2 M

(
h(ǫ), h(ǫ)es(ǫ))

, supC−D

∣∣s(ǫ)
∣∣
h(ǫ) −→ ∞ and C

(ǫ)
2 −→ ∞ for

ǫ → 0.

By using Lemma 2.47 (given below) and the argument given in the first part of Proposition 2.41, we can
show that there exist positive constants Ci (i = 5, 6), which are independent of ǫ, with the following property:

sup
C−D

|s(ǫ)|h(ǫ) ≤ C5 + C6 ·
∫

|s(ǫ)|h(ǫ) dvolωǫ
.

We put ℓ(ǫ) := ‖s(ǫ)‖L1 and u(ǫ) := s(ǫ)/ℓ(ǫ). The following lemma is the counterpart of Lemma 2.42.

Lemma 2.46 We have a non-trivial L2
1-section u∞ of Sh(0) with the following property:

• The following inequality holds for any C∞-function Φ : R×R −→ R≥ 0 such that Φ(y1, y2) ≤ (y1 − y2)
−1

for y1 > y2:

√
−1

∫

C−D

tr
(
u∞Λω0G(h(0))

)
dvolω0 +

∫

C−D

(
Φ(u∞)Dλu∞, Dλu∞

)
h(0),ω0

dvolω0 ≤ 0.

Proof The argument is essentially same as the proof of Lemma 2.42. We have the following for some positive
constant C5:

√
−1

∫

C−D

tr
(
u(ǫ)Λωǫ

G(h(ǫ))
)
dvolωǫ

+

∫

C−D

(
Φ(u(ǫ))Dλu(ǫ), Dλu(ǫ)

)
h(ǫ),ωǫ

dvolωǫ
≤ C5

C
(ǫ)
2

.

(In the case 1, we take any sequence {C(ǫ)
2 } such that C

(ǫ)
2 −→ ∞.) From this, we obtain the following

boundedness as in the proof of Lemma 2.42:

∫

C−D

∣∣Dλu(ǫ)
∣∣2
h(ǫ) dvolωǫ

< C10.

Let us take a sequence of C∞-isometries Fǫ : (E, h(ǫ)) −→ (E, h(0)) which converges to the identity of E, in
the C∞-sense locally on C−D. Remark that the sequence {Fǫ(D

λ)} converges to Dλ for ǫ → 0 in the C∞-sense
locally on C − D. The sequence {Fǫ(u

(ǫ))} is bounded on L2
1 locally on C − D. By going to an appropriate

subsequence, we may assume that the sequence {u(ǫ)} is weakly convergent in L2
1 locally on C − D, and hence

it is convergent in L2 on any compact subset Z ⊂ C −D. Let u∞ denote the weak limit. We have
∫

Z |u(ǫ)| −→∫
Z
|u∞|. Hence

∫
Z
|u∞| 6= 0, when the volume of C − Z ∪ D is sufficiently small, due to the boundedness of{

sup |u(ǫ)|
∣∣ ǫ > 0

}
. In particular, u∞ 6= 0. Similarly, we obtain

∫
C−D tr(u(ǫ)G(h(ǫ))) −→

∫
C−D tr(u∞G(h(0))).

Since we can derive the almost everywhere convergence Φ(u(ǫ))Dλu(ǫ) −→ Φ(u∞)Dλu∞ and u(ǫ) −→ u∞, we
obtain

∫
C−D

(
Φ(u∞)Dλu∞, Dλu∞

)
≤ lim

∫
C−D

(
Φ(u(ǫ))Dλu(ǫ), Dλu(ǫ)

)
due to Fatou’s lemma. Thus, the proof

of Lemma 2.46 is finished.

The rest of the proof of Lemma 2.45 is completely same as the argument for Proposition 2.41.

We have used the following lemma in the proof.

Lemma 2.47 For any positive number B, there exist positive constants Ci (i = 1, 2) with the following property:

• Let ǫ be any positive number such that ǫ < 1/2. Let f be any non-negative bounded C∞-function on C−D
such that ∆ωǫ

f ≤ B. Then, the inequality sup(f) ≤ C1 + C2

∫
f · dvolωǫ

holds.
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Proof Let (UP , z) be as above for P ∈ D, and U∗
P := UP − {z = 0}. On U∗

P , the inequality ∆ωǫ
f ≤ B is

equivalent to the following:

∆g0f ≤ B ·
(

ǫ2
|z|2ǫ

|z|2 + η2 |z|2η

|z|2
)

. (29)

Here, g0 := dz · dz. Because of the boundedness of f , (29) holds on UP . (See the proof of Proposition 2.2 of
[36].) Then, we obtain the following inequality on UP :

∆g0

(
f − B · φ

)
≤ 0, φ = |z|2ǫ + |z|2η.

For any point Q ∈ ∆(P, 1/2), we have the following:

(
f − B · φ

)
(Q) ≤ 4

π

∫

∆(Q,1/2)

(
f − B · φ

)
· dvolg0 .

Therefore, there exist some constants Ci (i = 3, 4) which are independent of ǫ, such that the following holds:

f(Q) ≤ C3 + C4

∫
f · dvolωǫ

.

Thus, we obtain the upper bound of f(Q), when Q is close to a point of D. We can obtain such an estimate
when Q is far from D, similarly and more easily.

2.4.6 Variant 2 of Proposition 2.41

We will use another variant. Let π : C −→ ∆ be a holomorphic family of smooth projective curves. Let D ⊂ C
be a relative divisor. Let (E, Dλ, F ) be a logarithmic parabolic λ-flat bundle on (C,D). We denote the fiber
π−1(t) by Ct for t ∈ ∆. The restriction (E, Dλ, F )|Ct

is denoted by (Et, D
λ
t , F t). Let ω be a metric of the

relative tangent bundle of C/∆ such that ω ∼ η2|z|2η−2dz · dz around D. Here, η denotes a small positive
number such that 10 rank(E) · η < gap(E, F ), and z is holomorphic function such that z−1(0) = D and dz 6= 0.
The restriction ω|Ct

is denoted by ωt for t ∈ ∆. Let h be a C∞-hermitian metric of E adapted to F such that∣∣Λωt
G(Dλ

t , ht)
∣∣
ht

≤ C1 for any t ∈ ∆, where a constant C1 is independent of t, and ht denotes the restriction
h|Ct

. The following lemma can be shown by an argument similar to the proof of Lemma 2.47.

Lemma 2.48 There exist positive constants Ci (i = 3, 4), which are independent of t, with the following
property.

• Let s(t) be an element of Pht
(Et) satisfying tr s(t) = 0, ‖s(t)‖ht,P < ∞ and

∣∣Λωt
G(Dλ

t , hte
s(t)

)
∣∣ ≤ C1.

Then, the inequality sup |s(t)| ≤ C3 + C4 · M(ht, hte
s(t)

) holds.

2.5 Regular filtered λ-flat bundles associated to tame harmonic bundles

2.5.1 Tame pluri-harmonic metric

Let X be a complex manifold with a simple normal crossing divisor D. Let (E, Dλ) be a λ-flat bundle on
X − D. Let h be a pluri-harmonic metric of (E, Dλ). Then, we have the induced Higgs bundle (E, ∂h, θh).
Recall the tameness of pluri-harmonic metric. Let P be any point of X , and let (UP , z1, . . . , zn) be a holomorphic

coordinate around P such that D ∩ UP =
⋃l

i=1{zi = 0}. Then, we have the expression:

θ =
l∑

i=1

fi ·
dzi

zi
+

n∑

j=l+1

gj · dzj .

The pluri-harmonic metric h is called tame, if the coefficients of the characteristic polynomials det(t − fi) and
det(t− gj) are holomorphic on UP for any P . A λ-flat bundle with tame pluri-harmonic metric is called a tame
harmonic bundle. Recall that the curve test for tameness is valid.
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Proposition 2.49 (Corollary 8.7 of [30]) A pluri-harmonic metric h for (E, Dλ) is tame, if and only if h|C

is tame for any closed curve C ⊂ X transversal with D.

From a holomorphic vector bundle E with a hermitian metric h, we obtain the filtered sheaf E∗(h) :=(
cE
∣∣ c ∈ RS

)
as explained in Subsection 3.5 of [31]. We recall the following proposition.

Proposition 2.50 (Theorem 8.58, Theorem 8.59 and Corollary 8.89 of [30]) Let (E, Dλ, h) be a tame
harmonic bundle on X − D. Then,

(
E∗(h), Dλ

)
is a regular filtered λ-flat bundle.

2.5.2 One dimensional case

In the one dimensional case, Simpson established the Kobayashi-Hitchin correspondence for parabolic flat bun-
dles and the parabolic Higgs bundles, i.e., λ-flat bundles in the case λ = 0, 1. His result can be generalized for
any λ.

Proposition 2.51 (Simpson, [37]) Let X be a smooth projective curve, and D be a simple divisor of X. Let(
E∗, D

λ
)

be a regular filtered λ-flat bundle on (X, D). We put E = cE|X−D. The following conditions are
equivalent:

• (E∗, D
λ) is poly-stable with par-deg(E∗) = 0.

• There exists a harmonic metric h of (E, Dλ), which is adapted to the parabolic structure of E∗, i.e.,
E∗ ≃ E∗(h).

Moreover, such a metric is unique up to obvious ambiguity. Namely, let hi (i = 1, 2) be two harmonic metrics
as above. Then, we have the decomposition of Higgs bundles (E, Dλ) =

⊕
(Ea, Dλ

a) satisfying the following:

• The decomposition is orthogonal with respect to both of hi.

• The restrictions of hi to Ea are denoted by hi,a. Then, there exist positive numbers ba such that h1,a =
ba · h2,a.

2.5.3 The projective case

Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal crossing
divisor of X with the irreducible decomposition D =

⋃
i∈S Di. Let (E, Dλ, h) be a tame harmonic bundle on

X − D.

Proposition 2.52 Let (E∗, D
λ) be as above.

• (E∗, D
λ) is µL-polystable with par-degL(E∗) = 0.

• Let (E∗, D
λ) =

⊕
j(Ej ∗, D

λ
j )⊗Cp(j) be the canonical decomposition of µL-polystable regular filtered λ-flat

bundle. Then, we have the corresponding decomposition of the metric h =
⊕

hi ⊗ gi, where hi denote

pluri-harmonic metrics of (Ei, D
λ
i ) adapted to the parabolic structure, and gi denote metrics of Cp(i).

• We have the vanishings of characteristic numbers:

∫

X

par-ch2,L(E∗) =

∫

X

par-c2
1,L(E∗) = 0.

Proof The first two claims can be shown by the same argument as the proof of Proposition 5.1 of [31]. The
third claim can be shown by an argument similar to the proof of Proposition 5.3 of [31], which we explain
briefly. We have only to consider the case dimX = 2. Since h is pluri-harmonic, we have the equalities
tr R(d′′, h) = (1 + |λ|2)−1 trG(h, Dλ) = 0 and tr

(
R(d′′, h)2

)
= (1 + |λ|2)−2 · tr

(
G(h, Dλ)2

)
= 0, due to Lemma

2.28 and Lemma 2.29 on X − D. We also have the norm estimate for the holomorphic sections of cE. (It is
explained in Subsection 2.5 of [31] for λ = 0. Similar claims hold for any λ, as shown in Subsection 13.3 of [30].)
Then, the same argument as the proof of Proposition 5.3 works.
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Proposition 2.53 Let (E∗, D
λ) be a regular filtered λ-flat bundle. We put (E, Dλ) := (E∗, D

λ)|X−D. Let ha

(a = 1, 2) be pluri-harmonic metrics of (E, Dλ) on X −D which is adapted to the parabolic structure. Then, we
have the decomposition (E, Dλ) =

⊕
(Ei, D

λ) with the following properties:

• The decomposition is orthogonal with respect to both of ha (a = 1, 2). Hence, we have the decomposition
ha =

⊕
i ha,i.

• There exist positive numbers bi such that h1,i = bi · h2,i.

The decomposition on X − D is prolonged to the decomposition (E∗, D
λ) =

⊕
(Ei ∗, D

λ) on X.

Proof Similar to Proposition 5.2 of [31].

2.6 Some integral for non-flat λ-connection on a curve

Let Y be a smooth projective curve, and let D be a divisor. Let (E, F ) be a parabolic bundle on (Y, D). Let
Dλ be a C∞ λ-connection on E|Y −D. In this subsection, we do not assume Dλ is flat, i.e., (Dλ)2 may not be

0. But, it is assumed to be flat around an appropriate neighbourhood UP of each P ∈ D, and (E, F , Dλ)|UP

is a parabolic λ-flat bundle. In particular, we have ResP (Dλ) ∈ End(E|P ). We assume that it is graded

semisimple, for simplicity, i.e., the induced endomorphism on GrF (E|P ) is semisimple for each P ∈ D. (By
using ǫ-perturbation in Subsection 2.1.6, we can drop the condition.)

For each P ∈ D, we have the generalized eigen decomposition E|P :=
⊕

P Eα of ResP (Dλ). We also have
the filtration P F of E|P . Let us take a holomorphic frame v of E|UP

, which is compatible with (P E, P F ). We

put α(vi) := degE(vi) and a(vi) := degF (vi). Let h be a C∞-metric of E|Y −D such that h(vi, vj) = |z|−2a(vi)

(i = j) and 0 (i 6= j). Let us decompose Dλ = d′′ + d′. Let us take a (1, 0)-operator d′0 such that d′′ + d′0 is
C∞ λ-connection of E on Y , not only on Y − D. We also assume d′0v = 0. We put A := d′ − d′0, which is a
C∞-section of End(E) ⊗ Ω1,0(log D) on Y , and holomorphic around D. We have trResP (A) = tr ResP (Dλ).

Let h0 be a C∞-metric of E on Y such that h0(vi, vj) is 1 (i = j) or 0 (i 6= j) on UP (P ∈ D). Let s be the en-
domorphism determined by h = h0 ·s. Then, s is described by the diagonal matrix diag

(
|z|−2a(v1), . . . , |z|−2a(vr)

)

with respect to the frame v on UP .
Although Dλ is not necessarily flat, we obtain the operators δ′h, δ′′h, ∂h, ∂h, θh and θ†h as in Subsection 2.2.1.

We put wt(E, F , P ) :=
∑

a∈Par(E,P ) a · rank
(
P GrF

a (E)
)
.

Lemma 2.54 We have the following formula:

√
−1

2π

∫

Y

∂ tr θ =
λ

1 + |λ|2
∑

P

(
λ−1 · tr ResP Dλ + wt(E, F , P )

)
. (30)

Proof Let δ′h0
denote the (1, 0)-operator obtained from d′′ and h0 as in Subsection 2.2.1. Then, we have

θh =
1

1 + |λ|2 (d′ − λ · δ′h) =
1

1 + |λ|2 (d′0 − λ · δ′h0
) +

1

1 + |λ|2 (A − λ · s−1δ′h0
s).

We would like to apply the Stokes formula to the integral of ∂ tr θh. If we do so, d′0 − λδ′h0
does not contribute,

because it is the C∞-section of End(E) ⊗ Ω1,0. We have

√
−1

2π

∫

Y

∂ tr(A) =
∑

P

trResP Dλ.

Since s−1δ′h0
s is described by diag

(
−a(v1), . . . ,−a(vr)

)
·dz/z with respect to v on UP (P ∈ D), we have

√
−1

2π

∫

Y

∂ tr(s−1δ′h0
s) =

∑

P

rankE∑

i=1

−a(vi) = −
∑

P

wt(E, F , P ).
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Therefore, we obtain the following formula:

√
−1

2π

1 + |λ|2
λ

∫
∂ tr θh =

∑

P

(
λ−1 tr ResP Dλ + wt(E, F , P )

)
. (31)

Thus, we obtain (30).

3 Ordinary metric and some consequences

We give a construction of an ordinary metric for a graded semisimple parabolic λ-flat bundle on a surface
satisfying SPW-condition, and we give the estimate for the pseudo curvature. Then, we obtain the existence
result of Hermitian-Einstein metric if such a parabolic λ-flat bundle is stable.

3.1 Around the intersection of the divisor

3.1.1 Some estimates

We put X := ∆2
z, Di := {zi = 0}, and D := D1 ∪ D2. Let (E∗, D

λ) be a graded semisimple regular filtered
λ-flat bundle on (X, D). Let c = (c1, c2) ∈ R2 such that ci 6∈ Par(E∗, i). We assume the following:

(SPW) We have a positive integer m and γi ∈ R with −1/m < γi ≤ 0, such that Par
(
cE∗, i

)
is contained in{

ci + γi + p/m
∣∣ p ∈ Z, −1 < γi + p/m < 0

}
. (The condition −1/m < γi ≤ 0 is not essential.)

We put X̃ := ∆2
ζ , D̃i := {ζi = 0} and D̃ = D̃1 ∪ D̃2. Let ϕ : X̃ −→ X be the ramified covering given by

ϕ(ζ1, ζ2) = (ζm
1 , ζm

2 ). Let Gal(X̃/X) denote the Galois group of X̃/X . Recall the construction in [15]. For any

a ∈ R2, let aẼ denote the subsheaf of Ẽ := ϕ∗(E) given as follows:

aẼ :=
⋃

n+md≤a

ϕ∗
(
dE
)
·
∏

i=1,2

ζ−ni

i

Then, it is easy to see that Ẽ∗ =
(

aẼ
∣∣a ∈ R2

)
is a filtered bundle, and the induced flat λ-connection D̃λ is

regular. We put c̃i := m · (γi + ci). By the assumption, we have Par
(
Ẽ∗, i

)
=
{
p + c̃i

∣∣ p ∈ Z
}
.

We have the generalized eigen decompositions cE|Di
=
⊕

iEα with respect to Resi(D
λ). We have the

parabolic filtration iF of cE. Let v be a frame of cE compatible with iF and iE (i = 1, 2). We put as follows:

ai(vj) := i degF (vj) − (ci + γi) ∈
1

m
· Z≤0

Let αi(vj) ∈ C denote the complex number determined by vj|Di
∈ iEαi(vj). We put ṽj := ϕ∗(vj)·

∏
i=1,2 ζ

mai(vj)
i .

Then, ṽ = (ṽj) gives the frame of ecẼ. We put βi(vj) := m
(
λ · ai(vj) + αi(vj)

)
. Let Γ be the diagonal matrix

whose (j, j)-entry is
∑

i=1,2 βi(vj) · dζi/ζi. Let A be determined by D̃λṽ = ṽ · A, and let A0 := A − Γ. In the

following, let FΓ ∈ End
(

ecẼ
)
⊗ Ω1(log D̃) be determined by FΓ(ṽ) = ṽ · Γ. We put D̃λ

0 := D̃λ − FΓ.
Let A0 =

∑
i=1,2 Ai

0 · dζi. If m is sufficiently large, we may assume the following:

(A): Ai
0 = O(ζ2

i ). Moreover, (A1
0)j,k = O

(
ζ2
1 · ζ2

2

)
in the case β2(vj) 6= β2(vk), and (A2

0)j,k = O
(
ζ2
1 · ζ2

2

)
in the

case β1(vj) 6= β1(vk).

Let h̃ be the hermitian metric of ecẼ determined by h̃(ṽi, ṽj) = δi,j · |ζ1|−2ec1 · |ζ2|−2ec2 .

Let θ̃ (resp. θ̃0) be the section of End(Ẽ) ⊗ Ω1 on X̃ − D̃ induced by h̃ and D̃λ (resp. D̃λ
0 ) as in Subsection

2.2.1. Let θ̃† and θ̃†0 denote the adjoint of θ̃ and θ̃0, respectively. Let g̃ denote the Euclidean metric of X̃ .

Lemma 3.1

•
[
θ̃, θ̃†

]
is bounded with respect to h̃ and g̃.
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• θ̃2 = O(z1 · z2) · dz1 · dz2.

Proof We have the relations θ̃ = θ̃0 + (1 + |λ|2)−1FΓ and θ̃† = θ̃†0 + (1 + |λ|2)−1F †
Γ. Hence, we have the

following: [
θ̃, θ̃†

]
=
[
θ̃0, θ̃

†
0

]
+ (1 + |λ|2)−1

[
θ̃0, F

†
Γ

]
+ (1 + |λ|2)−1

[
θ̃†0, FΓ

]
(32)

We have the decomposition of θ̃0 into the sum λ(1 + |λ|2)−1
∑

c̃i · dζi/ζi + θ̃′0, where θ̃′0 is the C∞-section of

End(ecẼ) ⊗ Ω1
eX

on X̃. Hence,
[
θ̃0, θ̃

†
0

]
is the C∞-section of End(ecẼ) ⊗ Ω2 on X̃. By Condition (A),

[
θ̃0, F

†
Γ

]

and
[
FΓ, θ̃†0

]
is also bounded. We have θ̃2 = θ̃2

0 + 2
[
θ̃0, FΓ

]
. Then, we obtain the desired estimate for θ̃2 by

Condition (A).

Lemma 3.2 We have the boundedness of G(D̃λ, h̃) and θ̃2 · θ̃† with respect to h̃ and g̃.

Proof The boundedness of θ̃2 · θ̃† follows from the estimate for θ̃2. We have the following equality (See
Subsection 2.2.4):

G(D̃λ, h̃) = (1 + |λ|2) · R(h̃, d′′) − (1 + |λ|2)2
λ

(
∂

2
eh + θ̃2 − λ

[
θ̃, θ̃†

])

We have the vanishing of the curvature R(h̃, d′′) = 0, and the relation λ−1∂
2
eh = λ

−1
(θ̃†)2. Hence, we obtain the

boundedness of G(D̃λ, h̃) from Lemma 3.1.

Since h̃ is Gal(X̃/X)-equivariant, we obtain the induced metric h of E on X − D. Clearly, h is given by
h(vi, vj) = δi,j · |z1|−2a(vi) · |z2|−2a(vj). Let θ be the section of End(E) ⊗ Ω1,0 on X − D induced by Dλ and h,
and let θ† denote the adjoint of θ. Let gm denote the metric of X −D given by gm =

∑ |zi|2(−1+1/m) ·dzi ·dzi.

Corollary 3.3 We have the boundedness of G(Dλ, h) and θ2 · θ† with respect to gm and h.

3.1.2 The induced metric and the λ-connection on the divisors

For simplicity, we assume ci = γi = 0 (i = 1, 2) in this subsection. Let (a, α) ∈ KMS(⋄E, i). Let ρ be a
C∞-function on X such that ρ > 0. We put χ := ρ · |z1|2. Let D◦

i := Di − (D1 ∩ D2). We discuss the induced
hermitian metric and the induced λ-connection of i GrF,E

a,α

(
⋄E
)
|D◦

i

(i = 1, 2), depending on the choice of ρ. Let

us consider the case i = 1. Let uj (j = 1, 2) be sections of 1 GrF,E
a,α(⋄E). We take sections u′

j (j = 1, 2) of ⋄E

which induce uj . Then, it can be shown that
(
χa · h0(u

′
1, u

′
2)
)
|D◦

1
is independent of the choice of u′

j , which is

denoted by ha,α(u1, u2).
We have the frame v(a,α) induced by v above. By construction, ha,α(vi, vj) = ρa · δi,j · |z2|−2a2(vi). Hence,

the following equality can be checked by a direct calculation:

tr R(ha,α) − a · rankGrF,E
a,α(⋄E) · ∂∂ log ρ = 0 (33)

Let F0 denote the C∞-section of End(⋄E) ⊗ Ω1,0
X (log D) determined by F0(vj) = vj · α1(vj) · ∂ log χ. Then,

Dλ − F0 is C∞ around D◦
1 , whose restriction preserves the filtration 1F and the decomposition 1E. Hence, we

obtain the induced λ-connection Dλ
a,α of 1 GrF,E

(a,α)(
⋄E). We have θa,α induced by Dλ

a,α and ha,α.

Lemma 3.4 The following holds:

∂ tr θa,α +
λa + α

1 + |λ|2 rank
(

1 GrF,E
a,α(⋄E)

)
· ∂∂ log ρ = 0 (34)

Proof Let Dλ
a,α,1 and θa,α,1 denote the operator, and let ha,α,1 denote the metric in the case where ρ is

constantly 1. Since θa,α,1 is holomorphic, we have ∂ tr θa,α,1 = 0. Note that we have Dλ
a,α = Dλ

a,α,1 − α · ∂ log ρ

and ha,α = ha,α,1 · ρa. Then, we obtain θa,α,1 = θa,α + (1 + |λ|2)−1
(
λ · a + α

)
· ∂ log ρ. Thus, we obtain (34).

28



3.2 Around the smooth part of the divisor

3.2.1 Construction of the metric and some estimates

Let X = ∆2 and D = {z1 = 0}. Let ρ be a positive C∞-function on X , and we put χ := ρ · |z1|2. Let (E∗, D
λ)

be a graded semisimple regular filtered λ-flat bundle on (X, D) with rational weights. We take c ∈ R such that
c 6∈ Par(E∗). We assume the following:

(SPW) We have a positive integer m and γ ∈ R with −1/m < γ ≤ 0 such that Par
(
cE∗

)
is contained in{

c + γ + p/m
∣∣ p ∈ Z, −1 < γ + p/m < 0

}
.

Let X̃ := ∆2
ζ and D = {ζ1 = 0}. Let ϕ : X̃ −→ X be given by ϕ(ζ1, ζ2) = (ζm

1 , ζ2). We have the induced

filtered λ-flat bundle (Ẽ∗, D̃
λ) on (X̃, D̃) as in Subsection 3.1.1. We put c̃ := m · (c + γ). Then, Par

(
ecẼ∗

)
is

contained in
{
c̃ + p

∣∣ p ∈ Z
}
.

We have the generalized eigen decomposition cE|D =
⊕

Eα. We have the filtration F of cE|D. Let v be a

frame of cE compatible with F and E. We put a(vj) := degF (vj) − (c + γ). Let α(vj) ∈ C be determined by

vj|D ∈ Eα(vj). We put ṽj := ϕ∗(vj) · ζm·a(vj)
1 . Then, ṽ = (ṽj) gives the frame of ecẼ. Let Γ be the diagonal

matrix whose (j, j)-entry is given by the following:

α(vj) · ∂ log(ϕ∗χ) + λ · m · a(vj) ·
dζ1

ζ1

Let A be determined by D̃λṽ = ṽ ·A, and let A0 := A−Γ. Let FΓ be the C∞-section of End(Ẽ)⊗Ω1 on X̃− D̃,

determined by FΓṽ = ṽΓ. We put D̃0 := D̃ − FΓ.
Let A0 = A1

0 · dζ1 + A2
0 · dζ2. If m is sufficiently large, the following holds:

(A) A1
0 = O

(
|ζ1|2

)
. Moreover, (A2

0)k,l = O
(
|ζ1|2

)
in the case

(
a(vk), α(vk)

)
6=
(
a(vl), α(vl)

)
.

Let h̃1 be the Gal(X̃/X)-equivariant hermitian metric of ⋄Ẽ such that h̃1(vi, vj) = O
(
|ζ1|2

)
in the case(

a(vi), α(vi)
)
6=
(
a(vj), α(vj)

)
. Then, let h̃ := ϕ∗(χ−c−γ) · h̃1.

Let θ̃ (resp. θ̃0) be the section of End(Ẽ) ⊗ Ω1 on X̃ − D̃ induced by h̃ and D̃λ (resp. D̃λ
0 ) as in Subsection

2.2.1. Let θ̃† and θ̃†0 denote the adjoint of θ̃ and θ̃0, respectively. Let g̃ denote the Euclidean metric of X̃ .

Lemma 3.5

•
[
θ̃, θ̃†

]
is bounded with respect to h̃ and g̃.

• θ̃2 = O
(
|z1|
)
· dz1 · dz2.

Proof Similar to Lemma 3.1.

Lemma 3.6 We have the boundedness of G
(
D̃λ, h̃

)
and θ̃2 · θ̃† with respect to h̃ and g̃.

Proof It follows from Lemma 3.5. See the proof of Lemma 3.2.

We have the induced hermitian metric h of E on X −D. It is adapted to the parabolic structure of E. Let
θ denote the section of End(E)⊗Ω1

X−D induced by h and Dλ, and let θ† denote the adjoint. Let gm denote the

metric of X − D given by gm = |z1|−2+2/m · dz1 · dz1 + dz2 · dz2.

Corollary 3.7 We have the boundedness of G(Dλ, h) and θ2 · θ† with respect to h and gm.
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3.2.2 The induced metric and the λ-connections

For simplicity, we assume c = γ = 0 in this subsection. Let (a, α) ∈ KMS(⋄E∗). We discuss the induced
hermitian metric and the induced λ-connection of GrF,E

a,α(⋄E). Let uj (j = 1, 2) be sections of GrF,E
a,α(⋄E). We

take sections u′
j (j = 1, 2) of ⋄E which induce uj . Then, it can be shown that

(
χa ·h0(u

′
1, u

′
2)
)
|D

is independent

of the choice of u′
j, which is denoted by ha,α(u1, u2).

On the other hand, let Ua,α be the subbundle of ⋄Ẽ generated by ṽj such that
(
a(vj), α(vj)

)
= (a, α). It is

easy to see that the restriction Ua,α| eD are independent of the choice of the frame v, and Ua,α| eD are orthogonal

with respect to h̃| eD. The induced metric of Ua,α| eD is denoted by h′
a,α.

Lemma 3.8 Let R(ha,α) and R(h′
a,α) denote the curvatures of

(
GrF,E

a,α(E), ha,α

)
and

(
Ua,α| eD, h′

a,α

)
. Then, we

have the following relation:

tr
(
R(h′

a,α)
)

= tr
(
R(ha,α)

)
− a · rankGrF,E

a,α(E) · ∂∂ log ρ (35)

Proof We take the isomorphism Φ : GrF,E
a,α(E) ≃ Ua,α| eD given as follows. Let v be a section of GrF,E

a,α(E). Let

v′ be a section of ⋄E which induces v. Then, Φ(v) :=
(
ϕ∗(v′) · zm·a

1

)
| eD

is contained in Ua,α| eD, and independent

of the choice of v′. Under the isomorphism, we have h′
a,α = ha,α · ρ−a. Then, (35) follows.

We have the induced λ-connection, once we fix χ. (See [2].) Let f be any section of GrF,E
a,α(E). Let f̃ be a

lift of f to ⋄E. We put Dλf −α · logχ ·f =: G1 · (dz1/z1)+G2 ·dz2. Then, G1|D is contained in F<a(E). Hence,

G2 · dz2 induces the well defined section of GrF,E
a,α(E)⊗Ω1

D, which is Da,α(f). We have the induced section θa,α

of End
(
GrF,E

a,α(E)
)
⊗ Ω1

D.

Lemma 3.9 We have the following relation:

tr
(
R(h′

a,α)
)

= −1 + |λ|2
λ

(
∂ tr θa,α +

(aλ + α) · ∂∂ log ρ

1 + |λ|2 rankGrF,E
a,α(E)

)
(36)

Proof We have the relation:

R
(
h̃
)

= −1 + |λ|2
λ

d′′θ̃ = −1 + |λ|2
λ

(
d′′θ̃0 +

1

1 + |λ|2 d′′FΓ

)
(37)

Let Dλ′
a,α be the induced λ-connection of Ua,α| eD. Let θ′a,α be the section of End(Ua,α| eD) ⊗ Ω1

eD
induced by Dλ′

a,α

and h′
a,α. Then, we obtain the following equality from (37):

tr
(
R(h′

a,α)
)

= −1 + |λ|2
λ

(
∂ tr θ′a,α +

1

1 + |λ|2 · α · ∂∂ log ρ · rankGrF,E
a,α(E)

)
(38)

Under the isomorphism Φ in the proof of Lemma 3.8, we have the Dλ′
a,α = Dλ

a,α. Because of h′
a,α = ha,α · ρ−a,

we have θ′a,α = θa,α + aλ(1 + |λ|2)−1∂ log ρ. Therefore, the right hand side of (38) is the same as (36).

3.3 An ordinary metric

3.3.1 Setting

Let X be a smooth projective surface, and let D be a simple normal crossing divisor with the irreducible
decomposition D =

⋃
i∈S Di. Let L be an ample line bundle on X , and ω be a Kahler form which represents

c1(L). We take a hermitian metric gi of O(Di). The canonical section O −→ O(Di) is denoted by σi.
Let ǫ be any number such that 0 < ǫ < 1/2. Let us fix a sufficiently large number N , for example N > 10.

We put as follows, for some positive number C > 0:

ωǫ := ω +
∑

i

C · ǫN ·
√
−1∂∂|σi|2ǫ

gi
. (39)

It can be shown that ωǫ are Kahler metrics of X − D for any 0 < ǫ < 1/2, if C is sufficiently small.
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Remark 3.10 The factor ǫN is added for our later discussion (Subsection 5.1).

Remark 3.11 Let τ be a closed 2-form on X − D which is bounded with respect to ωǫ. Then, the following
formula holds: ∫

X−D

ω · τ =

∫

X−D

ωǫ · τ.

In particular, we also have
∫

X−D
ω2 =

∫
X−D

ω2
ǫ .

In the case ǫ = 1/m for some positive integer m, it can be shown that the metric ωǫ satisfies Condition 2.30.
The Kahler forms ωǫ behave as follows around any point of D, which is clear from the construction:

• Let P be any point of Di∩Dj , and (UP , zi, zj) be a holomorphic coordinate around P such that Di∩UP =
{zi = 0} and Dj∩UP = {zj = 0}. Then, there exist positive constants Ci (i = 1, 2) such that the following
holds on UP , for any 0 < ǫ < 1/2:

C1 · ωǫ ≤
√
−1 · ǫN+2 ·

(
dzi · dz̄i

|zi|2−2ǫ
+

dzj · dz̄j

|zj |2−2ǫ

)
+
√
−1
(
dzi · dz̄i + dzj · dz̄j

)
≤ C2 · ωǫ.

• Let Q be any point of Di \
⋃

j 6=i Dj , and (U, w1, w2) be a holomorphic coordinate around Q such that
U ∩ Di = {w1 = 0}. Then, there exist positive constants Ci (i = 1, 2) such that the following holds for
any 0 < ǫ < 1/2 on U :

C1 · ωǫ ≤
√
−1 · ǫN+2 ·

(
dw1 · dw̄1

|w1|2−2ǫ

)
+
√
−1
(
dw1 · dw̄1 + dw2 · dw̄2

)
≤ C2 · ωǫ.

3.3.2 Construction and some property

Let (E∗, D
λ) be a graded semisimple parabolic λ-flat bundle. For simplicity, we consider only the case λ 6= 0.

We take c ∈ RS such that ci 6∈ Par(E∗, i) for each i ∈ S. We assume the following:

(SPW) We have a positive integer m and γi ∈ R (i ∈ S) with −1/m < γi ≤ 0, such that Par
(
cE∗, i

)
is

contained in
{
ci + γi + p/m

∣∣p ∈ Z, −1 < γi + p/m < 0
}
.

Let ǫ = m−1. Let h0 be a C∞-hermitian metric of E on X − D as in Subsection 3.1 around the intersection
points of D, and as in Subsection 3.2 around the smooth points of D. Let θ0 denote the section of End(E)⊗Ω1,0

on X − D induced by Dλ and h0, and let θ†0 denote the adjoint.

Lemma 3.12 We have the boundedness of G(Dλ, h0) and θ2
0 · θ†0 with respect to h0 and ωǫ.

Proof It follows from Corollary 3.3 and Corollary 3.7.

Corollary 3.13 The following equality holds:

∫

X−D

tr
(
R(h0)

2
)

=
1

(1 + |λ|2)2
∫

X−D

tr
(
G(h0)

2
)
.

As a result, we have the following formula:

(√
−1

2π

)2
1

(1 + |λ|2)2
∫

X−D

tr
(
G(h0)

2
)

= 2

∫

X

par-ch2(E∗). (40)

Proof The second equality follows from the first equality and the equality (36) in the proof of Proposition

4.18 of [31]. Due to Lemma 2.29, we have only to show the vanishing
∫

∂ tr
(
θ2
0 · θ†0

)
= 0, which follows from the

estimate of θ2
0 · θ†0 in Lemma 3.12.
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We can also show the following equality by using Lemma 4.16 of [31] and the equality tr G(h0) = (1 + |λ|2) ·
tr R(h0): (√

−1

2π

)2 ∫

X−D

(
tr G(h0)

1 + |λ|2
)2

=

(√
−1

2π

)2 ∫

X−D

(
tr R(h0)

)2
=

∫

X

par-c1(E∗)
2.

Let V ⊂ E be a λ-flat subbundle. Because of λ 6= 0 and the regularity, we have the saturated filtered λ-flat
subsheaf V ∗ ⊂ E∗. Let hV be the metric of V induced by h0.

Lemma 3.14 We have degωǫ
(V, hV ) = par-degω(V ∗). In particular, degωǫ

(E, h0) = par-degω(E∗).

Proof It can be shown by the same argument as the proof of Lemma 4.20 of [31].

3.3.3 The induced metric and the λ-connection on D◦
i

For simplicity, we assume ci = γi = 0 (i ∈ S) in this subsection. We put S(Di) := Di ∩
⋃

j 6=i Dj and D◦
i :=

Di \ S(Di). Let (a, α) ∈ KMS
(
⋄E, F , i

)
. We have the naturally induced parabolic flat bundle i GrF,E

a,α(⋄E)∗ on(
Di,S(Di)

)
. By using the functions |σi|2gi

, we obtain the induced hermitian metric iha,α and the λ-connection
iDλ

a,α of i GrF,E
a,α

(
⋄E
)
|D◦

i

, as explained in Subsection 3.2.2. (See also Subsection 3.1.2.) Let τi := ∂∂ log |σi|2gi
.

Lemma 3.15 We have the following equality:

tr
(
R(ha,α)

)
= −1 + |λ|2

λ
∂
(
iθa,α

)
− λ−1α · τi · rank i GrF,E

a,α(⋄E)

Proof It follows from (33), (34), (35) and (36).

Corollary 3.16 We have the following equalities:

par-degDi

(
i GrF,E

a,α(⋄E)∗

)
= −

∑

P∈S(Di)

(
Re
(
λ−1 tr

(
ResP (iDλ

a,α)
))

+ wt
(
i GrF,E

a,α(⋄E)∗, P
))

− Re(λ−1α) · rank i GrF,E
a,α(⋄E) · [Di]

2 (41)

0 =
∑

P∈S(Di)

Im
(
λ−1 tr

(
ResP (iDλ

a,α)
))

+ Im(λ−1α) · rank i GrF,E
a,α(⋄E) · [Di]

2 (42)

Proof It follows from Lemma 3.15 and (30).

Remark 3.17 Although we have assumed that graded semisimplicity and (SPW)-condition for (E∗, D
λ), the

formulas (41) and (42) without the assumption, because the general case can be reduced to the above special case
by perturbation explained in Subsection 2.1.6.

3.4 Preliminary existence result of a Hermitian-Einstein metric

3.4.1 Hermitian-Einstein metric for graded semisimple λ-flat parabolic bundle on surface

We use the setting in Subsection 3.3. Let X be a smooth projective surface with an ample line bundle L and
a simple normal crossing divisor D. Let ω be a Kahler form representing c1(L). Let (E∗, D

λ) be a graded
semisimple regular filtered λ-flat bundle on (X, D). We assume the (SPW)-condition in Subsection 3.3.2. Let
ǫ = m−1, and let ωǫ be the Hermitian metric given in (39). We have an ordinary metric h0 constructed in
Subsection 3.3.2.

Lemma 3.18 We can construct a hermitian metric hin for E|X−D which satisfies the following conditions:

• hin is adapted to E∗. More strongly, hin = h0 · eχ for some function χ such that χ, ∂χ and ∂∂χ are
bounded with respect to ωǫ.
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• G(hin, Dλ) is bounded with respect to hin and ωǫ.

• Let V ∗ be a λ-flat filtered subsheaf of E∗. Let V := V |X−D and let hin,V denote the induced metric of V .
Then, we have par-degω(V ∗) = degωǫ

(V, hin,V ).

• tr G(hin, Dλ) · ωǫ = (1 + |λ|2) · a · ω2
ǫ for some constant a. The constant a is determined by the following

condition:

a ·
√
−1

2π

∫

X−D

ω2
ǫ = a ·

√
−1

2π

∫

X

ω2 = par-degω(E∗). (43)

• The following equalities hold:

(√
−1

2π

)2 ∫

X−D

tr
(
G(hin)2

)

(1 + |λ|2)2 =

∫

X

2 par-ch2(E∗),

(√
−1

2π

)2 ∫

X−D

tr
(
G(hin)

)2

(1 + |λ|2)2 =

∫

X

par-c2
1(E∗).

• Let s be determined by hin = h0 · s. Then, s and s−1 are bounded, and Dλs is L2 with respect to h0 and
ωǫ.

Due to the third condition, (E, hin, θ) is analytic stable with respect to ωǫ, if and only if (E∗, D
λ) is µL-stable.

The metric hin is called an initial metric.

Proof Let χ be a positive-valued function χ such that tr G(h0) · ωǫ = a · ω2
ǫ holds. We put hin := h0 · eχ. By

construction, the fourth condition is satisfied. The other property can be reduced to the property for h0, as in
Lemma 6.3 of [31].

Proposition 3.19 There exists a hermitian metric hHE of (E, Dλ) with respect to ωǫ satisfying the following
properties:

• Hermitian-Einstein condition Λωǫ
G(hHE) = a holds for the constant a determined by (43).

• par-degL(E∗) = degω(E, hHE).

• We have the following formulas:

(√
−1

2π

)2 ∫

X−D

tr
(
G(hHE)⊥ 2

)

(1 + |λ|2)2 =

∫

X

(
2 par-ch2(E∗) −

par-c2
1(E∗)

rankE

)
(44)

(√
−1

2π

)2 ∫

X−D

tr
(
G(hHE)2

)

(1 + |λ|2)2 =

∫

X

2 par-ch2(E∗). (45)

• hHE is adapted to E∗, i.e., E∗(hHE) ≃ E∗. More strongly, let s be determined by hHE = hin · s. Then,
s and s−1 are bounded with respect to hin, and Dλs is L2 with respect to hin and ωǫ.

Proof It follows from Lemma 3.18 and Proposition 2.33.

3.4.2 Bogomolov-Gieseker inequality

Let Y be a smooth projective variety of any dimension. Let L be an ample line bundle on Y , and let D be a
simple normal crossing divisor.

Corollary 3.20 Let (E∗, D
λ) be a µL-stable regular filtered λ-flat bundle on (Y, D) in codimension two. Then,

Bogomolov-Gieseker inequality holds for E∗. Namely, we have the following inequality:

∫

Y

par-ch2,L(E∗) ≤
∫

Y
par-c2

1,L(E∗)

2 rankE
.
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Proof Similar to Theorem 6.1 of [31]. Namely, since we have the Mehta-Ramanathan type theorem (Propo-
sition 2.9), we have only to prove the claim in the case dimY = 2. Due to the method of perturbation of
parabolic structure, we have only to prove the inequality in the case (E∗, D

λ) is a graded semisimple µL-stable
regular filtered λ-flat bundle on (Y, D), satisfying (SPW)-condition. Then we can take a Hermitian-Einstein
metric hHE as in Proposition 3.19, for which we have the standard inequality (See Proposition 3.4 of [36]):

∫

Y −D

tr
(
G(hHE , Dλ)⊥ 2

)
≥ 0. (46)

Here G(hHE , Dλ)⊥ denotes the trace free part of G(hHE , Dλ). Hence we obtain the desired inequality from
(46).

3.5 Some formula and vanishing of characteristic numbers

3.5.1 Formula for
∫

X
par-ch2(E∗)

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X . We will derive some
formulas and vanishings for the characteristic numbers of (E∗, D

λ).

Remark 3.21 To begin with, we remark that we have only to show such formulas for regular filtered λ-flat
bundles satisfying the following conditions due to the method of perturbation of the parabolic structure (Subsection
2.1.6).

• graded semisimple.

• Par
(
E∗, i

)
⊂ Q.

• 0 6∈ Par
(
E∗, i

)
for any i ∈ S.

We will use it without mention in the following argument.
We restrict ourselves to the case dimX = 2 just for simplicity. The formula can be obviously generalized

for
∫

X par-ch2,L(E∗) of regular λ-flat parabolic bundles (E∗, D
λ) on (X, D) in codimension two for dim X > 2,

where L denotes a line bundle on X.

For simplicity of the description, we put as follows, for u =∈ KMS(i) := KMS
(
⋄E, i

)
:

r(i, u) := rankDi

(
i GrF,E

u (⋄E)
)

For any point P ∈ Di ∩ Dj and (ui, uj) ∈ KMS(P ) := KMS
(
⋄E, P

)
, we put as follows:

r(P, ui, uj) := rank
(
P GrF,E

ui,uj

(
E
))

Proposition 3.22 We have the following equality:

∫

X

2 par-ch2(E∗) =
∑

i∈S

∑

u∈KMS(i)

(
Re(λ−1α) + a

)2 · r(i, u) · [Di]
2

+
∑

i∈S

∑

j 6=i
P∈Di∩Dj

∑

(ui,uj)∈KMS(P )

(
Re λ−1αi + ai

)(
Re λ−1αj + aj

)
· r(P, ui, uj). (47)

We also have the following equalities:

2 par-ch2(E∗) =
∑

i∈S

∑

u∈KMS(i)

Re
(
λ−1α + a

)
·
(
− par-deg

(
i GrF,E

a,α

(
⋄E
)
∗

)
+ a · r(i, u) · [Di]

2
)
. (48)

0 =
∑

i∈S

∑

u∈KMS(i)

Im(λ−1α) ·
(
− par-degDi

(
i GrF,E

u (⋄E)∗
)

+ a · r(i, u) · [Di]
2
)

(49)
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Proof Let Xδ :=
⋂{|σi| ≥ δ

}
and Yδ,i := Xδ ∩ {|σi| = δ}. We have R(h0) = −λ−1(1 + |λ|2) · d′′θ. Hence, we

have the following equality:

lim
δ→0

(√
−1

2π

)2 ∫

Xδ

tr
(
R(h0)

2
)

= −1 + |λ|2
λ

lim
δ→0

(√
−1

2π

)2 ∫

∂Xδ

d tr
(
θ · R(h0)

)
(50)

By using the estimates in Subsections 3.1–3.2, the contribution of Yδ,i to (50) is the following:

− 1

m

∑

(a,α)∈KMS(i)

m
(
a + λ−1α

)√−1

2π

∫

Di

(
tr
(
R(iha,α)

)
− a · r

(
i, (a, α)

)
· τi

)

= −
∑

(a,α)∈KMS(i)

(a + λ−1α) ·
(
degDi

(
i GrF,E

a,α(⋄E)∗
)
− a · r

(
i, (a, α)

)
· [Di]

2
)

(51)

By taking the real part, we obtain (48). By taking the imaginary part, we obtain (49). The equality (47) follows
from (48) and Lemma 3.15 by a formal calculation.

Lemma 3.23 For any C∞ 2-form τ , we have the following:

∫

X

par-c1(E∗) · τ =

√
−1

2π

∫

X

tr R(h0) · τ = −
∑

i∈S

∑

(a,α)∈KMS(i)

Re(λ−1α + a) · r
(
i, (a, α)

)
· (Di, τ) (52)

Namely, the cohomology class of tr R(h0) is par-c1(E∗). In particular, we also have the following equality:

par-degω(E∗) = −
∑

i∈S

∑

(a,α)∈KMS(i)

Re(λ−1α + a) · r
(
i, (a, α)

)
· (Di, ω) (53)

Proof Recall we have R(h0) = λ−1(1+ |λ|2) ·d′′θ0. Then, we obtain (52) by using the estimates in Subsections
3.1–3.2.

Remark 3.24 We considered the KMS-spectra of ⋄E. But, we have the following equality for any c ∈ RS and
i ∈ S: {

Re(λ−1α) + a
∣∣ (a, α) ∈ KMS(⋄E, i)

}
=
{
Re(λ−1α) + a

∣∣ (a, α) ∈ KMS(cE, i)
}

We also have such comparison for KMS
(
⋄E, P

)
and KMS

(
cE
)

for c ∈ RS and P ∈ Di ∩ Dj. Namely, the

choice ⋄E is not essential. (See also Section 6.)

3.5.2 Remark on the vanishing of the parabolic Chern character numbers

Recall the formulas for
∫

X
par-ch2(E∗) in Proposition 3.22 and the formula for par-degω(E∗) in Lemma 3.23.

Then, we immediately obtain the following corollary.

Corollary 3.25 If a+Reλ−1α = 0 holds for any KMS-spectrum (a, α) of (E∗, D
λ), the characteristic numbers

par-degω(E∗) and
∫

X par-ch2(E∗) automatically vanish.

Remark 3.26 Let E be a vector bundle on X − D with a flat connection ∇. We have the Deligne extension
(Ẽ,∇). (See Subsection 2.1.3, for example.) We have the canonically defined parabolic structure F such that

Re α + a = 0 for any KMS-spectrum. In that case, the stability of (Ẽ, F ,∇) and the semisimplicity of (E,∇) is

equivalent. The corollary means
∫

X par-c2(Ẽ, F ) = par-degω(Ẽ, F ) = 0.
When (E,∇) is semisimple, we know that there exists the Corlette-Jost-Zuo metric of (E,∇) which is a

pure imaginary tame pluri-harmonic metric adapted to the parabolic structure F (See [3] for the case D = ∅
and [16] for the general case. See also [30].) To show such an existence theorem from the Kobayashi-Hitchin
correspondence, we have to show the vanishing of the characteristic numbers which is “the obstruction on the
way from harmonicity to pluri-harmonicity”. Corollary 3.25 clarifies the point.
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4 Continuity of some families of harmonic metrics

4.1 Statements

In this section, we will show continuity of two kinds of families of harmonic metrics on curves, i.e., Proposition
4.1 and Proposition 4.2. We will give a detailed proof of the first one. Because the second one can be proved
similarly and more easily, we just give some remarks in the end of this section.

4.1.1 Continuity for ǫ-perturbation

Let C be a smooth projective curve with a simple divisor D. Let (E, F , Dλ) be a parabolic flat λ-connection

over (C, D), which is stable and par-deg(E, F ) = 0. Let F (ǫ) be the ǫ-perturbation of the parabolic structures,

explained in (II) of Subsection 2.1.6. We remark det(E, F ) = det(E, F (ǫ)). Let h(ǫ) be the harmonic metric for

(E, F (ǫ), Dλ). Let θ(ǫ) denote the Higgs fields for the harmonic bundles (E, Dλ, h(ǫ)).

Proposition 4.1 The sequences {h(ǫ) | ǫ > 0} and
{
θ(ǫ)
}

converge to h(0) and θ(0) respectively, in the C∞-sense
locally on C − D.

The proof is given in Subsection 4.5 after the preparation given in Subsections 4.2–4.4.

4.1.2 Continuity for a holomorphic family

Before going into the proof of Proposition 4.1, we give a similar statement for another family. Let C −→ ∆
be a holomorphic family of smooth projective curve, and D −→ ∆ be a relative divisor. Let (E, F , Dλ) be a
parabolic flat bundle on (C,D). Let t be any point of ∆. We denote the fibers by Ct and Dt, and the restriction of
(E, F , Dλ) to (Ct,Dt) is denoted by (Et, F t, D

λ
t ). We assume par-deg(Et, F t) = 0 and that (Et, F t, D

λ
t ) is stable

for each t. For simplicity, we also assume that we are given a pluri harmonic metric hdet(E) of det(E, Dλ)|C−D

which is adapted to the induced parabolic structure.
Let hH,t be a harmonic metric of (Et, F t, D

λ
t ) such that det(hH,t) = hdet(E) | Ct

. They give the metric hH of

E. Let θH,t be the Higgs field obtained from (Et, D
λ, hH,t), which is a section of End(Et)⊗ Ω1,0

Ct
(logDt). They

give the section θH of End(E) ⊗ Ω1,0
C/∆(logD), where Ω1,0

C/∆(logD) denotes the sheaf of the logarithmic relative

(1, 0)-forms.

Proposition 4.2 hH and θH are continuous. Their derivatives of any degree along the fiber directions are
continuous.

Since Proposition 4.2 can be proved similarly and more easily, we will not give a detailed proof. See Remark
4.15.

4.2 Preliminary from elementary calculus

For any z ∈ ∆∗ =
{
z ∈ C

∣∣ |z| < 1
}

and ǫ > 0, we put as follows:

Lǫ(z) :=
|z|−ǫ − |z|ǫ

ǫ
, Kǫ(z) :=

|z|−ǫ + |z|ǫ
2

, Mǫ(z) := |z|4ǫ(1 − log |z|4ǫ).

We also put L0(z) := − log |z|2, K0(z) = 1 and M0(z) = 1. Then, they are continuous with respect to
(z, ǫ) ∈ ∆∗ × R≥ 0.

Lemma 4.3 For any (z, ǫ) ∈ ∆∗ × R≥ 0, we have L0(z) ≤ Lǫ(z).

Proof We put g(ǫ) := a−ǫ − aǫ + ǫ · log a2 for 0 < a < 1 and 0 ≤ ǫ. Taking the derivative with respect to ǫ, we
obtain the following:

g′(ǫ) = −
(
a−ǫ + aǫ

)
log a + log a2, g′′(ǫ) = (a−ǫ − aǫ)(log a)2 ≥ 0.

Since we have g(0) = g′(0) = 0, the claim of the lemme follows.

36



Lemma 4.4 (Kǫ(z)−1)·
(
Lǫ(z)2 ·ǫ2 ·|z|ǫ

)−1
are bounded on ∆∗, independently of ǫ. We also have Kǫ(z)−1 ≥ 0.

Proof The second claim is clear. Let us check the first claim. We put as follows, for 0 < a < 1 and 0 ≤ ǫ ≤ 1:

g1(ǫ) := a−ǫ − 2 + aǫ, g2(ǫ) := (a−ǫ − aǫ)2aǫ = a−ǫ − 2aǫ + a3ǫ.

We have only to show that g2(ǫ) ≥ g1(ǫ). We put g(ǫ) := g2(ǫ)− g1(ǫ) = 2+ a3ǫ − 3aǫ. By taking the derivative
with respect to ǫ, we obtain the following:

g′(ǫ) = 3a3ǫ · log a − 3aǫ · log a = 3(−a3ǫ + aǫ)(− log a) ≥ 0.

Since we have g(0) = 0, we obtain g(ǫ) ≥ 0. Thus we are done.

Lemma 4.5
(
1−Mǫ(z)

)
·
(
Lǫ(z)2 ·ǫ2·|z|ǫ

)−1
are bounded on ∆∗, independently of ǫ. We also have 1−Mǫ(z) ≥ 0.

Proof We have only to show the following inequalities for 0 < a < 1 and 0 ≤ ǫ < 1:

0 ≤ 1 − a4ǫ(1 − log a4ǫ) ≤ 3(a−ǫ − aǫ)2aǫ.

To show the left inequality, we put h(ǫ) := 1 − a4ǫ(1 − log a4ǫ). By taking the derivative with respect to ǫ, we
have h′(ǫ) = −a4ǫ log a4(1 − log a4ǫ) + a4ǫ log a4 = ǫa4ǫ(log a4)2 ≥ 0. We also have h(0) = 0. Hence, we obtain
h(ǫ) ≥ 0. To show the right inequality, we put as follows:

g(ǫ) := a−4ǫ
(
3(a−ǫ − aǫ)2aǫ −

(
1 − a4ǫ(1 − log a4ǫ)

))
= 3(a−5ǫ − 2a−3ǫ + a−ǫ) + (1 − log a4ǫ) − a−4ǫ.

By taking the derivative with respect to ǫ, we obtain the following:

g′(ǫ) = 3
(
a−5ǫ(−5 log a) − 2a−3ǫ(−3 log a) + a−ǫ(− log a)

)
− 4 log a − a−4ǫ(−4 log a)

g′′(ǫ) =
(
75a−5ǫ − 16a−4ǫ − 54a−3ǫ + 3a−ǫ

)
· (log a)2.

It is easy to check g′′(ǫ) ≥ 0 by using a−5ǫ ≥ a−kǫ (k = 3, 4). Since we have g′(0) = g(0) = 0, we obtain
g(ǫ) ≥ 0. Thus we are done.

Lemma 4.6 Let P (t) be a polynomial with variable t, and let b be any fixed positive number. Then, we have
the boundedness of |z|bǫ · P

(
ǫL0(z)

)
on ∆∗, independently of 0 ≤ ǫ ≤ 1/2.

Proof We put u := |z|ǫ, and then |z|bǫP (ǫL0(z)) = ub·P
(
L0(u)

)
. Hence, we have only to show the boundedness

of ub · P
(
L0(u)

)
when 0 < u < 1, but it is easy.

4.3 A family of the metrics for a logarithmic λ-flat bundle of rank two on a disc

4.3.1 Construction of a family of metrics

We put X = ∆ = {z
∣∣ |z| < 1}. Let O denote the origin, and we put X∗ := X − {O}. We use the Kahler form

ωǫ := (ǫ2|z|ǫ−2 + 1) · dz · dz in this subsection. We will use the notation in Subsection 4.2.
To begin with, we recall an example of a harmonic bundle on a punctured disc. Let E = OX · v1 ⊕OX · v2

be a holomorphic vector bundle on a disc. Let θ be a Higgs bundle such that θ · v1 = v2 · dz/z and θ · v2 = 0.
Let h be the metric of E|X∗ such that h(v1, v1) = L0, h(v2, v2) = L−1

0 and h(vi, vj) = 0 (i 6= j). Recall that

the tuple (E, ∂E , θ, h) is a harmonic bundle. Let us see the associated λ-connection. We put u1 := v1 and
u2 := v2 − λ · L−1

0 · v1. Then, we can show (∂E + λθ†)ui = 0 (i = 1, 2), Dλu1 = u2 · dz/z and Dλu2 = 0 by a
direct calculation. We also have the following:

h(u1, u1) = L0, h(u2, u2) = (1 + |λ|2) · L−1
0 , h(u1, u2) = −λ, h(u2, u1) = −λ.

Motivated by this example, we consider the following family of the metrics hǫ on the λ-connection (E, Dλ)
given as follows:

hǫ(u1, u1) = Lǫ, hǫ(u2, u2) =
(
1 + |λ|2

)
· L−1

ǫ , hǫ(u1, u2) = −λ · Mǫ, hǫ(u2, u1) = −λ · Mǫ.

The λ-connection Dλ and the metric hǫ induce the operators ∂ǫ and θǫ (Subsection 2.2.1). The main purpose
of this subsection is to show the following proposition.
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Proposition 4.7 There exists a some positive constant C such that
∣∣∂ǫθǫ

∣∣
hǫ,ωǫ

≤ C for any 0 ≤ ǫ < 1/2.

Although the proof of the proposition is just a calculation, we will give the detail in the rest of this subsection.

Remark 4.8 Let h′
ǫ be the metric determined by h′

ǫ(u1, u1) = Lǫ, h′
ǫ(u2, u2) = L−1

ǫ and h′
ǫ(ui, uj) = 0 (i 6= j).

Then, there exist positive constants Ci (i = 1, 2) such that C1 · h′
ǫ ≤ hǫ ≤ C2 · h′

ǫ for any 0 ≤ ǫ ≤ 1/2. Hence,
we have only to consider the norms for h′

ǫ instead of those for hǫ.

4.3.2 Preliminary

Let Hǫ be the hermitian matrix valued function given by Hǫ := H(hǫ, u), i.e.,

Hǫ :=

(
Lǫ −λ · Mǫ

−λ · Mǫ (1 + |λ|2)L−1
ǫ

)
.

Let N be determined by Dλu = u ·N · dz/z, and let N †
ǫ denote the adjoint of N with respect to the metric Hǫ,

i.e.,

N =

(
0 0
1 0

)
, N †

ǫ = H
−1

ǫ · tN · Hǫ =
1

1 + |λ|2(1 − M2
ǫ )

(
−λ(1 + |λ|2)L−1

ǫ Mǫ (1 + |λ|2)2L−2
ǫ

−λ
2
M2

ǫ λ(1 + |λ|2)MǫL
−1
ǫ

)
.

Recall the calculation given in Subsection 2.2.2. Then, ∂ǫ and θǫ can be described with respect to u as follows:

∂ǫu = u · λ

1 + |λ|2
(
λ · H−1

ǫ ∂Hǫ − N †
ǫ

dz

z

)
, θǫu = u

1

1 + |λ|2
(
N

dz

z
− λH

−1

ǫ ∂Hǫ

)
.

Therefore, ∂ǫ(θǫ) is described by the following 2 × 2-matrix valued 2-form with respect to u:

1

1 + |λ|2 ∂
(
−λH

−1

ǫ ∂Hǫ

)
+

λ

(1 + |λ|2)2
([

λ · H−1

ǫ ∂Hǫ, N
dz

z

]
−
[
N †

ǫ

dz

z
, N

dz

z

]
+
[
N †

ǫ

dz

z
, λH

−1

ǫ ∂Hǫ

])
. (54)

Here we have used
[
H

−1

ǫ ∂Hǫ, H
−1

ǫ ∂Hǫ

]
= 0, which can be checked easily.

Lemma 4.9 To show Proposition 4.7, we have only to show the uniform boundedness of (1, 1)-entry, (2, 2)-
entry, Lǫ× (1, 2)-entry and L−1

ǫ × (2, 1)-entry, in the matrix valued function (54).

Proof It follows from Remark 4.8.

In the following calculation, we often use the notation L and M instead of Lǫ and Mǫ, if there are no risk

of confusion. Let us see H
−1

ǫ ∂Hǫ. We have the following equality:

H
−1

ǫ =
1

1 + |λ|2(1 − M2
ǫ )

(
(1 + |λ|2) · L−1

ǫ λ · Mǫ

λ · Mǫ Lǫ

)
, ∂Hǫ =

(
∂Lǫ −λ · ∂Mǫ

−λ · ∂Mǫ (1 + |λ|2) · ∂L−1
ǫ

)
.

Then, we obtain the following formula for H
−1

ǫ ∂Hǫ:

H
−1

ǫ ∂Hǫ =
1

1 + |λ|2(1 − M2
ǫ )

(
(1 + |λ|2)L−1∂L − |λ|2M∂M λ(1 + |λ|2)

(
−L−1∂M + M∂L−1

)

λ(M∂L − L∂M) (1 + |λ|2)L∂L−1 − |λ|2M · ∂M

)
. (55)

We also have a similar formula for H
−1

ǫ ∂Hǫ. We obtain the following formula for ∂
(
H

−1

ǫ ∂Hǫ

)
:

∂
(
H

−1

ǫ ∂Hǫ

)
=

2|λ|2M∂M
(
1 + |λ|2(1 − M2)

)2 H
−1

ǫ ∂Hǫ

+
1

1 + |λ|2(1 − M2)

(
(1 + |λ|2)∂∂ log L − 2−1|λ|2∂∂M2 λ(1 + |λ|2)(M∂∂L−1 − L−1∂∂M)

λ(M∂∂L − L∂∂M) (1 + |λ|2)∂∂ log L−1 − 2−1|λ|2∂∂M2

)
. (56)
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The commutator of H
−1

ǫ ∂Hǫ and N · dz/z is as follows:

[
H

−1

ǫ ∂Hǫ, N · dz

z

]
=

(1 + |λ|2)
1 + |λ|2(1 − M2)

(
λ(−L−1∂M + M∂L−1) 0

2L∂L−1 −λ(−L−1∂M + M∂L−1)

)
dz

z
. (57)

Let us see the commutator of H
−1

ǫ ∂Hǫ and N †
ǫ . By direct calculations, we have the following equality:

H
−1

ǫ ∂Hǫ · N †
ǫ =

1

1 + |λ|2(1 − M2)

(
−λ(1 + |λ|2)L−2M∂L (1 + |λ|2)2L−3∂L

λ
2 · M∂M −λ(1 + |λ|2)L−1∂M

)

+
1

(
1 + |λ|2(1 − M2)

)2

(
2|λ|2λ(1 + |λ|2)M2L−1∂M −2|λ|2(1 + |λ|2)2ML−2∂M

2M3∂Mλ
2|λ|2 −2λ|λ|2(1 + |λ|2)M2L−1∂M

)
. (58)

We also have the following:

N †
ǫ · H−1

ǫ ∂Hǫ =
1

1 + |λ|2(1 − M2)

(
−λ(1 + |λ|2)L−1∂M (1 + |λ|2)2L−1∂L−1

−λ
2
M∂M λ(1 + |λ|2)M∂L−1

)
. (59)

Therefore, we obtain the following formula:

[
N †

ǫ

dz

z
, H

−1

ǫ ∂Hǫ

]

=
1

1 + |λ|2(1 − M2)

dz

z

(
−λ(1 + |λ|2)(L−1∂M − L−2M∂L) −2(1 + |λ|2)2L−3∂L

−2λ
2
M∂M λ(1 + |λ|2)(M∂L−1 + L−1∂M)

)

− 2|λ|2
(
1 + |λ|2(1 − M2)

)2
dz

z

(
λ(1 + |λ|2)M2L−1∂M −(1 + |λ|2)2ML−2∂M

λ
2
M3∂M −λ(1 + |λ|2)M2L−1∂M

)
(60)

The commutator of N and N †
ǫ is as follows:

[
N †

ǫ , N
]

=
1

1 + |λ|2(1 − M2)

(
(1 + |λ|2)2L−2 0

2λ(1 + |λ|2)ML−1 −(1 + |λ|2)2L−2

)
. (61)

4.3.3 Estimate

We have the following:

∂Lǫ = −Kǫ
dz

z
, ∂Kǫ = − ǫ2

4
Lǫ

dz

z
, ∂Mǫ = 4ǫ2 · |z|4ǫ · L0 ·

dz

z
. (62)

In particular, we have the following estimate:

Mǫ∂Mǫ = O
(
ǫ2 · |z|8ǫ · L0 ·

(
1 + ǫL0

)dz

z

)
.

Let us see the first term in the right hand side of (56):

2|λ|2Mǫ∂Mǫ(
1 + |λ|2(1 − M2

ǫ )
)2 H

−1

ǫ ∂Hǫ (63)

For the (1, 1)-entry and (2, 2)-entry, we have the following estimates:

Mǫ∂Mǫ · L−1
ǫ ∂Lǫ = O

(
ǫ2 · L0 · |z|8ǫ(1 + ǫL0)

Kǫ

Lǫ

)
dz · dz

|z|2 = O

(
|z|5ǫ(1 + ǫL0)

L0

Lǫ

)
· ωǫ
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Mǫ∂Mǫ · Mǫ∂Mǫ = O
(
ǫ4 · |z|16ǫ · (1 + ǫL0)

2L2
0

)dz · dz

|z|2 = O
(
|z|15ǫ · (1 + ǫL0)

2(ǫL0)
2
)
· ωǫ.

They are bounded with respect to ωǫ due to Lemma 4.3 and Lemma 4.6. Hence, the (1, 1)-entry and the
(2, 2)-entry of (63) are bounded independently of ǫ. Let us see the (1, 2)-entry. Recall Lemma 4.9. Hence, we
have only to see the following:

Lǫ × (Mǫ∂Mǫ) ·
(
L−1

ǫ ∂Mǫ − Mǫ∂L−1
ǫ

)
= Mǫ∂Mǫ∂Mǫ + M2

ǫ ∂MǫL
−1
ǫ ∂Lǫ.

Both terms in the right hand side can be estimated as in the previous case, by using Lemma 4.3 and Lemma
4.6:

Mǫ∂Mǫ∂Mǫ = O
(
|z|10ǫ(1 + ǫL0)(ǫL0)

2
)
· ωǫ = O(1) · ωǫ

M2
ǫ ∂MǫL

−1
ǫ ∂Lǫ = O

(
|z|11ǫ(1 + ǫL0)

2 L0

Lǫ

)
· ωǫ = O(1) · ωǫ

The (2, 1)-entry can be estimated similarly:

L−1
ǫ × (Mǫ∂Mǫ)

(
Mǫ∂Lǫ − Lǫ∂Mǫ

)
= M2

ǫ L−1
ǫ ∂Mǫ∂Lǫ − Mǫ · ∂Mǫ∂Mǫ = O(1) · ωǫ.

Let us see the second term in the right hand side of (56):

1

1 + |λ|2(1 − M2)

(
(1 + |λ|2)∂∂ log L − 2−1|λ|2∂∂M2 λ(1 + |λ|2)(M∂∂L−1 − L−1∂∂M)

λ(1 + |λ|2)(M∂∂L − L∂∂M) (1 + |λ|2)∂∂ log L−1 − 2−1|λ|2∂∂M2

)
. (64)

It is easy to see the following estimate:

∂∂M2
ǫ = O

(
ǫ2 · |z|6ǫ(1 + ǫL0)

2
)
· ωǫ = O(ǫ2) · ωǫ. (65)

Hence, it is bounded with respect to ωǫ independently of ǫ. We remark that L−1
ǫ Mǫ∂∂Lǫ is also bounded

independently of ǫ:

L−1
ǫ Mǫ · ∂∂Lǫ =

ǫ2

4
Mǫ ·

dz · dz

|z|2 = O(1) · ωǫ.

Hence, we have the following, modulo the uniformly bounded term with respect to (hǫ, ωǫ):

∂
(
H

−1

ǫ ∂Hǫ

)
≡ (1 + |λ|2)

1 + |λ|2(1 − M2
ǫ )

(
∂∂ log Lǫ λMǫ∂∂L−1

ǫ

0 −∂∂ log Lǫ

)
. (66)

Let us see (57). By the same argument, we have the following uniform boundedness:

L−1
ǫ ∂Mǫ ·

dz

z
= O

(
ǫ2|z|4ǫ L0

Lǫ

)
· dz · dz

|z|2 = O(1) · ωǫ.

Hence, we have the following, modulo the uniformly bounded terms with respect to (hǫ, ωǫ):

[
H

−1

ǫ ∂Hǫ, N · dz

z

]
≡ (1 + |λ|2)

1 + |λ|2(1 − M2
ǫ )

(
λMǫ∂L−1

ǫ 0

2Lǫ∂L−1
ǫ −λMǫ∂L−1

ǫ

)
· dz

z
. (67)

Let us see (60). We remark the following, for any k ≥ 1:

dz

z

Mk
ǫ ∂Mǫ

Lǫ
= O

(
ǫ2|z|4(k+1)ǫ(1 + ǫL0)

k L0

Lǫ

)
· dz · dz

|z|2 = O(1) · ωǫ.

Hence, the terms containing ∂M in the right hand side of (60) can be ignored. Hence, we obtain the following,
modulo the uniformly bounded terms with respect to (hǫ, ωǫ):

[
N †

ǫ

dz

z
, H

−1

ǫ ∂Hǫ

]
≡ (1 + |λ|2)

1 + |λ|2(1 − M2
ǫ )

dz

z

(
λL−2

ǫ Mǫ∂Lǫ −2(1 + |λ|2)L−3
ǫ ∂Lǫ

0 λMǫ∂L−1
ǫ

)
. (68)
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In all, (54) is same as the following, modulo uniformly bounded terms due to (61), (66), (67) and (68):

1

1 + |λ|2(1 − M2
ǫ )

(
−λ∂∂ log Lǫ −λ2Mǫ · ∂∂L−1

ǫ

0 λ∂∂ log Lǫ

)

+
1

1 + |λ|2(1 − M2
ǫ )

|λ|2
1 + |λ|2

dz · dz

|z|2
(

λ · Mǫ · Kǫ · L−2
ǫ 0

2Kǫ · L−1
ǫ −λ · Mǫ · Kǫ · L−2

ǫ

)

+
1

1 + |λ|2(1 − M2
ǫ )

λ2

1 + |λ|2
dz · dz

|z|2
(

−λ · Mǫ · Kǫ · L−2
ǫ 2(1 + |λ|2)L−3

ǫ · Kǫ

0 λ · Mǫ · Kǫ · L−2
ǫ

)

− λ

1 + |λ|2(1 − M2
ǫ )

dz · dz

|z|2
(

L−2
ǫ 0

2λ(1 + |λ|2)−1Mǫ · L−1
ǫ −L−2

ǫ

)
. (69)

The summation of the last three term in (69) is as follows:

1

1 + |λ|2(1 − M2
ǫ )

dz · dz

|z|2
(

−λL−2
ǫ 2λ2L−3

ǫ Kǫ

2|λ|2(1 + |λ|2)−1(Kǫ − Mǫ)L
−1
ǫ λL−2

ǫ

)
. (70)

By a direct calculation, we can show the following equalities:

∂∂ log Lǫ = − 1

L2
ǫ

dz · dz

|z|2 , ∂∂L−1
ǫ =

2

L3
ǫ

dz · dz

|z|2 − ǫ2

2

1

Lǫ

dz · dz

|z|2 .

Therefore, (69) can be rewritten as follows:

1

1 + |λ|2(1 − M2
ǫ )

(
0 2λ2L−3

ǫ (Kǫ − Mǫ)
2|λ|2(1 + |λ|2)−1L−1

ǫ (Kǫ − Mǫ) 0

)
· dz · dz

|z|2

+
1

1 + |λ|2(1 − M2
ǫ )

(
0 λ2ǫ2Mǫ(2Lǫ)

−1

0 0

)
· dz · dz

|z|2 . (71)

Due to Mǫ = O
(
|z|4ǫ(1+ ǫL0)

)
, the second term in (71) can be ignored. Due to Lemma 4.5 and Lemma 4.4, we

have the uniform boundedness of (Mǫ − 1) · L−2
ǫ · dz · dz/|z|2 and (Kǫ − 1) · L−2

ǫ · dz · dz/|z|2. Thus, the proof
of Proposition 4.7 is finished.

4.4 A family of metrics of a parabolic flat bundle on a disc

4.4.1 Simple case

We put X := ∆ = {z ∈ C | |z| < 1} and X∗ := ∆ − {O}. Let Vl be a vector space over C with a base
e = (e1, . . . , el), and let Nl be the nilpotent endomorphism of Vl given by Nl · ei+1 = ei for i = 1, . . . , l − 1
and Nl · el = 0. We put El := OX ⊗ Vl. Then, ei naturally induce the frame of El, which we denote by
v = (v1, . . . , vl). The fiber E|O is naturally identified with V , and we have v|O = e. We have the logarithmic

λ-connection Dλ
l of El given by Dλ

l vi = vi+1 · dz/z for i = 1, . . . , l − 1 and Dλ
l vl = 0. The residue Res(Dλ) is

given by Nl. We have the weight filtration W of E|O with respect to Nl.
We have the trivial parabolic structure F of El. Take a sufficiently small positive number ǫ. We consider

the ǫ-perturbation F (ǫ) given by F
(ǫ)
kǫ = Wk for k = −l + 1,−l + 3 . . . , l − 1 in this case.

Let us fix a sufficiently small positive number ǫ0 such that rankE · ǫ0 < η/10. In the previous subsection,

we have constructed a family of metrics h
(ǫ)
2 (0 ≤ ǫ ≤ ǫ0). It induces the metric of Syml−1(E2, D

λ
2 ) ≃ (El, Dl),

which we denote by h
(ǫ)
l . The following property can be shown by reducing to the case l = 2.

• h
(0)
l is the harmonic metric.

• h
(ǫ)
l −→ h

(0)
l for ǫ → 0, in the C∞-sense locally on X∗.

•
∣∣Λωǫ

G(h
(ǫ)
l )
∣∣
h
(ǫ)
l

< C.

41



• h
(ǫ)
l is adapted to the parabolic structure F

(ǫ)
l .

• Let tǫ := det(h
(ǫ)
l )
/

det(h
(0)
l ). Then, tǫ and t−1

ǫ are bounded, independently of ǫ.

Lemma 4.10 Let Hǫ =
(
h(ǫ)(vi, vj)

)
. Then, we have the following estimate on {0 < |z| < 1/2} with respect to

h
(ǫ)
l :

H
−1

ǫ ·
(
∂ + λ∂

)
Hǫ = O(1) · dz

z
+ O(1) · dz

z

Proof We see only H
−1

ǫ ∂Hǫ. The term H
−1

ǫ ∂Hǫ can be discussed in the same way. We have only to check
the case l = 2. As in Lemma 4.9, we have only to see the (1, 1)-entry, (2, 2)-entry, Lǫ× (1, 2)-entry and L−1

ǫ ×
(2, 1)-entry in the matrix valued function (55). As is seen in Subsection 4.3.3, the term containing ∂Mǫ is
bounded with respect to ωǫ, and the estimate is uniform for ǫ. Hence, we can ignore them. Therefore, we have
only to show that L−1

ǫ ∂Lǫ = −Lǫ∂L−1
ǫ is O(1) · dz/z, but it can be checked by a direct calculation.

4.4.2 General case

Let (E, F , Dλ) be a parabolic flat λ-connection on (X, O). Take a positive number η such that 10·η < gap(E, F ).
We will use the metrics:

ωǫ = ǫ2|z|ǫ dz · dz

|z|2 + |z|2η dz · dz

|z|2 . (72)

Here, ǫ will be m−1 for some m ∈ Z>0 such that 10 rank(E) · ǫ < η. We take the ǫ-perturbation F (ǫ) as in (II)
of Subsection 2.1.6. Let a(ǫ) be the numbers which is denoted by a(ǫ, i) in the explanation there.

We have the endomorphism Res(Dλ) of GrF
a (E). It induces the generalized eigen decomposition GrF

a (E) =⊕
α∈C

GrF,E
a,α(E). On GrF,E

u (E), the endomorphism Res(Dλ) is decomposed as α · id +Nu, where u = (a, α) ∈
R × C. Let W be the weight filtration of Nu on GrF,E

u (E). They induce the filtration W of GrF
a (E).

For u ∈ R × C, we put Vu := GrF,E
u (E) with the induced nilpotent map Nu. Then, we can take an

isomorphism:

(Vu, Nu) ≃
m(u)⊕

i=1

(
Vl(u,i), Nl(u,i)

)
.

We put (Eu, Dλ
u) :=

⊕(
El(u,i), D

λ
l(u,i)

)
. Let h

′ (ǫ)
u denote the metric of Eu induced by h

(ǫ)
l(u,i) (i = 1, . . . , m(u)).

(See Subsection 4.4.1).
Let Q(u) denote the logarithmic λ-flat bundle of rank one for u = (a, α), which is given by OX ·e with the

λ-connection Dλe = e ·α ·dz/z. It is equipped with the family of the harmonic metrics h
′′ (ǫ)
u,ǫ (e, e) = |z|−2a(ǫ).

Then, we obtain the vector bundle E0 with the λ-connection Dλ
0 and the parabolic structure F , as follows:

(E0, D
λ
0 ) =

⊕

u

(
Eu, Dλ

u

)
⊗ Q(u), Fb(E0 |O) =

⊕

a≤b

E(a,α)|O ⊗ Q(a, α)|O.

The metrics h
′ (ǫ)
u and h

′′ (ǫ)
u induce the metric h

(ǫ)
u of Eu ⊗ Q(u). Let h

(ǫ)
0 denote the direct sum of them. We

can take a holomorphic isomorphism Ψ : E0 −→ E satisfying the following conditions:

• It preserves the filtration F .

• GrF (Ψ) ◦ GrF Res Dλ = GrF Res Dλ
0 GrF (Ψ).

We identify E0 and E via Ψ. The naturally induced metric of E is denoted by the same notation h
(ǫ)
0 .

Lemma 4.11 The family
{
h

(ǫ)
0

∣∣ 0 ≤ ǫ ≤ ǫ0
}

of the hermitian metrics has the following properties:

• G(Dλ, h
(ǫ)
0 ) is uniformly bounded with respect to (ωǫ, h

(ǫ)
0 ).

• {h(ǫ)
0 | ǫ > 0} converges to h

(0)
0 in the C∞-sense locally on X∗.
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• h
(ǫ)
0 is adapted to the perturbed parabolic structure F (ǫ).

• Let tǫ be determined by det(h
(ǫ)
0 )
/

det(h
(0)
0 ). Then, tǫ and t−1

ǫ are bounded, independently from ǫ.

Proof We check only the first claim. The other claims are easy to see. Let f be determined by f · dz/z =

Dλ − Dλ
0 , and we put f †

ǫ := f †
h(ǫ) . We put Dλ ⋆

ǫ := Dλ ⋆
h(ǫ) and Dλ ⋆

0,ǫ := Dλ ⋆
0,h(ǫ) . Then, we have the following:

G(Dλ, h
(ǫ)
0 ) =

[
Dλ, Dλ ⋆

ǫ

]
=
[
Dλ

0 + f
dz

z
, Dλ ⋆

0,ǫ + f †
ǫ

dz

z

]

= G(Dλ
0 , h

(ǫ)
0 ) + Dλ ⋆

0,ǫ(f)
dz

z
+ Dλ

0 (f †
ǫ )

dz

z
+ [f, f †

ǫ ]
dz · dz

|z|2 . (73)

We have the decomposition f =
∑

fu,u′ , where fu,u′ ∈ Hom
(
Eu ⊗ Q(u), Eu′ ⊗ Q(u′)

)
. We have fu,u′ |O = 0

unless α = α′ and a > a′. Hence, there exist positive constants C and N such that the following holds for
0 < ǫ < ǫ0:

|f |
h
(ǫ)
0

≤ C · |z|10ηLN
ǫ ,

Here N · ǫ is sufficiently smaller than η. Hence, we have the following:

|f |
h
(ǫ)
0

≤ C · |z|9η, [f, f †
ǫ ] = O

(
|z|18η

)
.

We have the induced frames vu of Eu ⊗Q(u). They induce the frame v of E0. Let B and A0 be determined
by fv = v · B · dz/z and Dλ

0v = vA0 · dz/z. Then, we have the following:

[
Dλ

0 , f †
]
v = v

(
DB†

ǫ

dz

z
+ [A0, B

†
ǫ ]

dz · dz

|z|2
)

.

Here we put D = ∂ + λ∂ and B†
ǫ = H

−1

ǫ · tB · Hǫ, where Hǫ = H(h
(ǫ)
0 , u). Since B†

ǫ is sufficiently small with

respect to (ωǫ, h
(ǫ)
0 ), [A0, B

†
ǫ ] is also sufficiently small. Corresponding to the decomposition f =

∑
fu,u′ , we

have B =
∑

Bu,u′ . Then, the following holds:

(
B†

ǫ

)
u,u′

= H
−1

u′,ǫ
tBu′,uHu,ǫ.

Here Hu,ǫ := H(h
(ǫ)
u , vu). Hence, we obtain the following:

(
DB†

ǫ

)
u,u′

dz

z
= H

−1

u′,ǫ · (DtBu′,u) · Hu,ǫ − H
−1

u′,ǫDHu′,ǫ · (B†
ǫ )u,u′ + (B†

ǫ )u,u′ · H−1

u,ǫDHu,ǫ.

Since B is holomorphic, we have H
−1

u′,ǫ ·
(
DtBu′,u

)
·Hu,ǫ ·dz/z = 0. We put H ′

u ǫ := H(h
′ (ǫ)
u , vu). Then, we have

Hu,ǫ = |z|−2aH ′
u,ǫ, and the following holds with respect to h

(ǫ)
0 due to Lemma 4.10:

H
−1

u,ǫDHu,ǫ = −a

(
λ

dz

z
+

dz

z

)
+ H

′ −1

u,ǫ DH
′

u,ǫ = O(1)
dz

z
+ O(1)

dz

z
.

Since (B†
ǫ )u,u′ is small with respect to (ωǫ, h

(ǫ)
0 ), (B†

ǫ )u,u′ · H−1

u,ǫ∂Hu,ǫ is also small. Therefore, Dλ
0f † · dz/z is

small with respect to (ωǫ, h
(ǫ)
0 ). It also follows that Dλ ⋆

0,ǫf · dz/z is small. Thus we are done.

4.5 Proof of Proposition 4.1

4.5.1 Construction of a family of initial metrics

Let η be a small positive number such that η < gap(E, F )/10. Let ǫ0 be a small positive number such that
10 rankE ·ǫ0 < η. For any 0 ≤ ǫ < ǫ0, let us take ωǫ be the Kahler forms of C−D with the following properties:

• Let (UP , z) be a holomorphic coordinate around P ∈ D such that z(P ) = 0, and then ωǫ is given by (72).
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• ωǫ −→ ω0 for ǫ −→ 0 in the C∞-sense locally on X − D.

Lemma 4.12 We can construct a family of metrics h
(ǫ)
0 of E|C−D with the following properties:

• h
(ǫ)
0 is adapted to the perturbed parabolic structure F (ǫ).

• h
(ǫ)
0 −→ h

(0)
0 in the C∞-sense locally on C − D.

• G(h
(ǫ)
0 ) is uniformly bounded with respect to (ωǫ, h

(ǫ)
0 ).

• We put tǫ := det(h
(ǫ)
0 )
/

det(h
(0)
0 ). Then, tǫ and t−1

ǫ are bounded independently from ǫ.

Proof We construct a C∞-metric of E on
⋃

P∈D(UP −{P}), by applying the construction given in Subsection

4.4.2 to (E, F , Dλ)|UP
for each P ∈ D, and then we prolong it to a C∞-metric of E on C − D.

Let R(deth
(0)
0 ) denote the curvature of the metrized holomorphic bundle det(E, d′′, h

(0)
0 ), where d′′ denote

the (0, 1)-part of Dλ. Since deth
(0)
0 gives the harmonic metric around D due to our construction, R(deth

(0)
0 )

vanishes around D. We also have
∫

R(deth
(0)
0 ) = −2π

√
−1 · par-deg(E, F ) = 0. Let us take the C∞-function

χ0 on C and satisfies the equality rank(E) · ∂∂χ0 + R
(
det(h

(0)
0 )
)

= 0. We put h
(0)
in := h

(0)
0 · exp

(
χ0

)
. Then,

R
(
deth

(0)
in

)
= 0, i.e., deth

(0)
in is a harmonic metric of det(E, Dλ). Let χǫ be the functions determined by

det(h
(0)
in ) = det(h

(ǫ)
0 ) · exp

(
rank(E) · χǫ

)
. The following claims immediately follows from Lemma 4.12.

• χǫ and −χǫ are bounded on C, independently from ǫ.

• χǫ −→ 0 in the C∞-sense locally on C − D.

We put h
(ǫ)
in := h

(ǫ)
0 · exp

(
χǫ

)
, which is the metric of E|C−D.

Lemma 4.13 The following claims are easy to check.

• h
(ǫ)
in is adapted to the parabolic structure F (ǫ).

• h
(ǫ)
in −→ h

(0)
in in the C∞-sense locally on C − D.

• G(h
(ǫ)
in ) is uniformly bounded with respect to (ωǫ, h

(ǫ)
in ).

• det h
(ǫ)
in is harmonic, and we have deth

(ǫ)
in = deth

(0)
in .

In other words, they give initial metrics for (E, F (ǫ), Dλ) in the sense of Lemma 3.18, and their pseudo curvature
satisfy some uniform finiteness.

4.5.2 L2
1-finiteness of the sequence

Due to Proposition 2.33, we obtain the harmonic metrics h(ǫ) for (E, F (ǫ), Dλ) such that deth(ǫ) = det h
(0)
in .

Due to Lemma 2.34, we have the following inequalities for any ǫ:

Mωǫ
(h

(ǫ)
in , h(ǫ)) ≤ 0. (74)

Let s(ǫ) be determined by h(ǫ) = h
(ǫ)
in s(ǫ). Due to Lemma 2.45, (74) and det s(ǫ) = 1, there exists a positive

constant A which is independent on ǫ, with the following property:
∣∣s(ǫ)

∣∣
h
(ǫ)
in

≤ A,
∣∣s(ǫ)−1

∣∣
h
(ǫ)
in

≤ A. (75)

Let Dλ ⋆
in be the operator obtained from Dλ, ωǫ and h

(ǫ)
in as in Subsection 2.2.1. We have the following equalities:

∆λ
ωǫ

tr s(ǫ) = −
√
−1 tr

(
s(ǫ)Λωǫ

G(h
(ǫ)
in )
)

+
√
−1 tr

(
Λωǫ

Dλs(ǫ) · (s(ǫ))−1 · Dλ ⋆
in s(ǫ)

)
.

See Remark 2.24 for ∆λ
ωǫ

.
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Lemma 4.14 We have
∫

∆λ
ωǫ

tr s(ǫ) dvolωǫ
= 0.

Proof Let g be a C∞-Kahler metric of C. We have only to show
∫

∆λ
g tr s(ǫ) dvolg = 0. We have the following:

∆λ
g tr s(ǫ) = −

√
−1 tr

(
s(ǫ)ΛgG(h

(ǫ)
in )
)
−
∣∣Dλs(ǫ) · (s(ǫ))−1/2

∣∣2
h(ǫ),g

Since
∣∣tr
(
s(ǫ)ΛgG(h

(ǫ)
in )
)∣∣ is O(|z|ǫ−2), we can take a bounded function aǫ such that ∆gaǫ =

∣∣tr
(
s(ǫ)ΛgG(h

(ǫ)
in )
)∣∣.

Hence, we obtain
∫

X−D

∣∣Dλs(ǫ)·(s(ǫ))−1/2
∣∣2
h(ǫ),g

< ∞, due to Lemma 2.2 of [37]. Since s(ǫ) is bounded with respect

to h(ǫ), we obtain
∫

X−D

∣∣Dλs(ǫ)
∣∣2
h(ǫ),g

< ∞. Then, it is easy to obtain the vanishing
∫

∆λ
ωǫ

tr s(ǫ) dvolωǫ
= 0 by

Stokes formula and Lemma 5.2 of [36].

Then, there exists a positive constant A′ such that the following holds:

∫
|Dλs(ǫ) · s(ǫ)−1/2|2

h
(ǫ)
in ,ωǫ

dvolωǫ
≤ A′. (76)

In particular, we obtain
∥∥Dλs(ǫ)

∥∥
L2,ωǫ,h

(ǫ)
in

is bounded for 0 < ǫ < ǫ0.

4.5.3 The end of the proof of Proposition 4.1

Let Q be a point of C − D. Let (U, z) be a holomorphic coordinate around Q such that z(Q) = 0 and
U ≃ ∆ = {z | |z| < 1}. We use the standard metric g = dz · dz of U . The harmonic bundle (E, Dλ, h(ǫ)) induces
the Higgs bundle (E, ∂ǫ, θǫ). We have θǫ = fǫ · dz on U . On the other hand, we also obtain ∂in,ǫ and θin,ǫ from

(E, Dλ, h
(ǫ)
in ), although ∂in,ǫ

(
θin,ǫ

)
= 0 is not satisfied, in general. Let δ′in,ǫ be the (1, 0)-operator obtained from

h
(ǫ)
in and d′′, as in Subsection 2.2.1. Then, we have the relation:

θǫ = θin,ǫ −
λ

1 + |λ|2
(
s(ǫ)−1 · δ′in,ǫs

(ǫ)
)
. (77)

Due to (75), (76) and (77), there exists a positive constant C0 such that
∫

U
|fǫ|2h(ǫ) dvolg < C0 holds for any

0 < ǫ < ǫ0. Hence, the following inequality holds for some positive constants Ci (i = 1, 2, 3) and for any
0 < ǫ < ǫ0: ∫

U

log |fǫ|2h(ǫ) dvolg ≤ C1 +

∫

U

C2 · |fǫ|2h(ǫ) dvolg ≤ C3. (78)

Recall the fundamental inequality for the Higgs field of a harmonic bundle [37]:

∆g log |fǫ|2h(ǫ) ≤ −
∣∣[fǫ, f

†
ǫ ]
∣∣2
h(ǫ)

|fǫ|2h(ǫ)

≤ 0. (79)

Due to (78) and (79), there exists a positive constant C4 such that the following holds for any Q′ ∈ U(1/2) :=
{|z| < 1/2}: ∣∣fǫ(Q

′)
∣∣2
h
(ǫ)
in

≤ C4. (80)

By using (77), we obtain that δ′in,ǫs
(ǫ) is uniformly bounded with respect to (ωǫ, h

(ǫ)
in ) on U(1/2).

Since θ†ǫ is the adjoint of θǫ, we obtain the uniform boundedness of θ†ǫ on U(1/2). Let δ′′in,ǫ be the operator

obtained from h
(ǫ)
in and d′ as in Subsection 2.2.1, where d′ denotes the (1, 0)-part of Dλ. Then, we also obtain

the uniform boundedness of δ′′in,ǫs
(ǫ) on U(1/2). Hence, Dλ ⋆

in,ǫs
(ǫ) is uniformly bounded on U(1/2), where

Dλ ⋆
in,ǫ = δ′in,ǫ−δ′′in,ǫ. Since we have d′′ = λ

−1(
δ′′in,ǫ+(1+ |λ|2)θ†in,ǫ

)
and d′ = λδ′in,ǫ +(1+ |λ|2)θin,ǫ, we also obtain

Dλs(ǫ) is uniformly bounded on U(1/2). Recall the formula DλDλ ⋆
in s(ǫ) = s(ǫ) ·G(h

(ǫ)
in )+ Dλs(ǫ) · s(ǫ)−1 ·Dλ ⋆

in s(ǫ).
Thus DλDλ ⋆

in s(ǫ) is also uniformly bounded on U(1/2). Therefore, {s(ǫ)} is Lp
2-bounded for any p > 1 and

U(1/2). By taking an appropriate subsequence (ǫi), s(ǫi) weakly converges to some s̃ in Lp
2 locally on C − D.
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It is easy to see that h
(0)
in · s̃ is a harmonic metric. We have det s̃ = 1. We also have the boundedness of s̃

and s̃−1 with respect to h
(0)
in . Thus, we have h

(0)
in · s̃ = h(0), i.e., the sequence {h(ǫi)} converges to h(0) weakly

in Lp
2 locally on C − D.

Although we take a subsequence in the above argument, we can conclude that h(ǫ) converges to h(0) weakly
in Lp

2 locally on C − D, due to a general argument. We can also obtain the C∞-convergence by a standard
bootstrapping argument. In the above argument, the convergence of {θ(ǫ)} is also proved.

Remark 4.15 As for the proof of Proposition 4.2, we take a C∞-metric hin of (E, F , Dλ) such that each
restriction hin |Ct

is an initial metric. Let s be determined by hH = hin · s. By applying the same argument, we

obtain the continuity of s. Similarly for θH .

5 The existence of a pluri-harmonic metric

We will prove our main existence theorem of pluri-harmonic metric for parabolic λ-flat bundle, which is adapted
to the parabolic structure. (See Subsection 3.3 of [31] for the adaptedness.)

5.1 Preliminary

Let C be a smooth projective curve with a simple effective divisor D. Let (E, F , Dλ) be a stable parabolic λ-flat
bundle on (C, D) with par-deg(E, F ) = 0. For each P ∈ D, let (UP , z) be a holomorphic coordinate around P

such that z(P ) = 0. Let F (ǫ) be an ǫ-perturbation as in (II) of Subsection 2.1.6 for ǫ = m−1. We have h
(ǫ)
0 be

harmonic metrics for (E, F (ǫ), Dλ). We assume deth
(ǫ)
0 = deth

(0)
0 . As shown in Proposition 4.1, h

(ǫ)
0 converges

to h
(0)
0 in the C∞-sense locally on C − D. Let N be a large positive number, for example N > 10. In this

subsection, we use Kahler metrics gǫ (ǫ ≥ 0) of C − D which are as follows on UP for each P ∈ D:

(
ǫN+2|z|2ǫ + |z|2

)dz · dz

|z|2 .

We assume that {gǫ} converges to g0 for ǫ −→ 0 in the C∞-sense locally on C − D.

Proposition 5.1 Let h(ǫ) (ǫ > 0) be hermitian metrics of E|C−D with the following properties:

1. Let s(ǫ) be determined by h(ǫ) = h
(ǫ)
0 · s(ǫ). Then, s(ǫ) is bounded with respect to h

(ǫ)
0 , and we have

det s(ǫ) = 1. We also have the finiteness
∥∥Dλs(ǫ)

∥∥
2,h

(ǫ)
0 ,gǫ

< ∞. (The estimates may depend on ǫ.)

2. We have ‖G(h(ǫ))‖2,h(ǫ),gǫ
< ∞ and limǫ→0 ‖G(h(ǫ))‖2,h(ǫ),gǫ

= 0.

Then, the following claims hold.

• The sequence {s(ǫ)} is weakly convergent to the identity in L2
1 locally on C − D.

•
{
supP∈C−D |s(ǫ)

|P |
h
(ǫ)
0

∣∣ ǫ > 0
}

and
{
supP∈C−D |(s(ǫ))−1

|P |
h
(ǫ)
0

∣∣ ǫ > 0
}

are bounded.

Proof To begin with, we remark that we have only to show the existence of a subsequence {s(ǫi)} with

the desired properties as above. We put ‖s(ǫ)‖
∞,h

(ǫ)
0

:= supP∈C−D

∣∣s(ǫ)
|P

∣∣
h
(ǫ)
0

. For any point P ∈ C − D, let

SE(s(ǫ))(P ) denote the maximal eigenvalue of s
(ǫ)
|P . There exists a constant 0 < C1 < 1 such that C1 · |s(ǫ)

|P |
h
(ǫ)
0

≤
SE(s(ǫ))(P ) ≤ |s(ǫ)

|P |
h
(ǫ)
0

. We have det s
(ǫ)
|P = 1. Hence, it is easy to see log tr s

(ǫ)
|P ≥ log rank(E) ≥ 0. We also

have SE(s(ǫ))(P ) ≥ 1 for any P .

Let us take bǫ > 0 satisfying 2 ≤ bǫ · sup SE(s(ǫ))(P ) ≤ 2 + ǫ. We put s̃(ǫ) = bǫs
(ǫ) and h̃(ǫ) := h

(ǫ)
0 · s̃(ǫ).

Then, s̃(ǫ) are uniformly bounded with respect to h
(ǫ)
0 . We remark G(h̃(ǫ)) = G(h(ǫ)). We also remark that h(ǫ)

and h̃(ǫ) induce the same metric of End(E).
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Lemma 5.2 After going to an appropriate subsequence,
{
s̃(ǫi)

}
converges to a positive constant multiplication,

weakly in L2
1 locally on C − D.

Proof We have the following (Subsection 2.2.5):

∆λ

g0,h
(ǫ)
0

s̃(ǫ) = s̃(ǫ)
√
−1Λg0G(h̃(ǫ)) +

√
−1Λg0D

λs̃(ǫ)
(
s̃(ǫ)−1

)
Dλ ⋆

h
(ǫ)
0

s̃(ǫ). (81)

We can show
∫

∆λ
g0

tr s̃(ǫ) ·dvolg0 = 0, by the same argument as the proof of Lemma 4.14, we obtain the following

inequality from (81) and the uniform boundedness of s̃(ǫ):

∫ ∣∣Dλs̃(ǫ) · s̃(ǫ)−1/2
∣∣2
g0,h

(ǫ)
0

dvolg0 ≤ A ·
∫ ∣∣tr Λg0G(h̃(ǫ))

∣∣ · dvolg0

= A ·
∫ ∣∣tr Λgǫ

G(h̃(ǫ))
∣∣ · dvolgǫ

≤ A′ ·
∥∥G(h̃(ǫ))

∥∥
2,eh(ǫ),gǫ

. (82)

In particular, we obtain the uniform estimate
∥∥Dλs̃(ǫ)

∥∥2

2,g0,h
(ǫ)
0

≤ A′′ ·
∥∥G(h̃(ǫ))

∥∥
2,eh(ǫ),gǫ

. Therefore, the sequence
{
s̃(ǫ)
}

is L2
1-bounded on any compact subset of C − D. By taking an appropriate subsequence, it is weakly

L2
1-convergent locally on C − D. Let s̃(∞) denote the weak limit. We obtain Dλs̃(∞) = 0. We also know that

s̃(∞) is bounded with respect to h
(0)
0 . Therefore, s̃(∞) gives an automorphism of (E, F , Dλ). Due to the stability

of (E, F , Dλ), s̃(∞) is a constant multiplication.
We would like to show s̃(∞) 6= 0. Let us take any point Qǫ ∈ C − D satisfying the following:

SE(s(ǫ))(Qǫ) ≥
9

10
· sup

P∈C−D
SE(s(ǫ))(P ).

Then, we have log tr s̃(ǫ)(Qǫ) ≥ log(9/5). By taking an appropriate subsequence, we may assume the sequence
{Qǫ} converges to a point Q∞. We have two cases (i) Q∞ ∈ D (ii) Q∞ 6∈ D. We discuss only the case (i). The
other case is similar and easier.

We use the coordinate neighbourhood (U, z) such that z(Q∞) = 0. For any point P ∈ U , we put ∆(P, r) :={
Q ∈ U

∣∣ |z(P ) − z(Q)| < r
}
. When ǫ is sufficiently small, Qǫ is contained in ∆(Q∞, 1/2) = {|z| < 1/2}. Let

g = dz · dz denote the standard metric of U . We have the following inequality on U − {Q∞} (see Subsection
2.2.5):

∆λ
g log tr s̃(ǫ) ≤

∣∣ΛgG(h̃(ǫ))
∣∣
eh(ǫ) . (83)

Let B(ǫ) be the endomorphism of E determined as follows:

G(h̃(ǫ)) = G(h(ǫ)) = B(ǫ) · dz · dz

|z|2

Then, we have the following estimate for some constant A > 0 which is independent of ǫ:

∫ ∣∣B(ǫ)
∣∣2
eh

(ǫ)
0

(
ǫN+1|z|2ǫ + |z|2

)−1 dvolg
|z|2 ≤ A

∫ ∣∣G(h̃(ǫ))
∣∣2
eh(ǫ),gǫ

dvolgǫ
.

Here A denotes a constant independent of ǫ. Due to Proposition 2.16 in [31], there exist v(ǫ) such that the
following inequalities hold for some positive constant A′ which is independent of ǫ:

∂∂v(ǫ) =
∣∣B(ǫ)

∣∣
eh(ǫ)

dz · dz

|z|2 ,
∣∣v(ǫ)(z)

∣∣ ≤ A′ ·
(
ǫ(N−1)/2|z|ǫ + |z|1/2

)
·
∥∥G(h̃(ǫ))

∥∥
2,eh(ǫ),gǫ

Then, we have ∆λ
g

(
log tr s̃(ǫ) − v(ǫ)

)
≤ 0 on U − {Q∞}. Since log tr s̃(ǫ) − v(ǫ) is bounded from above, the

inequality holds on U . Therefore, we obtain the following:

log tr s̃(ǫ)(Qǫ) − v(ǫ)(Qǫ) ≤ A′′ ·
∫

∆(Qǫ,1/2)

(
log tr s̃(ǫ) − v(ǫ)

)
· dvolg .
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Here A′′ denotes a positive constant which is independent of ǫ. Then, we obtain the following inequalities, for
some positive constants Ci (i = 1, 2) which are independent of ǫ:

log(9/5) ≤ log tr s̃(ǫ)(Qǫ) ≤ C1 ·
∫

∆(Qǫ,1/2)

log tr s̃(ǫ) · dvolg +C2.

Recall that log tr s̃(ǫ) are uniformly bounded from above. Therefore, there exists a positive constant C3 such
that the following holds for any sufficiently small ǫ > 0:

∫

∆(Qǫ,1/2)

−min(0, log tr s̃(ǫ)) · dvolg ≤ C3.

Due to Fatou’s lemma, we obtain the following:

∫

∆(Q∞,1/2)

−min
(
0, log tr s̃(∞)

)
· dvolg ≤ C3.

It means s̃(∞) is not constantly 0 on ∆(Q∞, 1/2). In all, we can conclude that s̃(∞) is a positive constant
multiplication. Thus, the proof of Lemma 5.2 is accomplished.

Let
{
s̃(ǫi)

}
be a subsequence as in Lemma 5.2. It is almost everywhere convergent to some constant multi-

plication. Then, we obtain that the sequence
{
det s̃(ǫi) = brank E

ǫi
· iddet(E)

}
converges to the positive constant.

In particular, {bǫi
} is convergent. Therefore, the sequence

{
s(ǫi)

}
is convergent to the identity. Thus we are

done.

Corollary 5.3

• The sequence
{
h(ǫ)
}

is convergent to h
(0)
0 weakly in L2

1 locally on C − D.

• The sequence
{
Dλs(ǫ)

}
is weakly convergent to 0 in L2 locally on C − D.

• The sequence {θ(ǫ)} converges to θ(0) is weakly convergent to 0 in L2 locally on C − D.

• In particular, the sequences are convergent almost everywhere.

5.2 The surface case

5.2.1 Statement

Let X be a smooth projective surface with an ample line bundle L, and let D be a simple normal crossing
divisor with the irreducible decomposition D =

⋃
i∈S Di. We put X∗ := X − D. Let c be any element

of RS . Let (E, F , Dλ) be a µL-stable c-parabolic λ-flat bundle on (X, D) with trivial characteristic num-
bers par-degL(E, F ) =

∫
X

par-ch2(E, F ) = 0. Recall that we have already known par-c1(E, F ) = 0 due to
Bogomolov-Gieseker inequality and Hodge index theorem (See Corollary 6.2 of [31].) Hence, we can take the
pluri-harmonic metric hdet(E) of the determinant bundle det(E, F , Dλ). The purpose of this subsection is to
show the following existence theorem.

Theorem 5.4 There exists a tame pluri-harmonic metric h of (E, Dλ)|X∗ with det(h) = hdet E which is adapted
to the parabolic structure.

The proof will be given in the rest of this subsection.
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5.2.2 The sequence of Hermitian-Einstein metrics for the ǫ-perturbations

Let F (ǫ) be an ǫ-perturbation as in (II) of Subsection 2.1.6. If ǫ is sufficiently small, (E, F (ǫ), Dλ) is also µL-

stable. We also have par-c1(E, F (ǫ)) = par-c1(E, F ) = 0. Since (E, F (ǫ), Dλ) is graded semisimple and satisfies

(SPW)-condition, we can apply Proposition 3.19. Let h(ǫ) be the Hermitian-Einstein metric for (E, F (ǫ), Dλ)
with respect to ωǫ, such that deth(ǫ) = hdet(E) and Λωǫ

G(h(ǫ)) = 0 (Proposition 3.19).

Since hdet(E) is pluri-harmonic, we also have trG(h(ǫ)) = 0. Therefore, we have the following convergence:

(√
−1

2π

)2 ∫ ∣∣G(h(ǫ))
∣∣2
h(ǫ),ωǫ

dvolωǫ
=

(√
−1

2π

)2 ∫
tr
(
G(h(ǫ))2

)
= 2
(
1 + |λ|2

)2 · par-ch2(E, F (ǫ)) −→ 0. (84)

We would like to discuss the limit of h(ǫ) for ǫ → 0.

5.2.3 Convergence on almost every curve

Let Lm be sufficiently ample. We put Pm := P
(
H0(X, Lm)∨

)
. For any s ∈ Pm, we put Xs := s−1(0). Recall

Proposition 2.9, and let U denote the Zariski open subset of Pm which consists of the points s with the following
properties:

• Xs is smooth, and Xs ∩ D is a simple normal crossing divisor.

• (E, F , Dλ)|Xs
is µL-stable.

If ǫ is sufficiently small, we have U 6= ∅.
We will use the notation X∗

s := Xs \ D and Ds := Xs ∩ D. We have the metric ωǫ,s of X∗
s , induced by

ωǫ. The induced volume form is denoted by dvols. We put (Es, F s, D
λ
s ) := (E, F , Dλ)|Xs

. We have the metric

h
(ǫ)
|X∗

s
of Es | X∗

s
. Since (Es, F

(ǫ)
s , Dλ

s ) are also stable for any point s ∈ U , we have the harmonic metric h
(ǫ)
s of

(Es, F
(ǫ)
s , Dλ

s ) with deth
(ǫ)
s = hdetE |X∗

s
. Let u

(ǫ)
s be the endomorphism of E|X∗

s
determined by h

(ǫ)
|X∗

s
= h

(ǫ)
s ·u(ǫ)

s .

For a point x ∈ X∗, we put Ux := {s ∈ U |x ∈ Xs}. We put Z := {x ∈ X∗
∣∣Ux = ∅}. We remark that Z is a

finite set. Let us fix a sequence ǫi −→ 0. We often use the notation “ǫ” instead of “ǫi”, for simplicity of the
description. Let Dλ

s := Dλ
|X∗

s
.

Lemma 5.5 For almost every s ∈ U , the following holds:

• We have the following convergence when ǫ −→ 0:

∫

Xs

∣∣G(h
(ǫ)
|Xs

)
∣∣2
h
(ǫ)
s ,ωǫ

dvols −→ 0. (85)

• For each ǫ, we have the finiteness: ∥∥Dλ
su(ǫ)

s

∥∥
L2,h

(ǫ)
s ,ωǫ

< ∞. (86)

Let Ũ denote the set of s for which both of (85) and (86) hold.

Proof It can be shown by the same argument as the proof of Lemma 9.3 of [31]. (Z2 should be corrected to{
(x, s, t) ∈ X × U1 × B

∣∣ (ts2 + (1 − t)s)(x) = 0
}
.)

We obtain the following claims from Proposition 5.1 and Corollary 5.3.

Corollary 5.6 For any s ∈ Ũ , the sequence {h(ǫ)
|X∗

s
} converges to h

(0)
s weakly in L2

1 locally on X∗
s , and {θ(ǫ)

|X∗

s
}

converges to θ
(0)
s weakly in L2 locally on X∗

s . In particular, they are almost everywhere convergent.

Proof It follows from Lemma 5.5 and Proposition 5.1
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5.2.4 The construction of a metric defined almost everywhere

Let us take any Kahler form ωPm
of Pm. We put Z := {(s, x) ∈ U × X∗ |x ∈ Xs}. Then, we have the induced

metric of Z. The induced volume form is denoted by dvolZ . Let T denote the set of (s, x) ∈ Ũ × X such that

(s, x) ∈ Z and limǫ→0 h
(ǫ)
|x = h

(0)
s|x.

Lemma 5.7 The measure of T c := Z − T is 0 with respect to dvolZ .

Proof Let us consider the naturally defined fibration Z −→ U . Then, the claim follows from Corollary 5.6
and Fubini’s theorem.

Lemma 5.8 For almost every x ∈ X∗ and almost every s ∈ Ux, the sequence {h(ǫ)
|x } converges to h

(0)
s | x.

Proof Let us consider the naturally defined fibration T −→ X∗. Then, the claim follows from Lemma 5.7 and
Fubini’s theorem.

Let V denote the set of x ∈ X∗ such that the sequence {h(ǫ)
|x } converges to h

(0)
s | x for almost s ∈ Ux. For any

x ∈ V , let Ũx denote the set of s such that {h(ǫ)
|x } converges to h

(0)
s | x.

Lemma 5.9 For any x ∈ V and for any si ∈ Ũx (i = 1, 2), we have h
(0)
s1 | x = h

(0)
s2 | x.

Proof Both of them are same as the limit limǫ→0 h
(ǫ)
x .

Let us take any x ∈ V and any s ∈ Ũx. Then, the metric hx of E|x is given by hx := h
(0)
s | x. Due to Lemma

5.9, it is well defined. Thus, we obtain the metric hV := (hx |x ∈ V) of E|V .

5.2.5 The C1-property

We would like to show that hV is C1 on X∗ − Z, in other words, we would like to show the existence of a
C1-metric h of E|X∗−Z such that h = hV on V . Let us begin with a preparation.

Lemma 5.10 Let x ∈ X∗ − Z. Let us take any s ∈ Ux. Then, there exists a Lefschetz fibration ϕ : X̃ −→ P1

with the following properties:

• x is not a singular point of ϕ.

• ϕ−1(0) = Xs.

• Almost every t ∈ P1 belongs to Ũ .

Proof Let M denote the set of the lines ℓ of Pm which contain s. We put as follows:

P̂m =
{
(ℓ, s′) ∈ M× Pm

∣∣ s′ ∈ ℓ
}
⊂ M× Pm.

It is the blow up of Pm at s. We have the projection π2 : P̂m −→ Pm. We put Û := π−1
2 (U) and

̂̃U := π−1
2 (Ũ).

Since U − Ũ has measure 0, the measure of P̂m − ̂̃U is also 0. Let us consider the projection π1 : P̂m −→ M,

and apply Fubini’s theorem. Then, for almost every ℓ ∈ M and for almost every s1 ∈ ℓ, we have s1 ∈ ̂̃U . Thus
we are done.

Let x be any point of X∗ − Z. Let us take a Lefschetz fibration πi : X̃i −→ P1 (i = 1, 2) with the following
properties:

• Both of them satisfy the properties in Lemma 5.10.

• Around x, the fibers of π1 and π2 are transversal. Then, two fibrations give the holomorphic coordinate
(z1, z2) of an appropriate neighbourhood Ux of x, such that {zi = a} = π−1

i (a) ∩ Ux.
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For any ti ∈ P1, let Xti
:= π−1

i (ti). If ti are close to 0, (E, F , Dλ)|Xti
are stable, and hence there exist tame

harmonic bundles hti
for (E, F , Dλ)|Xti

such that det(hti
) = hdet(E)|Xti

. Let θti
denote the operator obtained

from Dλ
|Xti

and hti
as in Subsection 2.2.1.

Let us take an appropriate neighbourhoods Bi ⊂ P1 of 0. Recall Proposition 4.2. Then,
{
ht1

∣∣ t1 ∈ B1

}
are

C∞-along z2, and it is continuous with respect to (z1, z2). The family
{
θt1

∣∣ t1 ∈ B1

}
has a similar property.

Thus, we obtain a continuous metric h(1) and the continuous section θ(1) of End(E)⊗Ω1,0 around x. Similarly{
ht2

∣∣ t2 ∈ B2

}
is C∞ along z1 and it is continuous with respect to (z1, z2). The family {θt2

∣∣ t2 ∈ B2} has a

similar property. Thus, we obtain a continuous metric h(2) and the continuous section θ(2) of End(E) ⊗ Ω1,0

around x.
We remark that h(1) = hV = h(2) on Ux ∩ V due to our construction of hV . Since h(i) are continuous, we

obtain h(1) = h(2) on Ux. Then, we obtain that h(i) are C1 on Ux, due to the continuity of θ(i).
Therefore, we obtain the C1-metric h of E on X∗ − Z with the following properties:

• h|V = hV

• For any s ∈ U , we have h|X∗

s
= hs and θh |X∗

s
= θhs

.

5.2.6 Pluri-harmonicity

We would like to show that h is pluri-harmonic. By the formalism explained in Subsection 2.2.1, the operators
∂h and θh are given on X − (D ∪ Z) from h and Dλ. Let us take any C∞ metric h′ of E on X − D, and let s′

be the endomorphism determined by h = h′ · s′. Then, s′ is C1, and we have the following relation:

∂h = ∂h′ +
λ

1 + |λ|2 s′ −1δ′′h′s′, θh = θh′ − λ

1 + |λ|2 s′ −1δ′h′s′.

Then, we obtain ∂hθh as a distribution:

∂hθh = ∂h′θh′ − λ

1 + |λ|2 ∂h′

(
s′ −1δ′h′s′

)
+

λ

1 + |λ|2
[
s′ −1δ′′h′s′, θh′

]
−
(

λ2

1 + |λ|2
)2 [

s′ −1δ′′h′s′, s′ −1δ′hs′
]
.

Similarly, we obtain G(h) as a distribution.

Lemma 5.11 ∂hθh = 0.

Proof For any point x ∈ X∗ − D, let us take the holomorphic coordinate (z1, z2) as before. We remark that
the curves {zi = a} (i = 1, 2), {z1 + z2 = b}, {z1 +

√
−1z2 = c} can be regarded as parts of Xs′ for some s′ ∈ U .

We have the expression θ = f1 · dz1 + f2 · dz2, where fi are continuous sections of End(E). We have already
known ∂f1/∂z1 = ∂f2/∂z2 = 0. Thus, we have only to show ∂fi/∂zj = 0 for i 6= j. Let us consider the change
of the coordinate given by w1 = z1 + z2 and w2 = z1 − z2. Then, we have the following:

f1 · dz1 + f2 · dz2 =
1

2
(f1 + f2) · dw1 +

1

2
(f1 − f2) · dw2.

Thus, we obtain the following:

0 =
∂

∂w1
(f1 + f2) =

1

2

(
∂

∂z1
+

∂

∂z2

)
(f1 + f2) =

1

2

(
∂f2

∂z1
+

∂f1

∂z2

)
. (87)

Let us consider the change of the coordinate given by u1 = z1 +
√
−1z2 and u2 = z1 −

√
−1z2. Then, we have

the following:

f1 · dz1 + f2 · dz2 =
1

2

(
f1 +

1√
−1

f2

)
du1 +

1

2

(
f1 −

1√
−1

f2

)
du2.

Thus, we obtain the following:

0 =
∂

∂u1

(
f1 +

1√
−1

f2

)
=

1

2

(
∂

∂z1
− 1√

−1

∂

∂z2

)(
f1 +

1√
−1

f2

)
=

1

2

(
1√
−1

∂f2

∂z1
− 1√

−1

∂f1

∂z2

)
. (88)

51



From (87) and (88), we obtain ∂fi/∂zj = 0 for i 6= j. Thus, we obtain ∂hθh = 0, and the proof of Lemma 5.11
is accomplished.

Lemma 5.12 h is a harmonic metric for (E, Dλ) with respect to ω0 on X∗−Z. (Recall Z =
{
x ∈ X∗

∣∣Ux = ∅
}
.)

Proof Due to Lemma 5.11, we have ΛωG(h) = Λω(∂hθh) = 0. Hence, we have only to show that h is C∞. We
obtain the following formula in the level of distribution, by the formalism explained in Subsection 2.2.5:

∆λ
h′,ω(s′) = s′

(
−ΛωG(h′)

)
+
√
−1ΛωDλs′ · s′ −1 · Dλ ⋆

h′ s′.

The right hand side is C0. Hence, by using the elliptic regularity and the standard boot strapping argument,
we obtain that s′ is C∞. Thus, we obtain Lemma 5.12.

Lemma 5.13 h is pluri-harmonic metric of E|X∗−Z .

Proof We have already shown ∂hθh = 0 in Lemma 5.11. Because of Corollary 2.27, we have only to show
θ2

h = 0. Due to Corollary 5.6 and θh |Xs
= θs, we know that the sequence {θ(ǫ)} converges to θh almost

everywhere. In particular, we obtain the almost everywhere convergence of {θ(ǫ) 2} to θ2
h. On the other hand,

we know the almost everywhere convergence G(h(ǫ)) −→ 0, due to (84). We have G(h(ǫ)) = ∂
(ǫ) 2

+∂
(ǫ)

θ(ǫ)+θ(ǫ) 2,
which is the decomposition into (2, 0), (1, 1) and (0, 2)-forms. Therefore, we obtain θ2

h = 0, almost everywhere.
Thus, we obtain Lemma 5.13.

Lemma 5.14 h gives a pluri-harmonic metric of E|X∗ .

Proof We have only to check that h gives a C∞-metric of E|X∗ . Let Q be a point of Z. Let (U, z1, z2) be a

holomorphic coordinate around Q such that z1(Q) = z2(Q) = 0. The pluri-harmonic metric h of (E, Dλ)|U−{Q}

is given. We would like to show that h is naturally extended to the pluri-harmonic metric of (E, Dλ)|U .
We have θ = f1 ·dz1+f2 ·dz2 defined on U−{Q}. Let us consider the characteristic polynomials det(t−fi) for

i = 1, 2. The coefficients are holomorphic on U −{Q}, and thus on U due to the theorem of Hartogs. Hence, the
eigenvalues of fi are bounded on U . Let us consider the restriction of (E, Dλ, h) to the discs C(aj) := {zj = aj}
(aj 6= 0) for j = 1, 2. Then, it can be shown that the norms

∣∣fi |C(aj)

∣∣
h

≤ C (i 6= j) can be dominated
independently from aj . (See Lemma 2.7 in [38], for example.) Thus, fi are bounded with respect to h on
U − {Q}. In other words, θ is bounded on U − {Q}.

Let E′ := E|U−{z1·z2=0}. Let us consider the sheaf ⋄E′ on U of the sections satisfying the growth condition

|g|h = O
(∏ |zi|−ǫ

)
for any ǫ > 0 (Subsection 2.5.3). By using the result of the asymptotic behaviour of tame

harmonic bundle at λ ([30]), ⋄E′ is locally free on U . Since ⋄E′ and E|U−{Q} are naturally isomorphic on U−{Q},
they are isomorphic on U . Let h′ be any C∞-metric of E|U , and let s′ be the endomorphism determined by
h = h′ · s′. Due to the norm estimate given in [30], the metrics h and h′ are mutually bounded. Hence, s′

and (s′)−1 are bounded on U . Let δ′h′ and δ′′h′ be obtained from Dλ and h′ as in Subsection 2.2.1. Due to the
boundedness of θ, we have the boundedness of (s′)−1δ′h′s′ on U−{Q}. Due to the boundedness of θ†, we have the
boundedness of (s′)−1δ′′h′s′ on U − {Q}. Then, we can deduce that s′ −1Dλs′ is also bounded on U − {Q}. (See
Subsection 2.2.5. for example.) Since we have the formula ∆λ

h′,ω0
s′ = s′(−Λω0G(h′)) + Λω0D

λ
h′s′ · s′ −1 · Dλ ⋆

h′ s′,
we can conclude that s′ is C∞ due to the standard bootstrapping argument. Namely, h is extended to the
C∞-metric of E|U .

5.2.7 The end of the proof of Theorem 5.4

Now, we have only to show that h is tame and adapted to the parabolic structure. Since h|Xs
= hs for any

s ∈ U , the tameness immediately follows from the curve test. (See Proposition 2.49.) Then, we obtain the

prolongment Ẽ := cE with the induced parabolic structure F (Subsection 2.5.3). We would like to show that

(E, F , Dλ) and (Ẽ, F , Dλ) are isomorphic. For that purpose, we see that the identity E|X∗ −→ E|X∗ can be

prolonged to the homomorphism Ψ : E −→ Ẽ. Let Q be any smooth point of Di ⊂ D. We take a holomorphic
coordinate (UQ, z1, z2) with the following property:
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• The curve z−1
1 (0) is same as UQ ∩ D.

• The curves C(b) := z−1
2 (b) are parts of Xs(b) for s(b) ∈ U .

Let f be a holomorphic section of E|U . Since the restriction h|Xs(b)
is the same as hs(b), we have |f|C(b)|h =

O(|z1|−ci−ǫ) for any ǫ > 0. Then, we obtain |f |h = O(|z1|−ci−ǫ) for any ǫ > 0, due to the result given in [30].

Thus, f naturally gives the section of Ẽ on U . Therefore, we obtain the morphism E −→ Ẽ on X−
(
∪i6=jDi∩Dj

)
.

It is naturally extended to the morphism E −→ Ẽ.
Recall that the restriction of Ẽ = cE(h) to Xs is same as c(E|Xs

)(hs). (See [30].) Therefore, the restrictions

of Ψ to Xs are isomorphic, by construction. Hence, Ψ is isomorphic on X −
(⋃

i6=j Di ∩ Dj

)
, and thus on X .

By a similar argument, we can show that the parabolic structures are also same. Thus, the proof of Theorem
5.4 is finished.

5.3 Correspondences

5.3.1 Kobayashi-Hitchin correspondence in the higher dimensional case

Let X be a smooth projective variety of dimension n (n ≥ 3) with an ample line bundle L, and let D be a
simple normal crossing divisor with the irreducible decomposition D =

⋃
i∈S Di. Let (E∗, D

λ) be a µL-stable
regular filtered λ-flat bundle on (X, D) in codimension two with trivial characteristic numbers par-degL(E∗) =∫

X
par-ch2,L(E∗) = 0, and we put (E, Dλ) := (E∗, D

λ)|X−D. Recall par-c1(E∗) = 0 due to the Bogomolov-

Gieseker inequality and the Hodge index theorem. For each c ∈ RS , we have the determinant line bundle
det(cE) of torsion-free sheaf cE, on which we have the induced parabolic structure and the induced flat λ-
connection. Thus, we obtain the canonically determined regular filtered λ-flat bundle

(
detE∗, D

λ
)

on (X, D)

of rank one. We also have par-c1

(
detE∗

)
= par-c1

(
E∗

)
= 0. Therefore, we can take a pluri-harmonic metric

hdetE of (det(E), Dλ) which is adapted to the parabolic structure of detE∗. By the assumption, we have a
subset Z ⊂ D with codimX(Z) ≥ 3 such that (E∗, D

λ)|X−Z is a regular filtered λ-flat bundle.

Theorem 5.15 There exists the unique tame pluri-harmonic metric h of (E, Dλ) with the following properties:

• det(h) = hdetE.

• It is adapted to the parabolic structure of E∗ on X−Z. Namely, (E∗(h), Dλ)|X−Z ≃ (E∗, D
λ)|X−Z , where

(E∗(h), Dλ) denotes the regular filtered λ-flat bundle on (X, D) obtained from (E, Dλ, h). (See Subsection
2.5.)

Proof Due to Mehta-Ramanathan type theorem (Proposition 2.9), the uniqueness can be easily reduced to
the dim X = 1 case, by considering the restriction to the generic curves C ⊂ X . We have already known it
(Proposition 2.53).

We will use the induction on the dimension n to show the existence. The case n = 2 has already been shown
(Theorem 5.4). Assume that Lm is sufficiently ample. We put Pm := P(H0(X, Lm)∨). For any s ∈ Pm, we put
Xs := s−1(0). Recall Proposition 2.9. Let U be the Zariski open subset of Pm which consists of s ∈ Pm with
the following properties:

• Xs is smooth, and Ds := Xs ∩ D is a normal crossing divisor.

• The codimension of Z ∩ Xs in Xs is larger than 3.

• (E, Dλ)|Xs
is µL-stable.

We use the existence hypothesis in the (n − 1)-dimensional case of the induction. Then, we may have the
tame pluri-harmonic metric hs of (E, Dλ)|Xs\D with det(hs) = hdet E |Xs\D which is adapted to the parabolic
structure on Xs \W . We also use the uniqueness result in the (n− 2)-dimensional case. Then, we can show the
existence of a finite subset Z ′ ⊂ X−D and a metric h of E|X−D such that hs |P = h|P . By the arguments given
in Subsections 5.2.5–5.2.7, we can show that h is the desired metric. The only different point is the argument
to show the vanishing of G(h) = 0. Due to dimXs ≥ 2, it can be shown easier.
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Theorem 5.16 Let X, D and L be as above. Let (E∗, D
λ) be a saturated µL-stable regular filtered λ-flat sheaf

on (X, D) with the trivial characteristic numbers par-degL(E∗) =
∫

X par-ch2,L(E∗) = 0. We put (E, Dλ) :=

(E∗, D
λ)|X−D. Then, there exists a pluri-harmonic metric h of (E, Dλ) such that the induced regular filtered λ-

flat bundle
(
E∗(h), Dλ

)
is isomorphic to (E∗, D

λ). Such a metric is unique up to positive constant multiplication.
In particular, E∗ is a filtered bundle.

Proof Since a saturated regular filtered λ-flat sheaf is a regular filtered λ-flat bundle in codimension two
(Lemma 2.12), we may apply Theorem 5.15. Then, there exists a pluri-harmonic metric h and a subset W ⊂ D
with codimX(W ) ≥ 3 such that the induced regular filtered λ-flat bundle (E∗(h), Dλ) is isomorphic to (E∗, D

λ)
on X − W . Since both of (E∗(h), Dλ) and (E∗, D

λ) are saturated, they are isomorphic on X .

5.3.2 The equivalence of the categories

Let Cpoly
λ denote the category of µL-stable regular filtered λ-flat bundles (E∗, D

λ) on (X, D) with the trivial
characteristic numbers par-degL(E∗) =

∫
X

par-ch2,L(E∗) = 0. Morphisms f : (E1 ∗, D
λ
1 ) −→ (E2 ∗, D

λ
2 ) are

defined to be OX -homomorphism f : E1 −→ E2 satisfying Dλ
2 ◦ f = f ◦ Dλ

1 and f
(
cE1

)
⊂ cE2 for any c.

Corollary 5.17 Let λi (i = 1, 2) be two complex numbers. We have the natural functor Ξλ1,λ2 : Cpoly
λ1

−→ Cpoly
λ2

,
which is equivalent. It preserves direct sums, tensor products and duals.

Proof Let (Eλ1
∗ , Dλ1) be an object of Cpoly

λ1
. We put Eλ1 := Eλ1

|D. We have a pluri-harmonic metric h of

(Eλ1 , Dλ1), which is adapted to the parabolic structure. Then, we obtain the operators ∂h, ∂h, θh, θ†h, as in

Subsection 2.2.1. Note that the holomorphic structure of Eλ1 is given by ∂h + λ1θ
†
h. The (0, 1)-operator

∂h + λ2θ
†
h also gives a holomorphic structure of C∞-bundle Eλ1 . To distinguish them, we use the notation

Eλ2 , when we consider the holomorphic structure ∂h + λ2θ
†
h. We put Dλ2 := ∂h + θh + λ2(∂h + θ†h), which

gives a flat λ2-connection of Eλ2 . The metric h is pluri-harmonic for (Eλ2 , Dλ2). Since the corresponding Higgs
bundle for (Eλ1 , Dλ1 , h) and (Eλ2 , Dλ2 , h) are same, we obtain the tameness of (Eλ2 , Dλ2 , h). Therefore, we
obtain the prolongment (Eλ2 , Dλ), which are µL-polystable regular filtered λ2-flat bundle on (X, D) with trivial
characteristic numbers (Proposition 2.52).

We remark that (Eλ2 , Dλ2) is independent of a choice of h, due to the uniqueness in Proposition 2.53.
Therefore, we put Ξλ1,λ2(E

λ1 , Dλ1) := (Eλ2 , Dλ2). It is easy to see that Ξλ1,λ2 gives a functor. It is also easy to

see that Ξλ2,λ1 ◦Ξλ1,λ2(E
λ1 , Dλ1) is naturally isomorphic to (Eλ1 , Dλ1). The compatibility with the direct sums,

duals and tensor products are obtained from the corresponding compatibility statements of the prolongments
for tame harmonic bundles ([30]). We also remark that the categories are semisimple. Thus, we have only to
compare the objects.

Remark 5.18 From a λ1-connection Dλ1 = d′′ + d′, a λ2-connection is given d′′ +(λ2/λ1) ·d′. Hence, we have

the obvious functor Obv : Cpoly
λ1

−→ Cpoly
λ2

. This is not same as the above functor Ξλ1,λ2 .

6 Filtered local system

6.1 Definition

6.1.1 Filtered structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D =

⋃
i∈S Di. We will use the notation D[2] :=

⋃
i6=j Di ∩Dj and D◦

i := Di \
⋃

j 6=i Dj . Let L be a local system

on X − D. A filtered structure of L at D is a tuple of increasing filtrations iF (i ∈ S) of L|Ui\D indexed by
R, where Ui denotes an appropriate open neighbourhood of Di. Let U ′

i be an open neighbourhood of Di such
that U ′

i ⊂ Ui, then we have the induced filtration iF|U ′

i
, and the filtration iF can be reconstructed from iF|U ′

i
.

Hence, we define two filtered structures (iF , Ui | i ∈ S) and (iF ′, U ′
i | i ∈ S) are equivalent, if there exists an

open neighbourhood U ′′
i of Di such that U ′′

i ⊂ Ui ∩ U ′
i and iF|U ′′

i
= iF ′

|U ′′

i
. A local system L equipped with an
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equivalence class of filtered structures (iF , Ui) is called a filtered local system, and it is denoted by L∗. We do
not have to care about a choice of open neighbourhoods Ui.

Morphisms of filtered local systems f : L1 ∗ −→ L2 ∗ are defined to be a morphism f : L1 −→ L2 of local
systems preserving the filtered structures in an obvious sense. We denote by C̃(X, D) the category of filtered
local systems on (X, D).

6.1.2 Characteristic numbers

We put U∗
i := Ui \ D and i GrFa (L|U∗

i
) := iFa(L|U∗

i
)
/

iF<a(L|U∗

i
). Since the local monodromy around Di

preserves the filtration iF , we obtain the induced endomorphism of i GrFa (L|U∗

i
), and thus the generalized eigen

decomposition:
i GrFa (L|U∗

i
) =

⊕

ω

i GrF ,E
(a,ω)(L|U∗

i
).

We put as follows:

Par
(
L∗, i

)
:=
{
a ∈ R

∣∣ i GrFa
(
L|U∗

i

)
6= 0
}
, KMS

(
L∗, i

)
:=
{
(a, ω) ∈ R × C∗

∣∣ i GrF ,E
(a,ω)

(
L|U∗

i

)
6= 0
}
.

The parabolic first Chern class is defined as follows:

par-c1(L∗) := −
∑

i∈S

wt(L∗, i) · [Di] ∈ H2(X, R), wt(L∗, i) :=
∑

a∈Par(L∗,i)

a · rank i GrFa (L|U∗

i
). (89)

Here [Di] denotes the cohomology class representing Di.
Let Irr(Di ∩ Dj) denote the set of the irreducible components of Di ∩ Dj . For each P ∈ Irr(Di ∩ Dj), let

UP be an appropriate open neighbourhood of P in X such that UP ⊂ Ui ∩Uj. We put U∗
P := UP \D. We have

the two filtrations iF and jF of L|U∗

P
. The naturally induced graded local system is denoted as follows:

P GrF(L|U∗

P
) =

⊕

(ai,aj)∈R2

P GrF(ai,aj)(L|U∗

P
), P GrF(ai,aj)(L|U∗

P
) :=

iFai
∩ jFaj∑

(bi,bj)�(ai,aj)
iFbi

∩ jFbj

.

Here (bi, bj) � (ai, aj) means “bi ≤ ai, bj ≤ aj and (bi, bj) 6= (ai, aj)”. We have the two endomorphisms
induced by the local monodromies around UP ∩Di and UP ∩Dj , which are commutative. Hence, we obtain the
generalized eigen decomposition:

P GrFa (L|U∗

P
) =

⊕

ω∈C∗ 2

P GrF ,E
a,ω(L|U∗

P
).

We put as follows:
Par(L∗, P ) :=

{
(ai, aj) ∈ R2

∣∣ P GrF(ai,aj)(L|U∗

P
) 6= 0

}
,

KMS(L∗, P ) :=
{
(a, ω) ∈ R2 × C∗ 2

∣∣ P GrF ,E
(a,ω)(L|U∗

P
) 6= 0

}
.

The parabolic second Chern character is defined as follows:

par-ch2(L∗) :=
1

2

∑

i∈S

∑

a∈Par(L∗,i)

a2 · rank i GrFa (L) · [Di]
2

+
1

2

∑

i∈S

∑

j 6=i

∑

P∈Irr(Di∩Dj)

∑

(ai,aj)∈Par(L∗,P )

ai · aj · rank P GrF(ai,aj)

(
L|U∗

P

)
· [P ]. (90)

When X is a smooth projective variety with an ample line bundle L, we put as follows:

par-degL(L∗) :=

∫

X

par-c1(L∗) · c1(L)dim X−1, µL(L∗) :=
par-degL(L∗)

rankL .

Then, the notion of µL-stability, µL-semistability, and µL-polystability for filtered local systems on (X, D) are
defined in the standard manner. We also put as follows:
∫

X

par-c2
1,L(L∗) :=

∫

X

par-c1(L∗)
2 · c1(L)dim X−2,

∫

X

par-ch2,L(L∗) :=

∫

X

par-ch2,L(L∗) · c1(L)dim X−2.
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6.2 Correspondence

In this subsection, we give the correspondence of filtered local systems on (X, D) and saturated regular filtered λ-
flat sheaves (λ 6= 0). See Subsection 2.1.4 for saturated regular filtered λ-flat sheaves. Since we have the obvious
equivalence between flat λ-connection and flat 1-connection, we only discuss the case λ = 1, i.e. ordinary flat
connections.

Let Csat
1 (X, D) denote the category of saturated regular filtered flat sheaves on (X, D). Let us see briefly

that we have the functor Φ : C̃(X, D) −→ Csat
1 (X, D) which gives the equivalence. Since it is given by Simpson

in [37] essentially in the curve case, we give only an outline.

6.2.1 Construction of Φ

First, we give a construction of Φ. Let L∗ be a filtered local system on (X, D). Let (E,∇) be the corresponding

flat bundle on X − D. We have the Deligne extension (Ẽ,∇) on (X, D). We put E := Ẽ ⊗ O(∗D). Thus,
we have only to give the way of the construction of the OX -coherent submodules aE ⊂ E such that ∇aE ⊂
aE ⊗ Ω1,0(log D) and

⋃
a∈RS aE = E. Let us consider the case X = ∆n = {(z1, . . . , zn) | |zi| < 1} and

D = {z1 = 0}. Then, the construction is essentially same as that for the case dim X = 1 given by Simpson [37].
We briefly recall it. Let H(L) denote the space of the multi-valued flat sections of L. We have the induced
filtration FH(L) and the generalized eigen decomposition H(L) =

⊕
ω Eω(H(L)), which are compatible in the

sense Fa =
⊕

ω Fa ∩ Eω. Let u = (u1, . . . , ur) be a frame compatible of H(L), compatible with (F , E). Then,
for each ui, the numbers ω(ui) ∈ C∗ and a(ui) ∈ R are determined by ui ∈ Eω(ui) and ui ∈ Fa(ui) − F<a(ui).
The complex number α(ui) is determined by the conditions exp(−2πα(ui)) = ω(ui) and 0 ≤ Re α(ui) < 1. Let
Mu denote the endomorphism of H(L) or L, which is the unipotent part of the monodromy around D, and we
put N := −(2π

√
−1)−1 log Mu. We regard ui as a multi-valued C∞-section of E. Then, it is standard that

vi := exp
(
log z1(α(ui)+N)

)
·ui gives a holomorphic section of E. Moreover, v = (v1, . . . , vr) gives a frame of the

Deligne extension Ẽ. Let b be any real number. Then, we put n(b, ui) := max
{
n ∈ Z

∣∣ a(ui)−Re α(ui)+n ≤ b
}
,

and we put vi(b) := z
−n(b,ui)
1 · vi. Let bE denote the OX -submodule of E generated by v1(b), . . . , vr(b). It is

easy to check that bE is locally free and independent of a choice of u. It is also easy to see E =
⋃

b∈R bE.
Thus, we obtain the filtration in the case X = ∆n and D = {z1 = 0}. It can be checked that the filtration is
independent of a choice of the coordinate (z1, z2, . . . , zn) satisfying D = {z1 = 0}.

For any b ∈ RS , we obtain bE on X − D[2] by gluing them. The subsheaves bE are determined by the
condition (4).

Lemma 6.1 bE is a coherent OX-module. Hence, we obtain the saturated regular filtered flat sheaf (E∗,∇) on
(X, D).

Proof We may assume that X = ∆n and D =
⋃ℓ

i=1{zi = 0}. Let H(L) denote the space of the multi-valued
flat sections of L. We have the monodromy endomorphisms Mi (i = 1, . . . , ℓ) along the loop around Di with
counter clockwise direction. They induce the decomposition

H(L) =
⊕

ω∈Cℓ

EωH(L), (91)

where each EωH(L) is preserved by Mi (i = 1, . . . , ℓ), and the eigenvalues of Mi on EωH(L) are ωi. We also
have the filtrations iF (i = 1, . . . , ℓ) of H(L), corresponding to the divisor Di. Each iF is compatible with the
decomposition (91).

Fix j such that 1 ≤ j ≤ ℓ. We take a frame u = (u1, . . . , ur) of H(L) compatible with the filtration jF
and the decomposition (91). For each up, the tuple ω(up) ∈ Cℓ is determined by up ∈ Eω . Let αi(up) ∈ C

(i = 1, . . . , ℓ) be determined by exp
(
−2παi(up)

)
= ωi(up) and 0 ≤ Re αi(up) < 1. We also have the numbers

a(up) ∈ R such that up ∈ jFa(up) − jF<a(up). We put n(bj , up) := max
{
n ∈ Z

∣∣ aj(up) − Re αj(up) + n ≤ bj

}
.

Let Ni := −(2π
√
−1)−1 log Mu (i = 1, . . . , ℓ), where Ni denotes the logarithm of the unipotent part of Mi. We

take a sufficiently large integer I. Then, we put as follows:

vp := z
n(bj,up)
j ·

∏

i6=j

zI
i

ℓ∏

i=1

exp
(
log zi · (αi(up) + Ni)

)
· up
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If I is sufficiently large, vp gives the section of bE on X . By the correspondence, we obtain the following
morphism, for j = 1, . . . , ℓ:

Φj :

r⊕

p=1

OX · vp −→ bE

The morphisms Φj (j = 1, . . . , ℓ) induce the morphism Φ : O⊕ℓ·r −→ bE. The image of Φ is OX -coherent, and
it is the same as bE on X −D[2]. Then, it is easy to show that bE is the same as the double dual of the image
of Φ which is OX -coherent.

Let f : L1 ∗ −→ L2 ∗ be a morphism. Let (Ei ∗,∇i) := Φ(Li). We have the induced map f̃ : E1 −→ E2. It
is easy to see that cE1 |X−D[2] −→ cE2 |X−D[2] is induced. Due to saturatedness of (E2 ∗,∇), we obtain maps

cE1 −→ cE2, and thus Φ(f) : (E1 ∗,∇1) −→ (E2 ∗,∇2).

6.2.2 Equivalence

Let us show that Φ is equivalent. To begin with, we consider the case X = ∆n and D = {z1 = 0}. Let Cvb
1 (X, D)

denote the category of regular filtered flat bundles on (X, D), which is the subcategory of Csat
1 (X, D). By the

construction, the image of Φ is contained in Cvb
1 (X, D). The following lemma can be shown as in [37].

Lemma 6.2 The functor Φ gives the equivalence of C̃1(X, D) and Cvb
1 (X, D). It is also compatible with direct

sums, duals, and tensor products.

Lemma 6.3 In the case X = ∆n and D = {z1 = 0}, we have Cvb
1 (X, D) ≃ Csat

1 (X, D) naturally. In particular,

Φ gives the equivalence C̃1(X, D) ≃ Csat
1 (X, D).

Proof Let (E∗,∇) be a saturated regular filtered flat sheaf on (X, D). We put (E,∇) := (E∗,∇)|X−D, and
let L denote the corresponding local system on X − D. Let H(L) denote the space of the multi-valued flat
sections of L.

Recall that there exists a subset W ⊂ D with codimX(W ) ≥ 3 such that (E∗,∇)|X−W is regular filtered
flat bundle on (X − W, D − W ) (Lemma 2.12). Let P be any point of D − W , and let (UP , z1, . . . , zn) be a
holomorphic coordinate neighbourhood such that z−1

1 (0) = UP ∩ D and UP ∩ W = ∅. Due to Lemma 6.2, we
have the unique filtration F of H(L|UP \D) ≃ H(L) corresponding to (E∗,∇)|UP

. Due to the uniqueness, it is
independent of a choice of P and UP .

Let u = (u1, . . . , ur) be a frame of H(L) compatible with the filtration F and the generalized eigen de-
composition with respect to the monodromy around D. For any real number b ∈ R, we construct v(b) =(
v1(b), . . . , vr(b)

)
as above. Then, for any P ∈ D − W , v(b) gives a holomorphic frame of bE|UP

compatible
with the filtration due to Lemma 6.3. Hence, each vi(b) gives a section of bE|X−W . Due to the saturatedness of
(E∗,∇), vi(b) gives a section of bE on X . Now it is easy to see that v(b) gives a frame of bE, and in particular,

bE is locally free. Hence, (E∗,∇) is a regular filtered flat bundle on (X, D).

Now, it is easy to see that Φ is equivalent for general (X, D). Let us see the fully faithfulness of Φ. The
faithfulness is obvious. Let f : Φ(L1 ∗) −→ Φ(L2 ∗) be a morphism in Csat

1 (X, D). We have the map g : L1 −→ L2

corresponding to f . We would like to check that g preserves the filtrations iF . Let P be any point of D◦
i , and

(U, z1, . . . , zn) be any coordinate neighbourhood such that U ∩ D = z−1
1 (0). Applying Lemma 6.3, we obtain

that g preserves the filtration iF on U \ Di. Thus, we obtain the fully faithfulness.
Let us show the essential surjectivity. Let (E∗,∇) be a saturated filtered flat sheaf on (X, D). Let L

denote the local system corresponding to (E∗,∇)|X−D. We have only to construct the appropriate filtrations
iF of L|Ui\D on appropriate neighbourhoods of Di. Let P be any point of D◦

i , and (UP , z1, . . . , zn) denote any

coordinate neighbourhood around P such that z−1
1 (0) = UP ∩ D. Due to Lemma 6.2, we obtain the unique

filtration iF of L|UP \D. We obtain the filtration iF on
⋃

P∈D◦

i
UP by gluing them, due to the uniqueness. Thus,

we obtain that Φ is essentially surjective, and hence equivalent.

6.2.3 The parabolic first Chern class

We have the Z-action on R×C given by n · (a, α) = (a + n, α−n). It induces the action of Z on KMS(E∗, i).
The following lemma is clear from the construction of Φ.
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Lemma 6.4 We have the bijective correspondence of the sets KMS(Φ(L∗), i)/Z and KMS(L∗, i), which is

given by (a, α) 7−→ (b, ω) =
(
a+Reα, exp

(
−2π

√
−1α

))
for (a, α) ∈ KMS(Φ(L∗), i). Moreover, rank i GrF,E

(a,α) =

rank i GrF ,E
(b,ω).

Corollary 6.5 We have the equality of the parabolic first Chern class par-c1(L∗) = par-c1(Φ(L∗)). In particu-
lar, when X is a smooth projective variety with an ample line bundle L, the µL-stability of L∗ and µL-stability
of Φ(L∗) are equivalent.

Proof Recall Lemma 3.23. It is shown for the case where (E∗,∇) is graded semisimple and dimX is two
dimensional. However, the graded semisimplicity condition is not necessary as is explained in Remark 3.21.
The assumption dimX = 2 is also not necessary, due to the Lefschetz theorem. Then, the claim of the corollary
follows from Lemma 3.21 and the correspondence of the KMS-spectrums given in Lemma 6.4.

6.2.4 The second parabolic Chern character

Lemma 6.6 Let X = ∆n = {(z1, . . . , zn) | |zi| < 1}, and D = D1 ∪D2, where Di = {zi = 0}. Let (E∗,∇) be a
saturated regular filtered flat sheaf on (X, D).

• (E∗,∇) is a regular filtered flat bundle on (X, D).

• Let c be any element of R2, and let cE denote the c-truncation. Let L∗ be the corresponding filtered local
system on (X, D). Then, we have the equality:

rank 2 GrF ,E
(b,ω)(L) = rank 2 GrF,E

(a,α)(cE).

Here the meaning of the notation is as follows:

– b = (b1, b2) and ω = (ω1, ω2) denote elements of R2 and C∗ 2 respectively.

– a = (a1, a2) and α = (α1, α2) denote elements of R2 and C2 respectively, determined by the condi-
tions ci − 1 < ai ≤ ci, exp(−2π

√
−1αi) = ωi and ai + Re αi = bi.

Proof Let L∗ = (L, 1F , 2F) be as above. Let u be a frame of H(L) compatible with the filtrations kF (k = 1, 2)
and the generalized eigen decompositions of H(L). For each uj and the divisor Dk, the complex number αk(uj)
and ak(uj) are determined as before. For the monodromies around Dk, we obtain the nilpotent endomorphism

Nk as before. The holomorphic section vj is given by vj := exp
(∑

log zk

(
αk(uj) + Nk

))
. Let nk(uj) be the

numbers determined by the condition ck − 1 < nk(uj) + ak(uj)−Re αk(uj) ≤ ck. We put ṽj :=
∏

z
−nk(uj)
k · vj .

Then, ṽ = (ṽ1, . . . , ṽr) gives the frame of cE|X−(D1∩D2). Due to the saturatedness, ṽ = (ṽ1, . . . , ṽr) gives the
frame of cE, and hence cE are locally free. Thus, the first claim is proved. The frame ṽ is compatible with iE

and iF , and we have k degF (ṽj) = ak(uj) − Re αk(uj) + nk(uj) and ṽj |Dk
∈ kE(αk(uj) − nk(uj)). Thus, the

second claim follows.

Corollary 6.7 Let X be a projective manifold with an ample line bundle L, and let D be a simple normal
crossing divisor. Let (E∗,∇) be a saturated regular filtered flat sheaf on (X, D), and let L∗ denotes the cor-
responding filtered local system. Then, we have the equality of the parabolic second Chern character numbers∫

X par-ch2,L(L∗) =
∫

X par-ch2,L(E∗).

Corollary 6.8 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let L∗ be a µL-stable filtered local system on (X, D). Then, the Bogomolov-Gieseker inequality
for L∗ holds: ∫

X

par-ch2,L(L∗) ≤
∫

X
par-c2

1,L(L∗)

2 rankL .

Proof Recall that saturated regular filtered flat shaves are regular filtered flat bundles in codimension two
(Lemma 2.12). Hence, the claim follows from Corollary 6.5, Corollary 6.7 and Corollary 3.20.
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Corollary 6.9 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let Cpoly

1 be the category of µL-polystable regular filtered flat bundle on (X, D) with trivial

characteristic numbers, and let C̃poly
1 be the category of µL-polystable filtered local system on (X, D) with trivial

characteristic numbers. Then, the functor Φ naturally gives the equivalence of them.

Proof We have only to remark that saturated µL-stable regular filtered flat sheaves with trivial characteristic
numbers are regular filtered bundles (Theorem 5.16).

Remark 6.10 Due to the result in [30] and the existence of a pluri-harmonic metric for Φ(L∗), the filtrations
iF for µL-stable filtered local systems L∗ satisfy some compatibility around the intersection points of D.
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