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Kobayashi-Hitchin correspondence for tame harmonic bundles II

Takuro Mochizuki

Abstract

Let X be a smooth projective complex variety with an ample line bundle L, and let D be a simple normal
crossing divisor. We establish the Kobayashi-Hitchin correspondence between tame harmonic bundles on
X — D and pr-stable parabolic A-flat bundles with trivial characteristic numbers on (X, D). Especially, we
obtain the quasiprojective version of the Corlette-Simpson correspondence between flat bundles and Higgs
bundles.
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1 Introduction

1.1 Main results

We explain the main results in this paper. We do not recall history or background about the study of Kobayashi-
Hitchin correspondence and harmonic bundles, for which we refer to the introductions of [38], [24] or [31], for
example. The notion of regular filtered A-flat bundles and parabolic A-flat bundles are explained in Subsection
21 (See also Subsections 3.1-3.2 of [31]. But, we also use a slightly different notation and terminology, as is
explained in Subsection ZZI.71) They are equivalent, and we will not care about the distinction of them. The
notion of filtered local systems is explained in Section

1.1.1 Kobayashi-Hitchin Correspondence

Let X be a smooth complex projective variety with an ample line bundle L. Let D be a normal crossing divisor
of X. Our main purpose is to show the following theorem.

Theorem 1.1 (Theorem [5.15, Proposition 2.52] Proposition Z.53) Let (E.,D*) be a regular filtered \-
flat bundle on (X, D). We put E := E|x_p. Then, the following conditions are equivalent.

o It is yug-polystable with the trivial characteristic numbers par-deg (E.) = [ par-ch, ;(E.) = 0.
o There exists a pluri-harmonic metric h of (E,D*) adapted to the parabolic structure.

Such a metric is unique up to obvious ambiguity. |

Remark 1.2 The claims of Theorem [l in the case A = 0 has already been proved in our previous paper [31].
Hence, we restrict ourselves to the case A # 0 in this paper.

Corollary 1.3 (Corollary 5.17) Let Cf‘ﬂy denote the category of pr-polystable reqular filtered \-flat bundles
on (X, D) with trivial characteristic numbers. Then, we have the natural equivalence of the categories Cffly ~

Cfgly for any \; € C (i =1,2). The equivalence preserves the tensor products, direct sums and duals. |

Remark 1.4 Let \; € C* (i = 1,2). A \y-connection D2 = d” + (Aa/\1) - d’ is induced from a \i-connection
DM = d" 4 d'. Hence we have the obvious functor Obv : Cffly — Cigly. But this is not the same as the above

functor Zx, x,- |

Especially, we obtain a generalization of the Corlette-Simpson correspondence between flat bundles and
Higgs bundles in the so-called non-abelian Hodge theory.

Corollary 1.5 We have the equivalences of the following two categories:
e The category of pr-polystable reqular filtered Higgs bundles on (X, D) with trivial characteristic numbers.

o The category of jir,-polystable regular filtered flat bundles on (X, D) with trivial characteristic numbers. 1

1.1.2 Bogomolov-Gieseker inequality and some formula for the characteristic numbers

Let X, L and D be as above.



Theorem 1.6 (Corollary B.20) Let (E.,D*) be a ur-stable regular filtered A-flat bundle on (X, D) in codi-
mension two. Then, we have the following inequality holds for the parabolic characteristic numbers for E.:

2
Jx par-c?  (E.)

_ch E,) < Jsx ALALVER 1

[ parechy o (B.) < SEL (1)

It is a generalization of the so-called Bogomolov-Gieseker inequality. |

In the case X\ # 0, we also have some formulas about the parabolic Chern characteristic numbers, which are
valid for any parabolic A-flat bundles in codimension two. One of the formulas can be stated simply, after we see
the correspondence of regular filtered \-flat sheaves and filtered local systems. Let(E,, D) be a regular filtered
A-flat sheaf on (X, D). As is explained in Remark [[L4] we have the obvious correspondence of flat A-connection
D* = d” +d (X # 0) and flat connection D*f = d@” + A\~!d’. In particular, we obtain the local system £ on
X — D from the flat bundle (E., ID))"f)|X,D. Moreover, the parabolic structure of (E,,D") induces the filtered
structure of £, and we have the more refined claims as in the following proposition.

Proposition 1.7 (Corollary and Corollary [6.7]) Let 5(X, D) denote the category of filtered local system

n (X, D), and let C5**(X, D) denote the category of saturated regular filtered A-flat sheaves on (X, D) for X # 0.
Then, we have the equivalent functor ®y : C(X, D) — C59(X, D) such that par-c,(L.) = par-c, (®r(L.)) and
fX par-chy 1( fX par-ch, L(@,\(E )) The functor ®) preserves the ur -stability. |

Remark 1.8 From Theorem [ and Proposition[L D, we obtain the Bogomolov-Gieseker inequality for ur-stable
filtered local systems (Corollary[6.8]). Such a kind of the inequality is discussed in [41].

Remark 1.9 Let us describe the formula [ par- chy 7 ( = [ par- chy 1 (®(L.)) in terms of the c-truncation
(cE.,D*) of saturated regular filtered \-flat bundle q),\(ﬁ ) For simplicity, we assume dim X = 2.

/Xpar chy (e Z > (Re(\ ') +a)? - r(i,u) - (Di, D;)

165 UEKMS (c Ex 1)

1
T3 2 > (Re(h )+ ) (Re(rMay) +ay) r(Pauuy). (2)
€S jAi (uiuy)EKMS(cEx,P)
PED;ND;,

Here, u = (a,a), u; = (a;,;) and u; = (aj,a;) denote the KMS-spectra of (.E,D*), which are elements of
R x C. We put r(i,u) := rankiGrf’E( E) for u € KMS(cEx, 1), and r(P,u;, uj) := rankPGr(u s )( E\p) for

(ui,uj) € KMS(cE,P) and P € D; N D;. And (D;, D;) and (D;,ci(L)) denote the intersection numbers.
We also have some other formulas for [ par-ch, (CE*) (Proposition [322]) or some vanishings for the data
of (cE.,D*) at D (Corollary and Proposition [3.22]). |

1.1.3 Vanishing of the characteristic numbers and existence of the Corlette-Jost-Zuo metric

Due to Proposition [L7, we obtain the vanishings par-deg; (E.) = [y par-chy ;(E.) = 0, when (E.,V) cor-
responds to the filtered local system whose parabolic structure is trivial, in other words, Re(a) +a = 0 is
satisfied for any KMS-spectrum u = (a,a) € KMS(i) and for any ¢ € S. We can apply such a consideration
to the canonical prolongation of a flat bundle due to P. Deligne [4]. Let (E,V) be a flat bundle on X — D.
Then, it is shown that there exists the holomorphic vector bundle E on X satisfying (i) E| x-p = E, (i)

VECE® 0%°(log D), (iii) the real parts of the eigenvalues of Res;(V) are contained in [0, 1[. In that case, we
have the naturally defined parabolic structure F' for which Re(a) + a = 0 are satisfied for any KMS-spectrum
(a,a). Hence, we obtain the vanishing par-deg; (E, F) = Ix par—ChZL(E, F)=0.

This vanishing is significant to understand the existence theorem of the Corlette-Jost-Zuo metric from the
view point of Kobayashi-Hitchin correspondence. When (FE, V) is semisimple, we know the existence of a tame
pure imaginary pluri-harmonic metric, which we call the Corlette-Jost-Zuo metric. (See [3] for the case D = {)
and [I6] for the general case. See also [30].) Since semisimplicity obviously implies the pur-polystability of
(E,F,V) (|35, for example), we can derive the existence of the Corlette-Jost-Zuo metric from Theorem [ due
to the vanishing of the characteristic numbers.



1.2 Methods and difficulty
1.2.1 Perturbation of parabolic structure

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X. Let (E, F,D")
be a parabolic A-flat bundle on (X, D). For any small ¢ > 0, we take an e-perturbation F(© of the parabolic
structure, and then (E,F(E),DA) is graded semisimple (Subsection 2ZZT.6). It can be shown that the pseudo
curvature of ordinary metrics for (E, F©, D*) (e > 0) satisfy the appropriate finiteness (Section [B). By using
the theorem of Simpson, we can take a Hermitian-Einstein metric hS)E of (Ejx_ p, DY) which is adapted to

F(©) (¢ >0). Then, we can easily derive the Bogomolov-Gieseker inequality (Theorem [[6). We also obtain the
formulas by calculating the integrals of the characteristic numbers for pseudo curvatures, for example (2).

Let us consider the existence of a pluri-harmonic metric (Theorem [[T]). Ideally, the limit lim._¢ hgf,)E should
give the desired pluri-harmonic metric for the given flat parabolic bundle (E, F,D*). However, it is not easy to
show such a convergence. It is the main problem which we have to overcome in this paper.

1.2.2 Difficulty

In [31], we gave an argument to deal with such a convergence problem for the case A = 0. The argument doesn’t
work in the case A # 0. Let us explain what is the difference heuristically and imprecisely in the case A = 1.
Since we have par-deg; (E, F(¥)) = 0, the metrics h(l_;)E give the harmonic metrics in this case. Recall that a
harmonic metric can be regarded as a harmonic map, at least locally, and that we know a well established
argument for the convergence of a sequence of harmonic maps when the energies are dominated ([8]). In our
case, the energies of hS)E over X — D are not finite, in general. Even if we consider the energies over a compact
subset Z C X — D, it is not clear how to derive a uniform estimate which is independent of €. On the other hand,
the Higgs field is fixed for such a convergence problem in the case A = 0. In particular, the eigenvalues of the
Higgs fields are fixed. Then, we can derive the estimate of the local L?-norm of the Higgs fields independently
from e. Since such L2-norms play the role of the energies, the local convergence can be easily shown in the
Higgs case, although we need some technical argument for global convergence. On the contrary, even the local
convergence is not easy to show in the case A # 0.

1.2.3 Convergences

To attack the problem, we discuss similar convergence problems in the curve case where the Kobayashi-Hitchin
correspondence was established and well understood by the work of C. Simpson [37]. Let C' be a smooth
projective curve, and let D be a divisor of C. Let (E, F,D") be a A-flat stable parabolic bundle on (C, D),
and let F(©) be e-perturbations. Note we have det(E, F,D*) = det(E, F(C),]D)A). We can take a sequence of
harmonic metrics k(€ for (E, F( DY) (e > 0) such that det h(9) = det A(?), due to the result of Simpson.

First, we will show that the sequence {h(?)|e > 0} converges to h(?). Namely, let hz(-fl) (e > 0) be initial
metrics for (E, F(E), D*), and let 5(9) be the endomorphism determined by h(€) = hgfl) -5(9). Then, we can show
the following relations:

M), 1) <0, |logs®|, @ < Cre+ Coc- M, 1), |DsO|7,, 0 < / |tr (s - G(AL))) | dvol,, .

(3)
Here, M (hgfl), h(9)) denote the Donaldson functionals, and w. denote appropriate metrics of C' — D. Hence, if
we show that C; . can be taken independently from e for some we, and if we can construct appropriate family
of initial metrics hz(-fl) such that G(hz(-;)) are uniformly bounded with respect to w. and R then we obtain the

wmn ?

L2-boundedness of the family {s(e)}. Then, by using a standard bootstrapping argument, we can show that the
sequence {s(9} is convergent to the identity in the C®-sense, i.e., {h(9)} is convergent to h(®) (Section H).

Next, suppose that we are given hermitian metrics O = (9.5 for ¢ > 0, with the following properties:

o det h(9) = det h(©).



o [IGHO)R — 0.
. H]D))‘s(ﬁ)||2 < 00. (We do not need uniform bound.)

Then, we can show that {71(6)} is convergent to h(?). (See Subsection [5.1] for more precise claims.)

We apply the above results to our convergence problem explained in Subsection [[L2.1l Due to the standard
Mehta-Ramanathan type theorem (Proposition ZJ), the restriction (E, F,D*)|¢ is also stable for almost every

very ample C' C X. Let h¢ be a harmonic bundle of (E,F,ID))‘)‘C. Then, we can show that {hg)}a\c} is
convergent to ho almost everywhere on C for almost every very ample C C X, by using the above result.
Therefore, we obtain a metric hy defined almost everywhere on X — D such that hy ¢ = hc almost everywhere
on C for almost every curve C C X. With some more additional argument, we can show that hy gives the
desired pluri-harmonic metric, indeed (Subsection [5.2]).

Remark 1.10 Perhaps, the argument of this paper can be used in the Higgs case, to show the existence of a
pluri-harmonic metric. However, we remark that the argument for a convergence given in [31] can be applied
in a wider range. In fact, we used it to discuss the convergence of a family of harmonic bundles induced by the
constant multiplication of Higgs fields. |
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2 Preliminary

2.1 Generality of regular filtered \-flat sheaf in complex geometry

The notion of a parabolic bundle, filtered bundle and their characteristic numbers are explained in Sections
3.1-3.2 of [3I]. We use the notation there.

2.1.1 \-connection

Let Y be a complex manifold, and let £ be an Oy-module. Recall that a A-connection of £ is defined to be a
map D : € — £ ® Q1 satisfying the twisted Leibniz rule DX(f - s) = f - D*(s) + A - dy (f) - s, where f and
s denote holomorphic sections of Oy and &£ respectively. The maps D* : £ ® Q70 — £ ® QP10 are induced.
When D* o D* = 0 is satisfied, it is called flat.

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decom-
position D = (J;cg Di. Let & = (€,{"F|i € S}) be a c-parabolic sheaf on (X, D) for some ¢ € R5. A flat
logarithmic A-connection D of &, is defined to be a map D* : £ — £ ® Q19(log D) satisfying the same twisted
Leibniz rule as above, the flatness D* o D = 0 and D*(*F,) C ‘F, ® Q%(log D). Such a tuple (&,,D*) will
be called a regular parabolic A-flat sheaf. When the underlying c-parabolic sheaf &, is a c-parabolic bundle in
codimension k, it is called a regular A-flat c-parabolic bundle in codimension k.

Remark 2.1 We often omit to state “regular” in this paper, because we always assume regularity. Non-regular
case is discussed in [32]. |

Let E, = (E. {cE}|cec RS) be a filtered sheaf on (X, D). A regular A-connection of E, is a A-connection

D* of E satisfying D*(cE) C cE® 0% (log D). A tuple (E,,D") is called a regular filtered A-flat sheaf. When
the underlying filtered sheaf is a filtered bundle in codimension k, it is called a regular filtered A-flat bundle in
codimension k.



Lemma 2.2 A regular filtered A-flat sheaf on (X, D) is a reqular filtered A\-flat bundle in codimension one.

Proof We have only to check that there exists a subset W C D with codimx (W) > 2, such that E, | x\w
is a c-parabolic bundle on (X \ W, D \ W) for some c. We can take W as |J,,; D; N D; C W, and hence
we may assume D is smooth. Since E = E|x_p is locally free and .E is torsion-free, we can take W' C D
with codimx (W’) > 2 such that E|x_w- is locally free. We may also take a subset W" C D\ W’ with
codimy (W") > 2 such that the parabolic filtration of oE|p\wuw) is filtration in the category of vector
bundles. Then, W = W’ U W" gives the desired subset. |

When X is an n-dimensional projective variety with an ample line bundle L, we can define the p-stability,
p-semistability, and p-polystability of regular filtered A-flat sheaves with respect to L, in the standard manner.
“u-stability with respect to L” will be called pz-stability, in this paper.

2.1.2 KMS-structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D = ;cg Di- Let (E.,D*) be aregular filtered A-flat bundle in codimension one over (X, D). For simplicity, we

consider only the case A # 0. Let us take any element ¢ € R, and the e-truncation .E, of E,. We would like
to recall the KMS-structure at D;, or more precisely, at the generic point of D;. We may assume that (. E,, D*)
is a c-parabolic bundle. We have the induced filtration 'F on E|p,. We put iGrl(.E):="F, (cE) /" Fea(E).
Recall that we use the notation:

Par(cE.,i) = {a]c; —1<a<c, "Gl (cE) £ 0}, Par(E.,i) = U Par(cEx,1)
ceR®

Due to the regularity, we have the residue endomorphism Res;(D*) on ¢E|p,, which preserves the filtration

F, and hence we have the induced endomorphism Gr’’ Res;(D*) of ? Gr” (CE) We remark that the eigenvalues
of Res;(D) are constant on D;. In particular, we obtain the generalized eigen decomposition:

"Grl(BE) = @ Gl ().
aeC
We put KMS(cEs,i) = {(a,a) €le; — 1,¢] x C’iGri’E(cE‘Di) # 0}. Each element of KMS(cEy,i) or
ICMS(E*, z) = Uecers ICMS(CE*, z) is called a KMS-spectrum.

2.1.3 Prolongment of flat subbundle and Mehta-Ramanathan type theorem
To begin with, we recall a well known fact about regular singularity of a connection.

Lemma 2.3 Let E be a holomorphic bundle on a disc A, and let V be a logarithmic connection of E on (A, O),
i.e., V(E) CE® Qko(log O). Let f be a flat section of E\a~. Then, f naturally gives a meromorphic section
of E. |

Corollary 2.4 We put X = A, x A and D = {0} x All. Let E be a holomorphic vector bundle on X and V
be the logarithmic connection of E on (X, D). Let e be a flat section of Ejx_p.

e ¢ gives a meromorphic section of E.
o Assume that e is holomorphic on E and that e # 0 for some Q € D. Then, e|g: # 0 for any Q" € D.

Proof We may assume that we have a holomorphic frame v of E. We have the expression e = >_ f;(z, w) - v;.
When we fix w, then f;(z,w) are meromorphic with respect to z. Thus, we have the least integer j(w) such
that the orders of the poles of f;(z,w) are less than j(w). We put S; := {w|j(w) < j}. We have D = J; ;.
If S; # D, the measure of S; is 0. Hence, we obtain S; = D for some j, which means e is meromorphic. Thus,
we obtain the first claim.

Assume that e is holomorphic and that e # 0 for some @ € D. Recall that we have the induced connection
DV of E|p. Namely, for any holomorphic section f € E|p, take a holomorphic F' € E such that Fjp = f, and
then PV (f) := V(F)|p is well defined. Since we have V(e p) = 0, we obtain the second claim. |



Corollary 2.5 We put X = A", D; = {2, =0} and D = J;_, D;. Let (E,V) be a logarithmic connection on
(X, D), and let e be a flat section on X — D.

e ¢ gives a meromorphic section of E.

17

for any Q' € Dy. |

o Assume that e is holomorphic. We put D} := Di\U#i D;. Ifeig # 0 for some Q € D7, we have e| # 0

Let X be a complex manifold, and let D be a normal crossing divisor of X. Let (E,V) be a flat bundle
on X — D. Recall that P. Deligne gave the extension £ of E in [4], such that (i) F\x_p = E, (ii) V(E) C

E®00(log D), (iii) the real parts of the eigenvalues of Res; (V) are contained in {0 < ¢ < 1}. Such an extension
is unique, or in other words, it is unique as the subsheaf of ¢, F, where ¢ denotes the inclusion X — D — X.

The prolongment can also be done for A-flat bundle (E,D*) on X — D, or more precisely, for the associated flat
bundle (E,D*7).

Lemma 2.6 Let (E.,D*) be a reqular filtered A-flat bundle on (X, D), and we put (E, D) := (E*,ID)A)‘X,D.
Let (E,D*) be the Deligne extension of (E,D*). Then, we have E = E ® Ox (xD), where Ox (xD) denotes the
sheaf of meromorphic functions on X whose poles are contained in D.

Proof We have the naturally defined flat section s on Hom(.E, E‘)|X_D. Due to Corollary 23] s is a meromor-
phic section, and hence we obtain the flat inclusion (£ — E® O(N - D) for some large integer N, which induce
the morphism E = | .E = ;E®O(xD) — E®O(xD). Similarly, we obtain the inclusion E — EQO(N-D),
and E ® O(xD) — E. They are clearly mutually inverse. |

Lemma 2.7 Let (E.,D*) be a regular filtered \-flat sheaf on (X, D), and let (E,]D)/\) be as in the previous
lemma. Then, we have E ~ E ® O(xD) naturally.

Proof Due to Lemma and Lemma [2.6] there exists a subset W C D with codimx (W) > 2 such that
Ex_w ~ E® O(*D) x_w. Let us fix . There exists a large integer N such that we have .Ejx_w C
E@O(N-D)‘X,W. Since E is locally free, we obtain . E ¢ EQO(N-D), and thus E C EQO(xD). On the other
hand, there exists a large integer N’ such that E|X,W CE®O(N'- D) x_w. Hence, EC.EVV® O(N'-D),
where (EVY denotes the double dual of E. Hence, we obtain E @ O(xD) C EVY ® O(xD). It is casy to sce
cEVY @ O(xD) ~ .E @ O(xD). Thus we are done.

Lemma 2.8 Let (E.,D*) be a regular filtered A-flat sheaf on (X, D), and we put (E,D*) := (E,,D*)x_p.
Let E' be a \-flat subbundle of E. Then, we have the corresponding reqular filtered \-flat subsheaf E. C E,
such that .E' are saturated in E.

Proof Let E denote the Deligne extension of (E,D*). We have the corresponding subbundle E' C E. There-
~/ ~ ~

fore, we obtain E := F' ® O(xD) C E ® O(xD) = E. For each ¢, the c-truncation E’ is given by the

intersection of .F and E’ in E. Or equivalently, .FE’ can be given by the intersection of .E and E'(N - D) in

E(N - D) for sufficiently large N. Thus, we obtain E. C E.. |

Let us show the Mehta-Ramanathan type theorem for regular filtered A-flat sheaves. Let X be a smooth
projective variety with an ample line bundle L and a simple normal crossing divisor D. Let (E.,D*) be a regular
filtered A-flat sheaf on (X, D). Let N be a sufficiently large number. We can take a generic hyper-plane section
Y of L® ¥ satisfying the properties: (i) Dy := Y ND is simply normal crossing in Y, (ii) 71 (Y \ D) — (X \ D)
is surjective.

Proposition 2.9 Assume dim X > 2. Then, (E,,D?*) is pur-stable, if and only if (E., D))y is pur,-stable.

Proof Let us fix ¢. If W C oF destabilizes, the restriction W)y clearly destabilizes. Hence, the pp-stability
of (CE*,D’\)|Y implies the yz-stability of (oE, D). Assume that (CE*,D’\)W is not pr-stable, and let W be
a subsheaf of . Ejy satisfying D*(W) C W @ 0y°(log Dy) and par-deg(W..)/ rank(W) > par-deg(.E.)/ rank E.



Let @ be any point of X — D. Take a path v connecting @ and a point P of Y\ D. By the parallel transport
along the path, we obtain the vector subspace Wé C E|g. It is independent of choices of P and v, and we
obtain the flat subbundle W' C ¢Ejx_p- Due to Lemma 2.8, we obtain the saturated subsheaf W' c F. Bya

general argument, it can be shown that there exists a subset Z C D with codimx (Z) > 2 such that Wil y_g 18

a parabolic subbundle of . F|x_. Then, it is easy to check that W' destabilizes. |

2.1.4 Saturated regular filtered \-flat sheaf
Let X and D be as above. Let (E,,D?*) be a regular filtered A-flat sheaf (A # 0).
Definition 2.10 (E.,D*) is called saturated, if the following conditions are satisfied:

o There exists a subset Z C D with codimx (Z) > 2, and each oE are determined on aB\x_z. Namely, for
any open subset U C X, we have the following:

<E(U) = oE(U\ Z) N E(U). (4)

It is easy to see that a regular filtered A-flat bundle is saturated.

Lemma 2.11 Let (E., D) be a saturated regular filtered A-sheaf on (X, D). Then, each c-truncation E is
reflexive.

Proof Recall we have already known that .FE, is a filtered bundle in codimension one (Lemma [2.2). Let
<EYY denote the double dual of .E. We have the naturally defined injective map £ — EYV. Due to the
saturatedness, any sections of .EVY naturally gives sections of .F, i.e., o F is isomorphic to .EVV. |

Lemma 2.12 A saturated regular filtered \-flat sheaf (E.,D*) on (X, D) is a regular filtered \-flat bundle in
codimension two.

Proof We have only to show that there exists a subset Z C D with codimx(Z) > 3 such that cFox—zisa
c-parabolic bundle on (X — Z, D — Z) for any c. Due to c1pF = cE @ O(b- D), where b-D = 3. ¢ b; - D;, we
have only to show such a claim for finite number of tuples c¢. Due to Lemma 217, there exists a subset Z' C D
with codimx (Z’) > 3 such that cE|x_z is locally free. Hence, we can assume that . E is locally free from the
beginning. B

We have the parabolic filtration 'F = {"F,[¢; — 1 < a < ¢} of (Ejp,. We can take the saturation "F, of
iF,. Namely, we put G, := CE‘Di/iFa, and let G tor denote the torsion-part of G,. Let 7, : cEjp, — Ga
denote the projection, and we put F, := T2 (Gator).

Lemma 2.13 ‘F, = 'F,.

Proof By our construction, we have Z'F,INC iﬁa, and we also know that there exists a subset W C D; with
codimp, (W) > 1 such that “F, | p,_w = “F, | p,—w-

Let P be any point of D;. Let g be a germ of a section of iF, at P, and let G be a local section of . F on an
open subset Uof P in X such that the germ of the restriction of G' to D; gives g. Then, G|\ w gives a section

of ¢ £ on U\ W, where ¢’ = (¢}) is determined by ¢} = ¢; (j # i) and ¢; = a. Due to the saturatedness, G is a

section of o F on U. Thus, g is the germ of a section of *F,, and *F, = iE,. Hence, we obtain Lemma 13 1

Let us return to the proof of Lemma Due to Lemma PI3] the associated graded vector bundle
iGrF (cE|p,) is torsion free. Hence, there exists a subset Z!” C D; with codimp, Z > 2 such that iF‘Di\Zlu isa
filtration in the category of vector bundles on D} \ Z". Then, (E,|x_z~ is a c-parabolic locally free sheaf on
(X —Z",D—Z"). Thus we are done. |

Remark 2.14 By the correspondence of saturated regular filtered flat bundles and filtered local systems, we can
obtain more concrete picture of the saturated reqular filtered flat sheaves. We will see it in Section [Gl |



2.1.5 Canonical decomposition

Let (Ef),D’\(i)) (i = 1,2) be ur-semistable regular e-parabolic A-flat sheaves such that ,uL(Eil)) = ML(&EQ)).
Let f: (Eil),]D)Ml)) — (5£2),ID))‘ 2)) be a non-trivial morphism. Let (K., D3 ) denote the kernel of f, which is
naturally equipped with the parabolic structure and the flat A-connection. Let Z denote the image of f, and

7 denote the saturated subsheaf of £ (2) generated by Z. The parabolic structures of &El) and SiQ) induce the
parabolic structures of Z and Z, respectively. We denote the induced parabolic flat sheaves by (I*,ID)%) and

(f*, ]D)%) The following lemma can be shown by the same argument as the proof of Lemma 3.9 of [31].

Lemma 2.15 (K.,D}), (Z.,D2) and (f*,D%) are also pr-semistable such that pr(Ky) = pr(Zy) = pr(Zs) =

ML(E,E”). Moreover, I, and Z, are isomorphic in codimension one. |

Lemma 2.16 Let (&Ei), D> (i)) (i = 1,2) be pr-semistable reflexive saturated regular parabolic A-flat sheaves
such that uL(&El)) = ML(&EQ)). Assume either one of the following:

1. One of (E,Zgi),}D)A () is puy,-stable, and rank(EM)) = rank(E(3)) holds.
2. Both of (&Ei),ID)A () are pr-stable.
If there is a non-trivial map f : (Eil),]D)Ml)) — (5£2),ID))‘ (2)), then f is isomorphic.

Proof If (Eil),DA(l)) is pr-stable, the kernel of f is trivial due to Lemma 215 If (5£2),D/\ ) is pup-stable,
the image of f and £ are the same at the generic point of X. Thus, we obtain that f is generically isomorphic
in any case. Then, we obtain that f is isomorphic in codimension one, due to Lemma 3.7 of [31]. Since both of

Eii) are reflexive and saturated, we obtain that f is isomorphic. |

Corollary 2.17 Let (E.,D) be a pug -polystable reflexive saturated reqular parabolic A-flat sheaf. Then, we have
the unique decomposition:

(5*,D/\) _ @(5£j),ﬂ))‘ (j)) ® c™).

J

Here, (Eij),ID)A 1)) are py -stable with uL(&Ej)) = (&), and they are mutually non-isomorphic. It is called the
canonical decomposition in the rest of the paper. |

2.1.6 Perturbation of parabolic structure

Let X be a smooth projective surface with an ample line bundle L, and D be a simple normal crossing divisor
with the irreducible decomposition D = J;c g Di. Let (cE, F, D*) be a regular c-parabolic A-flat bundle over
(X, D) for some ¢ € R®. Assume \ # 0. We also assume ¢; & Par(.E, F,i) for each i € S, for simplicity. Let
N; denote the nilpotent part of the induced endomorphism Gr® Res; (D*) on * Grf (¢E). Before proceeding, we
give a definition of graded semisimplicity, as in the Higgs case.

Definition 2.18 The \-flat c-parabolic bundle (.E, F,D*) is called graded semisimple, if the nilpotent parts
N; are 0 for any i€ S. |

We would like to consider perturbation of parabolic structure, as in Subsection 3.4 of [31]. First, we will
recall general construction. Then, we will give two kinds of perturbations.

Let n be a generic point of D;. We have the weight filtration W,, of the nilpotent map N ,, on PGl (CE)U’

which is indexed by Z. Then, we can extend it to the filtration W of # Gr’’ (CE) in the category of vector bundles
on D; due to dim D; = 1. By our construction, N; (W) C Wi_2. The endomorphism Res;(D*) preserves the
filtration W on * Gr¥ (. E), and the nilpotent part of the induced endomorphisms on Gr*” § Gr” (cE)) are trivial.
Recall that the flat A-connection D* locally induces the A-connection ‘D* of the vector bundle cE\p, on D;.

Since  Gr¥' (*D*) commutes with Res; D*, it preserves the filtration W.



Let us take the refinement of the filtration ‘F. For any a €|¢; — 1,¢;], we have the surjection 7, :
Fu(cBEip,) — "Gl (oE). We put ‘F,, = 7, "(Wy). We use the lexicographic order on Je; — 1,¢] x Z.
Thus, we obtain the increasing filtration ‘F indexed by ]¢; — 1,¢;] x Z. Obviously, the set S; := {(a,k) €
lei —1,¢] X Z ’ i Gr@k) + 0} is finite.

We explain the perturbation of the weight for the parabolic structure. Let ¢; : §l —le; — 1,¢] be the
increasing map such that |p;(a,k) —a| < C - € for some C > 0. (Since we are interested in the family of
the filtrations F(©) (e > 0), this condition makes sense.) Then, iF and w; give the c-parabolic filtration
F) = (iF(C) |z € S). Thus, we obtain the regular c-parabolic A-flat bundle (CE, F(E),D/\), which are called
the e-perturbation of (.F, F,D*). By construction, we have the following convergence in H*(X, R).

lir% par-c, (cE, F9) = par-c, (. E, F), lir% par-chy (¢ B, F'9) = par-chy (. E, F)

The following proposition is standard. (See Proposition 3.28 of [31], for example.)

Proposition 2.19 Assume that (CE,F,]D)A) is pr-stable. If € is sufficiently small, then the e-perturbation
(CE,F(C),]D)A) is also ur-stable. |

We will use two kinds of perturbations ¢; of parabolic weights.

(I) The image of ¢; is contained in Q for each ¢ € S. This perturbation will be used to obtain the formula for
the parabolic characteristic numbers.

(IT) For simplicity, we assume ¢ = m~! and 0 < 10rank E - € < gap(.FE, F). (See Subsection 3.1 of [31] for
gap.) Let i € S. For each a € Par(.E, F), we take a’(e,i) € m~! - Z such that |a’(e,i) — a| < m™1. Let
L(e,i) € R be determined by the following:

L(e, i) - rank(E) := Z(a(e,i) —a) -rank’ Grl (L)

Then, we put a(e, i) := a’(e,i) — L(e, i) and ¢(a, k) := a(e, i) + k- e. By construction, we have the following
equality: -
Z ¢(a, k) - rank(* Gri(cE)) = Z a - rank(’ Grik(cE))

a,k

Hence, we have par-c, (cE, F) = par-c,(cE, F(¥)). For each i, we also have some —1/m < v; < 0 such
that Par(.E, F i) is contained in {ei+~i+p/m ‘ p € Z<o, =1 <7 +p/m <0},

Remark 2.20 The construction given in this subsection is valid, when the base manifold X is a curve. |

2.1.7 Remarks about the terminology and the notation

We give some remarks about the terminology “parabolic structure”. Let X be a complex manifold, and let D
be a simple normal crossing divisor of X with the irreducible decomposition D = |J,cg Di. We often discuss
a regular c-parabolic A-flat bundle on (X, D) for some ¢ € R®. In our most arguments, a choice of ¢ are not
relevant. In fact, ¢ is fixed to be (0,...,0) in many references where the parabolic structure is discussed. But,
it is sometimes convenient to avoid the case ¢; € Par(.Ey, 1), for example, when we consider a perturbation of
the parabolic structure. That is the main reason why we consider general c-parabolic structure.

In the following argument, we often assume ¢; € Par(.Ex, ) implicitly, and we often omit to distinguish e,
and use the terminology “parabolic structure” instead of “c-parabolic structure”, when we do not have to care
about a choice of ¢. The author hopes that there will be no risk of confusion and that it will reduce unnecessary
complexity of the description.

Relatedly we have the remark about the notation to denote parabolic bundles. We often use the notation
(¢E, F) or .E. to denote a c-parabolic bundle, when we would like to distinguish e¢. The notation “.E” is also
appropriate and useful, when we regard it as a prolongment of the locally free sheaf £ on X — D. But, in some
case, a vector bundle is given not only on X — D but also on X from the beginning. And, as is said above,
we will not care about a choice of ¢. In such a case, we often prefer to using the notation (E, F) or E, for
simplicity of the description.
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2.2 Generality for A-connection in the C*°-category

We will give some generality for A-connections. They are straightforward generalization of the argument for
Higgs bundles or flat bundles given in Simpson’s papers (for example [36] and [38]), and hence we will often
omit to give a detailed proof. For simplicity, we will assume A # 0.

2.2.1 The induced operators

Let X be a complex manifold, and (E,D*) be a flat A-connection on X. We have the decomposition of D* into
the (0, 1)-part d% and the (1, 0)-part d’z. The holomorphic structure of E is given by d. Recall that the twisted
Leibniz rule d’z (f-v) = XA-0x (f)v+ f-dpv holds for f € C*°(X) and v € C*°(X, E). Let h be a hermitian metric
of E. From d'p and h, we obtain the (1,0)-operator &, , determined by 0h(u,v) = h(d%u,v)+h(u, &% ,v). From
dy and h, we obtain the (0, 1)-operator &7, determined by \oh(u,v) = h(dzu,v) + h(u, 0% ,v). We remark
Spn(f-v)= XN-Oxf-v+f- 05 n(v). We obtain the following operators:

— 1 1 —
0 = ————(df + \% Opn = ————=(\dy + &
E,h 1+ |)\|2( E + E,h)5 E,h 1+ |)\|2( E + E,h)v (5)
1 - 1
O (Ndfy = %), Opn = (dig — Mg ).

Eh T TN 1+ A2

It is easy to see that the following Leibniz rule holds:
Opn(fs)=0xf s+ f -0rns, Opn(fs)=0xf s+ [f Opns.

On the other hand, § and 0" give the sections of End(FE) ® 21° and End(E) ® Q%! respectively. We also have
the formulas:

b=0pn+ M, dy=Xpn+0pn g, =08n—Npn %, =pn— 0%,

Remark 2.21 The index “E,h” is attached to emphasize the bundle E and the metric h. We will often omit
them if there are mo risk of confusion. |

Remark 2.22 We have the hermitian product (-, -)p, : (E ® Q) ® (E ® Q) — Q' induced by h. For a section
A of End(E) ® QP4 let AL denote the section of End(E) ® Q9P which is the adjoint of A with respect to h in

the sense (A . u,v)h = (u, AL’U) The above 9}; is the adjoint of 0y in this sense. |

b

We put ]D)Q* =0, — 0y =0n+ 9;2 — X(On + 01,). We have the following formula:

D — AD)*
1+ A2

D} * + AD>

5 8h+9;2:W

On + 0 =

We recall that h is called a pluri-harmonic metric if (9, + 05)? = 0 holds, i.e., (E,dp,0:) is a Higgs bundle.
The condition is equivalent to [ID))‘,ID)Q *} = 0. In the following, a A-flat bundle with pluri-harmonic metric is
called a harmonic bundle.

Let us consider the case where X is provided with a Kahler form w. For a differential operator A of £ ® 0’
of degree one, i.e., A: C°(X,E® Q) — C°(X,E® Q) let A* denote a formal adjoint with respect to w
and h, i.e., [ (Au,v)p 0 dvol, = [y (u, A*v)p . dvoly, hold for any C*°-sections u and v with compact supports.
Here, (-, )nw denotes the Hermitiann inner product of appropriate vector bundles induced by h and w.

Lemma 2.23 (ID))‘*)* = V—l[Aw,ID))‘} and (]D)A)* = —V—l[Aw,D/\*}.

Proof It follows from the relations 9* = v/—1[A,, 5], & = —vV—1[A,,dg], 0* = —/—1[A,, 0] and (01)* =
V—1[A,, 0] |

The Laplacian Aaw :C®(X,E) — C*(X, E) is defined by Aﬁ,w = /—1A, DD *.
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Remark 2.24 For the differential operators of functions, A}y := V=TA(0+XD)0(0—ND) = (14+|\?)V/—1A00 =
(1 + |AP)AY, where Al denotes the usual Laplacian /—1A,00. 1

Lemma 2.25 When A # 0, we have A 02 + A~102 = 0 and A\~10;, + A (6])2 = 0.

Proof From the flatness (D*)? = 0, we obtain the following formulas:

(@n + N01)2 =Ty + ABW0] + A2(00)2 =0, (6)
(A + 0,)? = X207 + \on0), + 07 = 0, (7)
[On + M), A0y + 04] = A([Eh ,0n] + [0, 9h]) + By + N20,0] = 0. 8)

It is easy to see (52)2 = —02, (An0])t = 946, and (0])% = —(62)1. Therefore, we obtain the following equality

from (@):

— 02 + N(0n0) — X 62 = 0. (9)
From () and (@), we obtain (A+ X )32+ (A~ +3)62 = (1+ |A2)(X 92 + A162) = 0, which gives the first
formula in the lemma. The second formula can be obtained by taking the adjoint. |

Lemma 2.26 When X\ # 0, we have X_l . 6h9}: + 219,60, =0 and [ah ,Eh] + [Hh , H,H =0.

Proof It is easy to check [ah,éh]L = —[Oh, On], [Hh,e}:]L = —[6%9;2] and (Eheh); = ahejl. Hence, we obtain
the following equality from (8):

— [On, 00 — [0}, 00] + X Ou0] + X - Dpb), = 0. (10)
The claim of the lemma immediately follows from () and (I0). |

Corollary 2.27 When A # 0, the pluri-harmonicily of the metric h is equivalent to the vanishings 07 =0 and
onbn, = 0. |

2.2.2 Local expression

Let (E,D") be a flat A-connection, and let h be a C*°-metric. Let v = (vy,...,v,) be a holomorphic frame of
E. Let H = H(h,v) denote the hermitian matrix valued function of h with respect to v, i.e., H; ; = h(v;, vj).
Let us see the local expression of the induced operators.

Let A denote the M(r)-valued (1,0)-form of D* with respect to v, i.e., D*v = v - A, in other words,
DAM; = >° Aji - v;. Let B denote the (1,0)-form of §, with respect to v, i.e., §;v = v - B, and then we have
Oh(vi,v;) = h(vi, (%Uj) =3 h(vi, Bk,jvk). Hence, 0H = H - B, i.e., we obtain B = H '9H. Let C denote the
(0, 1)-form of §; with respect to v, i.e., 6jv = v - C, and then we have X - dh(v;,vj) = h(d'vi,v;) + h(vi, 6} v;) =
S P(Akivi, v5) + 3, k(viy, Oy jvg). Hence, \0H = tAH + HC, i.e., we obtain C = \ - H '9H - H 'tAH.
Thus, we obtain the following:

Opbv=2v

(A—XH '9H), dw=v (\-H '0H — A}).

1
EEENE EENE

Here, A" denote the adjoint of A with respect to h, i.e., A;fI -H ' A-H.

2.2.3 Pseudo curvature and the Hermitian-Einstein condition

Assume X\ # 0. For a flat A-connection (F,D*) with a hermitian metric h, the pseudo curvature G(h,D?*) is

defined as follows: \[22
1 —
G(h, DY) := [D*, Dy*] = _Ar APP +|A i (On + 0n)*.
Then, a hermitian metric h is a pluri-harmonic metric for (F,D*), if and only if G(h,D*) = 0 holds. We will
often use the notation G(h) or G}, instead of G(h, D) if there are no risk of confusion.
When X is provided with a Kahler form w, a Hermitian-Einstein condition for h is A,G(h,D*)* = 0, where

“1” means the trace free part.
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2.2.4 Some relations between curvature and pseudo curvature

By the construction of d;, the operator d” + ¢} is a unitary connection of (E,h). The curvature of d” + ¢;, is
denoted by R(d"”,h). We have the following expression of R(d”,h) due to [d’,d'] = 0:

LI

1 z
R(d",h) _ [d”,(%l] _ [d",)\_ld/] | [d“,eh] — _%(aheh + )\[9;2’9}1])_ (11)
Lemma 2.28 The following equality holds:
1" 1 A 1+ |)‘|2_
- D S T L ) 12
tr R(d", h) FRRE tr G(D*, h) otry, (12)

Proof From (III), we obtain tr R(d”,h) = —(1 + |A[>)A=! - 9tr 6. On the other hand, we have the following:

(1+2)°

trG(h,D*) = —

14 [A2)° _
% otroy,.

(D5, + Onbn + 63) = —

Here, we have used tr(#7) = 0, which implies tr@i) = 0 due to Lemma 225 Thus we are done. 1

Lemma 2.29 In the case dim X = 2, we have the following formula:

L+ A2

tr(R(d",h)%) = X

! 5 tr(G(h,DY)?) — dtr(67 - 0}).

(1+1A2)
Proof We have the following:

L+ AP

tr(G(h,D*)?) = 2

(tr(@hoh)Q) +2tx(3;, ~9,§))

(1+ A
)\2

Since we have tr([0;,0]1%) = —2tr(626] ) and (3 + \])? = 3,% + 29101 + 22012 = 0, we obtain the following:

tr(R(h, d")Q) = (tr((ghﬁh)Q) + 2)\tr(3h9h - [On, 9};]) +\? tr([@h, 9;&]2))
A2 tr([0n, 0]17) = —2tr (A2 62 - 0]2) = 2tr(5i 02+ X D,0] -9,%).
Hence, we have the following equality:

2 2
tr(R(h, d")?) = <” o ) (6r(@30)2) + 226080 - [0, 0})) + 2005 - 63) + 2 (@0 - 63)).

We also remark the following:

tr (90 - [0n, 0F]) + tr(03 - Dn0}) = tr((Dnbn) - On - 0F) + tr(On, - 0] - 01,) — tr(0y, - Du0} - 6)
=dtr(0y -0} -0) = —9tr(62 - 6]). (13)

Then, the claim of the lemma immediately follows. |

2.2.5 Change of hermitian metrics

Let h; (i = 1,2) be hermitian metrics of E. The endomorphism s is determined by hg = hy - s, i.e., ha(u,v) =
h1 (s-u,v) = h (u, s-v), which is self-adjoint with respect to both of h;. Then, we have the relations 6;12 =
o, + 5710, s and 0 =0y + 5710} s. Therefore, we have the following relations from (&):

1

5}12 = 5}11 + W

—1cnm —1g/
5 0p,8, Oy, =0n, + 50y, S,

A
1+ A2
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1 A
of —of - ——— A A
hao h1 1+ |)\|2 14+ |)\|2S h1$
We also have Dy * = Dp* + s~ D) *s, and thus [D*, Dy *] = [D* Dp*] + DA (s™1) - Dy *s + s~ D Dy *s. Then,
we obtain the following formula:

=15
S 5h28, 9h2 = 9h1

Ap o5 =5V=1(AuG(h2) — AG(h1)) + V=TA,D s - s~ D s, (14)

In particular, we obtain the following formula by taking the trace:
_1/2)2
AMtr(s) = tr(s«/—l(AwG(hg) — AwG(hl))) — |DX(s)s 1/21,“101. (15)
As in Lemma 3.1 of [36], we can derive the following inequality:

Al logtr(s) < ‘AwG(hl)‘hl + |AwG(h2)|h2 (16)

2.3 Review of existence result of a Hermitian-Einstein metric due to Simpson

2.3.1 Analytic stability of flat A\-bundle

Let X be a complex manifold with a Kahler form w. In this subsection, we impose the following condition as
in [36].

Condition 2.30
1. The volume of X with respect to w is finite.
2. There exists a C°°-function ¢ : X — R> with the following properties:

o {x € X|¢(x) <a} is compact for any a.
e 0 < v—l@gqﬁ <C-w, and 5(;5 1s bounded with respect to w.

3. There exists a continuous increasing function a : [0, 00[— [0, oo with the following properties:

e a(0) =0 and a(t) =t fort > 1.

o Let f be a positive bounded function on X such that A, f < B for some B € R. Then, there exists
a constant C(B), depending only on B, such that supy |f| < C(B)-a ([ |f]-dvol,). Moreover,
Ay (f) <0 implies A, (f) =0. 1

Let (E,D*) be a A-flat bundle on X. There are two conditions on the finiteness of the pseudo curvature of
(E,D*, h). The stronger one is the following:

sup|G(h,D*)[, < co. (17)

The finiteness (7)) implies the weaker one:
sup’AwG(h,D’\)‘h L, < oo (18)
When we are given a hermitian metric b of E satisfying the finiteness (I8]), the degree deg,,(E, h) is defined

as follows: R
V-1 [ trG(h,D") Ll V-1

deg,,(E,h) = tr R(h,d") -w" L.

Here, we have used ([2). For any A-flat bundle (V,D},) C (E,D?*), the restriction hy := h)y induces deg,,(V, hy).
As in Lemma 3.2 of [36], we have the Chern-Weil formula. The proof is same.
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Lemma 2.31 Let my denote the orthogonal projection of E onto V. Then, the following equality holds:

1 /1 A n—1 A |2
degw(V hV) 2 1+ |)\|2 < / tr WVOG h,D )) 7/X|]D) 7rV|h,w>
The value is finite or —oo, when ([A8) is satisfied. 1

Definition 2.32 (E,D*, h) is defined to be analytically stable with respect to w, if the inequality

deg, (V) _ deg, (B, h)
rank V' rank F/

holds for any (V,D3,) C (E,D*). |

2.3.2 Existence theorem of Simpson and some consequence

Proposition 2.33 Let (X,w) be a Kahler manifold satisfying Condition 230, and let (E,D*, ho) be a metrized
flat \-connection satzsfymg @@). Assume that (E,D*, hg) is analytically stable with respect to w. Then, there
erists a hermitian metric h = hg - s satisfying the following conditions:

e h and hg are mutually bounded.
o det(h) = det(hg).

D*(s) is L? with respect to hy and w.

It satisfies the Hermitian Einstein condition A,G(h)* = 0, where G(h)* denotes the trace free part of
G(h).

The following equalities hold:

/Ytr(G(h)?) .w”*2:/ytr(0(h0)2) w2, /Ytr(G(h)“) ~w”’2:/ytr(G(h0)J‘2) w2,

We do not give a proof of this proposition, because we need only minor modification of the proof of Theorem
1, Proposition 3.5 and Lemma 7.4 of [36]. Indeed, we have only to replace D”, D’ and F(h) with D*, D**
and G(h), and to make some obvious modification of positive constant multiplications, as was mentioned by
Simpson himself. (See the page 754 of [37], for example. Remark that “D¢” corresponds to our —D**, and
hence our G(h) is slightly different from his.) The author recommends the reader to read a quite excellent
discussion in [36]. However, we will use some results related with the Donaldson functional, which are obtained
from the proof. Hence, we recall a brief outline of the proof of Proposition We will use the notation in
Subsection 2.4]

Let hg be a metric for (E,D*) satisfying the finiteness (I8). Let us consider the heat equation for the self
adjoint endomorphisms s; with respect to hg:

s;ldst = —VIALG(he)* . (19)

A detailed argument to solve (I9) is given in Section 6 of [36]. Moreover, A,G(h;) is shown to be uniformly
bounded. We do not reproduce them here.
Then, we would like to show the existence of an appropriate subsequence t; — oo such that {s;, } converges to
Seo Weakly in L5 locally on X, and we would like to show that heo = hg-Soo gives the desired Hermitian-Einstein
metric. For that purpose, Simpson used the Donaldson functional M (ho, hosti). (We recall the definition and
some fundamental property in Subsection 2.4 below.) He showed that there exist positive constants C; (i = 1,2)
such that the following holds: (Proposition 5.3 of [36]. We review it in Proposition[2Z.41l We will use the notation
there in the following.)
sup | log st| < Cy + Cy - M (ho, host). (20)
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He also showed (Lemma 7.1 of [36]) that M (ho, hos:) is C' with respect to ¢, and that the following formula

holds: J
%M(ho,host) = 7/ \AWG(ht)Hit L <0 (21)
< :

Since we have M (ho,hg) = 0 by definition, we obtain M (hg,hgst) < 0 from (ZI). Then, we obtain the
boundedness of s; from (20). For the solution of (Id), we have det(s;) = 1. Hence, we also obtain the
boundedness of s; *. We also obtain the existence of a subsequence {t;} such that |ALG(R},)| 2 — 0.

From the uniform boundedness of s; and A,G(h:), we obtain the lower bound of M (ho, host). (See Corollary
in this paper, for example.) Moreover, we obtain the uniform bound of | X}D/\ut}io due to the positivity
of ¥ given in (26)), where s; = exp(u;). Due to the boundedness of s; and s; !, we also obtain the boundedness
of [ X‘D/\St’io' Then, we obtain the L} boundedness. Hence, we can take a subsequence {t]} such that s

converges to some s, weakly in L? locally on X — D. Due to some more excellent additional argument given
in the page 895 of [36], it can be shown that the convergence is weakly L% locally on X — D, for any p. As a
result, we obtain the Hermitian-Einstein metric.

By the above argument, we can derive the following lemma, which we would like to use in the later discussion.

Lemma 2.34 Let hg be the hermitian metric satisfying (7). Let hygr be the Hermitian-FEinstein metric ob-
tained in Proposition 233l Then, we have M(ho, hHE) <0.

Proof Recall that hg is obtained as the limit hg-$o of some sequence {hgs, }, and we have M (hg, ho-s:,) < 0.
We use the formula (25). Let Z be any compact subset of X. The sequence {s;,} converges to s, in C° on Z.
The sequence {A,G(hs,)} converges to A,G(hpr) weakly in L? on Z. Therefore, we have the convergence:

lim tr(uti . AWG(hti)) dvol, = / tr(uoo 'AwG(hHE)) dvol,, .

t;—o00 VA Z

Here, u; are given by exp(u:) = s¢. Since supy |s¢| and sup y |[AG(h)| are bounded independently of ¢, we can
easily obtain the convergence:

tlim tr(uti . AwG(hti)) dvol, = / tr(uoo . AwG(hHE)) dvol,, .
i—00 Jx X

We have the C%-convergence of the sequence {D*u;, } to D us,. Hence, we have the following inequality due to
Fatou’s lemma:

/ (\II(UOO)ID)’\UOO, ]D))‘UOO) dvol, < h_m/ (\If(uti)DAuti, ID))‘uti) dvol,, .
X X

Then, we obtain the desired inequality. |

2.3.3 Uniqueness

The following proposition can be shown by an argument similar to the proof of Proposition 2.6 of [31] via the
method in [36]. We state it for the reference in the later discussion.

Proposition 2.35 Let (X,w) be a complete Kahler manifold satisfying Condition 230, and (E,D*) be a A-flat
bundle on X. Let h; (i =1,2) be hermitian metrics of E such that A,G(h;) = 0. We assume that h; (i = 1,2)
are mutually bounded. Then, the following holds:

o We have the decomposition of A-flat bundles (E,D*) = @(E,, D)) which is orthogonal with respect to both
Of hl (Z = 1,2).
o The restrictions of h; to E, are denoted by h;,. Then, there exist positive numbers b, such that hy , =

ba - hoq.

Proof Let s be determined by hy = hy - s. We can show D*s = 0 by the argument explained in the proof of
Proposition 2.6 of [31]. Note we are considering the case A # 0. Hence, the eigen decomposition of s is D*-flat,
which gives the desired decomposition. |
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2.4 Review of Donaldson functional

We recall the Donaldson functional, by following Donaldson and Simpson ([5] and [36]).

2.4.1 Functions of self-adjoint endomorphisms

Let V be a vector space over C with a hermitian metric h. Let S(V,h) denote the set of the endomorphisms
of V which are self-adjoint with respect to h. Let ¢ : R — R be a continuous function. Then, p(s) is
naturally defined for any s € S(V,h). Namely, let vi,...,v,. be the orthogonal base which consists of the
eigen vectors of s, and let vy, ..., v be the dual base. Then, we have the description s = Y k; - v/ ® v;, and
we put o(s) := > (ki) - vy ® v;. Thus, we obtain the induced map ¢ : S(V,h) — S(V,h), which is well
known to be continuous. To see the continuity, for example, we can argue as follows: Let U(h) denote the
unitary group with respect to h. Take e = (eq,...,e,) be an orthogonal base of V. Let T denote the set of
endomorphisms of V' which is diagonal with respect to the base e. Then, we have the continuous surjective
map 7 : U(h) x T — S(V, h) given by (u,t) — u-t-u~t. It is easy to check the continuity of the composite
@ om. Since the topology of S(V,h) is same as the induced topology via 7, we obtain the continuity. When ¢
is real analytic given by the convergent power series > a; - t/, then p(s) = > a; - s’. The induced map is real
analytic in this case.

Let ¥ : R x R — R be a continuous function. For a self-adjoint map s € S(V,h), let v1,...,v, and
vy,...,vY be as above. Then, we put W(s)(A) = > ¥ (k;,kj) - Aij - vy @ v; for any endomorphism A =
S A; v ®vj of V. Thus, we obtain ¥ : S(V,h) — S(End(V), h), which is also well known to be continuous.
Here, S(End(V'), h) denotes the set of the self-adjoint endomorphisms of End(V) with respect to the metric
induced by h. To see the continuity, we can use the same argument as above. When WU is real analytic given by
a power series, Y by, nt7'tD, then we have U(s)(A) =Y by ns™ - A - s", and the induced map is real analytic.

Let ¢ : R — R be C', and let dp : R* — R? denote the continuous function given by dp(ty,ts) =
(t1—t2) " (p(t1) —p(t2)) (t1 # t2) and dp(t1,t1) = ¢'(t1). In this case, the induced map ¢ : S(V, h) — S(V, h)
is also C'!, and the derivative at s is given by dy(s). To see it, we can argue as follows: When ¢ is real analytic,
the claim can be checked by a direct calculation. In general, we can take an approximate sequence p; — @
by real analytic functions on an appropriate compact neighbourhoods of the eigenvalues of s € S(V, k). The
induced maps ¢; : S(V,h) — S(V,h) and dg; : S(V,h) — S(End(V), h) uniformly converge to ¢ and dy on
an appropriate compact neighbourhoods of s. Then, we can derive that ¢ is the integral of the form dy by a
general fact.

The construction can be done on manifolds. Namely, let E' be a C'°*°-vector bundle with a hermitian metric
h. Let Sp(E) (or simply Sp) be the bundle of the self-adjoint endomorphisms of (E, h), and let S (End(E)) be
the bundle of the self-adjoint endomorphisms of (End(E), k). Then, a continuous function ¢ : R — R induces
¢ Sp(E) — Sp(E), and ¥ : R* — R induces ¥ : S,(E) — S,(End(E)). We have D p(s) = dip(s)(D*s),
when ¢ is C*.

2.4.2 A closed one form
Let (X,w) and (E,D*) be as in Subsection 3.1l Following Simpson [36], we introduce the space P(S}), which

consists of sections s of Sy (FE) satisfying the following finiteness:

Illn.o.p := sup [sln + [D*s]l2n0 + 17 w1, < oo
X

Here, || - ||p,n,w denote the LP-norm with respect to (h,w). We will omit to denote w and h, when there are no
risk of confusion. The following lemma corresponds to Proposition 4.1 (d) in [36]. The proof is same.

Lemma 2.36 Let o and ¥ are analytic functions on R with infinite radius of convergence. Then, ¢ : P(Sy) —
P(Sy) and U : P(Sy) — P(Sx(End(F))) are analytic. 1

Let h be a metric satisfying (). Let P4 (Sy) denote the set of the self-adjoint positive definite endomor-
phisms s with respect to h such that ||s||,p < oo and ||s7!||5,p < co. Note ||s||n,p < 0o and sup |[s71|, < oo
imply [|s™!|n,p < 0o. We put Pj, := {h-s|s € Py(Sh)}. It is easy to see that any hy € Py also satisfies (I8)
due to [I). It is also easy to see P, = Py, for hy € Py.
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Let P(Sy) denote the space of the self-adjoint endomorphisms s with respect to h such that ||s||ps < oo. It
is easy to see that P4 (Sy) is open in P(Sy). In particular, we obtain the Banach manifold structure of P (Sp).
By the natural bijection Pp, ~ P (Sp,) for hy € Pp, we also obtain the Banach manifold structure of Py, which
is independent of a choice of hy € Pj. We have the map P(Sp,) — P4+ (Sh,) given by s — e® (Lemma
236). It gives a diffeomorphism around 0 € P(Sp,) and 1 € P4 (Sh,). Therefore, the map P(Sp,) — Pp by
5 — hy - e® gives a diffeomorphism around 0 and h;. In particular, the tangent space Tj, Py, can be naturally
identified with P(Sy,) for any h; € P. We also have the natural isomorphism P(Sy,) ~ P(S)) given by
t — wu-t for hy = h-u € Py, which gives the local trivialization of the tangent bundle.

For any hy € Py, and s € Ty, Py, we put as follows:

®p, (s) := /X@;h(s)dvolw €C, ) (s):=v-1tr(s- A,G(D* hy)).

Then, ® gives the L!(X, Qﬁgl)—valued one form on Py, and ® gives the one form of Pj. The differentiability of
d is easy to see.

Lemma 2.37 ® is a closed one form.

Proof In the following argument, we use the notation D** instead of D} *. Let ki, k2 € P,. They naturally
give the vector field by addition. At any point h; € Pj, they give the tangent vectors o = hflkl and 7 = hflkg
in Ty, Py, = P(Sh, ). Hence, we have the following at h + eky:

Bppen () = \/—_1/tr((h—|— ek) "L ko - G(h +ek1)) WL,

We have (h+ek1) ko = (1 +e0) 17 =7 —eor + (1 + €0) "?e?0?7. Remark o7 is bounded. We also have the
following:

(1+e0)(G(h + €k1) — G(h)) = D*D**(1 + €0) — D1+ €0) - (1 + €0) " 'D}*(1 + €0)
= DD o — Do - (1 4 e0) 1D 0. (22)

Hence, we have G(h+ ¢k1) — G(h) = eD*D**o + €2 Rg (¢, 0, 7), where Ro(e, 0, 7) is an L'-section of End(E) ® Q2,
and the L'-norm is bounded independently from e. Therefore, we obtain the following:

Bpicr, (ko) — Pp (ko) = \/—_l/tr((h +eki) "t ko G(h+eky)) W — \/—_1/tr(h_1 ky - G(h)) - W™t
= \/—_1/tr(TG(h +ek1) —TG(h)) - w" ! — e\/—_l/tr(aTG(h +ek1)) w4+ € Ri(e,0,7)
=c (\/T/tl‘(TDAD/\*o') S — \/—_l/tr(g -7+ G(h)) ~w"1> + eRa(e,0,7). (23)

Here, we have R;(¢,0,7) — 0 (1 = 1,2) in € — 0, due to ||o||p < oo and ||7]|p < co. Hence, we obtain the
following equality:

dhq)(O', T) = \/71/(&(7-]]))‘]]]))\*0_) . tr(U]D))‘]D))\*T)) o/ /tr([o, 7_] G(h)) Lol
We have the following equality, due to [D*,D**] = G(h):

(=20 + 9) tr(tD*a) + (AD + ) tr(oD *7) = tr(D**7D o) + tr(7D**D?o) + tr(D oD *7) + tr(eD DA *7)

= —tr(rD*D**0) + tr(7 - [G(h), 0]) + tr(eD*D**7) = — tr(rD*D* *0) + tr(eD*D**7) + tr([o, 7] - G(h))
(24)

Hence, we obtain d,®(0,7) = —v/—1 [ ((—E—l—@) tr(7DX o) + (A +0) tr(oD? *T)) «w"~t. By using ||o||p < 0o
and ||7]|p < oo, we obtain the vanishing of d,®(c, 7), due to Lemma 5.2 of [36]. 1
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2.4.3 Donaldson functional

For hy,ha € Py, take a differentiable path v : [0,1] — Pp, such that v(0) = h; and (1) = hg, and the
Donaldson functional is defined to be M (hq, h2) := f,y ®. It is independent of a choice of a base metric w, in
the case dim X = 1. We have M (hy, ha) + M (ha, hg) = M (hy, hs) by the construction.

Lemma 2.38 When hy = hy - e® for s € P(Sh,), we have the following formula:
M(hl, h2) =V 71/ tI‘(SAwG(hl)) dVOlw +/ (\Il(s)]]))‘s, D/\S)w h dVOlw . (25)
X X o

Here, (,-)w,n, denotes the hermitian product induced by w and hq, and ¥ is given as follows:

etz2—t1 _ (t2 — tl) -1
(ta —t1)?

U(ty,ta) =

See Subsection 241 for the meaning of ¥(s)(D*s).

Proof Let M’(hi,hs) denote the right hand side of (25). The following formula immediately follows from the
definition:

ou

We also have the following equalities:

3M’(hlets,lee(tJr“)S)lu_O:/X\/—1tr(sAwG(hlet5)).

0? 0?

62 ts
jumo = M (€)= 5

otou

M’ (hlets’ hle(t-i-u)s) M (hla hle(t-i-u)s) (27)

lu=0"
The second equality can be shown formally. The first equality can be shown by the argument in the page 883
of [36]. We also have the obvious equality:

0
%M/(fh@tsa haelT%) g =

0

%M/(hl, h1€(t+u)s)\t:0,u:0-

Hence, we obtain the following;:

%M’(hl,hlets):/ V—=1tr(sAuG(h1e™)).
X

Thus, M’(hy, hie®) is the integral of ® along the path v(t) = hie'®, and hence M'(hy, ha) = M (hy, h3). |

Remark 2.39 In [36], the formula 28]) is adopted to be the definition of the functional. We follow the original
definition of Donaldson [5]. |

We obtain the following corollary due to the positivity of the function W.

Corollary 2.40 If sup |A,G(h)|n < B is satisfied, we have the following inequality:
M(h,he®) > /-1 /tr(sAwG(h)) - dvol,, > —B/ [s]p, - dvol,, .

In particular, the upper bound of s gives the lower bound of M (h, he®). |
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2.4.4 Main estimate

The following key estimate is the counterpart of Proposition 5.3 in [36]. The proof is same.

Proposition 2.41 Fiz B > 0. Let (E,D*) be a flat A\-connection. Let h be a hermitian metric of E such
that sup|AwG(h,D/\)‘h < B. Let (E,D* h) be analytically stable with respect to w. Then, there exist positive
constants C; (i = 1,2) with the following property:

o Let s be any self-adjoint endomorphism satisfying ||s||p,n < oo, tr(s) =0 and sup’AwG(h . eS,D’\)‘ < B.
Then, the following inequality holds:

sup |s|p < C1 + Cy - M (h, he®)
X

(Sketch of the proof) The excellent argument given in [36] works in the case of A-connection without any
essential change. Since we would like to use some minor variants of the proposition (Subsections 2.4.5H2.4.6)),
we recall an outline of the proof for the convenience of the reader. To begin with, we remark that we have only
to show the following inequality due to Corollary

sup |s|p < C] 4 C5 - max{0, M (h, he®) },
X

As is noticed in Subsection 225, the inequality A} logtr(e®) < ‘AG(h)|h + ‘AG(heS)|hes < 2B holds. Hence,
there exist some constants C; (i = 3,4) such that the inequality log tr(e®) < C3 + Cy - [log tr(e®) holds for any
s as above, due to Condition Since we have C5 + Cg - |s|p < logtre® < C7 + Cys - |s]p, for some positive
constants C; (i = 5,6,7,8), there exist some constants C; (i = 9,10) such that the following holds for any s as
above:

sup |s|p, < Cy + Cyp - / |5 (28)

Assume that the claim of the proposition does not hold, and we will derive a contradiction. Under the
assumption, either one of the following occurs:

Case 1. There exists a sequence {s; € P(Sy)|i=1,2,---,} such that sup|s;|, — oo and M (h, he®) < 0.
Case 2. There exist sequences {s; € P(Sy)} and {C2; € R} with the following properties:

sup|s;| — o0, Cy; — 00, (i — o)
X

M(h,he®) >0, supls;|p > Ca;M(h, he®)

In both cases, we have ||s;||Lx — oo due to 28). We put ¢; := ||s;]|z: and u; := s;/¢;. Clearly we have
|luil|z2 = 1, and uniform boundedness supy |u;| < C due to 28). In the following, let L?(Sy) (resp. L3(Sh))
denote the space of L?-sections (resp. L2-sections) of Sj. The following lemma is one of the keys in the proof
of Proposition 2411

Lemma 2.42 After going to an appropriate subsequence, {u;} weakly converges to some us # 0 in L3(Sh).
Moreover, we have the following inequality, for any C*°-function ® : R x R — Rx>¢ such that ®(y1,y2) <

(y1 —y2)~ " fory1 > ya:

VA [ tuG0) + [ (@)D D) <0

X

Proof By considering ® — e for any small positive number €, we have only to consider the case ®(y1,y2) <
(y1 — y2)~! for y1 > y2. In the both cases, we have the inequalities for some positive constant C, from the

formula (23]):
c

)

Ei\/ —1/ tI‘(’U,iAwG(h,]D))\)) + f? /(\If(ﬂiui)D/\ui,ID))‘ui)h S fi .
X

20



(In the case 1, we take any sequence {C5;} such that Cy; — o0). Let ® be as above. Due to the uniform
boundedness of u;, we may assume that ® has the compact support. Then, if ¢ is sufficiently large, we have
D(A1, A2) < LT (€A1, €)2). Therefore, we obtain the following inequality:

\/—_1/ tr(u;AwG(h, D)) +/ (®(us)D i, D y), < ¢ .

X X ’ Cai

Since supy |u;| is bounded independently of i, there exists a function ® as above which satisfies ®(u;) = ¢ - id,
moreover, for some small positive number ¢ > 0. Therefore, we obtain the boundedness of {u;} in L?. By
taking an appropriate subsequence, {u;} is weakly convergent in L?. Let us, denote the weak limit. Let Z be
any compact subset of X. Then, {u;} is convergent to us on Z in L?, and hence [, [u;| — [, |uso|. Since
sup |u;| are uniformly bounded, we obtain [, [uss| # 0, if the volume of X — Z is sufficiently small. Thus,
U # 0. Similarly, we can show the convergence [ tr(u;AG(h,D*)) — [ tr(uscAG(h,D*)). Since {u;} are
weakly convergent to us, in L?, we have the almost everywhere convergence of {u;} and {D*u;} to us and
D*u, respectively. Therefore, the sequence {®(u;)D*u;} converges to ®(us )D s almost everywhere. Hence,
we have

/(@(UOO)D/\UOO, ]D))‘uoo)h L < H_m/(@(ui)DAui, ]D))‘ui)h "
due to Fatou’s lemma. Thus, we obtain the desired inequality, and the proof of Lemma is finished. |

We reproduce the rest of the excellent argument given in [36] just for the completeness. We do not use it in
the later argument. The point is that we can derive a contradiction from the existence of the non-trivial section
Uso a8 in Lemma [2.42]

Lemma 2.43 The eigenvalues of us are constant, and us, has at least two distinct eigenvalues.

Proof To show the constantness of the eigenvalues, we have only to show the constantness of tr(gp(uoo)) for
any C*°-function ¢ : R — R. We have (0 + M) tr¢(uso) = tr(D*¢(uc)) = tr(dp(us)D Muse). Let N
be any large number. We can take a C*°-function ® : R x R — R such that ®(y1,y1) = de(y1,y1) and
N®2(y1,y2) < (y1 — y2)~ ! for y1 > y2. We obtain tr(dgo(uoo)(ID)Auoo)) = tr(P(uoo)D Muso) due to the first
condition. We obtain the following inequality from Lemma 2.4

/ 1D (o0 ) D et | <_—/ tr (use AG(R)).
X

Therefore, ’(8+ A0) tr (oo = 0. Thus, the eigenvalues of us, are constant. Since tr(us) = 0 and us # 0,

o2 =

U has at least two distinct eigenvalues. |
Let k1 < ko < -++ < Ky denote the constant distinct eigenvalues of us. Then, ¢(uq) and ®(us) depend

only on the values ¢(k;) and ¢(k;, k;) respectively.

Lemma 2.44 Let ® : R> — R be a C™®-function such that ®(k;, k;) = 0 for r; > rj. Then, ®(us)(D M) =
0.

Proof We may replace ® with ®; satisfying ®1(k;,k;) = 0 for ; > r; and N®3(y1,92) < (y1 — y2)~* for
y1 > y2. Then, we obtain ||<I)1(uoo)ﬂyuooHQL2 < C/N due to Lemma 2742 and hence we obtain ® (o)DM uee =
(I)l(uoo)DAuoo =0. |

Let ~y; denote the open interval |x;, ki+1]. Let p, : R — [0, 1] be any decreasing C'*°-function such that
py(ki) = 1 and py(kip1) = 0. We put my = p,(uco). It is easy to see that 7, is LT. Due to p? = p,, we have
7r3 = m,. We have D*m, = dp(too)DMuse. We put @ (y1,y2) = (1 — py)(y2) - dpy(y1,y2), and then we have
(1 —my) oD 1y = @ (Uno) © D use. On the other hand, since we have ®.(k;, /) = 0 (k; > k), we obtain
@, (Uoo ) DMuoo = 0 due to Lemma 44l Therefore, we obtain (1 — ) o DA w, = 0.

From (1—m.,)d"my, = 0, we obtain a saturated coherent subsheaf V., such that ., is the orthogonal projection
on V, due to the result of Uhlenbeck-Yau [45]. From (1 — 7.,)d’'w, = 0, the bundle V, is D*-invariant. Since
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we consider the case A #0, it is easy to see that V, is indeed a subbundle of E. Namely, we obtain the A-flat
subbundle (V.Y,D{\,W) C (E,D*).

Let us show deg,,(V;, hy)/rank V, > deg ,(E, h)/rank E for some 7, which contradicts the stability assump-
tion of (E,D*, h), where h., := hyv, . From Lemma 2.3T] we have

dea(V:) = 5 (V7T [ G - 102 ).

We have oo = Ky - idg — > |y| - ™y, where |y| denotes the length of . We put

W = Ky, deg(FE Z |v] - deg(V- = on Ty |)\|2 <\/ /tr (usc AG(h /Z - | 7T»y}2> .

Since D, = dp- (oo ) D Moo, We have

1
27r1+|A|2 (F/tr (ucAG(R /(ZW' dp, (uco)? - D Mo, DAuoo))'

We can check Y |v[(dpy)(ki,k;)? = (ki — k)" for k; > k; by a direct argument. Therefore, we obtain
W < 0, due to Lemma Namely we obtain Ky, - deg E < > |v| - deg(V;). On the other hand, we have
0 = tr(too) = Ky -rank £ — " |y|-rank V. Therefore, we obtain deg(V)/rank V., > deg(F)/ rank E for at least
one of y, which contradicts with the stability of (E,D*, h). Thus, the proof of Proposition 241l is finished. 1

2.4.5 Variant 1 of Proposition [2.47]

Let C be a smooth projective curve, and D be a simple divisor. Let (E,D*, F) be a A-flat bundle on (C, D). Let
1 be a sufficiently small positive number such that 10 -7 < gap(E, F'). Let ¢y be a sufficiently smaller number
than 7, for example 10rank(E)ey < 7. Let we (0 < € < ¢y) be a Kahler metric of C' — D with the following
conditions:

e Let P € D. Let (U, z) be a holomorphic coordinate around P such that z(P) = 0. Then, the following
holds for some positive constants C; (i = 1,2):

dz-dz 2| |2ndz~d2

C - we < €2)z2)* PR PR

SCQ'WE

o w. — wy for € — 0 in the C'"*°-sense locally on C' — D.

Let F' be an e-perturbation of F. See Subsection [2.1.6] for the notion of e-perturbation. We discuss the
surface case there, but it can be applied in the curve case. Suppose that we are given hermitian metrics h(¢) for
(E, F(E)) with the following properties:

. ‘AWGG(h(e),D)‘)“(C) < (4, where the constant C is independent of e.
o {h(9)} converges to h(9) for ¢ — 0 in the C*>°-sense locally on C' — D.

Lemma 2.45 Let s\ be self-adjoint endomorphisms of (E,h(e)) satisfying trs() = 0 and the following prop-
erties:

° ||s(€)HP7h<e)7w€ < 00. But we do not assume the uniform boundedness.

. ‘AweG(h(e)es(e),D’\)‘h(g) < Cy. The constant C1 is independent of €.

Then, there exist constants C; (i = 3,4), which are independent of €, with the following property:

sup |59 ]p0 < Cy + Cy - M(R©, hDe),
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(Sketch of a proof) The argument is essentially same as the proof of Proposition [Z41l] We assume that the
claim does not hold, and we will derive a contradiction. After going to an appropriate subsequence, either one
of the following holds:

Case 1. M(h), h(e)es(e)) <0 and supe_p |59, — oo for € — 0.

Case 2. M (h'®), h(ﬁ)es(g)) >0, sup|s(9] > CQ(C)M(h(e), h(e)es(e)), supC_D‘s(E)‘h(E) — oo and Cée) — oo for
e — 0.

By using Lemma [Z47] (given below) and the argument given in the first part of Proposition 241] we can
show that there exist positive constants C; (i = 5,6), which are independent of €, with the following property:

sup |59, < Cs 4 Cp - / 549}, dvol,,, .
c-D

We put £(9) := ||| ;1 and u(®) := 5(9) /¢(€), The following lemma is the counterpart of Lemma Z42]
Lemma 2.46 We have a non-trivial L}-section us, of Sy with the following property:

o The following inequality holds for any C°°-function ® : R x R — R such that ®(y1,y2) < (y1 —y2)
fory1 > ya:

V=1 tr(uokooG(h(O))) dvoly, +/ ((I)(um)DAumaDAum)h(O) dvol,,, <0.
c-D c-D wo

Proof The argument is essentially same as the proof of Lemma [2.42] We have the following for some positive
constant Cj:

V=1 tr(u(E)AweG(h(f))) dvol,,. +/ ((I)(U(E))D/\u(e),DAu(e))h(e) y dvol,, < %
C—-D c—D ;We 026

(In the case 1, we take any sequence {Céﬁ)} such that Céﬁ) — 00.) From this, we obtain the following
boundedness as in the proof of Lemma

/ ’ID))‘U(E)‘Z(S) dvol,, < Cip.
C—-D

Let us take a sequence of C*®-isometries F, : (E, h(¢)) — (E, h(?)) which converges to the identity of E, in
the C*-sense locally on C'— D. Remark that the sequence {F.(D*)} converges to D* for ¢ — 0 in the C*-sense
locally on C' — D. The sequence {F.(u(®))} is bounded on L? locally on C' — D. By going to an appropriate
subsequence, we may assume that the sequence {u(e)} is weakly convergent in L? locally on C' — D, and hence
it is convergent in L? on any compact subset Z C C' — D. Let un, denote the weak limit. We have || P |ul)| —
[ luso|. Hence [, uos| # 0, when the volume of C'— Z U D is sufficiently small, due to the boundedness of
{sup|ul®|| e > 0}. In particular, us # 0. Similarly, we obtain [, ,tr(u9G(h(9)) — [, tr(uscG(h)).
Since we can derive the almost everywhere convergence ®(u()D u(®) — & (up)DMug and ul® — uy,, we
obtain [, (®(tee)D Moo, D Mus) < lim [, (@(ul9)D (@), DAul@)) due to Fatou’s lemma. Thus, the proof

of Lemma [2.46] is finished. |
The rest of the proof of Lemma 245 is completely same as the argument for Proposition 2.41]. |

We have used the following lemma in the proof.
Lemma 2.47 For any positive number B, there exist positive constants C; (i = 1,2) with the following property:

o Let € be any positive number such that e < 1/2. Let f be any non-negative bounded C*°-function on C' — D
such that A,,_f < B. Then, the inequality sup(f) < Cy + Cs [ f - dvol,,. holds.
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Proof Let (Up,z) be as above for P € D, and U}, := Up — {z = 0}. On U}, the inequality A, f < B is
equivalent to the following:

2e 2n
Agoj"SB(e?'Z| +ﬁV|). (29)

|2[? |22

Here, go := dz - dz. Because of the boundedness of f, (29) holds on Up. (See the proof of Proposition 2.2 of
[36].) Then, we obtain the following inequality on Up:

Dgo(f=B-¢) <0, ¢ =]z +][z*".
For any point @Q € A(P,1/2), we have the following:

U-BO@s [ o (1-Bg) vl

™

Therefore, there exist some constants C; (i = 3,4) which are independent of ¢, such that the following holds:

f(Q) <Cs +C4/f-dvo1w£ .

Thus, we obtain the upper bound of f(Q), when @ is close to a point of D. We can obtain such an estimate
when @ is far from D, similarly and more easily. |

2.4.6 Variant 2 of Proposition 2.47]

We will use another variant. Let w : C — A be a holomorphic family of smooth projective curves. Let D C C
be a relative divisor. Let (E,]D)A7 F) be a logarithmic parabolic A-flat bundle on (C,D). We denote the fiber
7 1(t) by C; for t € A. The restriction (E,D*, F)p, is denoted by (E;, D}, F;). Let w be a metric of the
relative tangent bundle of C/A such that w ~ n?|2|*"~2dz - dz around D. Here, 1 denotes a small positive
number such that 10rank(E) -n < gap(E, F), and z is holomorphic function such that 2=(0) = D and dz # 0.
The restriction we, is denoted by w; for t € A. Let h be a C*°-hermitian metric of £ adapted to F such that
|Ath(]D)f‘, ht)|h, < (1 for any t € A, where a constant C is independent of ¢, and h; denotes the restriction
hje,. The following lemma can be shown by an argument similar to the proof of Lemma 247

Lemma 2.48 There exist positive constants C; (i = 3,4), which are independent of t, with the following
property.

o Let s be an element of Py, (Ey) satisfying trs® = 0, ||s®|n, p < 0o and ’Ath(ID)f‘,htes(t))‘ < C.
Then, the inequality sup |s®)| < C3 + Cy - M (hy, htes(t)) holds. |

2.5 Regular filtered \-flat bundles associated to tame harmonic bundles
2.5.1 Tame pluri-harmonic metric

Let X be a complex manifold with a simple normal crossing divisor D. Let (E,D*) be a A-flat bundle on
X — D. Let h be a pluri-harmonic metric of (E£,D*). Then, we have the induced Higgs bundle (E,dy,05).
Recall the tameness of pluri-harmonic metric. Let P be any point of X, and let (Up, 21, . . ., z,) be a holomorphic
coordinate around P such that DN Up = Ui:f{zi = 0}. Then, we have the expression:

l n

QZZfz%ﬁL Z gj'de.

i=1 j=I+1

The pluri-harmonic metric h is called tame, if the coefficients of the characteristic polynomials det(t — f;) and
det(t — g;) are holomorphic on Up for any P. A A-flat bundle with tame pluri-harmonic metric is called a tame
harmonic bundle. Recall that the curve test for tameness is valid.
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Proposition 2.49 (Corollary 8.7 of [30]) A pluri-harmonic metric h for (E,D) is tame, if and only if hic
is tame for any closed curve C C X transversal with D. |

From a holomorphic vector bundle E with a hermitian metric h, we obtain the filtered sheaf E,(h) :=
(CE | ceR® ) as explained in Subsection 3.5 of [31]. We recall the following proposition.

Proposition 2.50 (Theorem 8.58, Theorem 8.59 and Corollary 8.89 of [30]) Let (E,D* h) be a tame
harmonic bundle on X — D. Then, (E*(h),ID)A) is a reqular filtered A-flat bundle. |

2.5.2 One dimensional case

In the one dimensional case, Simpson established the Kobayashi-Hitchin correspondence for parabolic flat bun-
dles and the parabolic Higgs bundles, i.e., A-flat bundles in the case A\ = 0, 1. His result can be generalized for
any A.

Proposition 2.51 (Simpson, [37]) Let X be a smooth projective curve, and D be a simple divisor of X. Let
(E*,DA) be a regular filtered \-flat bundle on (X, D). We put E = .Ejx_p. The following conditions are
equivalent:

o (E.,D*) is poly-stable with par-deg(E.) = 0.

o There exists a harmonic metric h of (E, D), which is adapted to the parabolic structure of E., i.e.,

E.~E.(h).

Moreover, such a metric is unique up to obvious ambiguity. Namely, let h; (i = 1,2) be two harmonic metrics
as above. Then, we have the decomposition of Higgs bundles (E,D*) = @(E,, D)) satisfying the following:

e The decomposition is orthogonal with respect to both of h;.
o The restrictions of h; to E, are denoted by h;,. Then, there exist positive numbers b, such that hyq =
bg - hoq. |
2.5.3 The projective case

Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal crossing
divisor of X with the irreducible decomposition D = | J._¢ D;. Let (E,D*, h) be a tame harmonic bundle on
X -—D.

€S

Proposition 2.52 Let (E.,D*) be as above.
o (E.,D*) is ur-polystable with par-deg; (E,) = 0.

o Let (E,.,DV) = @j (Ej ., ]D)JA) ® CPY) be the canonical decomposition of pur-polystable reqular filtered \-flat
bundle. Then, we have the corresponding decomposition of the metric h = @ h; ® g;, where h; denote
pluri-harmonic metrics of (E;,D}) adapted to the parabolic structure, and g; denote metrics of cr¥.

e We have the vanishings of characteristic numbers:

/ par-ch, ; (E.) :/ par—ciL(E*) = 0.
X

X

Proof The first two claims can be shown by the same argument as the proof of Proposition 5.1 of [31]. The
third claim can be shown by an argument similar to the proof of Proposition 5.3 of [31], which we explain
briefly. We have only to consider the case dim X = 2. Since h is pluri-harmonic, we have the equalities
tr R(d”,h) = (14 [A?)"' tr G(h,D*) = 0 and tr(R(d”,h)?) = (14 [A[*)72 - tr(G(h,D*)?) = 0, due to Lemma
and Lemma on X — D. We also have the norm estimate for the holomorphic sections of oE. (It is
explained in Subsection 2.5 of [31] for A = 0. Similar claims hold for any A, as shown in Subsection 13.3 of [30].)
Then, the same argument as the proof of Proposition 5.3 works. |
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Proposition 2.53 Let (E.,D*) be a regular filtered \-flat bundle. We put (E,D?*) := (E*,D/\)‘X_D. Let h,
(a = 1,2) be pluri-harmonic metrics of (E,D*) on X — D which is adapted to the parabolic structure. Then, we
have the decomposition (E,D*) = @(E;,D*) with the following properties:

e The decomposition is orthogonal with respect to both of h, (a = 1,2). Hence, we have the decomposition

hy = G}i hai-
o There exist positive numbers b; such that h1; = b; - ha ;.

The decomposition on X — D is prolonged to the decomposition (E.,D*) = @(E;.,D*") on X.

Proof Similar to Proposition 5.2 of [31]. 1

2.6 Some integral for non-flat A-connection on a curve

Let Y be a smooth projective curve, and let D be a divisor. Let (E, F') be a parabolic bundle on (Y, D). Let
D* be a C*° A-connection on E)y_p. In this subsection, we do not assume D* is flat, i.e., (D*)? may not be
0. But, it is assumed to be flat around an appropriate neighbourhood Up of each P € D, and (E, F,DA)‘UP
is a parabolic A-flat bundle. In particular, we have Resp(D*) € End(E|p). We assume that it is graded
semisimple, for simplicity, i.e., the induced endomorphism on Grf’ (E|p) is semisimple for each P € D. (By
using e-perturbation in Subsection 2.1.6] we can drop the condition.)

For each P € D, we have the generalized eigen decomposition E|p := @ "E, of Resp(D*). We also have
the filtration ©F of E|p. Let us take a holomorphic frame v of Ej;,,, which is compatible with (PE,PF). We
put a(v;) = deg®(v;) and a(v;) := deg” (v;). Let h be a C™-metric of E|y_p such that h(v;,v;) = |22
(i = j) and 0 (i # j). Let us decompose D* = d” + d’. Let us take a (1,0)-operator djy such that d” + dj is
C* A-connection of E on Y, not only on ¥ — D. We also assume dyv = 0. We put A := d’ — dj), which is a
C*>-section of End(E) ® Q'°(log D) on Y, and holomorphic around D. We have tr Resp(A4) = tr Resp (D).

Let ho be a C*°-metric of E on Y such that ho(v;,v;)is 1 (i =j) or 0 (i # j) on Up (P € D). Let s be the en-
domorphism determined by h = ho-s. Then, s is described by the diagonal matrix diag(|z|=2¢("1), ... |z|~2a(v)
with respect to the frame v on Up.

Although D* is not necessarily flat, we obtain the operators &}, 6/, 9, Op, 0, and 9}; as in Subsection 2.2.11

We put wt(E, F, P) := 3, cpo(m.p) @ rank(” Grl(E)).

Lemma 2.54 We have the following formula:
v-l [ = A -1 A

Proof Let §;, denote the (1,0)-operator obtained from d” and hg as in Subsection 221 Then, we have

_ 1
IENE

1

1
)Zw(

I— . / S
(d =23, el

O, dy —X-04,) + A—X-s716; s).

We would like to apply the Stokes formula to the integral of dtr ). If we do so, dj — Ad},, does not contribute,
because it is the C*°-section of End(FE) @ Q'°. We have

A/ —1 _ B N
7/Y<9tr(A)§trReSp]D) .

Since 5714, s is described by diag(—a(v1), ..., —a(v,))-dz/z with respect to v on Up (P € D), we have

\4 -1 3 —1r _
?/Yatr(s (ShUS)—;

ra

nk E/
Z —a(v;) = —Zwt(E,F,P).
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Therefore, we obtain the following formula:

\/_1 A2
+||/c’)t9h—

1trReSPID))‘+wt(E,F,P)). (31)
Thus, we obtain (30). |

3 Ordinary metric and some consequences

We give a construction of an ordinary metric for a graded semisimple parabolic A-flat bundle on a surface
satisfying SPW-condition, and we give the estimate for the pseudo curvature. Then, we obtain the existence
result of Hermitian-Einstein metric if such a parabolic A-flat bundle is stable.

3.1 Around the intersection of the divisor
3.1.1 Some estimates

We put X := A% D; :={z; = 0}, and D := D; U Dy. Let (E.,D") be a graded semisimple regular filtered
M-flat bundle on (X, D). Let ¢ = (¢1,¢2) € R? such that ¢; & Par(E.,i). We assume the following:

(SPW) We have a positive integer m and v; € R with —1/m < v; < 0, such that Par(cE*, z) is contained in
{ci+~i+p/m|p€Z, —1 <~ +p/m<0}. (The condition —1/m < 7; < 0 is not essential.)

We put X := AQ, D; == {¢; =0} and D = D;UDs. Let ¢ : X —> X be the ramified covering given by
o((1, Cg) (¢1",¢35"). Let Gal(X/X) denote the Galois group of X /X. Recall the construction in [I5]. For any
a € R?, let o E denote the subsheaf of E := ¢*(E) given as follows:

oF = U " (dE) . H G
n+md<a i=1,2
Then, it is easy to see that E, = (QE ’ ac RQ) is a filtered bundle, and the induced flat A-connection DX is

regular. We put ¢; := m - (7; + ¢;). By the assumption, we have Par(~ ) {p +¢ ’p € Z}
We have the generalized eigen decompositions E|p, = @ 'Eq W1th respect to Res;(D*). We have the
parabolic filtration F of .E. Let v be a frame of .FE compatible with *F and ‘E (i = 1,2). We put as follows:

. 1
ai(v;) =" deg" (v;) = (ci + ) € — Z<o

Let a;(v;) € C denote the complex number determined by v;ip, € “Eq, (v,)- We put 0 := ©* (v;)- [T, 5 Cimai(vj).
Then, v = (v;) gives the frame of sE. We put Bi(v;) :== m(X - ai(vj) + i(v;)). Let I' be the diagonal matrix
whose (j,j)-entry is >, 5 8i(vj) - dG;/¢;. Let A be determined by Do =¥ - A, and let Ay := A—T. In the

following, let Fr € End( ) ® Q' (log D) be determined by Fr(v)=v-T. We put ﬁ)é =D — F.
Let Ag = 2_172 Al - d¢;. Tf m is sufficiently large, we may assume the following:

(A): Aj = O(¢?). Moreover, (A});x = O(¢? - ¢3) in the case B2(v;) # B2(vk), and (A2);x = O(¢} - ¢3) in the
case B1(v;) # B (vk)-

Let  be the hermitian metric of zE determined by h(vz, v]) =8 |G| - || 72,
Let 6 (resp. f0) be the section of End(E ) ® Q! on X — D induced by h and D* (resp. D}) as in Subsection
221 Let 0 and 92; denote the adjoint of 9 and 90, respectively. Let g denote the Euclidean metric of X.

Lemma 3.1

° [5, §T] is bounded with respect to h and g.
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L] 52 = 0(2’1 . ZQ) . le . dZQ.

Proof We have the relations 0 = 0y + (1 4+ [A2)"'Fp and 0" = 6] + (1 + [\[2)"*Fl. Hence, we have the
following: e o _ _

[0.6%] = [60,00] + (1 + [A*) " [0, FL] + (1 + N>~ [6), Fr] (32)
We have the decomposition of 6 into the sum A(1 + |A2)~L 2 - dCi /¢ + 0}, where 6] is the C™-section of
End(zF) ® Q% on X. Hence, [90,93} is the C*-section of End(zE) ® Q2 on X. By Condition (A), [OO,FH
and [Fp, ggﬂ is also bounded. We have 2 = 5(2) + 2[50, Fp}. Then, we obtain the desired estimate for 62 by
Condition (A). |

Lemma 3.2 We have the boundedness of G(ﬁ)’\,ﬁ) and 0% - 01 with respect to h and g.

Proof The boundedness of 62 - ' follows from the estimate for #2. We have the following equality (See

Subsection 2Z.274]):

G k) = (1+|AP) - R(h,d") — M(

95 + 6% — A[0,61])

We have the vanishing of the curvature R(h,d”) = 0, and the relation )\’15’,2; = X71(§T)2. Hence, we obtain the
boundedness of G(D*, h) from Lemma 311 |

Since h is Gal()? /X)-equivariant, we obtain the induced metric h of E on X — D. Clearly, h is given by
h(viyvj) = ;5 - |21 722 - 29| 722(3) | Let 6 be the section of End(E) @ Q'° on X — D induced by D* and h,
and let 0 denote the adjoint of §. Let g,, denote the metric of X — D given by g, = 3_ |z|>(71FY/™) . dz; - dz;.

Corollary 3.3 We have the boundedness of G(D*, h) and 62 - % with respect to g,, and h. |

3.1.2 The induced metric and the A-connection on the divisors

For simplicity, we assume ¢; = v; = 0 (i = 1,2) in this subsection. Let (a,a) € KMS(°E,7). Let p be a
C°°-function on X such that p > 0. We put x := p- |21]?. Let DY := D; — (D1 N D2). We discuss the induced

hermitian metric and the induced A-connection of * Gri E (°E) Do (i = 1,2), depending on the choice of p. Let
us consider the case i = 1. Let u; (j = 1,2) be sections of * Gri’E(QE). We take sections u; (j = 1,2) of °F

!

which induce u;. Then, it can be shown that (x“ - ho(ul, u’2)) is independent of the choice of u/;, which is

|D?
denoted by hg o (u1,us).
We have the frame v(, o) induced by v above. By construction, he,q(vi,v;) = p® - 0,5 - | 22| ~222(¥) | Hence,

the following equality can be checked by a direct calculation:
tr R(hq,a) — a - rank Gr} 7w (°E) - 90log p = 0 (33)

Let Fy denote the C™-section of End(°E) @ Qy°(log D) determined by Fy(v;) = v; - ay(v;) - dlog x. Then,
D* — Fy is C* around DJ, whose restriction preserves the filtration ' ' and the decomposition 'E. Hence, we
obtain the induced A-connection Dg,a of ! Grf;’Ea)(oE). We have 0, . induced by ID)QQ and hg q.

Lemma 3.4 The following holds:

Aa + «

Otrfy o+ ——
T 7+1+|)\|2r

ank(l Gri»E(OE)) - 90logp =0 (34)
Proof Let ngl and 0, ,1 denote the operator, and let hg,,1 denote the metric in the case where p is
constantly 1. Since 0, .1 is holomorphic, we have dtr 0, .1 = 0. Note that we have D)o =D 41 —a-dlogp

and hg,o = hq,a,1 - p%. Then, we obtain 04,4,1 = 04,0 + (1 + [A?) "2 (A a+ ) - dlog p. Thus, we obtain (). I
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3.2 Around the smooth part of the divisor
3.2.1 Construction of the metric and some estimates

Let X = A2 and D = {z; = 0}. Let p be a positive C>-function on X, and we put x := p- |21]%. Let (E,,D")
be a graded semisimple regular filtered A-flat bundle on (X, D) with rational weights. We take ¢ € R such that
¢ & Par(E,). We assume the following:

(SPW) We have a positive integer m and v € R with —1/m < v < 0 such that Par(.E,) is contained in
{c+’y+p/m‘p€Z, —1<~+4p/m<0}.

Let X = AZ and D = {¢; = 0}. Let ¢ X — X be given by (1, () = (", ¢2). We have the induced
filtered A-flat bundle (E,,D*) on (X, D) as in Subsection BT We put ¢ := m - (¢ + 7). Then, ’Par(gﬁ*) is
contained in {E—i— D ’ pE Z}.

We have the generalized eigen decomposition .E|p = P E,. We have the filtration F' of .E|p. Let v be a
frame of . compatible with F and E. We put a(v;) := deg” (v;) — (¢ + 7). Let a(v;) € C be determined by
vjip € Eqv,). We put v; 1= ¢*(v;) - Cln'a(vj). Then, v = (v;) gives the frame of =E. Let T be the diagonal
matrix whose (7, j)-entry is given by the following:

S}
G

Let A be determined by Do =7- A, and let Ag := A—T. Let Fr be the C*°-section of End(E )(X)Q1 on X — ﬁ,
determined by Frv = vI". We put ]D)O =D- Ir.
Let Ag = A} - d(1 + A2 - d(s. If m is sufficiently large, the following holds:

(A) Aj=0(|G1|?). Moreover, (A3)r; = O(|¢1|?) in the case (a(vi), (vi)) # (a(uvr), a(v)).

Let hi be the Gal(X/X)-equivariant hermitian metric of °E such that El(vi,vj) = O(]¢1]?) in the case
(a(w). a(v:)) # (a(v,),a(v;)). Then, let F := " (x~>7) - . o i

Let 6 (resp. fo) be the section of End(E ) ® Q! on X — D induced by h and D* (resp. D)) as in Subsection
221 Let 0 and HT denote the adjoint of 9 and 90, respectively. Let g denote the Euclidean metric of X.

a(vj) - Olog(p*x) + A-m - a(vy) -

Lemma 3.5

° [9~, §T] 1s bounded with respect to h and g.

o 02 = O(|z1]) - dz1 - dzs.
Proof Similar to Lemma B3] |
Lemma 3.6 We have the boundedness of G(ﬁ)/\,ﬁ) and 02 - 01 with respect to h and g.

Proof It follows from Lemma See the proof of Lemma |

We have the induced hermitian metric h of £ on X — D. It is adapted to the parabolic structure of E. Let
6 denote the section of End(F) ® Q% _ ,, induced by h and D*, and let 67 denote the adjoint. Let g,, denote the

metric of X — D given by g, = |21|72t?/™ - dz - dZ) + dzy - dZs.

Corollary 3.7 We have the boundedness of G(D*, h) and 62 - 01 with respect to h and g,. |
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3.2.2 The induced metric and the A-connections

For simplicity, we assume ¢ = v = 0 in this subsection. Let (a,a) € KMS(°E,). We discuss the induced
hermitian metric and the induced A-connection of GrFE(QE) Let u; (j = 1,2) be sections of GrFE(QE) We

take sections u/; (j = 1,2) of °E which induce u;. Then, it can be shown that (x* - ho(uf,ub)), , is independent

|D
of the choice of uj, which is denoted by hg,q (11, ug).

On the other hand, let U,  be the subbundle of °E generated by v; such that (a(v;),a(v;)) = (a,@). It is
easy to see that the restriction U, oD are independent of the choice of the frame v, and U, oD are orthogonal

with respect to h‘ The induced metrlc of U, is denoted by hy,

,a|D

Lemma 3.8 Let R(ha,) and R(h;, ,) denote the curvatures of (Gri’E(E), ha,a) and (U

have the following relation:

hy,. ) Then, we

alD’

tr(R(h} ) = tr(R(ha,a)) — - rank Gr} 2 (E) - 09 log p (35)

Proof We take the isomorphism @ : Gri’E(E) ~U, b given as follows. Let v be a section of Gri’E(E). Let
v’ be a section of °E which induces v. Then, ®(v) := (¢*(v') - 2"@ )‘5 is contained in U, 5,
of the choice of v. Under the isomorphism, we have hy, , = ha,o - p~% Then, B5) follows. |

and independent

We have the induced A-connection, once we fix x. (See [2].) Let f be any section of Gri’g (E). Let f be a
lift of f to °E. We put D*f —a-logx - f =: G1-(dz1/2z1) 4+ G2 - dzz. Then, Gyp is contained in F,(E). Hence,
G's - dzo induces the well defined section of Gri’E(E) ® QL which is Dy o(f). We have the induced section 6,
of End(Gri’E(E)) ® QL.

Lemma 3.9 We have the following relation:

14+ M2 /(= A . 901
tr(R(M, ) = 7# <8tr oo+ & Tﬁ |Aa|§ %8P ank Gri’f(E)) (36)
Proof We have the relation:
T 1 + |)‘|2 1" 1 + |)‘|2 1y 1"
R(h) = ——" 2 grg= =120 (q7p d" F 37
(#) B ) TR (87)

Let DA’ be the induced A-connection of U, B
and h;_’a. Then, we obtain the following equahty from (BII):

Let 07 o, be the section of End(U, ,5) ® Q induced by Dy,

1 A2 =
tr(R(h;7a)) =— + A (atr wa‘ +

3 -a - 00log p - rank Gri’E(E)) (38)

1
14+ |2

a

Under the isomorphism @ in the proof of Lemma B8, we have the D', = D} ,. Because of hl, , = ha,a - p~,
we have 0, , = 04,0 + aX(1 4 [\[*)"'9log p. Therefore, the right hand side of ([38) is the same as (30). 1

3.3 An ordinary metric
3.3.1 Setting

Let X be a smooth projective surface, and let D be a simple normal crossing divisor with the irreducible
decomposition D = J,cg D;. Let L be an ample line bundle on X, and w be a Kahler form which represents
c1(L). We take a hermitian metric g; of O(D;). The canonical section O — O(D;) is denoted by o;.

Let € be any number such that 0 < e < 1/2. Let us fix a sufficiently large number N, for example N > 10.
We put as follows, for some positive number C' > 0:

We ::w+ZC’~6N . \/7183|0¢|§f. (39)
It can be shown that w. are Kahler metrics of X — D for any 0 < e < 1/2, if C is sufficiently small.
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Remark 3.10 The factor €V is added for our later discussion (Subsection [5.1]). 1

Remark 3.11 Let 7 be a closed 2-form on X — D which is bounded with respect to w.. Then, the following

formula holds:
/ w-T = / We - T.
X-D X-D

) 2 _ 2
In particular, we also have [ pw? = [ w?. |

In the case e = 1/m for some positive integer m, it can be shown that the metric w, satisfies Condition 230
The Kahler forms w,. behave as follows around any point of D, which is clear from the construction:

o Let P be any point of D;NDj, and (Up, 2, z;) be a holomorphic coordinate around P such that D;NUp =
{zi =0} and D;NUp = {z; = 0}. Then, there exist positive constants C; (i = 1, 2) such that the following
holds on Up, for any 0 < e < 1/2:

dz; -dz; dz;-dz;
/7 _N+2 i i J J
Cl s We S -1 € . ( |Z,L-|2725 + |Zj|2726

) + v—l(dzi ~dz; + dzj - dij) <Cs - we.

e Let @ be any point of D; \ U#i D;, and (U, w1, ws2) be a holomorphic coordinate around @ such that
UnND; ={w; = 0}. Then, there exist positive constants C; (i = 1,2) such that the following holds for
any 0 <e<1/2onU:

dwy - dw
CL we <v-—1 '€N+2- (%) + \/—1(dw1 - dwy + dws - d'IIJQ) < Cy - we.
1

3.3.2 Construction and some property

Let (E.,D*) be a graded semisimple parabolic A-flat bundle. For simplicity, we consider only the case A\ # 0.
We take ¢ € R® such that ¢; ¢ Par(E.,i) for each i € S. We assume the following:

(SPW) We have a positive integer m and 7; € R (i € S) with —1/m < ; < 0, such that Par(cE,,i) is
contained in {ci +7vi+p/m ‘p €Z, —1<v+p/m< 0}.

Let ¢ = m™!. Let hg be a C*™-hermitian metric of £ on X — D as in Subsection B.1] around the intersection

points of D, and as in Subsection B2l around the smooth points of D. Let 6y denote the section of End(E)® Q0
on X — D induced by D* and hg, and let 98 denote the adjoint.

Lemma 3.12 We have the boundedness of G(D’\, ho) and 9(2) . 98 with respect to hy and we.
Proof It follows from Corollary [3.3] and Corollary 3.7 |

Corollary 3.13 The following equality holds:

/X_Dtr(R(hO)2) - _(1+|1>\|_2)2 /X_Dtr(G(hO)2).

As a result, we have the following formula:

(éf) TR Jy_p "(6007) =2 [ parha(.) (40)

X

Proof The second equality follows from the first equality and the equality (36) in the proof of Proposition
4.18 of [31]. Due to Lemma [ZZ9] we have only to show the vanishing [ 9 tr(63 - 93) = 0, which follows from the
estimate of 63 - 98 in Lemma |
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We can also show the following equality by using Lemma 4.16 of [31] and the equality tr G(hg) = (1 +|A|?) -

tr R(ho):
2

() (588) - (52, fomnr = e

Let V C E be a A-flat subbundle. Because of A # 0 and the regularity, we have the saturated filtered A-flat
subsheaf V', C E,. Let hy be the metric of V' induced by hyg.

Lemma 3.14 We have deg,, (V,hy) = par-deg,, (V). In particular, deg, (E,ho) = par-deg,, (E.).

Proof It can be shown by the same argument as the proof of Lemma 4.20 of [31]. 1

3.3.3 The induced metric and the A-connection on D7

For simplicity, we assume ¢; = ; = 0 (i € ) in this subsection. We put S(D;) := D; N, D; and D7 :=
D;\ 8(D;). Let (a,a) € KMS(°E, F,i). We have the naturally induced parabolic flat bundle iGri’E(OE)* on
(D;,S(D;)). By using the functions |i|2,, we obtain the induced hermitian metric *hq o and the A-connection
D, of ‘Gl t(°F) e s explained in Subsection (See also Subsection BTA) Let 7; := 89 1log |o; |2, .
Lemma 3.15 We have the following equality:

2
tr(R(ha@)) = — 1 +>\|)\| E(iea,a) — A ta -7 -rank ! GroE

(“E)

Proof It follows from (33), (34), (B3) and (30). |

Corollary 3.16 We have the following equalities:

par-degp, (’ Gri’E(OE)*) =— Z (Re()\_l tr(ResP("Di_’a))) + wt (’ Gri’E(OE)*,P))
PeS(D;)

—Re(A\'a) -rank’ Gry S (°E) - [Di]? (41)

0= Y Im (xl tr(ResP(iD;a))) +Tm(A'a) - rank’ GrE(°E) - [D,)? (42)
PeS(D;)
Proof It follows from Lemma and (30). |

Remark 3.17 Although we have assumed that graded semisimplicity and (SPW)-condition for (E.,D*), the
formulas (1) and @2) without the assumption, because the general case can be reduced to the above special case
by perturbation explained in Subsection 2.1.6l |

3.4 Preliminary existence result of a Hermitian-Einstein metric
3.4.1 Hermitian-Einstein metric for graded semisimple \-flat parabolic bundle on surface

We use the setting in Subsection Let X be a smooth projective surface with an ample line bundle L and
a simple normal crossing divisor D. Let w be a Kahler form representing c;(L). Let (E.,D*) be a graded
semisimple regular filtered A-flat bundle on (X, D). We assume the (SPW)-condition in Subsection Let
e = m~!, and let w, be the Hermitian metric given in BJ). We have an ordinary metric hy constructed in
Subsection

Lemma 3.18 We can construct a hermitian metric hy, for E\x_p which satisfies the following conditions:

o hin is adapted to E.. More strongly, hin = ho - eX for some function x such that x, Ox and 00x are
bounded with respect to we.
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o G(hin,D?*) is bounded with respect to hi, and we.

o Let V. be a A\-flat filtered subsheaf of E. Let V :=V x_p and let hi, v denote the induced metric of V.
Then, we have par-deg,, (V) = deg,, (V, hin,v).

o t1G(hin, D) -we = (14 |A?) - a - w? for some constant a. The constant a is determined by the following

condition:
v—1 v—1
a-—— 2=q.+— [ w?=par-deg,(E.). (43)

w? =
2 X—-D ¢ 2 X

o The following equalities hold:

o Let s be determined by hi, = ho - 5. Then, s and s~' are bounded, and D*s is L2 with respect to hg and
We.-

Due to the third condition, (E,hiyn,0) is analytic stable with respect to w., if and only if (E.,D*) is ur-stable.
The metric h;y, s called an initial metric.

Proof Let x be a positive-valued function y such that tr G(ho) - we = a - w? holds. We put h;, := hg - eX. By
construction, the fourth condition is satisfied. The other property can be reduced to the property for hg, as in
Lemma 6.3 of [31].

Proposition 3.19 There exists a hermitian metric hgyp of (E,D*) with respect to w, satisfying the following
properties:

o Hermitian-FEinstein condition A, G(hpg) = a holds for the constant a determined by ([E3).
o par-deg, (E.) = deg, (F, hu).

o We have the following formulas:

(\/——1) /X _DW _ /X (zpar-chgw*)— pi(E)) (44)

2m (L+|A]2)? rank F

e hyp is adapted to E., i.e., E.(hygr) ~ E.. More strongly, let s be determined by hyg = hin - s. Then,
s and s~1 are bounded with respect to hin, and D*s is L? with respect to hin and we.

Proof It follows from Lemma [B.18 and Proposition 2.33 |

3.4.2 Bogomolov-Gieseker inequality

Let Y be a smooth projective variety of any dimension. Let L be an ample line bundle on Y, and let D be a
simple normal crossing divisor.

Corollary 3.20 Let (E.,D*) be a puz-stable regular filtered A-flat bundle on (Y, D) in codimension two. Then,
Bogomolov-Gieseker inequality holds for E.. Namely, we have the following inequality:

Jy parci ,(E.)
-ch FP)<Z=—_— - -
/Ypar chy 1 (B) < 2rank F/
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Proof Similar to Theorem 6.1 of [3T]. Namely, since we have the Mehta-Ramanathan type theorem (Propo-
sition [2.9]), we have only to prove the claim in the case dimY = 2. Due to the method of perturbation of
parabolic structure, we have only to prove the inequality in the case (E,,D?*) is a graded semisimple z1-stable
regular filtered A-flat bundle on (Y, D), satisfying (SPW)-condition. Then we can take a Hermitian-Einstein
metric hyp as in Proposition 319 for which we have the standard inequality (See Proposition 3.4 of [36]):

/ tr(G(hpg,DM)*?) > 0. (46)

Here G(hgg, D)’ denotes the trace free part of G(hyg,D*). Hence we obtain the desired inequality from
().

3.5 Some formula and vanishing of characteristic numbers

3.5.1 Formula for [, par-chy(E,)

Let X be a smooth projective surface, and let D be a simple normal crossing divisor of X. We will derive some
formulas and vanishings for the characteristic numbers of (E,, D*).

Remark 3.21 To begin with, we remark that we have only to show such formulas for regular filtered \-flat
bundles satisfying the following conditions due to the method of perturbation of the parabolic structure (Subsection

L.
e graded semisimple.
. PaT(E*,Z') c Q.
e 0¢ 'Par(E*,i) for any i€ S.

We will use it without mention in the following argument.

We restrict ourselves to the case dim X = 2 just for simplicity. The formula can be obviously generalized
for [ par-chy 1 (E.) of regular A-flat parabolic bundles (E.,D*) on (X, D) in codimension two for dim X > 2,
where L denotes a line bundle on X. |

For simplicity of the description, we put as follows, for u =€ XMS(i) := ICMS(QE, z)
r(i,u) == rankp, (* Grf’E(oE))
For any point P € D; N D; and (u;, u;) € KMS(P) := KMS(°E, P), we put as follows:
— P~ FE
(P, u;, uj) := rank( Gry) (E))

Proposition 3.22 We have the following equality:

/X 2par-chy(E,) = Z Z (Re(A ') + a)2 -r(i,u) - [Dy)?

i€S ueKMS(0)

+Z Z Z (Re Ao + a;) (Re A oy + aj) - r(Pug, uy). (47)
€S A (uinuy)eKMS(P)
PeD;ND;

We also have the following equalities:

2par-chy(E.) =Y >  Re(A'a+a)- (7 par-deg(‘ GrtEE(°E) ) +a - r(i,u) - [DZ-]Q). (48)
i€S ueKXMS(i)

0= Z Z Im(A " ta) - (f par-degp. (Z Grf‘E(QE)*) +a-r(i,u)- [DZ—]Q) (49)
€S ueKMS (i)
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Proof Let X5 :=({|o:| > ¢} and Y5; := X5 N {|os| = 6}. We have R(hg) = —A"*(1 4 [A]?) - d"6. Hence, we
have the following equality:

lim (“2—:1>2 /X () - 71+)\|)‘|2 lim (Q>2 /a ) (50)

5—0 5—0 2T

By using the estimates in Subsections BIH3.2] the contribution of Y5,; to (&) is the following:

1 Z m(a+ A" 'a)— V-1 (tr(R(iha,a>) —a-r(i,(a,@)) - Ti)

(a,a)eEKMS(1) 2m Di

=— > (a+X"'a):(degp, ("Gl (E).) —a-r(i,(a,0)) - [Di]?)  (51)
(a,0) EKMS(3)

By taking the real part, we obtain (48]). By taking the imaginary part, we obtain ([9]). The equality ([47]) follows
from (4]) and Lemma BI85 by a formal calculation. 1

Lemma 3.23 For any C* 2-form 7, we have the following:

/Xpar‘cl(E*)'T* V-1 trR (ho) - Z Z Re(A\ ta +a)- ( (a, a)) (D, 7) (52)

2m €8 (a,0)EXMS(i)

Namely, the cohomology class of tr R(hg) is par-c; (E.). In particular, we also have the following equality:

par-deg,,( Z Z Re(A\'a+a)-r(i, (a,a)) - (D;,w) (53)

i€S (a,0)ELMS(i)

Proof Recall we have R(hg) = A~1(1+|\|?)-d"6y. Then, we obtain (52) by using the estimates in Subsections
BIH32 1

Remark 3.24 We considered the KMS-spectra of °E. But, we have the following equality for any ¢ € RS and
1€S:
{Re(A\""'a) + a|(a,a) € KMS(°E,i)} = {Re(A\"'a) + a | (a,a) € KMS(E, i)}

We also have such comparison for /CMS(OE,P) and /CMS(CE) for ¢ € R® and P € D; N D;. Namely, the

choice °E is not essential. (See also Section[dl.) 1

3.5.2 Remark on the vanishing of the parabolic Chern character numbers

Recall the formulas for [, par-chy(E.) in Proposition [3.22 and the formula for par-deg,(E.) in Lemma [3.23]
Then, we immediately obtain the following corollary.

Corollary 3.25 Ifa+ReA~la = 0 holds for any KMS-spectrum (a, ) of (E.,D), the characteristic numbers
par-deg, (E.) and [ par-chy(E.) automatically vanish. 1

Remark 3.26 Let E be a vector bundle on X — D with a flat connection V. We have the Deligne extension
(E V). (See Subsection 213, for example.) We have the canomcally defined parabolic structure F such that
Rea+a =0 for any KMS-spectrum. In that case, the stabzlzty of (E F,V) and the semisimplicity of (E,V) is
equivalent. The corollary means fX par-co (E F) = par-deg,, (E F)=0.

When (E,V) is semisimple, we know that there exists the Corlette-Jost-Zuo metric of (E,V) which is a
pure imaginary tame pluri-harmonic metric adapted to the parabolic structure F (See [3] for the case D = ()
and [16] for the general case. See also [30].) To show such an existence theorem from the Kobayashi-Hitchin
correspondence, we have to show the vanishing of the characteristic numbers which is “the obstruction on the
way from harmonicity to pluri-harmonicity”. Corollary B23 clarifies the point. |
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4 Continuity of some families of harmonic metrics

4.1 Statements

In this section, we will show continuity of two kinds of families of harmonic metrics on curves, i.e., Proposition
41 and Proposition We will give a detailed proof of the first one. Because the second one can be proved
similarly and more easily, we just give some remarks in the end of this section.

4.1.1 Continuity for e-perturbation

Let C be a smooth projective curve with a simple divisor D. Let (E, F,D*) be a parabolic flat A-connection
over (C, D), which is stable and par-deg(E, F') = 0. Let F be the e-perturbation of the parabolic structures,
explained in (II) of Subsection We remark det(E, F) = det(E, F'9). Let h(® be the harmonic metric for
(E, F'9 D). Let 09 denote the Higgs fields for the harmonic bundles (E,D*, h(©)).

Proposition 4.1 The sequences {h(f) |e >0} and {9(5)} converge to b9 and 00 respectively, in the C*-sense
locally on C — D.

The proof is given in Subsection after the preparation given in Subsections [£.2H4.4]

4.1.2 Continuity for a holomorphic family

Before going into the proof of Proposition [£1] we give a similar statement for another family. Let C — A
be a holomorphic family of smooth projective curve, and D — A be a relative divisor. Let (F, F,ID)A) be a
parabolic flat bundle on (C, D). Let t be any point of A. We denote the fibers by C; and Dy, and the restriction of
(E, F,D*) to (Cs, Dy) is denoted by (FE;, Fy, D). We assume par-deg(E;, F) = 0 and that (E;, F;,D}) is stable
for each t. For simplicity, we also assume that we are given a pluri harmonic metric hqe () of det(£, D/\)‘C_D
which is adapted to the induced parabolic structure.

Let hz ¢ be a harmonic metric of (E;, Fy,D}) such that det(hg ) = haet(By|c,- They give the metric hy of
E. Let 0, be the Higgs field obtained from (E;,D*, hyr ), which is a section of End(FE;) ® Qé’to(log D,). They
give the section 0y of End(E) ® Qé’/OA (log D), where Qé’/OA(log D) denotes the sheaf of the logarithmic relative
(1,0)-forms.

Proposition 4.2 hy and 0 are continuous. Their derivatives of any degree along the fiber directions are
continuous.

Since Proposition[4.2] can be proved similarly and more easily, we will not give a detailed proof. See Remark

4. 15

4.2 Preliminary from elementary calculus

For any z € A* = {z € C||z| < 1} and € > 0, we put as follows:

z|7¢ = |z]€ z| 7 + |2|¢ . .
L) = BB gy o= BECEEE o) i a1 — tog ).
We also put Lo(z) := —log|z|?, Ko(z) = 1 and Mp(z) = 1. Then, they are continuous with respect to

(276) € A* x RZO‘
Lemma 4.3 For any (z,€) € A* X R>y, we have Lo(z) < L(z).

Proof We put g(€) :==a"¢—a‘+e-loga® for 0 < a < 1 and 0 < €. Taking the derivative with respect to €, we
obtain the following;:

g(e) = —(a"“+a)loga+loga®, g¢"(e)=(a"°—a)(loga)® > 0.

Since we have g(0) = ¢’(0) = 0, the claim of the lemme follows. |
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Lemma 4.4 (Ke(z)71)~(Le(z)2~62~|z|€)71 are bounded on A*, independently of e. We also have K.(z)—1 > 0.
Proof The second claim is clear. Let us check the first claim. We put as follows, for 0 <a <1land 0 <e < 1:
gi(e) :=a"°—2+a go(e) := (a7 —a)%a® = a~° — 2a° + a*.

We have only to show that ga(€) > g1(€). We put g(€) := ga(€) — g1(€) = 2+ a3 — 3a¢. By taking the derivative
with respect to €, we obtain the following;:

g (€) = 3a> -loga — 3a° - loga = 3(—a> + a)(—loga) > 0.
Since we have g(0) = 0, we obtain g(e) > 0. Thus we are done. 1
Lemma 4.5 (lfME(z))~(L€(z)2~e2~|z|€)_1 are bounded on A*, independently of . We also have 1—M(z) > 0.
Proof We have only to show the following inequalities for 0 < a < 1and 0 <e < 1:
0<1—a*(1—loga*) <3(a¢—a)?%a".

To show the left inequality, we put h(e) := 1 — a*“(1 — loga*). By taking the derivative with respect to €, we
have 1/ (€) = —a*“loga’(1 — loga*®) + a**loga* = ea’“(loga*)? > 0. We also have h(0) = 0. Hence, we obtain
h(e) > 0. To show the right inequality, we put as follows:

g(e) :=a™"° (S(a_€ —a)%a‘ — (1 —a*(1—log a4€))) =3(a"% —2a"* +a %) + (1 —loga*™) —a™*.
By taking the derivative with respect to €, we obtain the following:
g'(e) = 3(a*(—5loga) — 2a~*(—3loga) + a~“(—loga)) — 4loga — a~*(—4loga)

g"(€) = (75a™% — 16a~* — 54a™>“ + 3a"°) - (log a)”.
It is easy to check g”(€) > 0 by using a=5¢ > a=%¢ (k = 3,4). Since we have ¢'(0) = g(0) = 0, we obtain
g(€) > 0. Thus we are done. |

Lemma 4.6 Let P(t) be a polynomial with variable t, and let b be any fixed positive number. Then, we have
the boundedness of |z|* - P(eLo(z)) on A*, independently of 0 < e < 1/2.

Proof We put u := |2|%, and then |z|**P(eLo(z)) = u’-P(Lo(u)). Hence, we have only to show the boundedness
of u’ - P(Lo(u)) when 0 < u < 1, but it is easy. 1

4.3 A family of the metrics for a logarithmic \-flat bundle of rank two on a disc

4.3.1 Construction of a family of metrics

We put X = A = {z]|z] < 1}. Let O denote the origin, and we put X* := X — {O}. We use the Kahler form
we := (22|72 + 1) - dz - dZ in this subsection. We will use the notation in Subsection

To begin with, we recall an example of a harmonic bundle on a punctured disc. Let £ = Ox - v ® Ox - vo
be a holomorphic vector bundle on a disc. Let § be a Higgs bundle such that 6 - v1 = vy - dz/z and 6 - vy = 0.
Let h be the metric of E|x- such that h(vi,v1) = Lo, h(va,v2) = Ly and h(v;,v;) = 0 (i # j). Recall that
the tuple (E,0g,0,h) is a harmonic bundle. Let us see the associated A-connection. We put u; := v; and
Ug 1= Vg — \ - Lal -wv1. Then, we can show (Og + M )u; =0 (i = 1,2), DMuy = ug - dz/z and D uy = 0 by a
direct calculation. We also have the following:

h(ul,ul) = Lo, h(’LLQ,’LLQ) = (1 + |)\|2) . Lo_l, h(ul,u2) = 7X, h(UQ,Ul) = 7)\.

Motivated by this example, we consider the following family of the metrics h. on the A-connection (E,D?*)
given as follows:

he(ui,u1) = Le,  he(ug,u2) = (L4 |A*) - LY, he(ur,ug) = =X~ Me,  he(ug,ug) = =X - M.
The A-connection D* and the metric h, induce the operators 9. and 6. (Subsection ZZ2)). The main purpose

of this subsection is to show the following proposition.
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Proposition 4.7 There exists a some positive constant C' such that |5596‘h W SC forany 0 <e< 1/2.

Although the proof of the proposition is just a calculation, we will give the detail in the rest of this subsection.

Remark 4.8 Let h. be the metric determined by h'(u1,u1) = L, hl(uz,us) = L1 and h.(u;,u;) =0 (i # j).

€

Then, there exist positive constants C; (i = 1,2) such that C1 - h. < he < Cy - h. for any 0 < e < 1/2. Hence,
we have only to consider the norms for h. instead of those for he. |

4.3.2 Preliminary
Let H. be the hermitian matrix valued function given by H, := H(h.,u), i.e.,

oo L. —\- M.
€ +— 7)\.M€ (1+|)\|2)L;1 .

Let N be determined by D*u = u - N -dz/z, and let Nj denote the adjoint of N with respect to the metric H,
ie.,

R 1 X1+ LM, 1+ |A?)2L2
N = 0 0 , Nj:Hel'tN'Hez ( +|_2|) € _( +||) € .
1 0 1T+ [A2(1— M2) —\ M? M1+ | NP)M. L1

Recall the calculation given in Subsection 2.2.2] Then, 9. and 0, can be described with respect to u as follows:

_ A N P dz 1 dZ
Jou— . (,\.H 3H€,NT_), B — ( YN aH)
YT ¢ €3 TR

Therefore, 9. (0.) is described by the following 2 x 2-matrix valued 2-form with respect to wu:

€ —

( N aH) ([A . 6H€,Ndz} [Nsz NE }+{ N as aHD. (54)

1
T+\P? (1+[A)2)?
Here we have used [ﬁ;lﬁﬁe, ﬁ;la_He} = 0, which can be checked easily.

Lemma 4.9 To show Proposition I, we have only to show the uniform boundedness of (1,1)-entry, (2,2)-
entry, Lex (1,2)-entry and LZ1x (2,1)-entry, in the matriz valued function (54)).

Proof It follows from Remark 4.8 |

In the following calculation, we often use the notation L and M instead of L. and M., if there are no risk
of confusion. Let us see F;laﬁe. We have the following equality:

7! 1 (T+ N2 - L7 A M. 5T — 0L, —\-OM,
< TH AR - M2) - M, L. ’ TN OM. (T+N?)-oLct

Then, we obtain the following formula for H, 0.

S — 1 (L4 |AP)L7YOL — [APMOM A1+ [A?)(—L~'0M + MOL™?) (55)
14 A2(1 - M2) AMNMOL — LOM) (14 A2)LOL™ — |\?M - OM

We also have a similar formula for H, 9H.. We obtain the following formula for E(Fglaﬁﬁ):

a(H. 0T, = 2|A|2M5M T, o,
(1+ [A2(1 - )
N 1 (1+[A?)ddlog L — 27 AP9OM? A1+ [A]*)(MBIL™ — L~199M) (56)
L+ [A2(1 - M?2) AN(MOOL — LOOM) (14 |A>)001log L=t — 271 A|200M?
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The commutator of F;la_He and N - dz/z is as follows:

S dz (1+|AP) M—=L7YOM + MOL™Y) 0 dz
H, 0H,N -—| = = = = —
[ 9 z T4+ [A2(1 - M?) 2LOL™! ~A—L7'OM + MOL™Y) (57)
Let us see the commutator of F;laﬁe and NJ. By direct calculations, we have the following equality:
—1,— “A1+ AHL2MOL  (1+[A?)?L730L
T, N (L+APIL2MOL (1+ AP)PL0
1T+ A2(1 — M?) A - MoOM A1+ |N?)L7toM
N 1 20PN+ MNP)M2L7OM  —2|M\2(1+ |N?)2ML~20M (58)
—92 — .
(14 A2(1— M2))2 2M3OMN |\ —2MA2(1 + |A?)M2L oM
We also have the following:
. - 1 A1+ [AP)LTOM 1+ [AP)2LroL?
14+ [A2(1— M?) -\ MoM A1+ |A?)MOL
Therefore, we obtain the following formula:
dzZ ——1 —
NIZH, ol
Z
_ 1 dz [ =M1+ |M\?)(L7'OM — L=2MOL) —2(1+|A]?)2L—30L
TI+ NP1 -M2) Z —ONMOM N1+ [A2)(MOL~' + L~19M)
2| )2 dz ([ M1+ |MN)M2L7'oM  —(1+ M\2)2ML~20M (60)
(L+ 21— M2))° 2 N M3OM X1+ AP)M2LOM
The commutator of N and N/ is as follows:
1 (1+ |A*)2L2 0
NI N] = < 61
[N ] 1T+ A2(1— M?) ( A1+ AP)ML™Y —(1+|M?)2L2 (61)
4.3.3 Estimate
We have the following:
2
oL = K2 ok, = -1, % om =421y C (62)
z 4 z z
In particular, we have the following estimate:
2 8e dz
M.OM, = O(e 2] -L0~(1+6L0)7).
Let us see the first term in the right hand side of (G0)):
2AN2MOM, ——1.—
Al . 9T, (63)

(14 A1 - 22))7
For the (1, 1)-entry and (2, 2)-entry, we have the following estimates:

3 K.\ dz-d L
MM, - L7'9Le =0 <62 - Lo - |2[>(1+ €L0)L_) Tzl2z =0 <|Z|56(1 + 6L0)L_0> W
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dz - dz
- O(|z|156 1+ 6L0)2(6L0)2) - we.

They are bounded with respect to we due to Lemma and Lemma Hence, the (1,1)-entry and the
(2,2)-entry of ([G3) are bounded independently of €. Let us see the (1,2)-entry. Recall Lemma 49 Hence, we
have only to see the following:

M.GM, - M.OM, = 0(e4 )8 (1 + 6L0)2L3)

Le x (MOM,) - (L7'OMe — M.OL;') = MOMOM, + MZOM.L;'OL..

Both terms in the right hand side can be estimated as in the previous case, by using Lemma (4.3 and Lemma
4.0l
MMM, = o(|z|1°f(1 + eLO)(eLO)2) cwe=0(1) - we

_ L
M?IM.L7'OL, = O(|z|116(1 n eLO)QL—O) cwe = 0(1) - w,
The (2, 1)-entry can be estimated similarly:
L7 x (MOMe) (ML — LOM,) = MZL7"OM.OL. — M, - OM M, = O(1) - we.

Let us see the second term in the right hand side of (56):

1 (1+[A?)ddlog L — 27 APGoM? A1+ [A*)(MOIL™ — L~19OM) (64)
14+ |A2(1—M?) A1+ [N (MOOL — LOOM) (1+ |A[?)00log L=t — 27 \|200M?
It is easy to see the following estimate:
00M? = 0(62 |2]%(1 + 6L0)2) cwe = 0(?) - we. (65)

Hence, it is bounded with respect to w, independently of e. We remark that L7'M.00L. is also bounded

independently of e:
= €2 dz - dz
L7'M,-90L, = — M, - ——= = O(1) - w..
€ 4 |Z|2 ( ) w

Hence, we have the following, modulo the uniformly bounded term with respect to (he,w.):

e (1+1]A?) 00log Le AM.OOL*
Jd(H, 0H.) = = € 66
(A, ) T4+ [A2(1—M2) 0 —001log L (66)
Let us see (). By the same argument, we have the following uniform boundedness:
= dz Lo dz-dz
L7YOM. - = =0 &z|*= ) - —== =0(1) - w..
St o (@) BE — 0w

Hence, we have the following, modulo the uniformly bounded terms with respect to (he,we):

— 1 dz (1+ |\ AMOL-! 0 dz

H,  0H.,, N -—| = e - 2
9 z ] T4+ A\2(1 - M2) 2LOL7Y  —AM.OL ! z (67)

Let us see ([B0). We remark the following, for any & > 1:

dz MFOM,
EMEOM.

L dz - dz
k O . = .
=TI ) 0(1) - we.

21 14(k+1)e 1 L -
(aperneq a2 2
Hence, the terms containing OM in the right hand side of ([G0) can be ignored. Hence, we obtain the following,
modulo the uniformly bounded terms with respect to (he,we):

o 9 o <5 _92 . 2\7r -3

1+ [A2(1—M2) z 0 AM OL!
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In all, (B4) is same as the following, modulo uniformly bounded terms due to (GIl), [66), (67) and (G8):

1 ~Addlog L, —MNM,-00L!
1+ [A2(1— M2) ( 0 00 log L. >

A2 dz-dz ([ N-M.-K.-L? 0

TP Pa =) T+ PR 2P ( oK. - L7 /\~ME~K6~L€2)

N 1 2\ dz-dz ( XM K- L7 21+ AL - K. )

T+ AR —M2) 1+ A2 |22 0 X-M, K. L2

A dz - dz L2 0

TTI PO M) 2 (2X(1+|A|2)1M€~L61 Lj)' (69)

The summation of the last three term in (69) is as follows:

1 dz - dz —AL? 2N’ L73K, (70)
TH R =32 o2\ 220+ AR K, — M)LTD ALY
By a direct calculation, we can show the following equalities:
= 1 dz-dz = 2 dz-dz € 1 dz-dz
90logLe = —————,  00L;'=— -
BT LR © TIFRP C2LORP
Therefore, ([GI) can be rewritten as follows:
1 0 ALK — M) \ dz-dz
L+ AR = M2) \ 2P+ M) 7L (Ke — M) 0 |22
1 2¢2 -1 dz -d
n 0 Ae*M(2Le) dz-dz (71)
1+ A2(1-M2)\ 0 0 |z|?

Due to M, = O(|z]*(1 +€Ly)), the second term in (ZI]) can be ignored. Due to Lemma L5 and Lemma B4, we
have the uniform boundedness of (M, — 1) - L7%-dz - dz/|z|* and (K. — 1) - L7? - dz - dz/|z|?. Thus, the proof
of Proposition .7 is finished.

4.4 A family of metrics of a parabolic flat bundle on a disc

4.4.1 Simple case

We put X := A = {z € C||z] < 1} and X* := A — {O}. Let V; be a vector space over C with a base
e = (e1,...,e;), and let N; be the nilpotent endomorphism of V; given by N; - e;41 = e; fori =1,...,1—1
and N; - e, = 0. We put E; := Ox ® V;. Then, e; naturally induce the frame of E;, which we denote by
v = (v1,...,v). The fiber E|p is naturally identified with V', and we have v, = e. We have the logarithmic
A-connection D} of F; given by DMv; = v;41 - dz/z for i = 1,...,1 — 1 and Dv; = 0. The residue Res(D*) is
given by N;. We have the weight filtration W of E|p with respect to N;.

We have the trivial parabolic structure F' of E;. Take a sufficiently small positive number e. We consider
the e-perturbation F(¢) given by F]E:) =W fork=—-l+1,—-1+3...,l—1 in this case.

Let us fix a sufficiently small positive number €y such that rank F - €9 < 1/10. In the previous subsection,
we have constructed a family of metrics hl” (0 < € < ¢). It induces the metric of Sym'™!(Ey, D)) ~ (E;, ),
which we denote by hl(e). The following property can be shown by reducing to the case [ = 2.

° hl(o) is the harmonic metric.
o hl(e) — hl(o) for € — 0, in the C*°-sense locally on X*.

o [Au, G0 < C.
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o hl(e) is adapted to the parabolic structure Fl(ﬁ).
o Let t. := det(hl(e))/ det(hl(o)). Then, t. and t-! are bounded, independently of e.

Lemma 4.10 Let H. = (h9(v;,v;)). Then, we have the following estimate on {0 < |z| < 1/2} with respect to
hl(ﬁ)"

H_ ' (0+0)H. =0(1)- %+0( 1) - d

Y]

z

Proof We see only F;laﬁe. The term ﬁﬁ_lﬁ_He can be discussed in the same way. We have only to check
the case [ = 2. As in Lemma [£9] we have only to see the (1, 1)-entry, (2,2)-entry, Lcx (1,2)-entry and L= !x
(2,1)-entry in the matrix valued function (Go). As is seen in Subsection E3.3] the term containing OM. is
bounded with respect to we, and the estimate is uniform for €. Hence, we can ignore them. Therefore, we have
only to show that L-10L. = —L.OL ! is O(1) - dz/z, but it can be checked by a direct calculation. 1

4.4.2 General case

Let (E, F,D*) be a parabolic flat A-connection on (X, O). Take a positive number 7 such that 10-n < gap(FE, F).

We will use the metrics:
2 dz-dz ondz - dZ
E + |2 =
|22 EC
Here, e will be m™! for some m € Zsq such that 10rank(E) - € < 7. We take the e-perturbation F'© as in (II)
of Subsection Let a(e) be the numbers which is denoted by a(e, 7) in the explanation there.
We have the endomorphism Res(D*) of Gr¥ (E). Tt induces the generalized eigen decomposition Gr’ (F) =
Docc Gr F]E( ). On Grf*E(E), the endomorphism Res(D*) is decomposed as « - id +N,, where u = (a, @) €
R x C. Let W be the weight filtration of N, on Gri**(E). They induce the filtration W of Gr% (E).

For u € R x C, we put V,, := Grf’E(E) with the induced nilpotent map N,. Then, we can take an
isomorphism:

(72)

(Vu; Nu) = @ (W(u,z)aNl(u,z))

i=1

We put (E,,D}) = @(El(u,i),DlA(u,i))- Let 7\ denote the metric of E,, induced by hl((i 0 (i=1,...,m(u)).
(See Subsection ELZ.T]).
Let Q(u) denote the logarithmic A-flat bundle of rank one for u = (a, a), which is given by Ox -e with the

A-connection D*e = e-av-dz/z. It is equipped with the family of the harmonic metrics hj, (6)( e) = |z| 72209,
Then, we obtain the vector bundle Ey with the A-connection D} and the parabolic structure F, as follows:

(Eo,Dp) = @(Eu,]]){)) ® Q(u), Fy(Eo|0) = @E(a alo ® Qa, a)o

u a<b

The metrics h;(e) and hz(e) induce the metric h1(f) of B, ® Q(u). Let h(()e) denote the direct sum of them. We
can take a holomorphic isomorphism ¥ : Fy — F satisfying the following conditions:

e It preserves the filtration F'.

e Gr(¥) o Gr¥ ResD* = Gr" Res D Gr™ ().
We identify Ey and E via ¥. The naturally induced metric of E is denoted by the same notation hée).
Lemma 4.11 The family {hgﬁ) |O <e< eo} of the hermitian metrics has the following properties:

o G(D*, hée)) is uniformly bounded with respect to (we, h((f)).

. {h(()e) |e > 0} converges to hgo) in the C*°-sense locally on X*.
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° hée) is adapted to the perturbed parabolic structure F(©).
o Let t. be determined by det(hée))/det(hgo)). Then, te and t=1 are bounded, independently from e.

Proof We check only the first claim. The other claims are easy to see. Let f be determined by f -dz/z =

DA — D}, and we put fI := f);(e). We put D2 * := Dz(*é) and ID)S‘; = DS,Z&V Then, we have the following:

GON 1) = [PA 2] = [0+ 52, mt + 1]

€

dz -dz

dz dz i

= G0y, he”) + Dy ()— +DY(fD)

We have the decomposition f =Y fy, u, where fy, v € Hom(Eu ®Qu), By ® Q(u’)). We have fy, .0 =0
unless @ = o’ and a > a/. Hence, there exist positive constants C' and N such that the following holds for
0<e<ep:

Ty < € 2L,

Here N - ¢ is sufficiently smaller than n. Hence, we have the following;:
|f|h[(f) SC'|Z|9777 [f7fg]:0(|z|1877)

We have the induced frames v, of E, ® Q(u). They induce the frame v of Ey. Let B and A be determined
by fv=v-B-dz/z and D}v = vAq - dz/z. Then, we have the following:

dz
—+

D5, fTv=w (DBI =

[AO,B:]W) .

|22

Here we put D = 0 + A\ and B} = ﬁ;l -'B.H,, where H, = H(hée), u). Since B/ is sufficiently small with
respect to (we, hée)), [Ao, B]] is also sufficiently small. Corresponding to the decomposition f = 3" fu ./, We
have B =Y By . Then, the following holds:

(BZ)u;u/ = F’L:’l,etgu’,uﬁu,e-

Here Hy, . := H(hq(f), v,,). Hence, we obtain the following;:

&z _ _ . 4
(DB = =H,, (D'Buw) Hue—Hy DHy - (B uw + (B u - Hy DH,.c.

Since B is holomorphic, we have F;lﬁ (D'Buu) Huye dz/z=0. We put H},, := H (W, v,). Then, we have
H,.=|2|72*H] ., and the following holds with respect to h((f) due to Lemma A.T0

u,€?

dz dz

T.'DH.. = —a ()\— N dz &
’ z z

) +H,, DH,, = O(1)— +0(1)

z

Since (Bl)y.. is small with respect to (w., héﬁ)), (B ~E;i8ﬁw is also small. Therefore, D} fT - dz/z is

small with respect to (we, hée)). It also follows that DS; f-dz/z is small. Thus we are done. 1

4.5 Proof of Proposition 4.1]
4.5.1 Construction of a family of initial metrics

Let n be a small positive number such that n < gap(E, F')/10. Let ¢y be a small positive number such that
10rank E-¢g < 7. For any 0 < € < €q, let us take w, be the Kahler forms of C'— D with the following properties:

e Let (Up, z) be a holomorphic coordinate around P € D such that z(P) = 0, and then w, is given by (72]).
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o w. — wq for € — 0 in the C'*°-sense locally on X — D.

Lemma 4.12 We can construct a family of metrics h(()e) of Ejc_p with the following properties:
° hée) 1s adapted to the perturbed parabolic structure F©.
. hée) — héo) in the C*°-sense locally on C'— D.

G(h((f)) is uniformly bounded with respect to (we, h((f)).

e We put t, := det(h(()e))/det(héo)). Then, te and t-1 are bounded independently from e.

Proof We construct a C*°-metric of E on |Jp,(Up — {P}), by applying the construction given in Subsection
42 to0 (E, F, ID)’\)|UP for each P € D, and then we prolong it to a C'**°-metric of £ on C' — D. |

Let R(det h(()O)) denote the curvature of the metrized holomorphic bundle det(E, d"”, h((jo)), where d” denote
the (0, 1)-part of D*. Since det héo) gives the harmonic metric around D due to our construction, R(det h((JO))
vanishes around D. We also have | R(det h(()O)) = —2my/—1 - par-deg(E, F) = 0. Let us take the C*°-function
Xo on C and satisfies the equality rank(E) - 9dxo + R(det(hgo))) = 0. We put hz(-g) = héo) -exp(xo). Then,
R(det hg?l)) = 0, ie., det hg?l) is a harmonic metric of det(E,D*). Let x. be the functions determined by
det(hl(.g)) = det(h(()e)) - exp (rank(E) . Xe)- The following claims immediately follows from Lemma

e Y. and —x, are bounded on C, independently from e.

e xc — 0 in the C*-sense locally on C' — D.

We put hz(-;) = h(()e) - exp (xe), which is the metric of Ejc_p.
Lemma 4.13 The following claims are easy to check.

° hgfl) is adapted to the parabolic structure F'©.

) hl(;) — hgz) in the C*°-sense locally on C — D.

o G(hz(-;)) is uniformly bounded with respect to (we, hz(-;)).

e det hgfl) is harmonic, and we have det hgfl) = det hz(-g).

In other words, they give initial metrics for (E, F(E), D*) in the sense of LemmaB.I8, and their pseudo curvature
satisfy some uniform finiteness. |

4.5.2 L3-finiteness of the sequence

Due to Proposition 233, we obtain the harmonic metrics h(®) for (E, F(E),]D))‘) such that det h(9) = det hz(-g).
Due to Lemma 2.34] we have the following inequalities for any e:
M, (b9 1) < 0. (74)

in

Let s be determined by h(®) = hg;)s(ﬁ). Due to Lemma 245 (74) and det s(9) = 1, there exists a positive
constant A which is independent on €, with the following property:

|S(E)|h§_2 S A, |S(€) *l‘h‘(i;) S A. (75)
Let D2 * be the operator obtained from D*, w, and hz(-fl) as in Subsection ZZZTl We have the following equalities:
A::e trs(©) = f\/fltr(s(E)AwEG(hgfL))) + \/fltr(AwEDAs(e) (st ~Dg\n*s(€)).

See Remark 224 for A} .
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Lemma 4.14 We have [ A} tr s dvol,, = 0.

Proof Let g be a C°°-Kahler metric of C. We have only to show [ A;‘ tr s(©) dvoly = 0. We have the following:

A;\ trsl = —y/—1 tr(s(E)AgG(hEZ))) — ‘D/\s(e) . (s(e))71/2|}2l(6),g

Since ‘tr(s(E)AgG(hEZ)))‘ is O(]z|7?), we can take a bounded function a. such that Aja. = ’tr(s(E)AgG(hz(-;)))‘.
Hence, we obtain [, [D*s(9).(s(9))=71/2 |i(5) g < 09, due to Lemma 2.2 of [37]. Since s is bounded with respect
to h(9), we obtain fX_D‘DAs(‘)‘i(g)g < 00. Then, it is easy to obtain the vanishing [ A} trs(® dvol,, = 0 by
Stokes formula and Lemma 5.2 of [36]. 1

Then, there exists a positive constant A’ such that the following holds:
/|]D))‘S(€) . 5(6) _1/2|ig;>1we dVOlwe < A (76)

In particular, we obtain HDAS is bounded for 0 < € < €.

© HLQ,LUEJLE;)

4.5.3 The end of the proof of Proposition 4.1]

Let @ be a point of C — D. Let (U,z) be a holomorphic coordinate around @ such that z(Q) = 0 and
U~ A ={z]|z| < 1}. We use the standard metric g = dz- dz of U. The harmonic bundle (E,D*, h()) induces
the Higgs bundle (E, 9., 0.). We have 0. = f.-dz on U. On the other hand, we also obtain ;. and 6, . from
(E,D*, hg;)), although 0y, (91-”76) = 0 is not satisfied, in general. Let (51’-7176 be the (1, 0)-operator obtained from
hz(-;) and d”, as in Subsection 2.2.1l Then, we have the relation:

A s=1. 4 5(6)). (77)

95 = oin,e - TP\P( in,e

Due to (75), (Z6) and (77), there exists a positive constant Cy such that [, |fe|? ., dvol, < Co holds for any
0 < € < ¢p. Hence, the following inequality holds for some positive constants C; (i = 1,2,3) and for any
0<e<ep:

/ log | fe[? ) dvoly < Oy —|—/ Cs - | fel3 (o) dvoly < Cs. (78)
U U
Recall the fundamental inequality for the Higgs field of a harmonic bundle [37]:
2
[f€) feT] €
Aglog |felte < —% <0. (79)
|f€ h(e)

Due to (78) and (9], there exists a positive constant Cy such that the following holds for any Q' € U(1/2) :=
{l=l <1/2) 2

7@ < Cu. (80)
By using (7)), we obtain that &/, .s(¢) is uniformly bounded with respect to (we, hz(-fl)) on U(1/2).

in,e

Since ! is the adjoint of ., we obtain the uniform boundedness of 8 on U(1/2). Let 7, . be the operator

obtained from hg;) and d’ as in Subsection Z221] where d’ denotes the (1,0)-part of D*. Then, we also obtain
the uniform boundedness of 5%,55(6) on U(1/2). Hence, Df‘nfes(e) is uniformly bounded on U(1/2), where
D). = 6, .—6, .. Since we have d” = X (67, +(1+ |)\|2)93n16) and d’ = X0}, .+ (14 |A*)0in,c, we also obtain
DAs(¢) is uniformly bounded on U(1/2). Recall the formula DADA*s(€) = s(¢).. G(hl(.;)) +DAs() . () =1 PA*s(e),
Thus D D) *s(©) is also uniformly bounded on U(1/2). Therefore, {s(9} is L5-bounded for any p > 1 and
U(1/2). By taking an appropriate subsequence (;), s(¢) weakly converges to some 3 in L% locally on C — D.
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It is easy to see that hz(-g) - § is a harmonic metric. We have dets = 1. We also have the boundedness of §
and 57! with respect to hz(-g). Thus, we have hz(-g) -5 =hO ie., the sequence {h(¢)} converges to h(®) weakly
in L% locally on C' — D.

Although we take a subsequence in the above argument, we can conclude that h(¢) converges to h(?) weakly
in I locally on C' — D, due to a general argument. We can also obtain the C'*°-convergence by a standard
bootstrapping argument. In the above argument, the convergence of {#(9)} is also proved.

Remark 4.15 As for the proof of Proposition B2, we take a C™-metric h;, of (E,F,D*) such that each
restriction hi, | c, 18 an initial metric. Let s be determined by hy = hi, - s. By applying the same argument, we
obtain the continuity of s. Similarly for O . |

5 The existence of a pluri-harmonic metric

We will prove our main existence theorem of pluri-harmonic metric for parabolic A-flat bundle, which is adapted
to the parabolic structure. (See Subsection 3.3 of [31] for the adaptedness.)

5.1 Preliminary

Let C be a smooth projective curve with a simple effective divisor D. Let (E, F,D*) be a stable parabolic A\-flat
bundle on (C, D) with par-deg(E, F) = 0. For each P € D, let (Up, z) be a holomorphic coordinate around P

such that z(P) = 0. Let F'© be an e-perturbation as in (II) of Subsection for ¢ = m~1. We have h{" be
harmonic metrics for (E, F'9 D). We assume det h((f) = det h(()o). As shown in Proposition [£.1], h((f) converges

to héo) in the C*°-sense locally on C — D. Let N be a large positive number, for example N > 10. In this
subsection, we use Kahler metrics g. (¢ > 0) of C — D which are as follows on Up for each P € D:

dz -dz
2|2

(6N+2|Z|2e + |Z|2)

We assume that {g.} converges to gg for ¢ — 0 in the C*°-sense locally on C' — D.
Proposition 5.1 Let h(©) (€ > 0) be hermitian metrics of Ejc_p with the following properties:

1. Let s'9 be determined by h() = hff) 5. Then, s is bounded with respect to hge), and we have
det () = 1. We also have the finiteness HID))‘S(E)H2 B g, < OO (The estimates may depend on e.)
o ge

2. We have ||G(h(5))|\21h(e)7gﬁ < oo and lim._,o ||G(h](6))||27h(e)’ge =0.
Then, the following claims hold.

o The sequence {S(E)} is weakly convergent to the identity in L3 locally on C' — D.

e {suppcc_p |s|(;)|hé€) e>0} and {suppec_p |(3(€))|_Pl|hg€> € >0} are bounded.

Proof To begin with, we remark that we have only to show the existence of a subsequence {S(Ei)} with
the desired properties as above. We put ||s(<)|| plo = supPeC_D‘s‘(g‘h(@. For any point P € C — D, let
0, NG 0
SE(s'9))(P) denote the maximal eigenvalue of SI(IEQ)' There exists a constant 0 < C;7 < 1 such that Cf - |S|(163)|h(e) <
0

SE(s())(P) < |s|(2|hé€). We have det s‘(;) = 1. Hence, it is easy to see logtr SI(IEQ) > logrank(FE) > 0. We also
have SE(s(9)(P) > 1 for any P.

Let us take b, > 0 satisfying 2 < b, - sup SE(s())(P) < 2 +¢. We put 39 = b.s(® and hl9) := hée) 50,
Then, 519 are uniformly bounded with respect to hée). We remark G(h(9)) = G(h(9)). We also remark that (<)
and h(9) induce the same metric of End(FE).
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Lemma 5.2 After going to an appropriate subsequence, {5(51')} converges to a positive constant multiplication,
weakly in L? locally on C — D.

Proof We have the following (Subsection 2.2.5]):

AY 3D = FOVETAG, G(R) 4+ V=TAG,DAF (3 DA 3. (81)
0

goah((f)
We can show [ Ag‘o tr 5 -dvolg, = 0, by the same argument as the proof of Lemmal[I4] we obtain the following
inequality from (8I)) and the uniform boundedness of 5():

/ IDA5() .g<€>—1/2|307h66) dvol,, < A- / |tr Agy G(A)| - dvoly,

=A- / |tr Ay G(R)| - dvoly, < A”-||G(R (82)

))Hz,ﬁ<s>7gﬁ-

In particular, we obtain the uniform estimate HDAE“) H; 2o,k < A" HG(?L(E) . Therefore, the sequence
»go,ng

) HQ,H(S) ,ge
{'sv(e)} is L2-bounded on any compact subset of C' — D. By taking an appropriate subsequence, it is weakly
L?-convergent locally on C' — D. Let 5> denote the weak limit. We obtain D*3(>) = 0. We also know that
5(°°) is bounded with respect to héo). Therefore, 3(°°) gives an automorphism of (E, F,D*). Due to the stability
of (E,F,D*), 5 is a constant multiplication.

We would like to show 3(°°) = 0. Let us take any point Q. € C' — D satisfying the following:

SE(9)(Q) > — - sup SE(s)(P).
10 pec-p

Then, we have logtr 5 (Q.) > log(9/5). By taking an appropriate subsequence, we may assume the sequence
{Q.} converges to a point Q.. We have two cases (i) Qoo € D (ii) Qs & D. We discuss only the case (i). The
other case is similar and easier.

We use the coordinate neighbourhood (U, z) such that z2(Q) = 0. For any point P € U, we put A(P,r) :=
{Q e U||z2(P)—2(Q)| <r}. When e is sufficiently small, Q. is contained in A(Qo,1/2) = {|2| < 1/2}. Let
g = dz - dz denote the standard metric of U. We have the following inequality on U — {Q} (see Subsection
22.9): B

A;‘ logtr3(®) < ‘AgG(h(E))h(e). (83)

Let B(®) be the endomorphism of E determined as follows:
dz -dz

|22

G(h9) = G(h9) = BO.

Then, we have the following estimate for some constant A > 0 which is independent of e:

/‘B(E)’%@ (N2> + |z|2)_1dV01g < A/’G(ﬁ(e))‘%(a 5. dvolg, .
0 1Ye

|22

Here A denotes a constant independent of e. Due to Proposition 2.16 in [31], there exist v(*) such that the
following inequalities hold for some positive constant A’ which is independent of e:

dz-dz

9009 = ‘B(E)"H(OW’

[0 ()] < A" (N V221 4 |2]1/2) - HG(E@))HZW&

Then, we have A;\ (log‘ trsle) — v(f)) < 0on U —{Qs}. Since logtr3© — v is bounded from above, the
inequality holds on U. Therefore, we obtain the following;:

log tr 5(¢) (Qe) — v(© (Qe) < A”- /

(log tr3(e — ’U(E)) - dvolg .
A(Qe1/2)
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Here A” denotes a positive constant which is independent of e. Then, we obtain the following inequalities, for
some positive constants C; (¢ = 1,2) which are independent of e:

log(9/5) < logtr39(Q.) < C; - / log tr3(¢) - dvol, +Cs.
A(Qe,1/2)

Recall that logtr3(© are uniformly bounded from above. Therefore, there exists a positive constant Cs such
that the following holds for any sufficiently small e > 0:

/ —min(0, log tr 3(°)) -dvol, < Cs.
A(Qe,1/2)
Due to Fatou’s lemma, we obtain the following:

/ — min((), log tr E(OO)) -dvoly, < Cs.
A(Qoo,1/2)

It means 5(>) is not constantly 0 on A(Qs,1/2). In all, we can conclude that 5> is a positive constant
multiplication. Thus, the proof of Lemma [5.2] is accomplished. |

Let {g(‘i)} be a subsequence as in Lemma It is almost everywhere convergent to some constant multi-
plication. Then, we obtain that the sequence {det Sle) = bg?“kE + 1dger E)} converges to the positive constant.
In particular, {b.,} is convergent. Therefore, the sequence {S(Ei)} is convergent to the identity. Thus we are
done. |

Corollary 5.3

)

o The sequence {h(e)} 18 convergent to h((JO weakly in L3 locally on C — D.

o The sequence {D’\s(e)} is weakly convergent to 0 in L? locally on C — D.

e The sequence {9(5)} converges to 00 is weakly convergent to 0 in L? locally on C' — D.

e In particular, the sequences are convergent almost everywhere. |

5.2 The surface case
5.2.1 Statement

Let X be a smooth projective surface with an ample line bundle L, and let D be a simple normal crossing
divisor with the irreducible decomposition D = (J;cg Di. We put X* := X — D. Let ¢ be any element
of RS. Let (E,F,D") be a pur-stable c-parabolic A-flat bundle on (X, D) with trivial characteristic num-
bers par-deg; (E,F) = [, par-chy(E, F) = 0. Recall that we have already known par-c,(E, F) = 0 due to
Bogomolov-Gieseker inequality and Hodge index theorem (See Corollary 6.2 of [31].) Hence, we can take the
pluri-harmonic metric hgey(g) of the determinant bundle det(E, F,D*). The purpose of this subsection is to
show the following existence theorem.

Theorem 5.4 There exists a tame pluri-harmonic metric h of (E, ID)’\)|X* with det(h) = hget g which is adapted
to the parabolic structure.

The proof will be given in the rest of this subsection.
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5.2.2 The sequence of Hermitian-Einstein metrics for the e-perturbations

Let F be an e-perturbation as in (II) of Subsection If € is sufficiently small, (E, F(e),ID))‘) is also up-
stable. We also have par-c, (E, F'9) = par-c,(E, F) = 0. Since (E, F(9, D) is graded semisimple and satisfies
(SPW)-condition, we can apply Proposition Let h(©) be the Hermitian-Einstein metric for (E, F(e),ID))‘)
with respect to we, such that det h(®) = hgeyp) and Ay, G(R(9)) = 0 (Proposition B19).

Since hgey(g) is pluri-harmonic, we also have tr G(h(f)) = (0. Therefore, we have the following convergence:

(L) [1600) 2, v = () [(0002) =200+ 1) parain(2.F9) — 0. (51

2T

We would like to discuss the limit of A(®) for ¢ — 0.

5.2.3 Convergence on almost every curve

Let L™ be sufficiently ample. We put P, := P(H%(X,L™)Y). For any s € Py,, we put X, := s71(0). Recall
Proposition 2.9 and let i denote the Zariski open subset of P,,, which consists of the points s with the following
properties:

e X, is smooth, and X; N D is a simple normal crossing divisor.
° (E,F,ID)A)|XS is up-stable.

If € is sufficiently small, we have U # 0.
We will use the notation X} := X, \ D and Ds := X; N D. We have the metric we s of X7, induced by

CRI

we. The induced volume form is denoted by dvols. We put (Es, Fs,D?) := (E, F, DA)|XS. We have the metric

(€) : (&) A : : RO
* s| Xx- ER ) )
hl Y+ of B x». Since (E, F”,Dy) are also stable for any point s € U, we have the harmonic metric hs~ of
(Es, F$O, D) with det hi” = hae | x=- Let ul” be the endomorphism of Ejx. determined by hfjg* =1,

For a point € X*, we put Uy := {s € U |z € X,}. We put Z := {z € X* |U, = 0}. We remark that Z is a

“.on “wom

finite set. Let us fix a sequence ¢; — 0. We often use the notation “¢” instead of “¢;”, for simplicity of the

description. Let ID)? = D\/\X*‘

Lemma 5.5 For almost every s € U, the following holds:

o We have the following convergence when ¢ — 0:
G20 . dvol, — 0 (85)
X [Xs hge)awe s ’

e For each ¢, we have the finiteness:

D3 0, < 00 (86)

Let U denote the set of s for which both of B5) and &B) hold.

Proof It can be shown by the same argument as the proof of Lemma 9.3 of [31]. (22 should be corrected to

{(@,5,t) € X x Uy x B (ts2 + (1 — t)s)(x) = 0}.) 1
We obtain the following claims from Proposition [5.1] and Corollary

Corollary 5.6 For any s € Z], the sequence {h‘(;);} converges to A weakly in L3 locally on X*, and {9‘(;):}

converges to Hgo) weakly in L? locally on X*. In particular, they are almost everywhere convergent.

Proof It follows from Lemma and Proposition [B.1] |
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5.2.4 The construction of a metric defined almost everywhere

Let us take any Kahler form wp,, of P,,,. We put 2 := {(s,z) € U x X* |z € X;}. Then, we have the induced
metric of Z. The induced volume form is denoted by dvolz. Let 7 denote the set of (s,2) € U x X such that
(s,z) € Z and lim._,o h‘(;) = hi?;.

Lemma 5.7 The measure of T¢:= Z — T is 0 with respect to dvolz.

Proof Let us consider the naturally defined fibration Z — U. Then, the claim follows from Corollary
and Fubini’s theorem. |

(0)

Lemma 5.8 For almost every x € X* and almost every s € U,, the sequence {hl(;)} converges to hs‘x.

Proof Let us consider the naturally defined fibration 7 — X*. Then, the claim follows from Lemma [5.7] and

Fubini’s theorem. |
Let V denote the set of x € X™ such that the sequence {hl(;)} converges to th')z for almost s € U,. For any

z €V, let U, denote the set of s such that {h‘(;)} converges to hio‘)m.

Lemma 5.9 For any x € V and for any s; € L~{z (1 =1,2), we have hi? = hig)‘m.

Proof Both of them are same as the limit lim._.g h(;). |
Let us take any z € V and any s € ZL Then, the metric h, of E, is given by h, := h;})z. Due to Lemma

B£.9 it is well defined. Thus, we obtain the metric hy := (hy |z € V) of E}y.

5.2.5 The C'-property

We would like to show that hy is C' on X* — Z, in other words, we would like to show the existence of a
Cl-metric h of E|x~_z such that h = hy on V. Let us begin with a preparation.

Lemma 5.10 Let x € X* — Z. Let us take any s € U. Then, there exists a Lefschetz fibration ¢ : X — P!
with the following properties:

e x is not a singular point of .
e v 1(0) = X,.
o Almost every t € P! belongs to u.

Proof Let M denote the set of the lines £ of P, which contain s. We put as follows:

Py ={(,s) e M x Py |5 €} C MxP,,.

It is the blow up of P, at s. We have the projection s : By, —> Pp,. We put I := 7y H(U) and U= ﬂ;l(a).
Since U — U has measure 0, the measure of I@m — U is also 0. Let us consider the projection 7y : @m — M,

and apply Fubini’s theorem. Then, for almost every £ € M and for almost every s; € £, we have s; € U. Thus
we are done. |

Let z be any point of X* — Z. Let us take a Lefschetz fibration m; : X; — P! (i = 1,2) with the following
properties:

e Both of them satisfy the properties in Lemma [B.10
e Around z, the fibers of m; and my are transversal. Then, two fibrations give the holomorphic coordinate

(21, 22) of an appropriate neighbourhood U, of z, such that {z; = a} = ﬂ[l(a) NU,.
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For any t; € P, let X;, := wi_l(ti). If ¢; are close to 0, (E, F, DA)IXQ are stable, and hence there exist tame
harmonic bundles hy, for (E, F,D’\)‘Xti such that det(hs,) = haet(m)|x,,- Let 0, denote the operator obtained
from Df‘xtv and hy; as in Subsection 222771

Let usltake an appropriate neighbourhoods B; C P! of 0. Recall Proposition 22l Then, {ht1 }tl € Bl} are
C*-along z3, and it is continuous with respect to (z1,22). The family {9t1 |t1 € Bl} has a similar property.
Thus, we obtain a continuous metric h*) and the continuous section 81 of End(FE) ® Q'° around z. Similarly
{he, ’tg € By} is C* along 71 and it is continuous with respect to (z1,22). The family {6, ‘fg € By} has a
similar property. Thus, we obtain a continuous metric h(?) and the continuous section ) of End(E) @ Q'°
around .

We remark that h(Y) = hy = A on U, NV due to our construction of hy. Since h(® are continuous, we
obtain hY) = A on U,. Then, we obtain that () are C* on U,, due to the continuity of (.

Therefore, we obtain the C'-metric h of E on X* — Z with the following properties:

® hy =hy

e For any s € U, we have hyx- = hs and 0, x» = 0.

5.2.6 Pluri-harmonicity

We would like to show that & is pluri-harmonic. By the formalism explained in Subsection 2211 the operators
Oy, and 0, are given on X — (D U Z) from h and D*. Let us take any C* metric b’ of E on X — D, and let s’
be the endomorphism determined by h = h’ - s’. Then, s’ is C!, and we have the following relation:

A

— mslil(()‘//s/.

5}1 = 5}1/ + 8/71(5;:/8/, 01, = 0y

1+ A2
Then, we obtain 9,60;, as a distribution:

A A2

2
aheh = ah/eh’ — (S/_lé;lzsl) + TMP I:S/_l(s;:/sl, eh/] — (TMP) [31_16;7{/5/, 31_16;13/} .

N
AN B
T+ A"
Similarly, we obtain G(h) as a distribution.
Lemma 5.11 9,0, = 0.

Proof For any point x € X* — D, let us take the holomorphic coordinate (z1, z2) as before. We remark that
the curves {z; = a} (i = 1,2), {21+ 22 = b}, {21 ++v/—122 = ¢} can be regarded as parts of X for some s’ € U.
We have the expression § = f; - dz1 + fa - dza, where f; are continuous sections of End(E). We have already
known 0f1/0%z1 = 0f2/0%Z2 = 0. Thus, we have only to show 0f;/0Z; = 0 for i # j. Let us consider the change
of the coordinate given by wi = 21 + 22 and wa = 21 — 29. Then, we have the following:

Fuoder 4 fodeo = m+ﬁymM+;ﬁ—hym@

N =

Thus, we obtain the following:

0 RYIN) _1(0h , O
Oa—wl(fl+f2>2(621+622)(f1+f2)2(621+622)' (87)

Let us consider the change of the coordinate given by u; = 21 + v/ —129 and us = 27 — v/ —12z2. Then, we have

the following;:
fi-dzi+ fa-d L fi+ ! fold +1 f L fa)d
-dz cdzo = = up + = - — Us.
1-dzt Ja-dz =g | N Vs 2 1+5 (N s 2 2

Thus, we obtain the following;:

_ 0 1 _1lfo 1 9 LN Lok L oK
0_8—ﬂ1(f1+\/——_1f2)_2(821 —1822)(f1+\/—_1f2)_2(\/—_1821 \/—_1822)' (88)




From (87) and (88), we obtain df;/9%; = 0 for i # j. Thus, we obtain 0,0, = 0, and the proof of Lemma [E.11]
is accomplished. |

Lemma 5.12 h is a harmonic metric for (E,D*) with respect to wg on X*—Z. (Recall Z = {z € X*

U, =0}.)

Proof Due to Lemma 51Tl we have A,G(h) = A, (910,) = 0. Hence, we have only to show that h is C*°. We
obtain the following formula in the level of distribution, by the formalism explained in Subsection

A (8) = 8 (—ALG(W)) + V=TADYs - ' ~1 - Dprs .

The right hand side is C°. Hence, by using the elliptic regularity and the standard boot strapping argument,
we obtain that s’ is C°°. Thus, we obtain Lemma (.12 |

Lemma 5.13 h is pluri-harmonic metric of Ejx-_z.

Proof We have already shown 0,0, = 0 in Lemma .11l Because of Corollary 227, we have only to show
0? = 0. Due to Corollary and 0, x, = 0, we know that the sequence {6(9)} converges to 6, almost
everywhere. In particular, we obtain the almost everywhere convergence of {9(5)2} to 7. On the other hand,

we know the almost everywhere convergence G(h(9)) — 0, due to (84). We have G(h(9)) = 39218900 () 2
which is the decomposition into (2,0), (1,1) and (0,2)-forms. Therefore, we obtain 67 = 0, almost everywhere.
Thus, we obtain Lemma [5.13] 1

Lemma 5.14 h gives a pluri-harmonic metric of Ejx-.

Proof We have only to check that h gives a C'°°-metric of Ejx-. Let @ be a point of Z. Let (U, z1,22) be a
holomorphic coordinate around @ such that z1(Q) = 22(Q) = 0. The pluri-harmonic metric h of (E, ]D))‘)|U_{Q}
is given. We would like to show that h is naturally extended to the pluri-harmonic metric of (E, ID))‘)|U.

We have 6 = f1-dz1+ fo-dzs defined on U —{Q}. Let us consider the characteristic polynomials det(¢t— f;) for
1 = 1,2. The coefficients are holomorphic on U — {@}, and thus on U due to the theorem of Hartogs. Hence, the
eigenvalues of f; are bounded on U. Let us consider the restriction of (E,D*, h) to the discs C(a;) := {z; = a;}
(a; # 0) for j = 1,2. Then, it can be shown that the norms ’fi‘c(a].)}h < C (i # j) can be dominated
independently from a;. (See Lemma 2.7 in [38], for example.) Thus, f; are bounded with respect to h on
U — {Q}. In other words, € is bounded on U — {Q}.

Let B := Ejy_{z,.2,—0}- Let us consider the sheaf ®E" on U of the sections satisfying the growth condition
l9ln = O(IT |2i|¢) for any e > 0 (Subsection Z5.3). By using the result of the asymptotic behaviour of tame
harmonic bundle at A ([30]), © £ is locally free on U. Since °E’ and E|y_{¢} are naturally isomorphic on U —{Q},
they are isomorphic on U. Let A’ be any C*-metric of Ejyy, and let s’ be the endomorphism determined by
h = h'-s'. Due to the norm estimate given in [30], the metrics h and h’ are mutually bounded. Hence, s’
and (s’)~! are bounded on U. Let d}, and 7, be obtained from D* and h’ as in Subsection ZZZIl Due to the
boundedness of §, we have the boundedness of (s')~16},s" on U—{Q}. Due to the boundedness of §7, we have the
boundedness of (s')~18/,s" on U — {Q}. Then, we can deduce that s’ ~!D*s’ is also bounded on U — {Q}. (See
Subsection for example.) Since we have the formula AQ,MOS/ =8 (=N G(W)) + Ay Dy s - ' 71 - DA xS
we can conclude that s’ is C* due to the standard bootstrapping argument. Namely, h is extended to the
C°-metric of Ey. |

5.2.7 The end of the proof of Theorem [5.4]

Now, we have only to show that h is tame and adapted to the parabolic structure. Since h|x, = hs for any
s € U, the tameness immediately follows from the curve test. (See Proposition 2.49) Then, we obtain the
prolongment E := .E with the induced parabolic structure F (Subsection 25.3). We would like to show that
(E,F,D*) and (E,F,]D))‘) are isomorphic. For that purpose, we see that the identity F|x- — E|x~ can be
prolonged to the homomorphism ¥ : £ — E. Let @ be any smooth point of D; C D. We take a holomorphic
coordinate (Ug, z1, z2) with the following property:
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e The curve z; (0) is same as Ug N D.
e The curves C(b) := z; ' (b) are parts of X for s(b) € U.

Let f be a holomorphic section of E|y. Since the restriction hix,q, is the same as hy(@), we have lficwyln =
O(]z1]7%7¢) for any € > 0. Then, we obtain |f|, = O(]z1]|7%¢) for any € > 0, due to the result given in [30].
Thus, f naturally gives the section of EonU. Therefore, we obtain the morphism £ — EonX— (Ui;ﬁj DiﬁDj).
It is naturally extended to the morphism E — E.

Recall that the restriction of E = (E(h) to X, is same as c(E|x,)(hs). (See [30].) Therefore, the restrictions
of ¥ to X, are isomorphic, by construction. Hence, ¥ is isomorphic on X — (Ui# D; N Dj), and thus on X.

By a similar argument, we can show that the parabolic structures are also same. Thus, the proof of Theorem
5.4l is finished. |

5.3 Correspondences
5.3.1 Kobayashi-Hitchin correspondence in the higher dimensional case

Let X be a smooth projective variety of dimension n (n > 3) with an ample line bundle L, and let D be a
simple normal crossing divisor with the irreducible decomposition D = J,cg D;. Let (E,,D*) be a pp-stable
regular filtered A-flat bundle on (X, D) in codimension two with trivial characteristic numbers par-deg; (E.) =
[ par-chy 1 (E.) = 0, and we put (E,D*) := (E,,D*) x_p. Recall par-c,(E.) = 0 due to the Bogomolov-
Gieseker inequality and the Hodge index theorem. For each ¢ € RS, we have the determinant line bundle
det(.E) of torsion-free sheaf .F, on which we have the induced parabolic structure and the induced flat -
connection. Thus, we obtain the canonically determined regular filtered A-flat bundle (det E., ]D)A) on (X, D)
of rank one. We also have par-c; (det E*) = par-c; (E*) = 0. Therefore, we can take a pluri-harmonic metric
haet 2 of (det(E),D*) which is adapted to the parabolic structure of det E.. By the assumption, we have a
subset Z C D with codimx (Z) > 3 such that (E,,D*)x_z is a regular filtered A-flat bundle.

Theorem 5.15 There erists the unique tame pluri-harmonic metric h of (E, D) with the following properties:
® det(h) = hdetE~

e [t is adapted to the parabolic structure of E, on X —Z. Namely, (E*(h),ID)A)‘X,Z ~ (E*,ID))‘)‘X,Z, where
(E.(h),D*) denotes the regular filtered A-flat bundle on (X, D) obtained from (E,D* k). (See Subsection
25

Proof Due to Mehta-Ramanathan type theorem (Proposition [20), the uniqueness can be easily reduced to
the dim X = 1 case, by considering the restriction to the generic curves C' C X. We have already known it
(Proposition [2.53).

We will use the induction on the dimension n to show the existence. The case n = 2 has already been shown
(Theorem [5.4]). Assume that L™ is sufficiently ample. We put P, := P(H"(X,L™)V). For any s € P,,, we put
X, = s71(0). Recall Proposition Let U be the Zariski open subset of P,, which consists of s € P, with
the following properties:

e X, is smooth, and D, := X; N D is a normal crossing divisor.
e The codimension of Z N X in X is larger than 3.
e (E,D%)x, is p-stable.

We use the existence hypothesis in the (n — 1)-dimensional case of the induction. Then, we may have the
tame pluri-harmonic metric hs of (E, ID)A)| x,\p with det(hs) = hqet | x,\p Which is adapted to the parabolic
structure on X, \ W. We also use the uniqueness result in the (n — 2)-dimensional case. Then, we can show the
existence of a finite subset Z’ C X — D and a metric h of E|x_p such that hy| p = h|p. By the arguments given
in Subsections B.2ZEH5.2.7, we can show that h is the desired metric. The only different point is the argument
to show the vanishing of G(h) = 0. Due to dim X, > 2, it can be shown easier. 1
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Theorem 5.16 Let X, D and L be as above. Let (E.,D) be a saturated jur -stable reqular filtered \-flat sheaf
on (X, D) with the trivial characteristic numbers par-degy (E,) = [y par-chy ;(E,) = 0. We put (E,D*) :=
(E., D/\)‘X_D. Then, there exists a pluri-harmonic metric h of (E,D*) such that the induced regular filtered -
flat bundle (E*(h), D/\) is isomorphic to (E.,D*). Such a metric is unique up to positive constant multiplication.
In particular, E. is a filtered bundle.

Proof Since a saturated regular filtered A-flat sheaf is a regular filtered A-flat bundle in codimension two
(Lemma 212]), we may apply Theorem Then, there exists a pluri-harmonic metric h and a subset W C D
with codimx (W) > 3 such that the induced regular filtered A-flat bundle (E.(h),D?) is isomorphic to (E.,, D")
on X — W. Since both of (E,(h),D*) and (E.,D") are saturated, they are isomorphic on X.

5.3.2 The equivalence of the categories

Let Cﬁ\wly denote the category of ur-stable regular filtered A-flat bundles (E.,D*) on (X, D) with the trivial
characteristic numbers par-deg;, (E.) = [y par-chy ;(E,) = 0. Morphisms f : (E1.,D}) — (E3.,D3) are
defined to be Ox-homomorphism f : E; — E; satisfying D o f = f oD} and f(cEl) C ¢F» for any c.
Corollary 5.17 Let \; (i = 1,2) be two complex numbers. We have the natural functor Ex, x, : Cffly — C’;Zly,
which is equivalent. It preserves direct sums, tensor products and duals.

Proof Let (E}',D*) be an object of Cffly. We put EM = E"\f) We have a pluri-harmonic metric h of

(E)‘l,Dkl), which is adapted to the parabolic structure. Then, we obtain the operators Eh,ah,eh,ejl, as in
Subsection L2l Note that the holomorphic structure of E* is given by 9 + )\19;2. The (0, 1)-operator
O + )\29}; also gives a holomorphic structure of C>°-bundle E*t. To distinguish them, we use the notation
E*2 when we consider the holomorphic structure 9 + >\29};. We put D*2 := 9y + 0, + X2(0h + 9;&), which
gives a flat \o-connection of £*2. The metric h is pluri-harmonic for (E*2,D*2). Since the corresponding Higgs
bundle for (E**,D* k) and (E*2,D*2,h) are same, we obtain the tameness of (E*2,D*2, h). Therefore, we
obtain the prolongment (E)‘2 , D), which are zu7-polystable regular filtered \o-flat bundle on (X, D) with trivial
characteristic numbers (Proposition 2252]).

We remark that (E’\Z,]D))‘?) is independent of a choice of h, due to the uniqueness in Proposition
Therefore, we put Zy, », (EM, D) := (E*2,D*?). It is easy to see that =y, », gives a functor. It is also easy to
see that Zy, x, 0, 1, (B, DM) is naturally isomorphic to (E*,D*1). The compatibility with the direct sums,
duals and tensor products are obtained from the corresponding compatibility statements of the prolongments
for tame harmonic bundles ([30]). We also remark that the categories are semisimple. Thus, we have only to
compare the objects. |

Remark 5.18 From a \i-connection DM = d” +d', a Xg-connection is given d”’ + (Aa/\1)-d’. Hence, we have
the obvious functor Obv : Cifly — Cfgly. This is not same as the above functor Zx, x,. |

6 Filtered local system

6.1 Definition
6.1.1 Filtered structure

Let X be a complex manifold, and let D be a simple normal crossing divisor with the irreducible decomposition
D = ;e Di- We will use the notation DRl .= Uiz; DiNDj and D7 := D;\U,; D;. Let £ be a local system
on X — D. A filtered structure of £ at D is a tuple of increasing filtrations ‘F (i € ) of Ly, p indexed by
R, where U; denotes an appropriate open neighbourhood of D;. Let U/ be an open neighbourhood of D; such
that U] C U;, then we have the induced filtration i}"U{, and the filtration *F can be reconstructed from i}"U{.
Hence, we define two filtered structures (“F,U; |i € S) and (*F',U/|i € S) are equivalent, if there exists an
open neighbourhood U/’ of D; such that U/ C U; N U] and i}"‘U{/ = i.ﬁ’U{/. A local system L equipped with an
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equivalence class of filtered structures (*F, U;) is called a filtered local system, and it is denoted by £.. We do
not have to care about a choice of open neighbourhoods Us;.

Morphisms of filtered local systems f : L1, — L2, are defined to be a morphism f : £; — L of local
systems preserving the filtered structures in an obvious sense. We denote by C(X, D) the category of filtered
local systems on (X, D).

6.1.2 Characteristic numbers

We put U := U; \ D and *Gr] (Liy=) = "Fa(Liys)/ Fea(Liys). Since the local monodromy around D;
preserves the filtration *F, we obtain the induced endomorphism of ? Gra}-(ﬁ\U: ), and thus the generalized eigen
decomposition:

LGl (Ls) = @ Gl (L),

We put as follows:
Par(L.,i) = {a € R|"Gr] (Liu+) #0}, KMS(Ly,i) = {(a,w) € Rx C*|'Gr{;5 (Lyy:) #0}.
The parabolic first Chern class is defined as follows:
par-c; (£ Zwt «1)-[Di] € H*(X, R), Wt (L, 1) 1= Z a - rank’ Gra}-(EIU;‘)- (89)
€S a€Par(Ly,i)

Here [D;] denotes the cohomology class representing D;.

Let Irr(D; N D;) denote the set of the irreducible components of D; N D;. For each P € Irr(D; N Dj), let
Up be an appropriate open neighbourhood of P in X such that Up C U; NU;. We put U, := Up \ D. We have
the two filtrations *F and 7 F of Ly; . The naturally induced graded local system is denoted as follows:

Fa; NI F,,
Z(bi,bj)g(ai,aj) iFy, NIFy,

Parf (L) = @ "Gl an L), TGl (L) =

(ai,a;)€R?

Here (b;,b;) < (a;,a;) means “b; < a;, b; < a; and (b;,b;) # (a;,a;)”. We have the two endomorphisms
induced by the local monodromies around Up N D; and Up N D;, which are commutative. Hence, we obtain the
generalized eigen decomposition:

PGrl(Lw) = P TaliLw,).
weC*?

We put as follows:
Par(L.,P) = {(a;,a;) € R’ | PGr(fal ap)(Liug) # 0},

KMS(L., P) = {(a,w) € R* x C** | " Gr [, (Lyu;) # 0}
The parabolic second Chern character is defined as follows:

par-ch, (£ Z Z a? -rank® Gr’7 (L) - [Dy]?

zES a€Par(Ly,1)
1
+ 522 > > a; - a; -vank” Grl,, .y (Lv;) - [Pl (90)
i€S j#i PEIrr(D;ND;) (a;,a;)E€Par(L.,P)

When X is a smooth projective variety with an ample line bundle L, we put as follows:

N par-deg; (L.
par-deg; (L) ::/Xpar—cl(ﬁ*) 'Cl(L)d x, pr(Le) = ranikLﬁ()'

Then, the notion of py-stability, py-semistability, and py-polystability for filtered local systems on (X, D) are
defined in the standard manner. We also put as follows:

/ par—ciL(E*) ::/ par-c; (£4)? - ¢1(L)4m X =2, / par-chy 1 (L) ::/ par—ChQ,L(ﬁ*)~01(L)dimX*2.
b'e p'e e b'e
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6.2 Correspondence

In this subsection, we give the correspondence of filtered local systems on (X, D) and saturated regular filtered A-
flat sheaves (A # 0). See Subsection 214l for saturated regular filtered A-flat sheaves. Since we have the obvious
equivalence between flat A-connection and flat 1-connection, we only discuss the case A = 1, i.e. ordinary flat
connections.

Let C;**(X, D) denote the category of saturated regular filtered flat sheaves on (X, D). Let us see briefly
that we have the functor @ : C(X, D) — C59¢(X, D) which gives the equivalence. Since it is given by Simpson
in [37] essentially in the curve case, we give only an outline.

6.2.1 Construction of ¢

First, we give a construction of ®. Let L, be a filtered local system on (X, D). Let (E, V) be the corresponding
flat bundle on X — D. We have the Deligne extension (E,V) on (X, D). We put E := E ® O(xD). Thus,
we have only to give the way of the construction of the Ox-coherent submodules o F C E such that Vo F C
o ® Q"0(log D) and J,cps af = E. Let us consider the case X = A" = {(z1,...,2) ]|z < 1} and
D = {z; = 0}. Then, the construction is essentially same as that for the case dim X = 1 given by Simpson [37].
We briefly recall it. Let H(L) denote the space of the multi-valued flat sections of £. We have the induced
filtration FH (L) and the generalized eigen decomposition H(L) = @, E,(H (L)), which are compatible in the
sense Fo = @, Fa NE,. Let w = (u1,...,u,) be a frame compatible of H (L), compatible with (F,E). Then,
for each u;, the numbers w(u;) € C* and a(u;) € R are determined by u; € B,y and u; € Fou,) — Fea(u,)-
The complex number «(u;) is determined by the conditions exp(—27a(u;)) = w(u;) and 0 < Rea(u;) < 1. Let
M™ denote the endomorphism of H(L) or £, which is the unipotent part of the monodromy around D, and we
put N := —(27v/—1)"tlog M". We regard u; as a multi-valued C*-section of E. Then, it is standard that
v; := exp(log 21 (a(u;)+ N)) -u; gives a holomorphic section of E. Moreover, v = (vy, ..., v,) gives a frame of the

Deligne extension E. Let b be any real number. Then, we put n(b, ;) := max{n € Z | a(u;) —Re al(u;) +n < b},
and we put v;(b) := z;n(b’ui) -v;. Let pFE denote the Ox-submodule of E generated by v (b),...,v.(b). Tt is
easy to check that ,F is locally free and independent of a choice of w. It is also easy to see E = g
Thus, we obtain the filtration in the case X = A™ and D = {z; = 0}. It can be checked that the filtration is
independent of a choice of the coordinate (z1, 22, ..., z,) satisfying D = {z; = 0}.

For any b € R®, we obtain 3£ on X — D by gluing them. The subsheaves p F are determined by the
condition (@]).

Lemma 6.1 pE is a coherent Ox-module. Hence, we obtain the saturated regular filtered flat sheaf (E«, V) on
(X, D).

Proof We may assume that X = A™ and D = Ule{zi = 0}. Let H(L) denote the space of the multi-valued
flat sections of £. We have the monodromy endomorphisms M; (i = 1,...,¢) along the loop around D; with
counter clockwise direction. They induce the decomposition

H(L)= @ ELH(L), (91)
weC*
where each E,, H(L) is preserved by M; (i = 1,...,¢), and the eigenvalues of M; on E, H(L) are w;. We also
have the filtrations ‘F (i = 1,...,/) of H(L), corresponding to the divisor D;. Each *F is compatible with the
decomposition (9I)).

Fix j such that 1 < j < £. We take a frame u = (u1,...,u,) of H(L) compatible with the filtration 4 F
and the decomposition (@I). For each uy, the tuple w(u,) € C* is determined by u, € E,. Let a;(u,) € C
(i =1,...,0) be determined by exp(—2ma;(up)) = wi(up) and 0 < Rea;(upy) < 1. We also have the numbers
a(up) € R such that u, € I F () — I Feg(u,). We put n(bj,up) := max{n € Z| a;(up) — Re o;(up) +n < b;}.
Let N; :== —(2my/—1)"tlog M* (i = 1,...,£), where N; denotes the logarithm of the unipotent part of M;. We
take a sufficiently large integer I. Then, we put as follows:

4
Up = Z;L(bj’up) : szl Hexp(log zi - (0 (up) + Nz)) “Up
i#j =1
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If I is sufficiently large, v, gives the section of 3/ on X. By the correspondence, we obtain the following
morphism, for j =1,...,¢:

@j!@@x-vp%bE
p=1
The morphisms ®; (j = 1,...,¢) induce the morphism ® : O®*" — , E. The image of ® is Ox-coherent, and
it is the same as » F on X — DI?l. Then, it is easy to show that »F is the same as the double dual of the image
of ® which is Ox-coherent. |

Let f: L1+ — Lo, be a morphism. Let (E;.,V;) := ®(L;). We have the induced map }’v: E, — E5. It
is easy to see that F; | Xx—Dl2l — cEs | X—Dl2] is induced. Due to saturatedness of (E2., V), we obtain maps
cEl i CEQ, and thus (I)(f) : (E1 %9 Vl) — (EQ*, VQ)

6.2.2 Equivalence

Let us show that ® is equivalent. To begin with, we consider the case X = A™ and D = {z; = 0}. Let C**(X, D)
denote the category of regular filtered flat bundles on (X, D), which is the subcategory of C{*(X, D). By the
construction, the image of @ is contained in C}*(X, D). The following lemma can be shown as in [37].

Lemma 6.2 The functor ® gives the equivalence of C~1(X,D) and CY*(X, D). It is also compatible with direct
sums, duals, and tensor products. |

Lemma 6.3 In the case X = A" and D = {z1 = 0}, we have C}{*(X, D) ~ C;**(X, D) naturally. In particular,
P gives the equivalence C1(X, D) ~ C;*(X, D).

Proof Let (E.,V) be a saturated regular filtered flat sheaf on (X, D). We put (E,V) := (E., V)| x_p, and
let £ denote the corresponding local system on X — D. Let H(L) denote the space of the multi-valued flat
sections of L.

Recall that there exists a subset W C D with codimx (W) > 3 such that (E., V) x_w is regular filtered
flat bundle on (X — W, D — W) (Lemma 212)). Let P be any point of D — W, and let (Up, #1,...,2,) be a
holomorphic coordinate neighbourhood such that z;*(0) = Up N D and Up N W = (. Due to Lemma B2 we
have the unique filtration F of H(Ljy,\p) ~ H(L) corresponding to (E., V) y,. Due to the uniqueness, it is
independent of a choice of P and Up.

Let v = (u1,...,u,) be a frame of H(L) compatible with the filtration F and the generalized eigen de-
composition with respect to the monodromy around D. For any real number b € R, we construct v(b) =
(vi(b),...,vr(b)) as above. Then, for any P € D — W, v(b) gives a holomorphic frame of ,E;;, compatible
with the filtration due to Lemma[6.3] Hence, each v;(b) gives a section of vE|x—w. Due to the saturatedness of
(E., V), v;(b) gives a section of , £ on X. Now it is easy to see that v(b) gives a frame of , F, and in particular,
»E is locally free. Hence, (E., V) is a regular filtered flat bundle on (X, D). 1

Now, it is easy to see that ® is equivalent for general (X, D). Let us see the fully faithfulness of ®. The
faithfulness is obvious. Let f : ®(L1.) — ®(L2.) be a morphism in C{**(X, D). We have the map g : £ — L»
corresponding to f. We would like to check that g preserves the filtrations *F. Let P be any point of D?, and
(U,21,...,2,) be any coordinate neighbourhood such that U N D = 27 *(0). Applying Lemma 63, we obtain
that g preserves the filtration *F on U \ D;. Thus, we obtain the fully faithfulness.

Let us show the essential surjectivity. Let (E.,V) be a saturated filtered flat sheaf on (X, D). Let £
denote the local system corresponding to (E., V) x_p. We have only to construct the appropriate filtrations
iF of Ly,\p on appropriate neighbourhoods of D;. Let P be any point of D, and (Up, 21, ..., 2,) denote any
coordinate neighbourhood around P such that z;*(0) = Up N D. Due to Lemma B2, we obtain the unique
filtration *F of L;,\ p. We obtain the filtration *F on | Jpe po Up by gluing them, due to the uniqueness. Thus,
we obtain that ® is essentially surjective, and hence equivalelnt.

6.2.3 The parabolic first Chern class

We have the Z-action on R x C given by n - (a,a) = (a +n,a —n). It induces the action of Z on CMS(E., ).
The following lemma is clear from the construction of ®.
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Lemma 6.4 We have the bijective correspondence of the sets KMS(®(L.),4)/Z and KMS (L., i), which is
given by (a,a) — (b,w) = (a—i—Re a,exp(—Qﬂ'\/—la)) for (a,a) € KMS(®(L,),i). Moreover, rank® Grf;’Ea) =

i (1. FE
rank Gr(bw). |

Corollary 6.5 We have the equality of the parabolic first Chern class par-c; (L) = par-c,(®(L,)). In particu-
lar, when X is a smooth projective variety with an ample line bundle L, the ur-stability of L. and pr-stability
of ®(L.) are equivalent.

Proof Recall Lemma It is shown for the case where (E.,V) is graded semisimple and dim X is two
dimensional. However, the graded semisimplicity condition is not necessary as is explained in Remark B.21]
The assumption dim X = 2 is also not necessary, due to the Lefschetz theorem. Then, the claim of the corollary
follows from Lemma [B.21] and the correspondence of the KMS-spectrums given in Lemma [G.41 |

6.2.4 The second parabolic Chern character

Lemma 6.6 Let X = A" = {(21,...,2,) ||2i| <1}, and D = D1 U Dg, where D; = {z; = 0}. Let (E.,V) be a
saturated regular filtered flat sheaf on (X, D).

o (E.,V) is a regular filtered flat bundle on (X, D).

e Let ¢ be any element of R?, and let E denote the c-truncation. Let L, be the corresponding filtered local
system on (X, D). Then, we have the equality:

rank 2 Gr(}l;:]i) (L) = rank? GrfiEa) (cE).

Here the meaning of the notation is as follows:

— b= (b1,b2) and w = (w1, w2) denote elements of R? and C*? respectively.

— a = (a1,as) and o = (a1, ) denote elements of R* and C? respectively, determined by the condi-
tions ¢; — 1 < a; < ¢;, exp(—2mv/—1oy) = w; and a; + Rea; = b;.

Proof Let £, = (£,'F,%F) be as above. Let u be a frame of H (L) compatible with the filtrations *F (k = 1, 2)
and the generalized eigen decompositions of H(L). For each u; and the divisor Dy, the complex number oy (u;)
and ay(u;) are determined as before. For the monodromies around Dy, we obtain the nilpotent endomorphism

Ny, as before. The holomorphic section v; is given by v; := exp (Z log 2, (o (uy) + Nk)) Let ng(u;) be the

numbers determined by the condition ¢ — 1 < ng(u;) + ak(u;) — Reag(u;) < cgx. We put v :=[] z;nk(uj) SV
Then, v = (v1,...,v,) gives the frame of .E|x_(p,np,). Due to the saturatedness, v = (v1,...,v,) gives the
frame of .F, and hence .E are locally free. Thus, the first claim is proved. The frame v is compatible with "E
and *F, and we have * deg™ (7;) = ax(u;) — Re oy, (uj) 4+ ny(uj) and ;| p, € FE(ak(u;) — ni(u;)). Thus, the
second claim follows.

Corollary 6.7 Let X be a projective manifold with an ample line bundle L, and let D be a simple normal
crossing divisor. Let (E., V) be a saturated regular filtered flat sheaf on (X, D), and let L. denotes the cor-
responding filtered local system. Then, we have the equality of the parabolic second Chern character numbers

Jx par-chy, 1 (£.) = Jx par-ch,  (E.). |

Corollary 6.8 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let L be a py,-stable filtered local system on (X, D). Then, the Bogomolov-Gieseker inequality
for L. holds:

fX paI‘-C% L(E*)
-ch L) < X LLem
/Xpar chy L (£4) < 2rank £

Proof Recall that saturated regular filtered flat shaves are regular filtered flat bundles in codimension two
(Lemma 2.12). Hence, the claim follows from Corollary [6.5, Corollary and Corollary |
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Corollary 6.9 Let X be a smooth projective variety with an ample line bundle L, and let D be a simple normal
crossing divisor. Let Cf‘ﬂy be the category of p,-polystable regular filtered flat bundle on (X, D) with trivial

characteristic numbers, and let 5f0ly be the category of pr-polystable filtered local system on (X, D) with trivial
characteristic numbers. Then, the functor ® naturally gives the equivalence of them.

Proof We have only to remark that saturated uy-stable regular filtered flat sheaves with trivial characteristic

numbers are regular filtered bundles (Theorem [5.16]). 1
Remark 6.10 Due to the result in [30] and the existence of a pluri-harmonic metric for ®(L.), the filtrations
'F for pr-stable filtered local systems L. satisfy some compatibility around the intersection points of D. |
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