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Abstract

We give an effective solution of the conjugacy problem for two by

two matrices over the polynomial ring in one variable over a finite

field.
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1 Introduction

We consider here the conjugacy problem in the ring of two by two matrices
M(2, F[x]) over the polynomial ring F[x], where F is a finite field. We say
that two matrices A, B ∈ M2(F[x]) are conjugate if there is a conjugating
matrix U in the group GL (2, F[x]) of invertible matrices over F[x], such that
U satisfies B = UAU−1. In the following we write deg(p) for the degree of
a polynomial p ∈ F[x] and deg(A) for the maximal degree of the entries of
A ∈ M2(F[x]). We prove:

Theorem 1.1 Let F be a finite field with q elements and A, B ∈ M2(F[x]).
Let δ be the maximum of deg(A), deg(B). If A, B are conjugate, then there
is a conjugating matrix U with deg(U) ≤ (1 + q)δq7δ.

For certain pairs of matrices A, B ∈ M2(F[x]) the estimate of the degrees
of the entries of U can be improved to be linear in δ not depending on q
(see Proposition 4.2). Theorem 1.1 shows that there is an algorithm which
decides whether two matrices A, B ∈ M2(F[x]) are conjugate or not. Hence
we can state:

Corollary 1.2 Let F be a finite field, then the conjugacy problem in the
group GL (2, F[x]) is effectively solvable.

Corollary 1.2 should be compared with the solution of the conjugacy
problem in an arithmetic group. The conjugacy problem for GL (n, Z) (n ∈
N) was solved in [3]. But even in the case n = 2 no explicit estimates
like those from Theorem 1.1 are known. Also the algorithms described in
[4], which solve the conjugacy problem in any arithmetic group, do not give
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estimates for the degree of a conjugating matrix. The method of solution
employed in [3] for the case of GL (n, Z) (n ∈ N) can be extended (without
giving any estimates) to the case of GL (n, F[x]) (n ∈ N, F a finite field) when
the characteristic of the field F does not divide the size n of the matrices.
Also our method in [3] provides extra difficulties in case F has characteristic
2. Further features of the conjugacy problem in GL (2, F[x]) are described in
Section 7.

Given a matrix A ∈ GL (2, F[x]) we define

Z(A) := {U ∈ GL (2, F[x]) | UAU−1 = A } (1)

to be its centralizer. In case A 6= 1 is semisimple it is well known that Z(A)
is either finite or the direct product of an infinite cyclic group by a finite
group. By our methods we can give an estimate for the degrees of the entries
of a generator of the infinite part:

Theorem 1.3 Let F be a finite field with q elements and A ∈ GL (2, F[x]) a
semisimple matrix, not equal to the identity matrix, such that Z(A) is infinite.
Then there is a matrix U ∈ Z(A) which generates Z(A) up to a finite group
with deg(U) ≤ deg(A)q2deg(A).

Our method to prove Theorem 1.1 uses a reduction to a quadratic equa-
tion in two variables. As a special case Pell’s equation

u2 + Dv2 = 1 (2)

with D ∈ F[x] arises. Let us call D ∈ F[x] to be positive if it is neither
constant nor a square, has even degree and highest coefficient a square. Let
us furthermore call a solution (u, v) of (2) trivial if u, v ∈ F holds. We prove:

Theorem 1.4 Let F be a finite field with q elements and D ∈ F[x] a positive
polynomial. Then (2) has a nontrivial solution (u, v) with deg(u), deg(v) ≤
qdeg(D).

Pell’s equation (2) has been studied extensively in the paper of Emil
Artin of 1924 [1]. He investigate Pell’s equation through continued fraction
expansions. But he assumed that the characteristic of F is not equal to 2.
Our result in Theorem 1.4 follows straightforward from [1]. We then modify
Artin’s technique for the case of characteristic 2.

Following our reduction we have to analyze the solution of the general
quadratic equation

au2 + buv + cv2 = d
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where a, . . . , d are polynomials in F[x]. We use new degree function on cer-
tain quadratic extension rings of F[x] in the imaginary case and control the
behavior of continued fraction expansion in the real case.

Note that as we will see while the case of characteristic 2 in some sense
more difficult the estimations for algorithms in this case which we obtain
turned out be better than in the case of the other finite fields.

It worth mentioning also that the reduction step itself gives quite notice-
able impact to the whole estimate of the degree of conjugating matrix.

2 Reduction to a quadratic equation

Let F be a field. We consider here pairs of matrices

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
∈ M2(F[x]),

which we call rationally conjugate if they are conjugate by an element of
GL (2, F(x)), where F(x) is a field of rational functions over F. Being ratio-
nally conjugate implies the conditions:

Tr(A) = Tr(B), det(A) = det(B).

Suppose we want to find a matrix

U =

(
u p
v q

)
∈ GL2(F[x]),

which conjugates A to B. We are lead then to four linear equations given by
the matrix entries of UA − BU in the variables u, p, v, q, plus the quadratic
equation det(U) ∈ F∗ = F\{0}. Elementary considerations of this system of
equations proves:

Lemma 2.1 Suppose the matrices A, B ∈ M2(F[x]) satisfy a21 = b21 = 0.
Let δ be the maximum of the degrees of the entries of A, B. Then A, B are
conjugate by an element of GL (2, F[x]) if and only if they are conjugate by
U ∈ GL (2, F[x]) with deg(U) ≤ δ.

The above lemma proves Theorem 1.1 in the special case of upper trian-
gular matrices A, B.
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Let char F = 2. The conjugating condition UAU−1 = B for U ∈
GL (2, F[x]) is equivalent to the system

uq + pv ∈ F∗ (3)

UA = BU (4)

where U =

(
u p
v q

)
, F∗ = F\{0} is the multiplicative group of the field F.

Since the set of conjugating matrices is stable under multiplication by a non-
zero constant and we have a unique square root in our field, the solvability
of the system (3, 4) is equivalent to the solvability of the same system with
(3) replaced by

uq + pv = 1 (5)

The quadratic equation (5) with additional linear conditions (4) can be
reduced to one quadratic equation in two different ways.

First, using the procedure of construction of the generating system of
syzygies module ([2]) for the linear system (4). Another way is a direct
substitution of the solution in rational functions of the linear system (4). In
both cases we obtain an equation of the type au2 + buv + cv2 = d, but in the
first case with variables of different meaning, in the second case with some
additional divisibility conditions. We will follow the second way. Let A =(

a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
∈ M2(F[x]), substituting rational solutions

p =
(a11 + b11)u + b12v

a21
, q =

b21u + (a11 + b11)v

a21
(6)

from (4) to (5) we obtain the equation

b21u
2 + (b11 + b22)uv + b12v

2 = a21. (7)

To ensure that p and q are polynomials, for the solutions u, v of (7) we

have to check that a21

∣∣∣(a11 + b11)u + b12v and a21

∣∣∣b21u + (a11 + b11)v.

We can consider separately quite an easy case when one of matrices is
diagonal. Matrices A, B where B is diagonal are conjugate if and only if

a12(b22−b11)
g.c.d.(a11−b11,a12)g.c.d.(a11−b22,a12)

∈ F∗ (in case when (a11 − b11, a12) 6= (0, 0) and

(a11 − b22, a12) 6= (0, 0)). In case (a11 − b11, a12) = (0, 0) the condition looks

slightly different: (b11−a22)(b22−a11)−a12a21

g.c.d.(b11−a22,a12)g.c.d.(a11−b22,a12)
∈ F∗.
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After that we can restrict ourselves by the case (a12, a21) 6= (0, 0) and
(b12, b21) 6= (0, 0). Since any matrix is conjugate with it’s transposed, we can
assume without loss of generality that a21 and b21 are non-zero.

3 Preliminary considerations for the solution

of the quadratic equation au2 + buv + cv2 = d

We study here the equation au2 + buv + cv2 = d with a 6= 0. Multiplying
the equation by a and making the change of variables u1 = au, v1 = v we
obtain the equation u2

1+bau1v1+cav2
1 = da with the monic polynomial in the

lefthand side. After we find a solution, we have to check whether a divides
u1 and only in this case a|u1 will give a solution of the initial equation.

We consider the following three cases determined by the nature of the
roots of the equation

t2 + bt + c = 0. (8)

Case 1. Equation (8) is solvable in F(x). Note, that in fact it means
that (8) is solvable in F[x]. If F

Q
is a rational solution and g.c.d.(F, Q) = 1,

then from F 2 + bFQ + cQ2 = 0 follows Q
∣∣∣F 2, hence Q can be only constant

and the solution is in fact polynomial. In this case d = u2 + buv + cv2 =
(u +∆v)(u +(b+∆)v) is a product of two polynomials. There exists a finite
set of factorizations of d into two multiples from F[x], hence we obtain a
finite number of linear systems on u, v.

Let us mention that if b = 0 then we have a rational solutions (we are in
case 1). Indeed, let b = 0: u2 + cv2 = d. We can just present the coefficients

as follows: c(x) = c0(x
2) + xc1(x

2), d(x) = d0(x
2) + xd1(x

2). If u =
n∑

i=0

uix
i,

let ũ =
n∑

i=0

u2
i x

i, then u2(x) = ũ(x2). Considering separately cases of even

and odd degrees on x we get two linear equations on ũ and ṽ:
{

ũ + c0ṽ = d0,
c1ṽ = d1.

If c1 = d1 = 0 there are infinitely many rational solutions: ũ = −d0

c0
ṽ.

Otherwise, there is at most one rational solution. For any solution ũ and ṽ
we can uniquely determine u and v: ui =

√
ũi and vi =

√
ṽi, — due to the

existence and uniqueness of square roots in our field F.
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The other two cases are more essential and will compose our main treat-
ment later on.

From this point we will suppose that the equation (8) has no rational
solutions, particularly b 6= 0.

Let us define a degree function on F[x] as an ordinary degree on non-zero
polynomials and deg (0) = −∞.

We deal with the completion of F[x] by the valuation |p| = 2n, where
n = deg p (valuation of zero is 1). This completion is the algebra of formal

power series K = F((x)) = {
d∑

i=−∞
αix

i, αi ∈ F, d ∈ Z}.
Here is an essential in what follows

Definition. Let ρ =
d∑

−∞
αnx

n be a power series. We say that d is a degree

of ρ if αd 6= 0.
Case 2. If (8) is solvable in K\F[x], we say that it is a real case.
Case 3. In case when the solution can not be presented as a power series,

we say it is an imaginary case.

Let us consider now the ring (and corresponding function field) R =
F[x, t]/fx(t), where fx(t) = t2 + bt + c, b, c ∈ F[x]. Obviously elements of R
can be uniquely presented as u + ∆v, where u, v ∈ F[x] and fx(∆) = 0. We
can define the norm of an element ω = u+∆v as N(u+∆v) = F (u, v) = u2+
buv+cv2. Let define the conjugate element for ω as follows: ω′ = u+(b+∆)v.

It is easy to check that the introduced notions of norm and conjugate
element satisfy the natural properties.

Lemma 3.1 a). N(ω) = ωω′; b). (ω1ω2)
′ = ω′

1ω
′
2. c). N(ω1ω2) =

N(ω1)N(ω2). d). N(ω−1) = N(ω)−1.

Lemma 3.2 An element ǫ is a unit of R if and only if N(ǫ) ∈ F∗.

Proof. If ǫ−1 does exist then by lemma 3.1 c). and d). N(ǫǫ−1) = N(ǫ)N(ǫ−1) =
N(ǫ)N(ǫ)−1 = 1. Hence N(ǫ) is an invertible polynomial, i.e. N(ǫ) ∈ F∗. �

We treat real and imaginary cases in different ways, thus we need first to
be able to distinguish these cases. The following proposition serve for this.

Our equation as earlier is

u2 + buv + cv2 = d. (9)

Proposition 3.3
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I. If deg c > 2deg b and deg c is odd then we are in the imaginary case.

II. If deg c ≥ 2deg b and deg c is even then there exists an invertible linear
change of variables which turns the equation into new one u2 +buv+ c̃v2 = d,
with deg c̃ < deg c.

III. If deg c = 2deg b, we have two possibilities. In case if the equation
b2
0t

2 + b2
0t + c0 = 0 ( b0, c0 ∈ F – coefficients near highest terms of b and c )

is solvable in F, there exists a change of variables which turns the equation
into new one u2 + buv + c̃v2 = d, with deg c̃ < deg c. Otherwise we are in the
imaginary case.

IV. If deg c < 2deg b we are in the real case.

Proof. I. Suppose that ω =
m∑
−∞

antn ∈ K is a root of the equation ω2 +

bω + c = 0, an 6= 0. It is necessary for the cancellation that the degrees of
a pair of terms in this equation are equal and the degree of the third one is
not grater than that. A priori there exist three possibilities.

1). deg ω2 = deg bω. Then deg (ω2+bω) ≤ 2deg b < deg c and cancellation
is in fact impossible.

2). deg bω = deg c. Hence deg ω = deg c − deg b and deg (bω + c) ≤
deg c < deg ω2 and cancellation is again impossible.

3). deg ω2 = deg c. This case is not possible because deg c have to be
odd.

This means that there are no solutions of (9) in power series.
II.
We try to find desired change of variables in the form:

{
u′ = u + brv,
v′ = v

In that case we have to find r such that deg (b2r2 + b2r + c) < deg c. Highest
terms in this sum are b2r2 and c (degc > 2degb, hence degr 6= 0). To provide
their cancellation we take deg r = 1

2
(deg c − 2deg b). Coefficients near the

highest terms also have to coincide: b2
0r

2
0 = c0. We ensure this due to the

existence of a square root in the basic field F: r0 =
√

c0
b0

. The desired r is

then for example
√

c0
b0

t
1

2
deg c−deg b.

III.
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In the case degc = 2degb we are again trying to find the change of variables
of the same type like in II, such that deg(b2r2 + b2r + c) < degc. Now degr
have to be zero and cancellation of the highest terms is possible if and only
if the equation b2

0r
2 + b2

0r + c0 = 0 solvable in F. If so, after corresponding
change of variables we get an equation with the free term c of the smaller
degree. Otherwise, let us show that we are in the imaginary case, i.e. there
are no solutions of the equation ∆2 + b∆ + c = 0 in F((x)). If we suppose
that such a solution does exist then deg∆ = degb and ∆2

0 + b0∆0 + c0 = 0
(∆0 ∈ F is a coefficient near the highest term of ∆). But this means that
the equation b2

0t
2 + b2

0t + c0 = 0 is also solvable: t = ∆0

b0
. Thus we are in the

imaginary case here if the equation is unsolvable in F.
IV.
Let ∆ ∈ K\F[x] be the root of (8): ∆2 + b∆ + c = 0.
If deg ∆2 = deg c, then deg b∆ is greater.
We construct now the root in case deg b∆ = deg c, i.e. deg ∆ = deg c −

deg b. Denote k = deg ∆, m = deg b, ∆ = akt
k + .... From the equation

∆2 = b∆ + c we have akt
2k + ... = akbmtm+k + ... + cm+kt

m+k + .... Since
2k < m+k, for cancellation it is necessary that akbm = cm+k, i.e. ak = bm

cm+k

.

Denote by ∆̃ = ∆− akt
k. Then ∆̃ satisfies the equation ∆̃2 = b∆̃ + c̃, where

c̃ = a2
kt

2k + bakt
k + c. It is easy to see that deg c̃ < deg c. Hence we have to

find the root of the equation satisfying the condition in III, and this root will
have the degree smaller than F. By such an inductive procedure we obtain
a desired root as a power series.

In case deg ∆2 = deg b∆ we get a conjugate root b + ∆.
�

Consideration of the case II leads us necessarily to the case I, III or IV.
Cases I and IV are imaginary and real respectively. Consideration of the case
III leads us either to the case I or IV, or we remain in the imaginary case.

4 Imaginary case

Now we will give a solution in the imaginary case. According to proposition
3.3 we can assume that either 1). deg c > 2deg b and deg c is odd or 2).
degc = 2degb and the equation b2

0t
2 + b2

0t + c0 = 0 unsolvable in the field F.
Consider first the first case.
The main our tool here is a construction of the degree function on R,

which respects the multiplication.
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Definition. Let define a function Deg : R → Q+ ∪ {−∞}, as follows:

Deg(u + ∆v) = max(deg u, deg v +
1

2
deg c),

where deg is the usual degree function on polynomials.

Theorem 4.1 Let f(t) = t2+bt+c with deg c to be odd and R = F[x, t]/f(t),
then for any α, β ∈ R,

Deg(αβ) = Degα + Degβ.

Proof. Let α = u′ + ∆v′, β = u + ∆v. Consider four different possibilities
for the degrees of α and β:

1) Degα = deg u′, Degβ = deg u (i.e. deg u′ > 1
2
deg c + deg v′ and

deg u > 1
2
deg c + deg v);

2) Deg α = 1
2
deg c+deg v′, Deg β = deg u (i.e., deg u′ < 1

2
deg c+deg v′

and deg u > 1
2
deg c + deg v);

3) Deg α = deg u′, Deg β = 1
2
deg c+deg v (i.e., deg u′ > 1

2
deg c+deg v′

and deg u < 1
2
deg c + deg v);

4) Deg α = 1
2
deg c+deg v′, Deg β = frac12deg c+deg v (i.e., deg u′ <

1
2
deg c + deg v′ and deg u < 1

2
deg c + deg v).

Note that by definition

deg αβ = max{deg (u′u + cv′v),
1

2
deg c + deg (u′v + v′u + bv′v)}.

In case 1 from the inequalities deg u′ > 1
2
deg c+deg v′, deg u > 1

2
deg c+

deg v and deg c > 2deg b we have deg u′u > deg cv′v, deg u′u > 1
2
deg c +

deg u′v, deg u′u > 1
2
deg c + deg v′u, deg u′u > 1

2
deg c + deg bv′v. Hence

deg αβ = deg u′u = deg u′ + deg u = deg α + deg β.
In case 2 we similarly have deg αβ = 1

2
deg c+deg u′v = deg u′+

(
1
2
deg c+

deg v
)

= deg α + deg β.
Case 3 is equivalent to case 2. One just has to replace u′ by u, u by u′,

v′ by v and v by v′.
In case 4 we have deg αβ = deg cv′v = (1

2
deg c + deg v′) + (1

2
deg c +

deg v) = deg α + deg β. �

The existence of this degree function allows us to solve the equation u2 +
buv + cv2 = d, since it is equivalent to (u + ∆v)(u + (b + ∆)v) = d and
therefore the degrees of u and v (which are non-negative) are bounded by
the degree of d.
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Now we shell give a solutions in the second case. and show that there are
also a finite number of them.

Suppose that there exists a solution of (9) such that degu > 1
2
degd or

degv > 1
2
(degd−degc). In this case degree of d is not maximal, hence among

u2, buv, cv there are terms of the same degree. We show that if degrees of
two of them are coincide then the third has also the same degree. It is easy
calculations in three possible cases using degc = 2degb. Hence the highest
terms of u2, buv and cv are cancelled and u2

0 + b0u0v0 + c0v
2
0 = 0 holds for

u0, v0, b0, c0 ∈ F – coefficients near the highest terms of polynomials u, v, b, c.
But it means that the equation b2

0t
2 + b2

0t + c0 = 0 is solvable: t = u0/v0b0.
Therefore we have a bound for the degrees of u, v also in this case.

We will use later on the following denotation:

rA,B = min
U∈GL (2):UAU−1=B

degU.

In both variants of the imaginary case we get the following linear estima-
tion.

Proposition 4.2 An estimation for the degree of elements of the conjugat-
ing matrix in imaginary case is linear: rA,B ≤ 2δ, where as earlier δ is a
maximum of deg(A) and deg(B).

Proof. To obtain the estimation we have to take into account that before
we turn out to be in real or imaginary case we have to make a change of
variables of the type {

u′ = u + qv,
v′ = v

where degq ≤ 1
2
degc.

Then in imaginary case of type I (proposition 3.3) we estimate degrees of
u′ and v′ from the equality (u′ + ∆v′)(u′ + (b + ∆)v′) = d using introduced
above degree function Deg on R. We get degu′ ≤ δ/2, degv′ ≤ δ/2 and
degu ≤ δ, degv ≤ δ.

In imaginary case of type III (proposition 3.3) as was shown above we
have bounds: degu ≤ 1

2
degd or degv ≤ 1

2
(degd−degc). Hence, also degu ≤ δ

and degv ≤ δ.
Now taking into account (6) we have an estimation for the degree of

entries of conjugating matrix: rA,B ≤ 2δ. �
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5 Real case

5.1 Units (equation u2 + buv + cv2 = 1)

We start in real case (deg c < 2deg b) with the solution of our equation with
d = 1:

u2 + buv + cv2 = 1. (10)

If (u, v) is a solution of our equation we say also that ω = u + ∆v ∈ R
is a solution. Denote by U(R) the set of all solutions ω ∈ R of the equation
(10), U(R) becomes a group with the multiplication by that of R.
Definition. We say that p ∈ R is reduced if deg p > 0 and deg p′ < 0,
where p′ is the conjugate element (defined in section 3).

Theorem 5.1 The set U(R) of solutions of (10) is an infinite cyclic group.
The generator of U(R) is an element with minimal positive degree. Moreover
R∗ = U(R) × F∗, where R∗ is the group of units of R.

Proof. Show first that R∗ = U(R) × F∗. The equation (10) means that
N(ω) = 1, hence lemma 3.1 c). and d). implies that U(R) is a subgroup of
R∗. Let ω ∈ R∗. According to lemma 3.2 N(ω) ∈ F∗. Since F is finite field of
characteristic 2 there exists a unique α ∈ F∗ such that N(ω) = α2. Therefore
N(ω/α) = 1, i.e. ω/α ∈ U(R) and α is uniquely determined.

Now we prove that U(R) is an infinite cyclic group and its generator is
an element with minimal positive degree.

Lemma 5.2 If ǫ ∈ R∗ and |ǫ| = 1, than ǫ is a nonzero constant.

Proof. According to lemma 3.2 |N(ǫ)| = 1. Hence |ǫ′| = 1 follows from
|N(ǫ)| = |ǫǫ′| = |ǫ||ǫ′| = 1. Comparing the corresponding power series we
can see that |ǫ| = 1 and |ǫ′| = 1 together imply that bv ∈ F. Hence there are
three possibilities: b = 0; v = 0; or b, v ∈ F∗. The case b = 0 was considered
in section 3, v = 0 means that ǫ is a polynomial but it was a unit, so it is
actually a constant. From b ∈ F∗ and v ∈ F∗ it follows that c = 0 (since
deg c < 2deg b) and we are in the case when the equation is factorizable over
F[x], which again was considered in section 3. �

Lemma 5.3 If ǫ1 and ǫ2 are units and |ǫ1| = |ǫ2|, than ǫ1 and ǫ2 coincide
up to a constant: ǫ1 = αǫ2, α ∈ F∗.
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Proof. Obviously ǫ1
ǫ2

is also a unit and | ǫ1
ǫ2
| = |ǫ1|

|ǫ2| = 1, hence by lemma 5.2
ǫ1
ǫ2

∈ F∗. �

Let ǫ0 be the unit with minimal valuation |ǫ| > 1 (with minimal positive
degree).

Lemma 5.4 Any unit ǫ ∈ R∗ has the form ǫ = αǫn
0 , α ∈ F∗

Proof. Suppose that it is not true. There exists n ∈ N such that |ǫ0|n <
|ǫ| < |ǫ0|n+1. The equality is impossible, because if |ǫ| = |ǫ0|n than by lemma
5.3 ǫ = αǫn

0 . We then multiply previous inequalities by |ǫ0|−n and get a
contradiction with minimality of |ǫ0|: 1 < |ǫ−n

0 ǫ| < |ǫ0|. �

By this the proof of the theorem is completed.
�

We find the generator of U(R) in two steps. First, we construct some
nontrivial element of U(R).

Let us denote by [A0; A1, A2, ...] where (Ai ∈ F[x]) the continued fraction
expansion A0+

1
A1+

1

A2+...

. We shall say that this expansion is purely periodical

if the periodicity of the sequence A0; A1, A2, ... starts from A0.

Theorem 5.5 Let ρ ∈ R be a reduced root of (8). Then the continued frac-
tion expansion ρ = [A0; A1, A2, ...] (Ai ∈ F[x]) is purely periodical with a
period T ≤ q2m, where q = |F|, m = deg b.

Proof. One can present the series ρn = [An; An+1, ...] which appears in the
process of construction of a continued fraction, as obtained by operations
ϕ1 : ρ → u + ρ (cutting a polynomial part of the series) and ϕ2 : ρ → 1/ρ
(taking an inverse).

It is easy to see that ϕ1 and ϕ2 act on the set U = {solutions of the
equations ãx2 + bx + c̃ = 0 |deg c̃ < deg b, deg ã < deg b}.

Indeed, let x ∈ U , y = ϕ1(x) = x + u, where u ∈ F[x], deg y < 0. Since
ãx2 + bx + c̃ = 0, we have that ãy2 + by + c′ = 0, where c′ = au2 + bu + c̃.
From the latter equation c′ = ãy2 + by, and deg y < 0. Hence for the degree
of c′ we have deg c′ < deg (ãy + b) ≤ deg b, therefore y ∈ U .

Let now x ∈ U and y = ϕ2(x) = 1/x. Since ãx2 + bx + c̃ = 0, we have
that c̃y2 + by + ã = 0, therefore y ∈ U . Thus ϕ1(x) and ϕ2(x) acts on U .

Hence the number of steps to obtain the same ρ is less then |U| = 2q2m,
where m = deg b, q — number of elements of the field.
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Put now U+ = {x ∈ U , deg x ≥ 0}. Note that ρn+1 = ϕ2ϕ1(ρn). Purely
periodicity follows from the fact that ϕ2ϕ1 is a permutation of U+. Indeed,
ϕ2ϕ1(ρn) acts on U+ and it can be easily checked that it is an injection.

The estimation T < q2m follows from the equality |U+| = q2m.
�

For n = T we have ρ = ρT , and

ρ =
Pnρ + Pn−1

Qnρ + Qn−1
,

where

Pn+1 = PnAn + Pn−1, P0 = 1, P1 = A0 (11)

Qn+1 = QnAn + Qn−1, Q0 = 0, Q1 = 1 (12)

This means that ρ satisfies the quadratic equation Qnρ2 +(Pn +Qn−1)ρ+
Pn−1 = 0. Since ρ satisfies also the equation ρ2 + bρ + c = 0 and the
latter equation does not have solutions in rational functions (this case was
considered separately in the section 3), these two equations are proportional.
Denote the coefficient of proportionality by V . Then Qn = V , Pn−1 = cV ,
Pn + Qn−1 = bV . Denote Pn = U . From the known equation PnQn−1 +
QnPn−1 = 1 we obtain that ǫ = U + ∆V = PT + ∆QT is a solution of the
equation (10).

Lemma 5.6 When we live in the real case (deg c < 2deg b), there exists an
invertible linear change of variables which turns the equation u2+buv+cv2 =
d into u2 + buv + c̃v2 = d with deg c̃ < deg b.

Proof. We have u2 + buv + cv2 = d, deg b ≤ deg c < 2deg b. Let us divide c
by b: c = bq + r, deg r < deg b and consider the change of variables:

{
u′ = u + qv,
v′ = v

New equation is: u2 + buv + (q2 + r)v2 = d. Denote c̃ = q2 + r. Note that
deg c̃ < deg c. Indeed, deg r < deg b ≤ deg c and deg q = deg c − deg b, hence
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deg q2 = 2deg c−2deg b < deg c, this means that we can keep making changes
of variables of such a type until we get deg b > deg c̃. �

Note that the composition of changes of variables of the type u′ = Qu, v′ =
v, with deg Q ≤ α has the same form.

In proposition 3.3 III we proved that the case deg c < 2deg b is real by the
construction of the root ∆ of the equation (8) as a power series. It follows
from this construction that in the case deg c < deg b one of the roots of our
equation is reduced. Hence we have obtained the following lemma.

Lemma 5.7 If deg c < deg b then the element ∆ + b is reduced and ǫ =
PT + ∆QT is a nontrivial element of the group U(R), where T is the period
of the continued fraction expansion of ∆ + b.

Lemma 5.8 The estimation for the degree of this element ǫ of the group
U(R) is the following: deg ǫ ≤ δq2δ.

Proof. We have to estimate first degu′ = degPT and degv′ = degQT . Here
u′ and v′ are the same as at the proof of proposition 4.2. Recall that ρ =
[A0; A1, A2, ...] is a continued fraction expansion of the reduced root of (8).
Note that degAn ≤ degb. Indeed, it is a positive part of an element ρn =
[An; An+1, ...] ∈ U (U is the set constructed above in the proof of 5.5) and
degρn = degb − degc̃ ≤ degb. From the recurrent formulas (11) and (12) for
Pn and Qn it follows that degu′ ≤ degb T ≤ δq2δ and degv′ ≤ degb (T − 1) ≤
δ(q2δ−1). Then we get estimations for degu, degv and degǫ = deg(u+∆v) ≤
δq2δ. �

Now we have to construct the generator of U(R), from a nontrivial element
of U(R), we just have found using the continued fraction expansion.

Lemma 5.9 Let ǫ0 = x0 + ∆y0 be any generator of the group U(R). Then
y0 = g.c.d.(Y ), where Y = {y : x + ∆y ∈ U(R)}.

Proof. Let ω ∈ U(R), ω = x+∆y, ωn = xn +∆yn. It is enough to check the
following recursive formula: yn+2 = yn + byyn+1. �

Hence we can just consider all divisors yi of y where ǫ = x + ∆y is an
element of U(R), we have constructed. Then find xi, such that x2

i + bxiyi +
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cy2
i = 1, for those yi for which it is possible. From the constructed in this

way finite set of ǫi ∈ U(R) we select those with minimal positive degree.
This is the desired ǫ0.

We can summarize the results of this section in the following

Proposition 5.10 The group U(R) is an infinite cyclic group and there ex-
ists an algorithm for constructing of its generator.

5.2 General case d 6= 1

Now we consider a general equation (9): u2 + buv + cv2 = d, d 6= 1.
Let ǫ0 be the generator of the group U(R) with a positive degree. Denote

k = deg ǫ0.

Lemma 5.11 The set of all solutions of (9) has the form {ωǫl
0 : l ∈ Z, ω is

a solution of (9) with deg ω = 0, . . . , k − 1}.

Proof. If ω is an arbitrary solution of (9): N(u, v) = u2 + buv + cv2 = d,
then any ωǫl

0, l ∈ Z is also a solution (lemma 3.1 c). Hence we can rewrite
the set of solutions of (9) in the following way: {ωǫl

0 : l ∈ Z, ω is a solution
of (9) with deg ω = 0, 1, ..., k − 1}. �

Theorem 5.12 Let ω = u+∆v be a solution of (9) with deg ω = 0, . . . , k−1.
Then deg v ≤ max{deg d, k} − deg b.

Proof. As we said at the beginning of the section 5.1 ω = u + ∆v is a
solution of (9) means that (u, v) is a solution of (9), i.e. N(ω) = ωω′ = d.
On the other hand ωω′ = ω2+bωv. Hence the solution ω satisfies the equation

ω2 + (bv)ω + d = 0. (13)

Let us consider two cases:
Case 1. deg bv ≤ deg d,
For this case deg v ≤ deg d − deg b.

Case 2. deg bv > deg d,
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Here a priori there exist three possibilities for the degrees of terms in the
equation.

a). deg ω2 = deg d. This is impossible because it implies deg bv >
deg ω2 = deg d and the highest term (bv)ω can not be cancelled.

b). deg ω2 = deg bvω. It means that deg ω = deg bv. Since we are
interested in the solutions ω with deg ω ≤ k−1, we have deg bv ≤ k−1, and
deg v ≤ k − 1 − deg b. This proves the theorem in this case.

c). deg bvω = deg d. Hence deg ω < 0. Which is incompatible with the
hypothesis.

We can conclude that for any solutions ω of (9) we have deg v ≤ max(deg d−
deg b, k − 1 − deg b).
�

According to the theorem 5.12 we can find all solutions of (9) by a finite
procedure.

The last step is to choose from the set of solutions ωǫl
0 = ul + ∆vl those

for which b21 is a divisor of ul, and a21 is a divisor of both (a11 + b11)ul + b12vl

and b12ul + (a11 + b22)vl. It is possible to describe all such solutions due to
the following fact.

Lemma 5.13 Let ωǫl
0 = ul +∆vl, P be a polynomial and rl, deg rl < deg P ,

be the sequence of residues of P1ul + P2vl for some polynomials P1, P2 with
respect to P . Then this sequence is periodical: rl+T0

= rl for some period T0.
The estimation for the period is the following: T0 ≤ qdegP .

Proof. It is enough to show the periodicity of residues of xn and yn, where
ǫ0 = x+∆y, ǫn

0 = xn+∆yn. Let res(Q, P ) denote the residue of Q with respect
to P . It is clear that res(Q(xn, yn), P ) = resQ(res(xn, P ), res(yn, P )). We will
show that res(xn, P ) and res(yn, P ) are periodical with the period T0. Then
periodicity of xn and yn will follow, because ωǫn

0 = u0xn + cv0yn + ∆(u0yn +
v0xn+bv0yn), where ω = u0+∆v0. Let rn = res(yn, P ), sn = res(xn, P ). Just
from (xn + ∆yn)(x + ∆y) = xn+1 + ∆yn+1, we have the following recurrent
formulas:

xn+1 = xnx + cyny, yn+1 = xny + ynx + byny.

We shell consider the sequence of pairs of the residues: (rn, sn). It is recurrent
of length one since

sn+1 = res(snx + crny), rn+1 = res(sny + rnx + brny).
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This sequence belongs to the finite set M2 of pairs of polynomials of degree
< degP , hence it is periodical with a period T0 ≤ qdegP . �

As a corollary we see that the estimation for the period T0 in our situation
is the following: T0 ≤ q2δ, where δ is a maximum of degrees of entries of initial
matrices.

Summarizing above statements of lemma 5.11, theorem 5.12 and lemma
5.13 we end up with a construction of the set S̃A,B which describes the set
of all conjugating matrices for the pair A, B.

S̃A,B = {ωǫl+nT0

0 |deg ω = 0, ..., k − 1, l = 0, . . . T0 − 1,

b21

∣∣∣ul; a21

∣∣∣(a11 + b11)ul + b12vl; and a21

∣∣∣b12ul + (a11 + b22)vl}.

For any element ω ∈ S̃A,B one can obtain a conjugating matrix

U =

(
u p
v q

)
,

where ω = u + ∆v and p, q found from (6).

Moreover from S̃A,B we can also choose a finite subset which characterize
the conjugacy of matrices A and B.

Corollary. Put

SA,B = {ωǫl
0|deg ω = 0, ..., k − 1, l = 0, . . . T0 − 1,

b21

∣∣∣ul; a21

∣∣∣(a11 + b11)ul + b12vl; and a21

∣∣∣b12ul + (a11 + b22)vl}.

then SA,B 6= ∅ ⇐⇒ A is conjugate with B.

Proposition 5.14 The estimation for the degree rA,B of the entries of con-
jugating matrix in real case is the following: rA,B ≤ 2δq6δ.

Proof. We will estimate first degree of the solution ω̃ = ωǫl
0 where degω ≤

k − 1, l ≤ T0 − 1.
Let ωǫl

0 = ul +∆vl, T0 = l.c.m(T1, T2, T3), where T1, T2 and T3 are periods
of the residues (as they defined in lemma 5.13) of sequences ul, (a11 +b11)ul +
b12vl and b12ul + (a11 + b22)vl relative to b12, a21 and a21 respectively. Using
proposition 5.13 we can estimate l.c.m(T2, T3) by q2dega21 , T1 by q2degb12 , hence
T0 ≤ q4δ. Then degω̃ = degωǫl

0 ≤ δq6δ − 1. Using the equation (13) we can
obtain: degu ≤ δq6δ + δ − 1 and degv ≤ δq6δ + δ. (Note that in real case it
is impossible that δ = 0.) �
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Combining together all estimations obtained above separately in the fol-
lowing cases: when one of the matrices is diagonal, b = 0, ∆ ∈ F(x), real
case and imaginary case, we get the estimation for the degree of conjugating
matrix in case of char = 2 : rA,B ≤ δ(q6δ + 2).

6 Note on the case of characteristic 6= 2

The case of positive characteristic 6= 2 was considered in Artin’s paper [1].
We will obtain here only an estimations which comes not always from the
procedure described in [1]. We also have to make precise here the reduction
of the conjugacy problem to a quadratic equation in this case.

Let charF 6= 2. The conjugating condition UAU−1 = B for U ∈ GL (2, F[x])
is equivalent to the system

uq − pv ∈ F∗

UA = BU

where U =

(
u p
v q

)
, F∗ = F\{0} is the multiplicative group of the field F.

To check the solvability of the system for an arbitrary coefficient α ∈ F∗

we need to check it only in two cases: α = 1 and α is an element of F∗ which
is not a square. (Other solutions can be obtained from them because α/β is
a square if α and β are not.) We will obtain then a quadratic equation of
the type u2 + buv + v2 = d in the similar way as earlier, and since char 6= 2
we are able to reduce it to the Pell’s equation: u2 − cv2 = d.

So we can use here the conventional notions of real and imaginary case
and usual rule to distinguish them:

Proposition 6.1

I. If deg c is odd or deg c is even but the highest term of polynomial c : cn

is not a square, then we are in the imaginary case.

II. If deg c is even and cn is a square then we are in the real case.

To obtain the estimations in these cases we will treat them separately.
In the imaginary case the highest terms of c is not a square of a monomial

(with coefficient). If we suppose that there exists a solution with deg u2 >
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deg d or deg cv2 > deg d then the highest terms of u2 and cv2 have to be
cancelled, but it would mean that highest term of c is a square of a monomial
(with a coefficient). Hence for any solution degu < 1

2
degd and degv <

1
2
(degd − degc). And we have got the following estimation.

Theorem 6.2 In the imaginary case always there exist only a finite number
of solutions, and estimation for the degree of entries of conjugating matrix is
linear: rA,B ≤ 2δ, where δ is a maximum of deg(A) and deg(B).

Now consider the real case. In Artin’s paper it was proved (in case of
char 6= 2) that there exists a reduced root ρ (the root with degρ > 0 and
degρ′ < 0 for the conventional definition of ρ′) of the equation t2 + bt+ c = 0
and the continued fraction expansion of this reduced root is purely periodical.
Also he proved that if continued fraction expansion is purely periodical then
some unit can be constructed. He does not give an estimation of the period.
We get it here now by methods similar to those we have used above, with only
few essential changes. Namely, we present the process of continued fraction
construction via an actions on the finite set. The set U we have to take to
deal with the case char 6= 2 is different from one appeared in the proof of
the Theorem 5.11. Estimation for the size of this set gives an estimation of
the period.

Lemma 6.3 Let ρ ∈ R be a reduced root of the equation at2 + bt + c = 0
with the condition: deg a ≤ δ, deg b ≤ δ and deg c ≤ δ, where δ is as earlier
a maximum of degrees of elements of initial matrices A and B. Then the
continued fraction expansion ρ = [A0; A1, A2, ...] (Ai ∈ F[x]) is periodical
with a the period T ≤ q3δ.

Proof. One can present the series ρn = [An; An+1, ...] which appears in the
process of construction of a continued fraction expansion, as obtained by
the operations ϕ1 : ρ → ρ − p (cutting a polynomial part of the series) and
ϕ2 : ρ → 1/ρ (taking an inverse).

We show that ϕ1 and ϕ2 act on the set Ur of reduced roots of the following
equations: Ur = {reduced roots of the equations at2 + bt + c = 0 | deg a ≤
δ, deg b ≤ δ, deg c ≤ δ}. But the root can be reduced only if degb−dega < 0
and degc − degb < 0 hence in fact Ur = {reduced roots of the equations
at2 + bt+ c = 0 | deg a < δ, deg b ≤ δ, deg c < δ}. It is known ([1]) that if
in the process of continued fraction expansion we get reduced root ρn, then
all ρn+k for k ∈ Z will be also reduced roots.
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Hence we have to show only that if we take ρ ∈ Ur, then ϕ1(ρ) and
ϕ2(ρ) ∈ U , here U = {solutions of the equations at2 + bt + c = 0 | deg a ≤
δ, deg b ≤ δ, deg c ≤ δ}.

It is obvious for ϕ2. Let ρ ∈ U and y = ϕ2(ρ) = 1/ρ. Since aρ2+bρ+c = 0,
we have cy2 + by + a = 0 and y ∈ U .

To prove the same property for ϕ1 find first how the equation changes. If
ϕ1(ρ) = ρ− p = y then for y we have: ay2 + (2ap + b)y + (ap2 + bp + c) = 0.
A priori there are three possibilities: 1). deg aρ2 = deg c > deg bρ; 2).
deg aρ2 = deg bρ > deg c; 3). deg bρ = deg c > deg aρ2, but only the second
one could actually exist. In this case deg (2ap + b) = deg b and deg (ap2 +
bp + c) ≤ δ. The latter follows from ap2 + bp + c = a(ρ− y)2 + b(ρ− y)+ c =
aρ2 + bρ + c + 2aρy − by + ay2 and deg y < 0. Hence we have the equation
on y of the same type and y ∈ U .

Notice that the highest terms of b (middle coefficient) are the same for
all elements of Ur. Hence we can estimate the number of elements of Ur as
follows: |Ur| ≤ q3δ. It is an estimation for the period of continued fraction
expansion. �

Now we shall obtain the final estimation of rA,B in the case of char 6= 2
based on the estimation of the period.

Theorem 6.4 In the real case the estimation for the degree of entries of the
conjugating matrix is the following: rA,B ≤ (q+1)δq7δ, where δ is a maximum
of deg(A) and deg(B).

Proof. First we consider the root ∆ of the equation t2 = c. We can
construct it as a power series by usual recursive procedure. It is not a reduced
root, since here deg∆ = deg∆′. Note that it is different from the case of
char = 2 where one of two roots of the initial equation had to be reduced.
But in process of the construction of the continues fraction expansion of ∆ =
[A0; A1, ...] in some step ∆n = [An; An+1, ...] the reduced root have to appear
([1]). For this root ρ = ∆n0

we will have ρ = Pnρ+Pn−1

Qnρ+Qn−1
. Let ρ satisfy the

equation: Aρ2 +Bρ+C = 0. Then from the proportionality of two quadratic
equations (which can not have a rational solutions) for the reduced root, we
get a formulas for nontrivial unit X+∆Y : Pn+Qn−1 = 2X, Pn−Qn−1 = 2Y b,
where n = T , T is a period of the continued fraction expansion of ρ. Hence
we can estimate degrees of X and Y as degX ≤ degB T , degY ≤ degB T .
Let us convince that degB ≤ δ and T ≤ q3δ+1, for δ being as earlier maximal
degree of entries of given matrices. It will follow from lemma 6.3. But we have
to note the following: if we start the process of continued fraction expansion
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with ∆, the root of t2 = c, degc ≤ 2δ, then already at the first step, we get
an equation ∆2

1−2p∆1−c+p2 = 0 with deg(c−p2) ≤ δ, deg(2p) ≤ δ. At the
next steps degrees of the coefficients of the equations can not become bigger
any more.

Hence we can estimate degX and degY by δq3δ+1. If we take into account
the change of variables, we get δq3δ+1 + δ.

Then the estimation for k = deg ǫ0, ǫ0 = X +∆Y will be: k ≤ δq3δ+1 +2δ.
Let ωǫl

0 = ul +∆vl, T0 = l.c.m(T1, T2, T3), where T1, T2 and T3 are periods
of the residues (as they defined in lemma 5.13) of sequences ul, (a11 +b11)ul +
b12vl and b12ul +(a11 + b22)vl relative to b12, a21, and a21 respectively. By the
estimation from the proposition 5.13 we have T0 ≤ q4δ.

Consider an arbitrary root of u2 + cv2 = d : ω̃ = ωǫl
0 = u + ∆v of

degree ≤ k − 1. Estimate first degω̃ as a series. After checking divisibility
we get: degω̃ = ωǫl

0 ≤ k − 1 + k(T0 − 1) = kT0 − 1 = δq7δ+1 + 2δq4δ.
Now using this estimation we can get the estimation for u, v, it gives us
rA,B ≤ δq7δ+1 + 2δq4δ + δ. Since q ≤ 3 we can estimate the latter as follows:
rA,B ≤ (q + 1)δq7δ. �.

Let us note that using the same idea we can get an estimation for the
degree of the generator of an infinite part of centralizer of a given matrix A.
We omit here details, they are similar but easier then those were discussed
above. The resulting estimation presented in the Theorem 1.3.

7 Conjugacy separability of GL (2, F[x])

In this section we would like to note that GL (2, F[x]) is conjugacy separable
group, but it does not immediately lead to any algorithm which decides con-
jugacy in GL (2, F[x]), because it is not finitely generated (see for example
[7]) and the finite images together with the homomorphisms onto them can
not be constructed. We mean here Maltsev’s algorithm [8] for the decision
of the conjugacy problem for finitely presented conjugacy separable groups.
Note moreover that Maltsev’s algorithm does not allow to give any estima-
tions. To be precise let us show here the conjugacy separability of the group
GL (2, F[x]).

Proposition 7.1 GL (2, F[x]) is conjugacy separable group.

Proof. It is known due to Serre [7] and Nagao [6] that GL (2, F[x]) =
T (F[x]) ×T (F) GL (2, F) is an amalgamated free product of subgroup of up-
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per triangular matrices T (F[x]) and GL (2, F) through the upper triangular
matrices over F.

There exists the result of J.L.Dyer [5] saying that conjugacy separable
groups amalgamating along the finite subgroup is conjugacy separable.

We have only to verify that the subgroup T (F[x]) of upper triangular
matrices in GL (2, F[x]) is conjugacy separable.

Lemma 7.2 Two elements e1 =

(
α c
0 β

)
, e2 =

(
α′ c′

0 β ′

)
from T (F[x])

are not conjugate if and only if
I. (α, β) 6= (α′, β ′) or
II.(α, β) = (α′, β ′) with α = β, and c, c′ are non-proportional.

Let us show that for any pair e1 6∼ e2, e1, e2 ∈ T (F[x]) we can find normal
subgroup H(e1,e2) ⊳ T (F[x]), such that ē1 6∼ ē2, where ēi is image of ei in the
finite quotient T (F[x])/H(e1,e2).

Note first that subgroups of the type

Hn =

{(
1 a
0 1

)
, a = αxn + . . . , α ∈ F∗

}

are normal in T (F[x]).

Indeed,

(
1 a
0 1

)e

=

(
1 α

β
a

0 1

)
, where e =

(
α d
0 β

)
.

To separate non-conjugate elements of the type I it is enough to take a

subgroup H0. Pick two non-conjugate elements of the type II: h1 =

(
γ c
0 γ

)

and h2 =

(
γ c′

0 γ

)
. Note that

(
γ c
0 γ

)e

=

(
γ c′

0 γ

) (
1 f
0 1

)
if and

only if α
β
c+c′ = γf . Hence if we take H(h1,h2) = Hn with n > max{deg c, deg c′}

then non-conjugates h1 and h2 in the quotient T (F[x])/H(h1,h2) remain non-
conjugate. �
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