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SUMMARY

Chlamydia trachomatis (Ctr) causes a range of infec-
tious diseases and is epidemiologically associated
with cervical and ovarian cancers. To obtain a pano-
ramic view of Ctr-induced signaling, we performed
global phosphoproteomic and transcriptomic ana-
lyses. We identified numerous Ctr phosphoproteins
and Ctr-regulated host phosphoproteins. Bioinfor-
matics analysis revealed that these proteins were
predominantly related to transcription regulation,
cellular growth, proliferation, and cytoskeleton orga-
nization. In silico kinase substrate motif analysis
revealed that MAPK and CDK were the most
overrepresented upstream kinases for upregulated
phosphosites. Several of the regulated host phos-
phoproteins were transcription factors, including
ETS1 and ERF, that are downstream targets of
MAPK. Functional analysis of phosphoproteome
and transcriptome data confirmed their involvement
in epithelial-to-mesenchymal transition (EMT), a
phenotype that was validated in infected cells, along
with the essential role of ERK1/2, ETS1, and ERF
for Ctr replication. Our data reveal the extent of
Ctr-induced signaling and provide insights into its
pro-carcinogenic potential.
INTRODUCTION

The Gram-negative bacterium Chlamydia trachomatis (Ctr) in-

fects the epithelium of the genital tract, causing, for example,

cervicitis, pelvic inflammatory disease, and scarring, with impact

on fertility. Infections frequently remain asymptomatic and

become chronic. Chlamydia is a strong risk factor for the devel-

opment of cervical and ovarian cancers, either independently or

as a co-factor with human papillomavirus (HPV) infections (Kos-

kela et al., 2000; Shanmughapriya et al., 2012; Zhu et al., 2016).

Due to the lack of physiologically relevant infection models, illu-
1286 Cell Reports 26, 1286–1302, January 29, 2019 ª 2019 The Auth
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minating the underlying mechanisms or even the natural prog-

ress of the infection in its different host tissues has remained

challenging.

As an obligate intracellular bacterium, Ctr has evolved the

means for manipulating host cell pathways by altering gene

expression and protein stability at the transcriptional, transla-

tional, and post-translational levels to ensure that its replicative

niche remains alive until the completion of the life cycle (Chum-

duri et al., 2016; Elwell et al., 2016; Olive et al., 2014). Ctr estab-

lishes infection by translocating effectors into host cells, thereby

triggering cytoskeletal rearrangements and signaling. Upon host

cell entry, its effector protein translocated actin-recruiting phos-

phoprotein (Tarp) is rapidly tyrosine phosphorylated to interact

with SH2 domains of human proteins, including the adaptor pro-

tein SRC homology 2 domain-containing transforming protein

C1 (SHC1), to activate pro-survival extracellular signal-regulated

kinase (ERK) signaling (Mehlitz et al., 2010). During the mid- to

late stages of infection, the activation of ERK occurs indepen-

dently of RAS-rapidly accelerated fibrosarcoma (RAF) and plays

an essential role in bacterial nutrient acquisition, synthesis of

inflammatory cytokines, and expression of anti-apoptotic factors

(Gurumurthy et al., 2010; Rajalingam et al., 2008; Su et al., 2004).

Furthermore, other mitogenic mitogen-activated protein kinase

(MAPK) signaling pathways, involving p38 and JNK, are acti-

vated by post-translational modifications, leading to an activa-

tion of activator protein-1 (AP1)-dependent transcription, which

is essential for Ctr development (Buchholz and Stephens,

2007; Chen et al., 2010; Olive et al., 2014). Ctr also suppresses

the key DNA damage response ataxia-telangiectasia mutated

(ATM) protein (Chumduri et al., 2013; González et al., 2014), while

degradation of p53 via the Ak strain transforming-mouse double

minute 2 homolog (AKT-MDM2) signaling axis induces host

metabolism alterations that resemble the Warburg effect seen

in cancers (Ojcius et al., 1998; Rother et al., 2018; Siegl et al.,

2014). In addition, Ctr alters global histone post-translational

modifications, which can influence various cellular signals that

are essential for the maintenance of genome integrity (Chumduri

et al., 2013). Despite this, we know little about the complex

multifactorial nature of Ctr-induced host cellular signaling.

Many signaling events are modulated predominantly by protein

phosphorylation. Determining which residues of particular
ors.
commons.org/licenses/by/4.0/).
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proteins are phosphorylated and to what extent would enable

us to reveal which kinases are activated following Ctr infection.

Here, we used an integrated phosphoproteomics and

transcriptomics analysis approach to comprehensively map

signaling pathways modulated by Ctr and to reveal the

complexity of the Ctr-induced signaling. Using stable isotope la-

beling with amino acids in cell culture (SILAC) and phosphopep-

tide enrichment coupled to tandem mass spectrometry (MS/

MS), we identified 2,529 distinct phosphorylation sites that are

regulated in response to Ctr infection. Most of these were not

previously shown to be Ctr responsive. Bioinformatics analysis

revealed that these proteins were predominantly related to

transcription regulation, cellular growth, proliferation, and cyto-

skeleton organization. In silico identification of upstream kinases

suggested that MAPK and cyclin-dependent kinase (CDK) were

the most overrepresented upstream kinases for upregulated

phosphosites, while protein kinase A, G, and C families (AGC)

and calmodulin/calcium-regulated kinase (CAMK) were the

most overrepresented for the downregulated phosphosites.

Notably, several of the MAPK substrates were found to

be transcription factors (TFs), including fos-related antigen 1

(FRA1), ETS2 repressor factor (ERF), and proto-oncogenic

transcription factor ETS1, which are implicated in epithelial-

to-mesenchymal transition (EMT)-associated gene regulation.

In line with this, global analysis of the Ctr-regulated transcrip-

tome revealed an enrichment of EMT as one of the top five upre-

gulated hallmark signatures, several of which we identified as

targets of FRA1, ERF, and ETS1. These bioinformatics-based

predictions were functionally tested to confirm the MAPK-medi-

ated ETS1 and ERF transcriptional regulation and demonstrated

their role in EMT. We independently corroborated that Ctr-in-

fected cells exhibit other hallmarks of EMT, such as decreased

E-cadherin, increased N-cadherin, and expression of SNAIL1.

We also observed the disruption of epithelial integrity by Ctr,

as evidenced by the remodeling of human primary ectocervical

cell-derived three-dimensional (3D) raft cultures. The compre-
Figure 1. Ctr Infection Leads to Global Alterations in Host Cell Phosph

(A) Uninfected orCtr-infected cells for 32 hwere collected separately ormixed at a

2 and histone 4 were used as loading controls for cytoplasmic and nuclear fractio

marker. Lysates from each fraction were analyzed for phosphorylation status us

photyrosine (pY) antibodies.

(B) Cells were either uninfected or persistently infected with Ctr, and protein ly

immunoblot analysis using pS, pT, and pY antibodies. HSP60 and b-actin antibo

(A and B) M represents the molecular weight marker represented in kDa. Data ar

(C) Schematic representation of global phosphoproteome analysis upon Ctr infec

to liquid chromatography�tandem mass spectrometry (LC-MS/MS) to quantita

labeled: 13C6
15N2 L-lysine/13C6

15N4 L-arginine) and Ctr-infected (light labeled: L-ly

nuclear fraction protein lysates were prepared. Proteins were enzymatically dige

global proteome or phosphopeptide enrichment using TiO2 columns for global p

relative amount of each peptide analyzed by MaxQuant software.

(D and E) Volcano plot representing global phosphoproteome dataset from (D) nuc

and p value (y axis). The cutoff of ±0.5 log2 FC (dashed vertical lines) and 0.05

depending on phosphorylated residues colored as labeled.

(F) A total of 17,917 unique phosphopeptides with 2,529 regulated (±0.5 log2 FC

Using MaxQuant software, 12,863 class I phosphorylation sites were defined by a

2,327 regulated (±0.5 log2 FC) upon Ctr infection.

(G) Phosphosite distribution on S/T/Y phosphorylation residues is represented in

(H) Differentially regulated class I phosphorylation sites with ±0.5 log2 FC in Ctr-

See also Figure S1.
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hensive picture of Ctr-induced host cell signaling emerging

from these studies thus provides important clues to the mecha-

nisms underlying its pathogenesis and will serve as an important

resource for future studies in this direction.

RESULTS

Ctr-Responsive Global Host Phosphoproteome
To obtain a global picture of Ctr-induced cell signaling, we first

investigated the phosphoproteome by western blot analysis of

the phosphorylation status of tyrosine (pY), threonine (pT), and

serine (pS) amino acid residues on proteins from the cytoplasmic

andnuclear fractions ofCtr-infected and -uninfected cells, aswell

as an equal mix of lysates from both. The results indicate exten-

sive phosphorylation changes during acute and persistent infec-

tion (Figures 1A and 1B). To quantify the relative fold changes of

specific phosphorylation sites, we performed SILAC (Ong et al.,

2002) and phosphopeptide enrichment (Rappsilber et al., 2007)

coupled to MS/MS-based quantitative phosphoproteomics.

To enable comparative analysis, uninfected control End1/E6E7

cells were stable isotope labeled with medium containing
13C6

15N2 L-lysine/13C6
15N4 L-arginine toconstruct a heavy isotope

control phosphoproteome, while cells destined for infection were

cultured in light medium to construct a Ctr-infected, light phos-

phoproteome (Figure 1C). Following 32 h of infection with Ctr,

the light cells were mixed with heavy, uninfected cells at an equal

ratio before collecting the enriched phosphopeptides from the

total and nuclear fractions to distinguish proteins from heavy

and light cells by MS. Peptide scoring, protein identification,

and quantification were performed using MaxQuant software

(Cox and Mann, 2008). Correlation analysis using the log2 trans-

formed fold changevalues from twobiological replicates revealed

a high Pearson’s correlation coefficient score, confirming the high

quality and reproducibility of the data (Figures S1A and S1B).

From the total and nuclear fractions, we identified 17,917

distinct phosphopeptides that match to 4,564 proteins (Figures
oproteome

1:1 ratio, followed by subcellular fractionation and immunoblot analysis. MEK1/

ns, respectively, and heat shock protein 60 (HSP60) was used as an infection

ing antibodies against phosphoserine (pS), phosphothreonine (pT), and phos-

sates collected every day until 6 days post-infection (p.i.) were subjected to

dies were used for the detection of infection particles and loading control.

e representative of two biological replicates.

tion using stable isotope labeling by amino acids in cell culture (SILAC) coupled

te differentially regulated phosphoproteomes. 32 h p.i., non-infected (heavy

sine/L-arginine) cells were equally mixed from which either total cell extract or

sted into peptides with Lys-C and trypsin followed by LC-MS/MS to measure

hosphoproteome analysis. The ratio of heavy to light peak area accounts for a

lear fraction and (E) total cell extract according to log2 fold change (FC) (x axis)

p value (dashed horizontal line) was applied. Phospho hits are highlighted,

) upon Ctr infection were identified from total cell extract and nuclear fraction.

localization probability of 0.75, which were considered in further filtering, with

graphs for total cell extract and nuclear fraction.

infected cells compared to uninfected cells.
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1D–1F; Table S1). Based on post-translational modification

(PTM) scores obtained from MaxQuant software, we defined

12,863 high confidence class I phosphosites corresponding to

4,251 proteins (with a localization probability of 0.75) (Olsen

et al., 2006). Among these, 2,327 class I phosphosites corre-

sponding to 1,252 proteins were significantly regulated upon

Ctr infection (jlog2 FCj > 0.5 and posterior error probability

[PEP] < 0.05; Figure 1F; Table S1). The relative frequency of

phosphoserine (pS), phosphothreonine (pT), and phosphotyro-

sine (pY) in the total and nuclear fractions (Figure 1G) is consis-

tent with other studies, with a 90:10:0.05 ratio across S/T/Y sites

(Hunter and Sefton, 1980). In the total cell extracts, 1,436 class I

phosphorylation sites were regulated at least jlog2FCj > 0.5

(PEP < 0.05; FC, fold change) in response to infection, 957 of

which were increased, while 479 were decreased. In the

nuclear fraction, this corresponded to 1,383 responsive sites,

597 ofwhichwere increased and786were decreased (Figure 1H;

Table S1).

Characterization of Ctr-Induced Kinase Regulation
Pathway overrepresentation analysis of Ctr-regulated phospho-

proteins revealed that it modulates signaling pathways involved

in a wide range of molecular and cellular functions. The top five

signaling pathways enriched among the upregulated phospho-

proteins from both total cell extract and nuclear fractions of

infected cells using Gene Ontology (GO) term analysis for biolog-

ical processes (GOBP) include regulation of transcription, prolif-

eration, and nucleic acid metabolism. Upregulated phosphopro-

teins in total cell extracts are involved in the regulation of small

GTPase-mediated signal transduction, apoptosis, the stress-

activated protein kinase signaling pathway, and JNK/MAPKKK

cascades. The downregulated phosphoproteins are mainly

involved in pathways associated with cytoskeleton organization,

regulation of protein complex disassembly, cell cycle, chromo-

somal organization, and DNA repair (Figures S2A and S2B;

Table S2). Ingenuity pathway analysis (IPA) of Ctr-regulated

phosphoproteins revealed an overrepresentation of biological

processes related to cancer, the reproductive system, gastroin-

testinal and hepatic diseases, as well as organismal injury and

abnormalities (Figure S2B).

We next carried out in silico assignment of the upstream ki-

nases to each of the regulated phosphosites using the experi-

mentally annotated site-specific kinase-substrate relation ob-
Figure 2. Chlamydia-Responsive Kinome Signaling
(A) Circular plot representing validated biologically relevant phosphorylation sites

upon Ctr infection with at least ±0.5 log2 FC. Different colors correspond to var

phosphorylation site. A cutoff of ±0.5 log2 FC and localization probability R0.75

(B) A Ctr-regulated kinase interactome was generated by integrating kinase-su

protein interactions from STRING of differentially regulated phosphoproteins depi

addedmanually and connected withCtr-regulated phosphorylation sites (dashed

red, respectively. Proteins with more than one site are shown in yellow. Different

(circle), or both (triangle).

(C) Upstream kinase predictions using iGPS analysis for unannotated phosphosite

and nuclear fraction (orange circles) were mapped to the kinome tree.

(D–F) Motif-x tool was used to identify the overrepresentation of linear signaturem

are upregulated in the total cellular fraction (D), nuclear fraction (E), and downregul

centered on each phosphorylation site and extended to 15 amino acids (±7 resid

See also Figure S2.
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tained from the PhosphoSitePlus database (Hornbeck et al.,

2015). Of 2,327 regulated (log2 > 0.5) phosphosites, only 150

sites on 119 proteins were identified to be experimentally anno-

tated in the database. This analysis revealed 31 kinases with at

least one or more substrates, including Akt, CDK, epidermal

growth factor receptor (EGFR), glycogen synthase kinase

(GSK), MAPK, RAF, and Src, (Figure 2A; Table S3), indicating

that an extensive range of kinases is potentially regulated by

Ctr. We also generated the Ctr-regulated kinase interactome

for these predicted kinase-substrate relations using the pro-

tein-protein interaction network information from the STRING

database (Figure 2B; Table S3). This network reveals the pro-

tein-protein interactions between predicted kinases and their

substrates, which is not evident from analyzing the kinase-sub-

strate relations alone.

However, for the majority of the Ctr-regulated phosphosites,

the associated upstream kinase is unknown. We therefore as-

signed the upstream kinase for each of these sites using the

group-based prediction system (GPS) with the interaction filter

(iGPS) (Song et al., 2012) and motif extractor (motif-x) (Schwartz

and Gygi, 2005) bioinformatic tools. The iGPS combines the

consensus substrate motif analysis with protein-protein interac-

tion databases to predict the likelihood that a particular kinase or

kinase family phosphorylates a given phosphorylation site,

whereas motif-x generates potential kinase substrate motifs by

measuring the overrepresented patterns of amino acid se-

quences. Mapping these predicted kinase-substrate relations

onto the human kinome tree revealed an overrepresentation in

both total cell and nuclear fractions of members of the CMGC ki-

nase group (e.g., MAPK, CDK, GSK3, dual specificity tyrosine-

regulated kinase [DYRK], homeodomain-interacting protein ki-

nase [HIPK]), while the nuclear fraction showed enrichment for

CAMK, AGS, and tyrosine kinase-like (TKL) kinases (Figure 2C;

Table S4). Moreover, motif-x analysis revealed overrepresenta-

tion of MAPK and CDKmotifs among the upregulated phosphor-

ylation sites in both total and nuclear fractions (Figures 2D and

2E), while CAMK2, protein kinase A (PKA), and PKC motifs

were enriched among the downregulated phosphosites in the

nuclear fraction (Figure 2F).

Ctr expresses a number of effector proteins that are either

secreted into the host cytoplasm or linked to the inclusion mem-

brane, with one of their domains exposed to the host cytosol.

Moreover, it is widely recognized that the Ctr proteins TARP,
retrieved from the PhosphoSitePlus database that were differentially regulated

ious kinase families that are predicted as upstream regulators of the selected

for total cell extract (gray line) and nuclear fraction (black line) were applied.

bstrate relations retrieved from PhosphoSitePlus and known human protein-

cted in (A) generated using Cytoscape (v3.2.1). Predicted upstream kinases are

lines colored as in A). Up- or downregulated phosphosites are marked green or

shapes correspond to changes in total cell extract (rectangle), nuclear fraction

swithR2 fold change uponCtr infection fromboth total cell extract (red circles)

otifs to predict kinases involved in regulating all of the phosphorylation sites that

ated in the nuclear fraction (F) uponCtr infection with p < 10�6. Sequenceswere

ues).
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translocated early phospho-protein (TepP), inclusion membrane

protein G (IncG), and IncA are phosphorylated by host cell ki-

nases (Carpenter et al., 2017; Claywell et al., 2016; Rockey

et al., 1997). Therefore, we searched for phosphorylatedCtr pro-

teins from the phosphoproteome data of infected cells, revealing

81 Ctr proteins to be phosphorylated, which consist predomi-

nantly of inclusion membrane proteins. To predict the respon-

sible host kinases for the identified Ctr phosphoproteins, we

retrieved kinase-substrate relations from the Human Protein

Reference Database (HPRD) (Figure 3A; Table S5). This analysis

suggests that PKA, PKC, casein kinase 2 (CK2), GSK3, Granta

519 resistant from kidney (GRK), cluster of differentiation 5

(CD5), and ERK1/2, among others, are host kinases that could

regulate Ctr proteins.

Integration of Ctr-Responsive Transcriptome and
Phosphoproteome Identifies EMT Signature
To identify relevant pathways and functions, we mapped

the >2-fold regulated phosphoproteins on known protein-protein

interactions provided by the Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) database (see Method

Details). This analysis revealed five prominent subnetworks.

Among these, MAPK1/3 and EGFR, as well as their interaction

partners, formed the core networks and were connected directly

or indirectly with other modules. The core MAPK1 and MAPK3

interaction network contained five transcription factors—ETS1,

FRA1, ERF, ETS variant 3 (ETV3), and CCAAT enhancer binding

protein beta (CEBPB)—none of which have been functionally

linked to Ctr infections thus far (Figure 3B).

Corroborating these results, GO enrichment of all >2Ctr-regu-

lated phosphoproteins showed that transcriptional regulation

andMAPKKK cascadewere among the top biological processes

mediated by Ctr-regulated phosphoproteins (Figure S2A). To

examine their role in controlling the expression of downstream

target genes, transcriptomic analysis of Ctr-infected cells was

performed. Gene set enrichment analysis (GSEA) of genes differ-

entially expressed during Ctr infections using the Molecular Sig-

natures Database (MsigDB) hallmark gene sets revealed EMT as

one of the top five upregulated signatures besides inflammation,

the tumor necrosis factor-a-nuclear factor kB (TNF-a-NF-kB)

axis, interleukin 6 (IL6)-JAK-Stat3, and Kirsten rat sarcoma 2 viral

oncogene homolog Phenylalanine (KRAS) signaling (Tables S6
Figure 3. Global Phosphoproteome Validation of Selected Hits and Th

(A) The identified phosphorylation sites onCtr proteins (x axis) and host kinases (y

relations retrieved from the Human Protein Reference Database.

(B) A protein-protein interaction network analysis of 2-fold Ctr-regulated phospho

set to six clusters, while the disconnected nodes were removed, resulting in five

(C) Gene set enrichment analysis of Ctr-regulated genes compared with epithe

enrichment of EMT signature genes.

(D and E) Validation of phosphoproteome hits in (D) primary-like HPV E6E7 immor

ectocervical epithelial cells (hCEctos). Cells uninfected or Ctr infected for 32 h w

phosphospecific antibodies, chlamydial HSP60, and b-actin. Data are represent

(F and G) End1/E6E7 cells were transfected with small interfering RNAs (siRNAs) t

(F). These cells were subsequently infected with Ctr for 48 h. Cell lysate was used

means ± SDs of three biological replicates (***p < 0.004, ****p < 0.0001).

(G) Knockdown efficiency was analyzed by qRT-PCR.

(F and G) Data shown as means ± SDs of three biological replicates normalized

See also Figure S3.
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and S7). Consistent with these observations, GSEA of the

Ctr-induced global transcriptome revealed an enrichment of

many genes associated with EMT (Gröger et al., 2012) (Figures

3C and S3A). The transcription factors FRA1, ETS1, and ERF,

which are found to have high confidence interactions with

ERK1/2 in the STRING analysis (Figure 3B, thick lines), have

been implicated in regulating many of the EMT-associated

genes (Plotnik et al., 2014; Rajasekaran et al., 2013). Therefore,

we decided to perform an in-depth analysis of the possible role

of ERK1/2, p-FRA1(S265), p-ETS1(S282), and p-ERF (T526) in

EMT modulation during Ctr infections.

FRA1, ETS1, and ERF Transcription Factors and Their
Targets Are Regulated during Ctr Infection
The regulated phosphosites of the three selected transcription

factors from the global analysis were validated by immunoblot

with phosphospecific antibodies, using endocervical End1/

E6E7 cells (Figures 3D and S3B–S3E). Since this cell line was

immortalized with E6/E7 oncogenes of HPV, we further validated

these hits using healthy human primary ectocervical cells

(hCEctos) derived from HPV� donors to address and distinguish

Ctr-specific effects from those induced in the presence of E6/E7

(Figures 3E and S3F). We confirmed that these transcription fac-

tors are essential for pathogen development (Figures 3F and 3G).

Knockdown of ETS1 and ERF resulted in a significant reduction

in Ctr infectivity compared to small interfering RNAs (siRNAs)

targeting luciferase (siLuci)-treated control cells (Figure 3G), indi-

cating their importance in chlamydial development.

To identify the target genes of FRA1, ETS1, and ERF transcrip-

tion factors that are specifically regulated duringCtr infection, we

generated interaction trees of all of the knowndownstream target

genes of FRA1, ETS1, and ERF using IPA. All of the genes differ-

entially regulated (R1.5 FC and p % 0.05) (Table S6) upon Ctr

infection were then overlaid on this network. Shown are the

ERF, ETS1, and FRA1 target genes that are regulated byCtr (Fig-

ures 4A–4C and S4A). We then annotated the diseases and func-

tions for all of the regulated target genes of FRA1, ETS1, and ERF

separately using IPA (Table S8). The results indicate their involve-

ment in the regulation of numerous genes involved in inflamma-

tion, angiogenesis, EMT, tumor growth, cell movement, and inva-

siveness. We validated a subset of these genes by qRT-PCR

(Figures 4E, 4F, S4B, and S4C). Genes associated with cellular
eir Role in Ctr Development

axis) predicted as potential upstream regulators based on the kinase-substrate

proteins using the STRING database was performed with k-means clustering

prominent interaction networks.

lial-to-mesenchymal transition (EMT)-associated gene set reveals significant

talized human endocervical epithelial cells (End1/E6E7) and (E) human primary

ere subjected to immunoblot analysis for various proteins, as indicated using

ative of three biological replicates.

argeting luciferase (siLuci), FRA1/FOSL1, ERF, and ETS1, respectively, for 72 h

to re-infect freshly seeded cells for 24 h to quantify infectivity. Data shown as

to siLuci control.
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movement (plasminogen activator, urokinase [PLAU], PLAUR),

invasiveness (SEMA7A), inflammation (IL8, TNF-a), tight junc-

tions (E-cadherin), and matrix metalloproteinase (MMP9) were

upregulated during both acute and persistent infection in

hCEctos (Figures 4E and 4F) and END1/E6E7 cells (Figures

S4B and S4C). Accordingly, western blot analysis showed that

Ctr-induced phosphorylation of FRA1, ETS1, and ERF is main-

tained during persistent infection (Figures 4D and S4D).

Ctr Induces Loss of Cell Adhesions, Tissue Disruption,
and Invasive Phenotype
We thus sought to investigate whether the observed transcrip-

tional upregulation of EMT genes in infected cells induces an

EMT phenotype. EMT is a complex process whereby polarized

epithelial cells acquire characteristics of an invasive mesen-

chymal cell phenotype. Epithelial cells undergoing EMT lose

polarity and cell adhesion structures, and show enhancedmigra-

tory capacity, invasiveness, elevated resistance to apoptosis,

and increased production of extracellular matrix (ECM) compo-

nents (Son and Moon, 2010). Western blot analysis of END1/

E6E7 and primary cells showed that persistent Ctr infection

decreased the levels of the epithelial marker E-cadherin and

increased the levels of the mesenchymal marker N-cadherin

(Figures 5A and 5B). This was accompanied by reorganization

of the actin cytoskeleton from thin cortical bundles to thick, par-

allel, contractile bundles, which are usually observed in transdif-

ferentiated mesenchymal cells (Figure 5C). To further elucidate

this EMT phenotype in a physiological situation, we established

an air-liquid interface (ALI) culture model using a defined culture

medium that maintains human ectocervical stem cells, which

give rise to a differentiated, squamous stratified ectocervical

epithelium that recapitulates the tissue architecture. The result-

ingmulti-layered E-cadherin+ epithelium consists of a p63+ basal

layer containing stem cells, a parabasal layer, and a terminally

differentiated p63-luminal layer (Figure 5D) in which proliferating

Ki67+ cells are mainly restricted to the basal compartment (Fig-

ure 5E). An infection time course showed that Ctr can infect

the terminally differentiated luminal epithelium and that the infec-

tion proceeds toward the basal stem cell compartment by dis-

rupting epithelial integrity (Figure 5F). To elucidate the migratory

capacity and invasiveness of the infected cells, we performed a

Matrigel-based assay (Hall and Brooks, 2014), which estimates

the capacity of cells to invade through the basement membrane

that separates epithelial cells from adjacent connective tissue.

Concordant with the other observed EMT traits, persistent Ctr

infection increased the invasiveness of both End1/E6E7 and

hCEcto cells (Figures 5G and 5H).
Figure 4. Ctr Regulates Genes, Including Targets of ERF, ETS1, and FR

(A–C) Genes transcriptionally regulated by Ctr were overlaid onto a network gene

The resulting networks were manually curated to represent only those genes re

factors, respectively. Significantly upregulated and downregulated genes are de

(D) END1/E6E7 cells uninfected or persistently infected with Ctr and cell lysates w

ETS1, and FRA1, and chlamydia HSP60 and b-actin as loading control. Data are

(E and F) hCEcto cells were (E) acutely or (F) persistently infected withCtr for 32 h a

ERF, ETS1, and FRA1 target genes analyzed by qRT-PCR. Data shown are mean

*p < 0.05, Student’s t test.

See also Figure S4.
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ERK Regulates Transcription Factors FRA1, ETS1, and
ERF and Initiates EMT during Ctr Infection
Next, we sought to confirm our bioinformatics-based kinase-

substrate prediction of ERK as the upstream kinase for the regu-

lation of the phosphorylation of p-FRA1(S265), p-ETS1(S282),

and p-ERF(T526) in Ctr infections (Figures 3B and 3C). Using

an ERK1/2 MAPK specific inhibitor, we could completely abro-

gate the phosphorylation of p-FRA1(S265), p-ETS1(S282), and

p-ERF(T526) during Ctr infection, thus validating our kinase

substrate predictions (Figure 6A). The results were similar in

hCEctos (Figure 6B), further confirming that ERK-mediated

regulation of transcription factors is Ctr specific and does not

depend on HPV status.

U0126-mediated ERK inhibition also inhibited the transcrip-

tional activity of FRA1, ETS1, and ERF after Ctr infection, as

demonstrated by the reduced expression of their downstream

target genes MMP9, MMP3, PLAUR, SEMA7A, and IL8 (Fig-

ure 6C), and prevented the induction of invasiveness (Figure 6D).

These data demonstrate that Ctr-induced ERK signaling is

crucial for transcriptional and post-translational regulation of a

cohort of transcription factors that control EMT.

Chlamydia-InducedPhosphorylation andNuclear Export
of ERF Promote Cellular Invasion
ERF is ubiquitously expressed, exhibits strong transcriptional

repressor activity, and is only known to be regulated via ERK-

dependent phosphorylation at multiple sites that relieve its tran-

scriptional repressor activity by promoting nuclear export and

cytoplasmic accumulation, leading to pro-migratory function

(Le Gallic et al., 2004). To investigate whether Ctr-induced phos-

phorylation of the ERF repressor domain at T526 is sufficient to

promote nuclear export, we performed subcellular fractionation

to obtain nuclear and cytoplasmic proteins fromCtr-infected and

control cells with or without U0126 treatment. In addition, sub-

cellular fractions of cells treated with EGF served as a positive

control. Immunoblot analysis using pERF T526 antibody showed

a predominant localization to the cytoplasmic fraction in both

Ctr-infected and EGF-treated cells, which was abrogated by

U0126 (Figure 7A). To further refine the mechanism responsible

for the induction of invasiveness byCtr, we generated cells over-

expressing ERF mutants using the following plasmids: (1) ERF-

m1–7, carrying S/T-to A mutations in seven potential ERK phos-

phorylation sites that exhibit constitutive nuclear localization;

(2) ERF-FSF/FKF (Phenylalanine-Serine-Phenylalanine/Phenyl-

alanine-Lysine-Phenylalanine), carrying a mutation that inhibits

the ERF-ERK interaction and thus interrupts signaling to ERF;

and (3) ERF T526, carrying a T526-to glutamic acid mutation in
A1, Associated with EMT

rated using IPA for all known target genes of FRA1, ETS1, and ERF separately.

gulated during Ctr infection by (A) ERF, (B) ETS1, and (C) FRA1 transcription

picted in red and green, respectively.

ere subjected to immunoblot analysis for indicated phosphorylations on ERF,

representative of three biological replicates.

nd 8 days p.i., respectively. Shown is the relative mRNA expression of selected

s ± SDs of three biological replicates. ****p < 0.0001, ***p < 0.001, **p < 0.01,



(legend on next page)
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the ERF transcription repressor domain. All of the END1/E6E7

mutants, but also overexpression of wild-type ERF, prevented

Ctr-induced invasiveness (Figure 7B). This could be due to the

excess availability of non-phosphorylated ERF exerting repres-

sive activity. These results indicate that following Ctr infection,

ERK-mediated phosphorylation of ERF at T526 leads to nuclear

export, which relieves repressor activity and promotes invasion.

ETS1-Dependent Transcription Program Is Crucial for
Ctr-Induced EMT
The observed Ctr-induced phosphorylation of ETS1 at S282

creates binding sites for the COP1, E3 Ubiquitin Ligase (COP1)

tumor suppressor protein, which is a ubiquitin ligase component

that leads to ETS1 destruction (Lu et al., 2014). Damaged DNA-

binding protein 1 (DDB1) and de-etiolated 1 (DET1), components

of the COP1 complex, are significantly downregulated in Ctr-

infected cells (Table S6), indicating that ubiquitin activity is

suppressed, which prevents ETS1 degradation. In addition, the

transcription factor runt-related transcription factor 1 (Runx1)

can cooperatively interact with and effectively activate ETS1

by inducing a phosphorylation-refractory conformation of ETS1

via allosterically enhanced DNA binding stability (Shiina et al.,

2015; Shrivastava et al., 2014). Together, the loss of ERF

repressor activity and the increased ETS1 protein stability during

Ctr infection indicate a transcriptional activation of ETS1 that

may contribute to the observed EMT phenotype. We therefore

created a CRISPR-Cas9-mediated ETS1 knockout cell line as

confirmed by immunoblotting against total ETS1 protein (Fig-

ure 7C). The loss of ETS1 led to reduced expression of the

effector genes IL8, TNF-a, MMP3, early growth response 1

(EGR1), and PLAU (Figure 7D) and reduced invasiveness in

Ctr-infected cells (Figure 7E). Thus, Ctr modulates ERK-medi-

ated transcription factor regulation to induce effectors that pro-

mote an EMT phenotype with enhanced invasive capacity.

DISCUSSION

Here, we performed an integrated global phosphoproteomic and

transcriptomic analysis, revealing the striking impact of Ctr on

host cell signaling and cellular behavior. Our comprehensive

map of the signaling network of the total and nuclear fraction

of host cells was used to generate a Ctr-responsive kinome

network. Based on this, we identified the phosphorylation status

of regulated transcription factors that are ERK/MAPK substrates
Figure 5. Chlamydia Induces Loss of Cell Adhesions, Tissue Damage,

(A and B) hCEctos (A) and End1/E6E7 cells (B) persistently infected with Ctr fo

chlamydia HSP60, and b-actin.

(C) Shown are the densitometry values of immunoblots shown in (A) and (B).

(D) Uninfected and Ctr-infected End1/E6E7 cells were subjected to immunofluor

phalloidin (F-actin), Ctr-major outer membrane protein (MOMP), and DNA (Hoec

(E and F) Section of paraffin-embedded 3D-ALI cultures of hCEcto cells and huma

are the representative confocal images of E-cadherin and p63 (E) p63 and Ki67 (

(G) Uninfected and Ctr-infected 3D-ALI cultures of hCEcto cells were subjecte

indicated time points p.i.

(H and I) Uninfected and persistently infected End1/E6E7 (H) and hCEcto (I) cells w

fibrosarcoma cells served as positive control. Images on the left show cells on top

migrated through the transwells in response to 10% fetal calf serum as a chemo

Data shown are representative of three biological replicates.
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and demonstrated the role of ETS1 and ERF in the resulting EMT

phenotype. The results reveal a substantially greater range of

Ctr-regulated signaling cascades than previously appreciated

and provide a resource for generating deeper insight into their

role in pathogenesis and potential host cell transformation.

Post-translational protein modifications have emerged as an

additional level of dynamic control over protein function in

diverse cell biological contexts. Protein phosphorylation is the

most prevalent type of post-translational modification regulated

in cellular signaling. By catalyzing the addition of phosphate

groups to specific amino acids, usually Ser, Thr and Tyr residues,

protein kinases regulate key processes such as cellular prolifer-

ation, survival, and migration and can contribute to the various

hallmarks of cancer if their activity is deregulated (Fleuren

et al., 2016). In line with emerging evidence indicating the ability

ofChlamydia to interfere with protein function on the level of tran-

scription and post-translational modification to modulate host

cellular processes (Chumduri et al., 2016; Elwell et al., 2016;

Siegl et al., 2014), we identify here 2,327 class I phosphorylation

sites that are significantly affected by Ctr infection.

Bioinformatic analysis revealed that upregulated phosphosites

duringCtr infection are involved in the regulation of transcription,

gene expression, proliferation and nucleic acid metabolism,

small GTPase-mediated signal transduction, stress-activated

protein kinase signaling pathways, and JNK and MAPKKK

cascades. Phosphosites downregulated by Ctr, however, are

involved in cytoskeleton organization, regulation of protein com-

plex disassembly, apoptosis, cell-cycle checkpoints, chromo-

somal organization, and DNA repair. Our data further highlight

the regulation of numerous signaling cascades implicated in

cancer, as well as organismal injury and abnormalities.

Host kinases have also been implicated in regulating Chla-

mydia proteins. Tarp and TepP, two effector proteins involved

in host cell invasion, are rapidly tyrosine phosphorylated upon

host cell entry by unknown host kinases facilitating the interac-

tion with the host adaptor proteins (Chen et al., 2014; Mehlitz

et al., 2010). However, we did not find these proteins to be phos-

phorylated, as they are known to be diminished to undetectable

levels during later infection time points (Carpenter et al., 2017;

Clifton et al., 2004). We identified 81 Ctr proteins, predominantly

inclusion membrane proteins, to be phosphorylated. Further-

more, in silico kinase-substrate analysis revealed PKA, PKC,

CK2, GSK3, GRK, CD5, and ERK1/2, among others, to be

potential host kinases that regulate Ctr proteins. The functional
and Invasive Phenotype

r 7 days were subjected to immunoblot analysis for E-cadherin, N-cadherin,

escence analysis 36 h p.i. and 8 days p.i. Representative confocal images for

hst) are shown.

n ectocervical tissue were subjected to immunofluorescence analysis. Shown

F).

d to immunofluorescence analysis for E-cadherin, Ctr-MOMP, and DAPI at

ithCtrwere analyzed using a transwell Matrigel-based invasion assay. HT1080

of the transwell that did not migrate; images on the right show cells that have

attractant.



Figure 6. Chlamydia-Induced ERK Signaling Regulates EMT-Associated Genes and Invasion

(A andB) End1/E6E7 (A) and hCEcto (B) cells, either uninfected orCtr infected for 32 hwith or without additional U0126, were subjected to immunoblot analysis for

Ctr-regulated phosphoproteins as indicated, chlamydial HSP60, and b-actin. Data are representative of four biological replicates.

(C and D) End1/E6E7 cells either uninfected or persistently Ctr infected with or without U0126 treatment.

(C) The expression of ERF, FRA1, and ETS1 target genes analyzed by qRT-PCR. Data are shown as means ± SDs from three technical replicates.

(D) Representative images of transwell Matrigel-based invasion assay. HT1080 fibrosarcoma cells were used as a positive control. ****p < 0.0001, ***p < 0.001,

**p < 0.01, *p < 0.05, Student’s t test.
implications of the phosphorylation of these Chlamydia proteins

await further investigation.

Previous studies demonstrated that the deregulation of ERK1/

2, AKT, and checkpoint 2 (CHK2) kinases byChlamydia enforces

host cell proliferation by interfering with apoptosis and the

response to metabolic and oxidative stress and DNA damage

(Chumduri et al., 2013; Gurumurthy et al., 2010; Siegl et al.,

2014). However, the majority of the regulated phosphoproteins

and the predicted upstream kinases identified in the present

study have not been previously associated with the response
to Chlamydia. The Chlamydia responsive host kinome network

highlights many nodes, including members of the CMGC kinase

family such as CDKs and MAPKs, which are predominantly acti-

vated in both total cellular and nuclear fractions, while CAMKand

AGCmembers such as CaMKII, CHK2, PKA, and PKC are selec-

tively inactivated in the nuclear fraction. In line with this, cyclic

AMP, which is a key regulator of PKA kinase activity, has been

found to inhibit Ctr maturation (Kaul and Wenman, 1986). Our

previous study demonstrated that phosphorylation of the DNA

damage response checkpoint protein CHK2 is suppressed,
Cell Reports 26, 1286–1302, January 29, 2019 1297



Figure 7. ERF and ETS1 Are Key Regulators of Ctr Epithelial-to-Mesenchymal Transition
(A) End1/E6E7 cells, either uninfected orCtr infected for 32 hwith or without U0126 treatment. Cytoplasmic and nuclear fractions were prepared and subjected to

immunoblot analysis for total ERF and pERF T-526. Histone deacetylase 2 (HDAC2) and MEK1/2 were used as loading controls for nuclear and cytoplasmic

fractions, respectively. EGF-treated cells were used as positive control. Data are representative of three biological replicates.

(B) End1/E6E7 cell lines overexpressing ERF wild-type (WT), different constructs with loss-of-function mutations in ERF including at ERF T526, all of the

phosphosites activated by ERK (EFR M1–M7), and ERK interaction domain (ERF FSF/FKF) or control empty plasmids, respectively, were generated. These cells

were either uninfected or persistently infected withCtr, and invasion assay was performed. Representative images of the transwell Matrigel-based invasion assay

are shown.

(C–E) CRISPR-Cas9-mediated ETS1 knockout End1/E6E7 cell line was generated.

(C and D) ETS1-CRISPR-Cas9 knockout (KO) and control cells were uninfected or infected with Ctr for 32 h.

(legend continued on next page)
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despite the induction of DNA double-strand breaks upon Ctr

infection (Chumduri et al., 2013).

Our present analysis revealed ERK1/2 as one of the predomi-

nant MAPK kinases activated by Ctr and is known to regulate a

wide range of targets, thus controlling diverse signaling cas-

cades involved in growth, proliferation, differentiation, survival,

and migration. In support of the predicted increased activity of

MAPK signaling during Ctr infection, other studies have demon-

strated rapid activation of pERK, p38, and p-JNK pathways to

promote Chlamydia growth (Chen et al., 2010; Chumduri et al.,

2013; Olive et al., 2014). Our exploration of Ctr-induced phos-

phoproteins identified several transcription factors, including

ETS1 and FRA1, that are implicated in EMT as strong interaction

partners of MAPK1/3 and have not yet been functionally linked to

Ctr infections (Figure 3B).

Genes associated with EMT were overrepresented in the Ctr-

responsive transcriptome and included ETS1, ERF, and FRA1.

ETS1 is a proto-oncogenic transcription factor containing a

conserved ETS DNA binding domain (EBS) that activates multi-

ple genes involved in senescence, apoptosis, angiogenesis,

stem cell development, cell migration, and cancer development

(Dejana et al., 2007; Plotnik et al., 2014; Sharrocks, 2001). ERF,

another member of the ETS family, is a potent, ubiquitously ex-

pressed transcriptional repressor that recognizes promoters

with the EBS motif and regulates genes involved in proliferation

and Ras-induced tumorigenicity (Allegra et al., 2012; Mavrotha-

lassitis and Ghysdael, 2000; Sgouras et al., 1995). Deregulation

of the ETS family of transcription factors has been implicated

in the malignant transformation of cells, as they control genes

that are important for invasion and metastasis, such as MMPs

and PLAUR (Oikawa, 2004). FRA1 is an oncogenic member of

the Fos subfamily of basic leucine zipper domain (bZIP) tran-

scription factors. Fos proteins dimerize with Jun proteins to

transactivate AP1-dependent genes, including EMT-associated

MMPs, urokinase receptors (uPARs), integrins, adhesins and in-

flammatory genes. FRA1 is involved in cell motility and invasive-

ness. Elevated FRA1 levels are associated with tumorigenesis

and cancer progression (Diesch et al., 2014). We also observed

that many AP1-related proteins, such as JunB and D, cFos,

Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene ho-

molog B (FOSB), and FRA1, are transcriptionally regulated by

Ctr along with enhanced ERK1/2-dependent phosphorylation

of FRA1 at S265 sites, which is critical for its stability (Basbous

et al., 2007). Knockdown of ETS1 or ERF impaired Chlamydia

development. However, whether FRA1 is of similar importance

for the pathogen remains unresolved, as knockdown was lethal

for cells, which is consistent with previous observations (Meise

et al., 2012).

Our approach also provides insight into key molecular

mechanisms through which Ctr induces the EMT phenotype.

We found that Ctr-induced phosphorylation of ERK leads in

turn to the phosphorylation of ERF at T526 and ETS1 at S282.
(C) The blots confirming the loss of ETS1 in ETS1-CRISPR-Cas9 knockout cells co

as infection and loading controls, respectively.

(D) Relative mRNA expression of ETS1 target genes analyzed by qRT-PCR. Data

(E) ETS1-CRISPR-Cas9 knockout and control cells were uninfected or persistentl

of the transwell Matrigel-based invasion assay are shown.
ERK phosphorylates ERF at multiple sites to promote nuclear

export and cytoplasmic localization, thus relieving its transcrip-

tional repressor function (Le Gallic et al., 1999, 2004). We

observed that phosphorylated ERF-T526 accumulates in the

cytoplasm and that ERF mutants at ERK target sites, including

T626, inhibited the induction of invasiveness by Ctr.

Similarly, invasiveness induction was not observed after

knockout of ETS1. The phosphorylation of ETS1 at S282 we

observed is known to inhibit its DNAbinding activity and promote

binding of the COP1 ubiquitin complex proteins Cullin 4A

(CUL4A), DDB1, and DET1, leading to its degradation (Lu et al.,

2014). Despite this, ETS1 protein levels were stabilized after

infection, which could be explained by the marked downregula-

tion of DDB1 and DET1 that we observed. It is also known that

cooperative transcription factors such as RUNX1 can stabilize

its interactionwithDNAand therebyoverride the inhibitory effects

of phosphorylation (Shiina et al., 2015; Shrivastava et al., 2014).

EMT is fundamental in development, wound healing, and stem

cell behavior and contributes pathologically to fibrosis, tissue

scarring, and cancer progression (Lamouille et al., 2014). Wound

healing and tumorigenesis share a common phenotype charac-

terized by cells changing from a stationary, differentiated to a

migratory, de-differentiated phenotype (Leopold et al., 2012),

and malignant tumors frequently arise at sites of chronic tissue

injury and excessive wound healing (Schäfer and Werner,

2008). We observed that the enrichment of factors associated

with EMT in the Ctr-regulated phosphoproteome is accompa-

nied by a gain of invasive capacity of infected cells, together

with persistent transcriptional upregulation of genes involved

in cellular movement (PLAU), invasiveness (SEMA7A), and

extracellular matrix degradation (MMPs). In addition, resistance

to apoptosis and senescence, which are also acquired during

EMT, are known to be induced by Ctr infection (Chumduri

et al., 2013; Thiery et al., 2009).

Our phosphoproteomic and transcriptomic data, together with

our primary cervical infection model, provide insights into the

signaling and mechanisms underlying Ctr pathology on several

levels. The EMT phenotype of infected cells, in particular the

loss of epithelial cell adhesion, is likely to play a role in the epithe-

lial scarring associated with infections (Darville and Hiltke, 2010).

In addition, the resulting ability of the bacteria to gain access to

the basal stem cells, which are the target cells of the HPV tumor

virus, may explain the epidemiological evidence for Ctr as a co-

factor in cervical cancer (Koskela et al., 2000; Shanmughapriya

et al., 2012; Zhu et al., 2016). However, EMT induction in itself

may promote epithelial transformation, especially in the context

of our previous observations that Ctr downregulates the DNA

damage response while simultaneously inducing widespread

DNA damage (Chumduri et al., 2016). The results of this study

will provide a platform to generate new insights into the patho-

genesis of Ctr infections and their potential synergy with other

human genital tract infections.
mpared to control conditions are shown. Chlamydial HSP60 and b-actin served

are shown as means ± SDs from three biological replicates.

y infected with Ctr, and invasion assay was performed. Representative images
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González, E., Rother, M., Kerr, M.C., Al-Zeer, M.A., Abu-Lubad, M., Kessler,

M., Brinkmann, V., Loewer, A., andMeyer, T.F. (2014). Chlamydia infection de-

pends on a functional MDM2-p53 axis. Nat. Commun. 5, 5201.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit-anti-Phospho-Ser Millipore Cat# AB1603; RRID:AB_390205

Rabbit-anti- Phospho-Thr Cell Signaling Cat# 9381S; RRID:AB_10691696

Mouse-anti- p-Tyr Santa Cruz Biotechnology Cat# sc-7020; RRID:AB_628123

Rabbit-anti-Phospho-FRA1(Ser265) Cell Signaling Cat# 3880; RRID:AB_2106922

Rabbit-anti-FRA1 Abcam Cat# ab124722; RRID:AB_11001005

Rabbit-anti-Phospho-ERF LSBio Cat# LS-C342103

Rabbit-anti-ERF Abcam Cat# ab153726

Rabbit-anti-Phospho-ETS1(Ser282) Invitrogen Cat# 441109G; RRID:AB_2533577

Rabbit-anti-ETS1 Abcam Cat# ab124282; RRID:AB_10975199

Mouse-anti-Phospho-ERK1/2 (T185/Y187) Sigma-Aldrich Cat# M8159; RRID:AB_477245

Rabbit-anti-Phospho-EGFR (Y1172) Abcam Cat# ab47364; RRID:AB_873777

Rabbit-anti-MEK1/2 Cell Signaling Cat# 9126; RRID:AB_331778

Mouse-anti-HDAC2 Cell Signaling Cat# 5113; RRID:AB_10624871

Mouse-anti-HSP60 Enzo Cat# ALX-804-071; RRID:AB_10539940

Mouse monoclonal species-specific

KK-12 IgG2a Ctr (anti-MOMP)

D. Grayston, University of Washington,

Seattle, WA, USA

N/A

Mouse-anti-beta-Actin Sigma-Aldrich Cat# A5541

Mouse-anti-E-cadherin BD Biosciences Cat# 610181; RRID:AB_397580

Rabbit-anti-N-cadherin Abcam Cat# ab18203; RRID:AB_444317

Mouse-anti-Histone H4 Cell Signaling Cat# 2935S; RRID:AB_1147658

Rabbit-anti-p63 Abcam Cat# ab53039; RRID:AB_881860

Mouse-anti-p63 Abcam Cat# ab735; RRID:AB_305870

Rabbit-anti-Ki67 Abcam Cat# ab16667; RRID:AB_302459

Cy3-conjugated goat anti-mouse Jackson Immunoresearch Cat# 115-165-146; RRID:AB_2491007

Cy3-conjugated goat anti-rabbit Dianova Cat# 111-165-144; RRID:AB_2338006

Cy2-conjugated goat anti-mouse Dianova Cat# 115-225-062; RRID:AB_2338741

Donkey-anti-mouse IgG-HRP Santa Cruz Biotechnology Cat# sc-2314; RRID:AB_641170

Donkey-anti-rabbit IgG-HRP GE Healthcare Cat# NA934; RRID:AB_772206

Bacterial and Virus Strains

Chlamydia trachomatis serovar L2 ATCC VR-902B

Biological Samples

hCEctos Department of Gynecology, Charité University

Hospital, Berlin, Germany

N/A

Chemicals, Peptides, and Recombinant Proteins

Hoechst 33342 Sigma Cat# 23491-52-3

Draq5 Cell Signaling Cat# 4084

Collagenase type II Calbiochem Cat# 234155

TrypLE GIBCO Cat# 12604021

HEPES Invitrogen Cat# 15630-056

GlutaMax Invitrogen Cat# 35050-038

B-27 Invitrogen Cat# 17504-044

N2 Invitrogen Cat# 17502048

Hydrocortisone Sigma Cat# H0888

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human EGF Invitrogen Cat# PHG0311

Human Noggin Peprotech Cat# 120-10C

Human FGF-10 Peprotech Cat# 100-26-25

N-acetyl-L-cysteine Sigma Cat# A9165

Nicotinamide Sigma Cat# N0636

TGF-b R kinase inhibitor IV Calbiochem Cat# 616454

ROCK inhibitor Y-27632 Hölzel Diagnostika Cat# M1817

Forskolin Sigma Cat# F6886

Penicillin/streptomycin GIBCO Cat# 15140-122

Collagen Sigma Cat# C3867

Bovine skin collagen Sigma Cat# C4243

Opti-MEM medium GIBCO Cat# 31985070

Fugene 6 Promega Cat# E2691

HiPerfect Quiagen Cat# 301709; Lot. No. 127147353

and Lot. No. 136232611

Esp3I restriction enzyme ThermoFisher Cat# FD0454

RMPI 1640 medium GIBCO Cat# 52400

DMEM GIBCO Cat# 10938

Advanced DMEM/F12 GIBCO Cat# 12634

Fetal calf serum Biochrom AG Cat# S0155

Glutamine GIBCO Cat# 25030081

Sodium pyruvate GIBCO Cat# 11360070

PBS GIBCO Cat# 14190-094

Matrigel Corning Cat# 356231

(H) 13C6
15N2 L-Lysine Sigma Cat# 608041

13C6
15N4 L-Arginine Sigma Cat# 608033

Critical Commercial Assays

NE-PER kit Thermo Fisher Cat# 78833

Dual-color Quick-Amp Labeling Kit Agilent Technologies Cat# 5190-0444

Deposited Data

Microarray data were deposited in the

National Center for Biotechnology

Information Gene Expression Omnibus

https://www.ncbi.nlm.nih.gov/geo/ GSE104166

The mass spectrometry proteomics

data have been deposited to the

ProteomeXchange Consortium via the

PRIDE partner repository

http://www.proteomexchange.org/ PXD011960

Experimental Models: Cell Lines

HEK293T cells ATCC CRL3216; RRID: CVCL_0063

End1 E6/E7 cells ATCC CRL-2615

3T3-J2 cells (gift from Craig Meyers) Howard Green laboratory, Harvard University N/A

HeLa cells ATCC CCL-2; RRID: CVCL_0030

HT1080 cells ATCC CCL-121

Oligonucleotides

siRNA oligonucleotides See Table S9 See Table S9

Primers for qPCR See Table S9 See Table S9

gRNA oligonucleotides See Table S9 See Table S9

ETS1–CRISPR KO Primer See Table S9 See Table S9

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

psPax2 D. Trono, unpublished

(http://n2t.net/addgene:12260)

Addgene Cat# 12260

pMD.2G (VSVG) D. Trono, unpublished

(http://n2t.net/addgene:12259)

Addgene Cat# 12259

pL-CRISPR.EFS.GFP plasmid Heckl et al., 2014 Addgene Cat# 57818

pLenti-CMV-GFP vector Campeau et al., 2009 Addgene Cat# 17448

pSG5-ERF wild-type Prof. G. Mavrothalasitis (Allegra et al., 2012) n/a

pSG5-ERF-T526 Prof. G. Mavrothalasitis (Le Gallic et al., 2004) N/A

pSG5-ERF-M1-7 Prof. G. Mavrothalasitis (Allegra et al., 2012) N/A

pSG5-ERF-FSF/FKF Prof. G. Mavrothalasitis (Allegra et al., 2012) N/A

Software and Algorithms

Rosetta Resolver Biosoftware,

Build 7.2.2 SP1.31

Rosetta Biosoftware No longer available

Image Analysis/Feature Extraction

software G2567AA v. A.11.5.1.1

Agilent Technologies Cat. #G4460

MaxQuant (v1.5.1.2) Cox and Mann, 2008 http://www.coxdocs.org/doku.php?id=

maxquant:start

Motif-X Schwartz and Gygi, 2005 http://motif-x.med.harvard.edu/

KinMap Eid et al., 2017 http://kinhub.org/kinmap/

DAVID Huang et al., 2009 https://david.ncifcrf.gov/

TM4 http://mev.tm4.org http://mev.tm4.org

STRING Szklarczyk et al., 2015 https://string-db.org/

fgsea R package Sergushichev, 2016 https://bioconductor.org/packages/

release/bioc/html/fgsea.html

R (v3.3) R Core Team https://cran.r-project.org/

limma R package Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

Circlize R package Gu et al., 2014 https://cran.r-project.org/web/

packages/circlize/https://academic.oup.com/

bioinformatics/article-lookup/doi/

10.1093/bioinformatics/btu393

Tibco Spotfire (v7) TIBCO Software Inc. https://www.tibco.com/products/

tibco-spotfire

Ingenuity� Pathway Analysis https://www.qiagen.com/ingenuity Cat #: 830102

ScanR Analysis Olympus Soft Imaging Solutions https://www.olympus-lifescience.com/

en/microscopes/inverted/scanr/

#!cms[tab]=%2Fmicroscopes%2Finverted

%2Fscanr%2Ffeatures

CHOP CHOP tool http://chopchop.cbu.uib.no http://chopchop.cbu.uib.no

GraphPad Prism GraphPad Software https://www.graphpad.com/scientific-

software/prism/

iGPS software v1.0.1 Song et al., 2012 http://igps.biocuckoo.org/

Other

Polyethylene terephthalate (PET)

track-etched membrane

Corning Cat# 353097

C18 Stage Tips packed with 10 mg

of ReproSil-Pur 120 C18-AQ 5-mm resin

Dr. Maisch GmbH Cat# r15.aq.

monolithic column MonoCap C18

High Resolution 2000

GL Sciences Cat# 5020-10015

Cell Culture Inserts, 30 mm, hydrophilic

PTFE, 0.4 mm

Merck Cat# PICM03050
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Thomas F.

Meyer (meyer@mpiib-berlin.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Chlamydia infections
Ctr L2 (ATCC VR-902B), stocks were prepared as described earlier (Gurumurthy et al., 2010). Briefly, Ctr was propagated in HeLa

cells grown in 150-cm2 cell culture flasks in 24 mL of infection medium [DMEM (GIBCO) supplemented with 5% fetal calf serum

(FCS) (Biochrom), 2 mM glutamine, and 1 mM sodium pyruvate]. The cells were detached 48 hours after infection with 3-mm glass

beads and centrifuged at 500xg for 10 min at 4�C. Cells were resuspended in sucrose-phosphate-glutamate (SPG) buffer and

ruptured by vortexing with glass beads. Cell lysates were then centrifuged as before to sediment nuclei and cell debris. The

supernatant was further centrifuged at 20,000xg for 40min at 4�C, and the resulting bacterial pellet resuspended in 15mL SPGbuffer

with a 21- to 22-gauge injection needle. Chlamydia suspensions were stored in aliquots at�75�C until required. Chlamydia infection

experiments were performed at a multiplicity of infection (MOI) of 5 unless stated otherwise in infection medium (DMEM

supplemented with 5% FCS, 2 mM glutamine, and 1mM sodium pyruvate). The medium was refreshed 2 h p.i., and cells were

grown at 35�C in 5% CO2. For persistent Ctr infection, cells were infected (MOI 5 unless stated otherwise) for 24 h. 24 h p.i

250 ng/ml doxycycline was added to both uninfected and infected cells and cells allowed to grow for 7 d p.i.

Cell lines
3T3-J2 (mouse embryo) (kind gift from Craig Meyers), End1/E6E7 (End1) (\) [American Type Culture Collection (ATCC) CRL-2615],

HT1080 (_) (ATCC, CCL-121) and HeLa (\) (ATCC, CCL-2) cells were cultured in HEPES-buffered growth medium [DMEM (GIBCO)

supplemented with 10% FCS (Biochrome), 2 mM glutamine, and 1 mM sodium pyruvate], at 37�C in a humidified incubator contain-

ing 5% CO2.

Human ectocervical (hCEcto) primary cell isolation and propagation
Human ectocervix samples were provided by the Department of Gynecology, Charité University Hospital, Berlin, Germany. Scientific

usage of the samples was approved by the ethics committee of the Charité University Hospital, Berlin (EA1/059/15); informed con-

sent was obtained from all subjects to use their tissue for scientific research. Only anatomically normal cervical tissues were

used, within 2-3 h after removal. Human ectocervical biopsy tissue from a 50-year old female patient was washed in 10 cm Petri

dish with 1x PBS (GIBCO, # 14190-094) and minced with surgical scissors before incubating in 0.5 mg/ml collagenase type II

(Calbiochem, # 234155) for 2.5 h at 37�C in a shaker incubator. Tissue and dissociated cells were pelleted by centrifugation

(5 min at 1000 g, 4�C), supernatant was discarded, cells were resuspended in TrypLE express (GIBCO, # 12604021) and incubated

for 15 mins at 37�C in a shaker incubator. After dissociation, the cell and tissue pellet was resuspended in ADF (Invitrogen) medium

and passed through a 40-mM cell strainer (BD Falc, # 352340) to separate the single dissociated cells from tissue pieces. Cells were

pelleted by centrifugation (5 min at 1000xg, 4�C), resuspended in human ectocervical primary cell medium for cell expansion in

75 cm2 flask coated with collagen. At 70%–80% confluence cells were passaged using TrypLE and seeded on lethally irradiated

3T3-J2 mouse fibroblasts in the ectocervical primary cell medium (Consisted of ADF, 12 mM HEPES and 1% GlutaMax, supple-

mented with 1% B27, 1% N2, 0.5 mg/ml hydrocortisone (Sigma, # H0888-1G), 10 ng/ml human EGF (Invitrogen, # PHG0311),

100 ng/ml human noggin (Peprotech, # 120-10C), 100 ng/ml human FGF-10 (Peprotech, # 100-26-25), 1.25mMN-acetyl-L-cysteine,

10 mM nicotinamide, 2 mM TGF-b R kinase Inhibitor IV, 10 mM ROCK inhibitor (Y-27632), 10 mM forskolin (Sigma, F6886) and 1%

penicillin/streptomycin). For infection experiments, hCEctos were subjected to differential trypsinization to separate fibroblasts

from epithelial cells and epithelial cells were seeded on a plastic dish coated with collagen (1:100 in 1x PBS for 1 h at 37�C).

Three dimensional air-liquid interface cultures of human derived ectocervix
Air-liquid interface (ALI) cultures were established using trans-well organotypic inserts (Merck, # PICM03050). A bovine skin collagen

(Sigma # C4243) bed containing 3T3-J2 mouse fibroblasts was plated onto the trans-well insert. Once the collagen solidified,

hCEctos were seeded on top. Cells were allowed to grow immersed in ectocervical primary cell culture medium for three days,

then the medium on top of the insert was removed to establish an air-liquid interface. The cultures were allowed to grow into 3D

multi-layered stratified epithelium for 16 days before infection experiments were initiated.

METHOD DETAILS

Infectivity assays
End1/E6E7 cells in six-well plates were infected with Ctr for 48 h and then scraped and collected in 15 mL tubes containing sterile

glass beads and lysed by vortexing. Dilutions of lysates were transferred to HeLa cells (ATCC, CCL-2) and incubated for 24 h at 35�C
and 5% CO2. The cells were fixed in ice-cold methanol overnight at 4�C and immunostained with Ctr-major outer membrane protein
e4 Cell Reports 26, 1286–1302.e1–e8, January 29, 2019
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(Ctr -MOMP) specific antibody andCy3 labeled secondary antibody. Host cell nuclei were stainedwith Hoechst. The number and size

of chlamydial inclusions and host cells were analyzed with an automatedmicroscope (Olympus Soft Imaging Solutions) as previously

described (Gurumurthy et al., 2010). Briefly, images were acquired with DAPI (40,6-diamidino-2-phenylindole) and Cy3 filter sets

(AHF-Analysetechnik) at the same position. Host nuclei positive for Hoechst and inclusions positive for Cy3 were automatically iden-

tified and number and size quantified using ScanR Analysis Software (Olympus Soft Imaging Solutions).

Invasion assay
Uninfected or Ctr persistently infected hCEcto, End1/E6E7 and HT1080 cells were detached, counted and added in the upper

compartment of a 24-well transwell chamber pre-coated with Matrigel matrix (extracellular matrix) in serum-free medium (SFM).

The growth medium supplemented with 10% FCS, pyruvate and glutamine was placed in the bottom compartment of 24 well as

a chemoattractant. Cells were allowed to invade for 24 h at 37�C through extracellular matrix into 8 mm polyethylene terephthalate

(PET) track-etched membrane (Corning, Cat# 353097). After incubation, cells in the transwell chamber were fixed in 3.7% parafor-

maldehyde (PFA), followed by cell permeabilization in 100%methanol and stained with 0.2% crystal violet. The microscopic images

were taken before and after swab of Matrigel and data was processed using Adobe Illustrator.

SDS-PAGE and western blotting
Cells grown in six-well plates and treated as per experimental requirement were washed with PBS and lysed with 300 ml of SDS sam-

ple buffer (3% 2-mercaptoethanol, 20% glycerine, 0.05% bromophenol blue, 3% SDS). Cell lysates were collected and boiled at

95�C with 1000 rpm shaking for 7 minutes. Samples were stored at�20�C until required. SDS-PAGE and western blotting were per-

formed as described earlier (Gurumurthy et al., 2010). Briefly, proteins from the cell lysates were resolved by SDS–polyacrylamide gel

electrophoresis (SDS-PAGE), transferred to polyvinylidene difluoride (PVDF) membranes (PerkinElmer Life Sciences), and blocked

with 3%milk powder in Tris-buffered saline (containing 0.5% Tween 20) for 30min before incubation with the appropriate antibodies.

The bound primary antibodies were incubated with the corresponding HRP-conjugated secondary antibodies. Immunoreactive pro-

teins were detected on an X-ray film directly after addition of ECL reagent (Amersham Biosciences).

siRNA transfection and knockdown analysis
All siRNAs used in this study were purchased fromQIAGEN. siRNA transfections were carried out as described previously (Gurumur-

thy et al., 2010). Briefly, 1 3 105 cells were seeded into each well of a 12-well plate 24 h before transfection. Cells were then trans-

fected with Hiperfect transfection reagent according to the manufacturer’s guidelines. In brief, 1.5 ml of specific siRNA (stock

concentration 20 mM) was added to RPMI without serum and incubated with 9 mL of Hiperfect in a total volume of 100 ml. After

10 to 15 min, the liposome-siRNA mixture was added to the cells with 1 mL of cell culture medium, which gave a final concentration

of siRNA of 25 nM. After 1 day, cells were trypsinized and seeded into new cell culture plates, depending on the experiments. Three

days after transfection, the cells were used for different experiments or to determine knockdown efficiency by RT-qPCR.

CRISPR/Cas9 Knockout Cell Line Generation
ETS1-targeting guide RNAs (gRNAs) were designed using the CHOP CHOP tool (http://chopchop.cbu.uib.no/) and cloned into the

pL-CRISPR.EFS.GFP plasmid (a gift from Benjamin Ebert; Addgene plasmid # 57818 (Heckl et al., 2014)) after digesting the vector

with Esp3I restriction enzyme. HEK293T cells (ATCC CRL3216; RRID: CVCL_0063) were transfected with gRNAs containing

pL-CRISPR.EFS.GFP plasmids together with packaging vectors in order to produce lentiviruses for transduction of End1 E6/E7.

Briefly, HEK293T cells were grown in 10 cm plates until 60%–70% confluent and transfected with lentiviral constructs containing

gRNA and lentiviral packaging plasmids (psPax2 and VSVG). The lentiviral vectors were dissolved in Opti-MEM medium together

with Fugene 6 transfection reagent and packaging plasmids psPax2 and pMD.2G (VSVG) and incubated for 20-30 min at RT. After

incubation, the liposomes formed were added to the cells in growth medium. Next day, the mediumwas replaced and left for another

24 h at 37 �C in 5%CO2. Two days post-transfection lentiviral particles present in themediumwere harvested, filtered (0.45 mm) and

used for End1 E6/E7 cell transduction. End1 E6/E7 cells were seeded in 10 cm plates one day before lentiviral particles were ready

for use. At 30%–40% confluence lentiviral particles were added onto cells together with 8 ml of polybrene (10 mg/ml), followed by

medium exchange after overnight incubation. After four days of lentivirus transduction, GFP-positive cells were FACS-sorted and

seeded as single cells into 96-well plates. Single cell clones of transduced cells were expanded, checked for mycoplasma and

used for further experiments.

Generation of the ERF overexpression cell lines
To generate ERF wild-type andmutants overexpression End1/E6E7 cell lines, constructs from plasmids provided by Prof. Mavrotha-

lasitis were recloned into pLenti-CMV-GFP destination vector using gateway recombination system. After plasmid confirmation

using enzymatic test digestion and Sanger sequencing obtained plasmids were used for lentiviral particles generation and transduc-

tion of End1/E6E7 cell line as described above, followed by FACS sorting of GFP positive cells. Finally, cells were expanded, checked

for mycoplasma and used for further experiments.
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Cellular fractionation
Cells were trypsinized and washed twice with 1xPBS prior to cellular fractionation using NE-PER kit from Thermo Fisher according to

the manufacturer’s protocol.

SILAC labeling and labeling efficiency
End1/E6E7 cells were labeled by culturing for 8 passages in SILACDMEMmedium (GIBCO) containing either unlabeled (L) or labeled

(H) 13C6
15N2 L-Lysine/

13C6
15N4 L-Arginine (Sigma) additionally supplemented with 10% dialyzed FCS (dFCS), 5 nM L-glutamine and

1mM sodium pyruvate. Labeled and unlabeled cell populations were subjected to labeling efficiency test. For this, a small amount of

each cell population was lysed with Laemmli buffer, separated on SDS-PAGE gel, gel bands containing proteins were excised and

tryptic digested into peptides. Finally, digested peptides were desalted and applied for MALDI-TOF analysis to estimate the extent of

isotope-labeled amino acids incorporation.

Sample preparation for mass spectrometric (MS) analysis
Proteins were reduced with 10 mM DTT at room temperature for 30 min and alkylated with 50 mM iodoacetamide at room temper-

ature for 30min in a dark room. Proteins were first digested by lysyl endopeptidase (LysC) at a LysC-to-protein ratio of 100:1 (w/w) for

3 h at room temperature. Then, the sample solution was diluted to a final concentration of 2 M urea with 50 mM ammonium bicar-

bonate. Trypsin digestion was performed at a trypsin-to-protein ratio of 100:1 (w/w) under constant agitation at room temperature for

16 h. Enzyme activity was quenched by acidification of the samples with trifluoroacetic acid (TFA). The peptides were desalted with

C18 Stage Tips (Rappsilber et al., 2003) prior to nanoLC-MS/MS analysis.

Phosphopeptide enrichment
The tryptic digests corresponding to 300 mg protein were desalted with big C18 Stage Tips packed with 10 mg of ReproSil-Pur 120

C18-AQ 5-mm resin (DrMaisch GmbH). Peptides were eluted with 300 mL of loading buffer (80%ACN (vol/vol) and 6%TFA (vol/vol) so

that the concentration of peptide was 1 mg/ml. Phosphopeptides were enriched using a microcolumn tip packed with 0.5 mg of TiO2.

The TiO2 tips were equilibrated with 20 mL of the loading buffer via centrifugation of 100 g. 63 50 mL of the sample was loaded on a

TiO2 tip via centrifugation of 100 g. The TiO2 column was washed with 20 mL of the loading buffer, followed by 20 mL of washing buffer

(50% ACN (vol/vol) and 0.1% TFA (vol/vol)). The bound phosphopeptides were eluted using successive elution with 30 mL of elution

buffer 1 (5% ammonia solution) and 30 mL of elution buffer 2 (5% piperidine) in series. Each fraction was collected into a fresh tube

containing 30 mL of 20% formic acid. 3 mL of 100% formic acid was added for further acidification of the samples. The phosphopep-

tides were desalted with C18 Stage Tips prior to nanoLC-MS/MS analysis.

NanoLC-MS/MS analysis
Peptides were separated on a 2mmonolithic columnMonoCap C18 High Resolution 2000 (GL Sciences), 100mm i.d. x 2,000 mm at

a flow rate of 300 nl/min on an EASY-nLC II system (Thermo Fisher Scientific) by altering the gradient: 5%–6%B in 2min, 6%–8%B in

28min, 8%–30%B in 180min, 30%–45% in 78min, 45%–60%B in 2min, 60%–95%B in 1min. 360-min and 240-min gradient were

performed for whole proteome and phosphoproteome analyses, respectively. AQExactive plus instrument (Thermo Fisher Scientific)

was operated in the data-dependent mode with a full scan in the Orbitrap followed by top 10MS/MS scans using higher-energy colli-

sion dissociation (HCD). For standard proteome analyses, the full scans were performed with a resolution of 70,000, a target value of

3x106 ions and a maximum injection time of 20 ms. The MS/MS scans were performed with a 17,500 resolution, a 1x106 target value

and a 20 ms maximum injection time. For phosphoproteome analyses, the full scans were performed with a resolution of 70,000, a

target value of 3x106 ions and a maximum injection time of 120 ms. The MS/MS scans were performed with a 35,000 resolution, a

5x105 target value and a 160 ms maximum injection time. Isolation window was set to 2 and normalized collision energy was 26.

Microarray analysis
Microarray experiments were performed as independent dual-color dye-reversal color-swap hybridizations. Total RNA was isolated

with Trizol according to the supplier’s protocol using glycogen as co-precipitant. Quality control and quantification of total RNA was

assessed using an Agilent 2100 Bioanalyzer (Agilent) and a NanoDrop (Kisker) 1000 UV-Vis spectrophotometer according to the sup-

plier’s protocol. RNA labeling was performed with the dual-color Quick-Amp Labeling Kit (Agilent Technologies). In brief, mRNA was

reverse transcribed and amplified using an oligo-dTT7 promoter primer, and resulting cRNA was labeled with Cyanine 3-CTP or

Cyanine 5-CTP. After precipitation, purification, and quantification, 1.25 mg of each labeled cRNA was fragmented and hybridized

to whole genome human 43 44k multipack microarrays according to the supplier’s protocol (Agilent Technologies). Scanning of mi-

croarrays was performed with 5 mm resolution using a G2565CA high-resolution laser microarray scanner (Agilent Technologies) with

XDR extended range. Microarray image data were analyzed with the Image Analysis/Feature Extraction software G2567AA v.

A.11.5.1.1 (Agilent Technologies) using default settings. The extracted MAGE-ML files were analyzed further with the Rosetta

Resolver Biosoftware, Build 7.2.2 SP1.31 (Rosetta Biosoftware). Ratio profiles comprising single hybridizations were combined in

an error-weighted fashion to create ratio experiments. A 0.5 log2 fold change expression cut-off for ratio experiments was applied

together with anti-correlation of ratio profiles, rendering the microarray analysis highly significant (p < 0.05). In addition, microarray

data was analyzed using the R package LIMMA (Ritchie et al., 2015). Microarray data have been deposited in the Gene Expression
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Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) of the National Center for Biotechnology Information and can be accessed with

the GEO accession number GSE104166.

Immunofluorescent histochemistry
3D-Air Liquid cultures were fixed with 3.7% paraformaldehyde for 1 h at room temperature (RT) followed by washing with PBS twice,

embedded orthogonally in Histogel (HG-4000-144) inside a casting mold. Human tissues were extensively washed with PBS and

fixed using 3.7% PFA overnight at RT. Samples were subjected to dehydration in an ascending ethanol series followed by isopro-

panol and xylene (60 mins each) followed by paraffinization using a Leica TP1020 tissue processor. The paraffin blocks were gener-

ated inside a casting mold on a Paraffin console (Microm) and 5 mMsections made using amicrotome (Microm). For immunostaining,

paraffin sections were deparaffinized and rehydrated, followed by antigen retrieval using antigen retrieval solution (Dako, # S1699).

Sections were blocked using blocking buffer (1%BSA and 2% FCS in PBS) for 1 h at RT. Primary antibodies were diluted in blocking

buffer and incubated for 90mins at RT followed by five PSBwashes before 1 h incubation with secondary antibodies diluted in block-

ing buffer alongwith Hoechst or Draq5. Sections werewashedwith PBS five times andmounted usingMowiol. Imageswere acquired

with a Leica TCS SP8 confocal microscope.

Epithelial cells grown on coverslips were fixed with 3.7% paraformaldehyde for 30 min at RT. Cells were permeabilized and

blocked with 0.5% Triton X-100 and 1% BSA in PBS. Primary antibodies were diluted in 1% BSA in PBS and incubated for 1 h at

RT followed by three washes in PSBT (0.1% Tween 20 in PBS), followed by 1 h incubation with secondary antibodies and phalloidin

were diluted in 1%BSA in PBS along with Hoechst or Draq5. Coverslips were washed three times with PBST and once with PBS and

mounted using Mowiol. Images were acquired on a Leica TCS SP8 confocal microscope. Images were processed with Adobe

Photoshop.

Automated microscopy
Images were analyzed by automated microscope from Olympus Biosystems. For each well, six positions were taken and fluoro-

chromes visualized using Cy3 and DAPI filters. The Ctr-MOMP image was analyzed for Ctr inclusion number and inclusion size.

DAPI was used to detect number of nuclei. All data was automatically identified and calculated by Scan R analysis software from

Olympus Biosystems, which was further processed in Microsoft Excel 2010.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phosphoproteome/Proteome data analysis
Raw data were analyzed and processed using MaxQuant (v1.5.1.2). Search parameters included two missed cleavage sites, fixed

cysteine carbamidomethyl modification, and variablemodifications including L-[13C6,
15N4]-arginine, L-[

13C6,
15N2]-lysine, methionine

oxidation, N-terminal protein acetylation, and asparagine/glutamine deamidation. In addition, phosphorylation of serine, threonine,

and tyrosine was searched as variable modifications for phosphoproteome analysis. The peptide mass tolerance was 6 ppm for MS

scans and 20 ppm for MS/MS scans. The match between runs was enabled. Database search was performed using Andromeda

against UniProt human database (October 2014) and Chlamydia database (February 2015) with common contaminants. False dis-

covery rate (FDR) was set to 1% at both peptide and protein level. For protein quantification, a minimum of two ratio counts was set

and the ‘re-quantify’ and ‘match between runs’ functions were enabled. Proteome data are available via ProteomeXchange with

identifier PXD011960.

Linear signature motif analysis
Phosphopeptide sequences with at leastR 2 fold change were submitted to Motif-X (Schwartz and Gygi, 2005) online tool analysis

for the identification of over-represented linear signature motifs to predict upstream kinase regulators. The significance threshold

was set to p < 10�6.

iGPS analysis – prediction of site-specific kinase-substrate relationship
To predict kinase-substrate relationships for all the upregulated and downregulated phosphosites based on short linear motifs and

protein-protein interactions iGPS software v1.0.1 analysis was performed (Song et al., 2012). For each site in a protein, all predicted

kinases get assigned a weight of 1/(number of predictions for this site and protein). Finally, weights are summed up for each kinase

included in the predictions and used to define the size of the circle in the kinome tree that was generated using KinMap online tool (Eid

et al., 2017).

GO enrichment analysis
GO enrichment analysis was performed with DAVID (Huang et al., 2009) online tool for 2 fold up and downregulated phosphosites

from nuclear fraction and total cell extract. The top five candidates were selected and combined in heatmap using TM4 (http://

mev.tm4.org).
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STRING protein-protein interaction analysis
The protein-protein interaction analyses of 2-fold regulated phosphosites were visualized using STRING 10 (Szklarczyk et al., 2015)

database with standard settings in confidence view. The interaction network was imported to Adobe Illustrator and modified as

shown in the Results section.

Ingenuity pathway analysis (IPA)
Canonical pathways and biological function of the significantly dysregulated genes and proteins identified in the microarrays and

phosphoproteome were investigated using QIAGEN’s Ingenuity� Pathway Analysis (IPA�, QIAGEN Redwood City, https://www.

qiagen.com/ingenuity). Overrepresentation of canonical pathways was obtained by Fisher’s exact test and corrected for multiple

testing by the Benjamini-Hochberg procedure. The ratio value is calculated based on the number of genes from the dataset that

map to the pathway divided by the number of total genes included in the pathway. Moreover, downstream target genes analysis

was performed to find genes regulated by selected hits from phosphoproteome analysis using microarray data as a reference.

The downstream effects analysis is based on prior knowledge of expected causal effects between genes and biological functions

stored in the Ingenuity�Knowledge Base. The analysis examines genes in the user’s dataset that are known to affect each biological

function and compares their direction of change to what is expected from the literature (https://www.ingenuity.com/).

GSEA
A published gene set of 365 EMT-associated genes (Gröger et al., 2012) was used to perform GSEA on genes pre-ranked by gene

expression-based t-score comparing 48 h infected and non-infected End1 cells, using the fgsea R package (Sergushichev, 2016)

with 5,000 permutations.

Statistics
Results are presented as either mean ± SEM (for normally distributed data) or median with inter-quartile range (for non-normally

distributed data). Datasets were compared by unpaired t test, nonparametric Mann–Whitney test or ANOVA. GraphPad Prism

was used for statistical tests and plots. P value % 0.05 was considered statistically significant unless otherwise specificed. Details

of tests used can be found in the figure legends. Log2 fold-changes of proteome and phosphoproteome data from two replicates

were tested for significance using the R package LIMMA (Ritchie et al., 2015). Full details on statistical analysis for proteome/phos-

phoproteome and gene expression data performed in R are provided in corresponding scripts (see Data and Software Availability).

DATA AND SOFTWARE AVAILABILITY

Microarray data presented in this paper have been deposited in the National Center for Biotechnology Information Gene Expression

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE104166. The

mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al.,

2016) partner repository with the dataset identifier PXD011960. R code used for pre-processing and analysis of data and generation

of plots has been deposited under https://github.com/HilmarBerger/Zadora_et_al_Phosphoproteome
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