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We study the link between classical scattering of spinning black holes and quantum amplitudes for
massive spin-s particles. Generic spin orientations of the black holes are considered, allowing their spins to
be deflected on par with their momenta. We rederive the spin-exponentiated structure of the relevant tree-
level amplitude from minimal coupling to Einstein’s gravity, which in the s → ∞ limit generates the black
holes’ complete series of spin-induced multipoles. The resulting scattering function is seen to encode in a
simple way the known net changes in the black-hole momenta and spins at first post-Minkowskian order.
We connect our findings to a rigorous framework developed elsewhere for computing such observables
from amplitudes.
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I. INTRODUCTION

Applying techniques from quantum field theory to the
study of the classical two-body problem in general rela-
tivity (GR) has produced significant progress in the treat-
ment of the post-Newtonian (PN) approximation [1–6],
expanding in small speeds and weak fields. A particular
focus of more recent interest has been the use of quantum
scattering amplitudes to produce explicit classical results in
the post-Minkowskian (PM) approximation [7,8], which
resums the expansion in small speeds while still expanding
in weak coupling. Several new contributions have been
made to the understanding of conservative monopolar two-
body dynamics up to 2PM order (through OðG2Þ, where G
is Newton’s constant) using one-loop amplitudes [9–15], all
ultimately confirming an equivalent classical solution from
decades ago [16]. A significant milestone has been the first
presentation of results at 3PM order from a two-loop
amplitude calculation [17], using an arsenal of modern
amplitude techniques [18–23].

The first results for spin-orbit coupling in the PM scheme
have been computed only recently, from purely classical
considerations, at 1PM and 2PM orders [24,25]. Spin-orbit
(or dipole) effects are universal in the two-body problem in
GR, in that their form does not depend on the nature of the
spinning bodies. It was shown in Refs. [24,25] how they are
determined by the parallel transport map along the geodesic
worldline in the (regularized) spacetime metric sourced by
monopolar bodies.
Going beyond the pole-dipole level, higher-multipole

couplings specific to black holes (BHs) were treated at 1PM
order in Ref. [26], by means of a classical effective action
approach [4,5] matched to the linearized Kerr solution, to all
orders in the spin-inducedmultipole expansion. In this paper
we aim to fully reproduce the central results of Ref. [26]
from amplitudes, exploiting and further substantiating
the remarkable fact that the BH multipole structure up to
the 22s-pole level is reproduced by considering spin-s
particles which are minimally coupled to gravity. This
was first demonstrated in Ref. [27] up to the spin-2 level
for the leading-PN-order corrections to the two-body inter-
action potential, following work along similar lines in
Refs. [28,29].
A generalization of minimal-coupling amplitudes to

arbitrary spins s has been proposed recently in Ref. [30]
using a new massive spinor-helicity formalism. Through
the course of Refs. [10,31–33], there has emerged a
consistent picture of how these amplitudes encode the
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complete tower of spinning-BH multipole moments, at
least at 1PM order, when one lets the spin quantum number
s tend to infinity.1 Concerning explicit specifications of the
classical two-body dynamics, the final results of Ref. [32]
allowed arbitrary spin orientations but restricted to leading
orders in the PN expansion, while those of Ref. [31] were
complete at 1PM order but restricted to the case where the
BH spin vectors are aligned with the orbital angular
momentum. In this aligned-spin case, the two-body scatter-
ing is confined to a single constant orbital plane, and the
spin vectors are conserved, pointing orthogonally to that
plane. In the general case, both the orbital plane and the
spin vectors are rotated in the course of the interaction.
In this paper we consider general spin directions at full

1PM order. The staring point is the tree-level amplitude for
one-graviton exchange between two massive spin-s par-
ticles shown in Fig. 2. We compute its holomorphic
classical limit (HCL) [10] by gluing two of the minimal-
coupling three-point amplitudes [30] depicted in Fig. 1. We
streamline the treatment of the spin-exponentiated structure
of such amplitudes, which was the focus of Ref. [31], by
incorporating additional Lorentz boosts [33] into the spin
exponentials. Finally, we adapt to our needs a general
formalism [34,35] for extracting gauge-invariant classical
observables from amplitudes. It has already been used in
Ref. [35] to compute the net changes in the momenta and
spins for two-body scattering at 1PM order, reproducing
the results for BHs up to quadrupolar order from minimally
coupled spin-1 particles. Here we extend such calculation
to arbitrary spins s, and in the limit s → ∞ obtain all orders
in the BH multipole expansions at 1PM order [26].

II. MINIMAL COUPLING TO GRAVITY

In this section we review the angular-momentum expo-
nentiation that is inherent to the gravitational coupling of
spinning black holes and the corresponding amplitudes.

At the linearized-gravity level, the classical stress-energy
tensor serving as an effective source for a single Kerr black
hole with mass m, classical momentum pμ ¼ muμ and spin
Sμ ¼ maμ is [26]

Tμν
BHðxÞ ¼

1

m

Z
dτpðμ expða � ∂ÞνÞρpρδð4Þðx − uτÞ; ð1Þ

where we have used the shorthand notation

ða � bÞμν ¼ ϵμναβaαbβ: ð2Þ

The spin transversality condition p · a ¼ 0 is also assumed.
The corresponding coupling of the BH to gravity is

SBH ¼ −
κ

2

Z
d̂4khμνðkÞTμν

BHð−kÞ

¼ −κ
Z

d̂4kδ̂ð2p · kÞpðμ expða � ikÞνÞρpρhμνðkÞ; ð3Þ

where the coupling constant is κ ¼ ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
. Here and below

the hats over the delta functions and measures encode
appropriate positive or negative powers of 2π, respectively.
Putting the graviton on shell, hμνðkÞ → δ̂ðk2Þεμεν, we can
rewrite the characteristic angular-momentum exponential in
another form

hμνðkÞTμν
BHð−kÞ ¼ δ̂ðk2Þδ̂ðp · kÞðp · εÞ2 exp

�
−i

kμενSμν

p · ε

�
;

ð4Þ

now involving a transverse spin tensor Sμν

Sμν ¼ ϵμνρσpρaσ ⇒ pμSμν ¼ 0: ð5Þ

More explicitly, the above transition relies on the equality

ðp · εÞj−1εμ½ða � ikÞj�μνpν ¼ ð−ikμενSμνÞj; ð6Þ

that is easiest verified in the frame and gauge where
k¼ðk0;0;0;k0Þ, ε¼ð0;ε1;�iε1;0Þ and p ¼ ðp0; p1; 0; p0Þ.
In Ref. [31] we discovered that the same exponential is

hidden inside the minimal-coupling amplitudes proposed
recently by Arkani-Hamed, Huang and Huang [30]

M3ðpfag
1 ;−pfbg

2 ; kþÞ ¼ −
κ

2

h1a2bi⊙2s

m2s−2 x2; ð7aÞ

M3ðpfag
1 ;−pfbg

2 ; k−Þ ¼ −
κ

2

½1a2b�⊙2s

m2s−2 x−2: ð7bÞ

The arguments of scattering amplitudes are treated as
incoming, so the present choice corresponds to the momen-
tum configuration shown in Fig. 1. Here and below the
symbol ⊙ denotes tensor product symmetrized over each

p1

p2
k

FIG. 1. Three-point amplitude.

1We note that Refs. [10,31,32] have also treated spin con-
tributions at 2PM order, and that Ref. [33] has also considered
radiative effects via a classical double copy with spin.
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massive particle’s 2s little-group indices fa1;…; a2sg and
fb1;…; b2sg. Furthermore, x is the positive-helicity factor

x ¼ ½kjp1jri
mhkri ¼ −

ffiffiffi
2

p

m
ðp1 · εþÞ ¼

� ffiffiffi
2

p

m
ðp1 · ε−Þ

�
−1
; ð8Þ

that is dimensionless and independent of the reference
momentum r on the on-shell three-point kinematics [30].
Now one can start by noticing that the amplitudes

Mð0Þ
3 ¼ −κðp1 · ε�Þ2, given by the scalar case of

Eq. (7), correspond precisely to the Sμν ¼ 0 case of the
vertex (4). Moreover, we were able to recast the spin
structure of the amplitudes (7) in an exponential form [31]

h2b1ai⊙2s ¼ ½2bj⊙2s exp

�
−i

kμεþν σ̄μν

p1 · εþ

�
j1a�⊙2s; ð9aÞ

½2b1a�⊙2s ¼ h2bj⊙2s exp

�
−i

kμε−ν σμν

p1 · ε−

�
j1ai⊙2s; ð9bÞ

featuring a tensor-product version of the chiral and anti-
chiral spinorial generators

σμν ¼ i
4
½σμσ̄ν − σνσ̄μ�; σ̄μν ¼ i

4
½σ̄μσν − σ̄νσμ�: ð10Þ

In Ref. [31] we could translate between the spin-operator
exponentials (9) and the classical-spin exponential (4) and
thus identify the minimal-coupling amplitudes (7) with
Kerr black holes. (A complementary identification was
done in Ref. [32] by matching to the Wilson coefficients in
the one-body effective field theory of a Kerr black hole
[4,6].) Such a translation involved sticking to either chiral
or antichiral representation, so that one of the amplitudes in
Eq. (7) contains no apparent dependence on the spin
operator. The correct symmetric dependence on the
classical spins was restored in Ref. [31] via a notion of
generalized expectation value (GEV), which involved
division by the product of the polarization tensors of the
incoming and outgoing avatars of the BH. In this paper we
follow an alternative path: we recover the entire spin
information from the amplitudes by combining the
spinor-helicity formalism with the covariant approach to
multipoles introduced in Ref. [33], while the GEV will only
serve to fix the normalization.

III. GENERAL INTEGER-SPIN SETUP

Although the minimal-coupling amplitudes II of
Ref. [30] are valid for both integer and half-integer spins,
for simplicity we will concentrate on the former case. Spin-
s polarization tensors are constructed as [31,32]

εa1…a2s
pμ1…μs ¼ εða1a2pμ1 …εa2s−1a2sÞpμs ; εabpμ ¼

ihpðajσμjpbÞ�ffiffiffi
2

p
m

: ð11Þ

We adopt the spinor-helicity conventions of Ref. [36], so
the spin-1 polarization vectors are spacelike and obey the
standard properties that are expected from them:

p · εabp ¼ 0; ð12aÞ

εabpμεpνab ¼ −ημν þ
pμpν

m2
; ð12bÞ

εp11 · ε11p ¼ εp22 · ε22p ¼ 2εp12 · ε12p ¼ −1; ð12cÞ

ðεabpμÞ� ¼ εpμab ¼ ϵacϵbdε
cd
pμ: ð12dÞ

In particular, the last line follows from the conjugation rule

ðλpαaÞ� ¼ sgnðp0Þλ̃p _αa ⇔ ðλ̃p _αaÞ� ¼−sgnðp0Þλpαa; ð13Þ

which implements the fact that in the little group SU(2)
upper and lower indices are related by complex conjugation.
Since the polarization tensors are essentially symmetrized

tensor products ε⊙s
p , the action of the Lorentz generators is

trivially induced by the vector representation

Σμν;σ
τ ¼ i½ημσδντ − ηνσδμτ �; ð14Þ

namely,

ðΣμνÞσ1…σs
τ1…τs

¼ Σμν;σ1
τ1δ

σ2
τ2…δσsτs

þ � � � þ δσ1τ1…δσs−1τs−1Σμν;σs
τs : ð15Þ

These matrices realize the Lorentz algebra on the one-
particle states of spin s, which are represented by the
polarization tensors (11).
A more convenient spin quantity to deal with is the Pauli-

Lubanski vector

Sλ ¼
1

2m
ϵλμνρSμνpρ: ð16Þ

Here Sμν is the spin tensor, the transverse part of which can
be reconstructed from the vector as

Sμν⊥ ¼ 1

m
ϵμνρσpρSσ ⇒ pμS

μν
⊥ ¼ 0: ð17Þ

Understanding Eq. (16) in the operator sense, we can derive
the general form of one-particle matrix element of the
Pauli-Lubanski spin operator, here denoted by Σμ,

εfagp · Σμ · εfbgp ¼ sð−1Þs−1
2m

fhpða1 jσμjpðb1 �
þ ½pða1 jσ̄μjpðb1igϵa2b2…ϵa2sÞb2sÞ: ð18Þ

One way to give meaning to this formula is to lower one set
of indices and set it equal to the other: it then produces an
expectation value
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εpfag · Σμ · εfagp

εpfag · ε
fag
p

¼

8>>>>>>><
>>>>>>>:

ssμp; a1 ¼ … ¼ a2s ¼ 1;

ðs − 1Þsμp;
P

2s
j¼1 aj ¼ 2sþ 1;

ðs − 2Þsμp;
P

2s
j¼1 aj ¼ 2sþ 2;

…

−ssμp; a1 ¼ … ¼ a2s ¼ 2;

ð19Þ

where we have also accounted for the nontrivial normali-
zation of the tensors. This shows that spin is quantized in
terms of the unit-spin vector

sμp ¼ −
1

2m
fhp1jσμjp1� þ ½p1jσ̄μjp1ig ð20Þ

that is transverse and spacelike, p · sp ¼ 0, s2p ¼ −1.
This vector is familiar from textbook discussions of
the Dirac spin, in which context it may be written as
1
2m ūp1γ

μγ5u1p ¼ − 1
2m ūp2γ

μγ5u2p. According to Eq. (19),
this vector corresponds to the spin quantization axis and
identifies the (2sþ 1) distinct wave functions ε1…12…2

p with
states of definite spin projection.
Moving on toward the scattering context, let us consider

a three-point kinematics p1 þ k ¼ p2 shown in Fig. 1. A
naive extension of the spin matrix element (18), now
between states with different momenta of mass m, is

εfbg2 · Σμ½pa� · εfag1 ¼ s
4m2s fh1ajσμj2b� þ ½1ajσ̄μj2big
⊙ fh1a2bi − ½1a2b�g ⊙ h1a2bi⊙ðs−1Þ

⊙ ½1a2b�⊙ðs−1Þ: ð21Þ

Here we have encoded the symmetrization of the little-
group indices into the modified tensor-product symbol ⊙,
and the indices on the right-hand side should be regarded as
abstract placeholders. It is important to stress that the
symmetrization encoded in the symbol ⊙ only acts inside
the two SU(2)-index sets fag and fbg separately, as
symmetrizing a little-group index of momentum p1 with
that of p2 would be mathematically inconsistent.
Notice that in Eq. (21) we must specify that the Pauli-

Lubanski operator is defined with respect to the average
momentum pa ¼ ðp1 þ p2Þ=2. It is this momentum that we
will associate with the classical momentum pμ

a ¼ muμa of
one of the incoming black holes, so it makes sense to define
a spin vector to be orthogonal to it. Equation (21) treats the
chiral and antichiral spinors on an equal footing and
generalizes the spin-1 matrix element considered in
Ref. [31]. However, even in the spin-1 case the angular-
momentum exponentiation (9), present in the exclusively
chiral and antichiral spinorial representations, was found to
be opaque at the level of such a matrix element. The reason
for that is physically important. As discussed in Ref. [4], a

consistent picture of spin-induced multipoles of a point-like
particle must be formulated in the particle’s rest frame, in
which the spin does not precess [37]. Therefore, the
formula (21) is too naive, as it involves a spin operator
defined for momentum pa but acts with it on the states
with momenta pa � k=2. The cure for that is to take into
account additional Lorentz boosts, which we will now
proceed to do.

IV. ANGULAR-MOMENTUM EXPONENTIATION

Bautista and one of the current authors have recently
argued that all spin multipoles of the amplitude can be
extracted through a finite Lorentz boost [33]. This boost is
needed to bridge the gap between two states with different
momenta. In this way, the quantum picture is made
consistent with the classical notion of spin-induced multi-
poles of a pointlike object on a worldline [4]. Here we
introduce such a construction in terms of the spinor-helicity
variables. Its equivalence to the covariant formalism of
Ref. [33] is explained in the Appendix.
To start, we note that any two four-vectors p1 and p2 of

equal mass m may be related by

pρ
2 ¼ expðiμ12pμ

1p
ν
2ΣμνÞρσpσ

1; ð22Þ

where we have used the generators (14). The numeric
prefactor in the exponent is explicitly

μ12 ¼
log½ 1m2 ðp1 · p2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −m2

p
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1 · p2Þ2 −m2
p ¼ 1

m2
þOðk2Þ:

ð23Þ

Here we are only interested in the strictly on-shell setup, for
which k2 ¼ ðp2 − p1Þ2 ¼ 0. The corresponding spinorial
transformations are

j2bi ¼ U12
b
a exp

�
i
m2

pμ
1k

νσμν

�
j1ai; ð24aÞ

j2b� ¼ U12
b
a exp

�
i
m2

pμ
1k

νσ̄μν

�
j1a�; ð24bÞ

where U12 ∈ SUð2Þ is a little-group transformation that
depends on the specifics of the massive-spinor realization.
The duality properties of the spinorial generators (10) allow
us to easily rewrite the above exponents as

i
m2

pμ
1k

νσμν;α
β ¼ k ·aαβ;

i
m2

pμ
1k

νσ̄μν;
_α
_β ¼−k ·a _α

_β; ð25Þ

where we have defined chiral representations for the Pauli-
Lubanski operators
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aμ;αβ ¼
1

2m2
ϵμνρσpaνσρσ;α

β; ð26aÞ

aμ; _α _β ¼
1

2m2
ϵμνρσpaνσ̄ρσ;

_α
_β: ð26bÞ

(Note that the product k · a is insensitive to the difference
between p1 and pa ¼ p1 þ k=2 in the above definitions, so
we could pick the latter for further convenience.) Extension
to the higher-spin states represented by tensor products of
massive spinors is analogous to Eq. (15), e.g.,

ðaμÞα1…α2s
β1…β2s ¼ aμ;α1

β1δβ2α2…δβ2sα2s

þ � � � þ δβ1α1…δβ2s−1α2s−1a
μ;
α2s

β2s ; ð27Þ

so we have

j2i⊙2s¼ ek·afU12j1ig⊙2s; j2�⊙2s¼ e−k·afU12j1�g⊙2s;

h2j⊙2s¼fU12h1jg⊙2se−k·a; ½2j⊙2s¼fU12½1jg⊙2sek·a;

ð28Þ

where the second line follows from the antisymmetry of σμν

and σ̄μν in the sense of ϵαβσμν;βγϵγδ ¼ −σμν;δα.
Let us now inspect the spin dependence of the three-

point amplitudes. In Ref. [31] we used their representation
(9) for that. In terms of the same Pauli-Lubanski operators
(26), they can be rewritten in a simpler form:

MðsÞ
3 ðkþÞ ¼ −

κx2

2m2s−2 ½2j⊙2se−2k·aj1�⊙2s; ð29aÞ

MðsÞ
3 ðk−Þ ¼ −

κx−2

2m2s−2 h2j⊙2se2k·aj1i⊙2s; ð29bÞ

which can be derived from Eq. (7) using the identities

½1ak� ¼ xh1aki; ½2bk� ¼ xh2bki; ð30aÞ

½1a2b� ¼ −h1a2bi þ x
m
h1akihk2bi: ð30bÞ

The apparent spin dependence in the amplitude formulas
above is of the form e∓2k·a, whereas there seems to be no
such dependence in the original formulas (7) from
Ref. [30]. This apparent contradiction is resolved by taking
into account the transformations (24): the true angular-
momentum dependence inherent to the minimal-coupling
amplitudes is independent of the spinorial basis. [Indeed, it
must also match the covariant formula (A3).] For example,
the plus-helicity amplitude (7a) involves h12i⊙2s, which in
the chiral representation is simply

h21i⊙2s ¼ fU12h1jg⊙2se−k·aj1i⊙2s; ð31Þ

whereas in the antichiral representation it is

½2j⊙2se−2k·aj1�⊙2s ¼ fU12½1jg⊙2se−k·aj1�⊙2s: ð32Þ

As pointed out in the Appendix, it is now natural to strip
the spin-states to cleanly obtain the spin dependence.
Alternatively, in the classical (and arbitrary-spin) limit we
should treat the operator in-between as a C-number. In that
case, both expressions above become unambiguously

lim
s→∞

m2sðU12Þ⊙2se−k·a: ð33Þ

The factor of m2s cancels in the actual amplitudes:

Mð∞Þ
3 ðkþÞ ≈ −

κ

2
m2x2e−k·a lim

s→∞
ðU12Þ⊙2s; ð34aÞ

Mð∞Þ
3 ðk−Þ ≈ −

κ

2
m2x−2ek·a lim

s→∞
ðU12Þ⊙2s: ð34bÞ

The remaining unitary factor of ðU12Þ⊙2s parametrizes an
arbitrary little-group transformation that corresponds to the
choice of the spin quantization axis (20). As such, it is
inherently quantum-mechanical and therefore should be
removed in the classical limit. Indeed, it also appears in the
simple product of polarization tensors

lim
s→∞

ε2 · ε1 ¼ lim
s→∞

1

m2s h21i⊙s ⊙ ½21�⊙s

¼ lim
s→∞

1

m2s fU12h1jg⊙se−k·aj1i⊙s

× fU12½1jg⊙sek·aj1�⊙s ¼ lim
s→∞

ðU12Þ⊙2s; ð35Þ

wherea is defined byEq. (27) butwith half asmany slots. So
we interpret the factor of ðU12Þ⊙2s as the state normalization
in accord with the notion of GEV of Ref. [31].

V. FOUR-POINT AMPLITUDE

We are now ready to compute the four-point amplitude
that contains the complete information about classical 1PM
scattering of two spinning black holes, with masses ma and
mb. In the rigorous framework of Kosower, Maybee and
O’Connell [34] for computing the momentum deflection in
the spinless case, the tree-level contribution to the impulse
expectation value is

Δpμ
a ¼ lim

ℏ→0

Z
d̂4p1δ̂þðp2

1−m2
aÞ
Z

d̂4p2δ̂þðp2
2−m2

aÞ

×
Z

d̂4p3δ̂þðp2
3−m2

bÞ
Z

d̂4p4δ̂þðp2
4−m2

bÞ

× δ̂ðp1þp3−p2−p4Þψ aðp1Þψ�
aðp2Þψbðp3Þψ�

bðp4Þ
×kμe−ik·b=ℏiM4ðp1;−p2;p3;−p4Þ; ð36Þ

where k ¼ p2 − p1 and the wave functions ψ a;b describe
quantum-mechanical wave packets with momenta well
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approximated by the classical momenta pa;b. It then leads to
a schematic formula

Δpμ
a ¼⟪

Z
d̂4kδ̂ð2pa ·kÞδ̂ð2pb ·kÞkμe−ik·b=ℏiM4ðkÞ⟫:

ð37Þ
Here the angle-bracket notation of Ref. [34] involves a
careful analysis of suitable wave functions ψ a;b and powers
of ℏ, and roughly amounts to setting the momenta to their
classical values as follows

kμ ¼ℏk̄μ → 0; pμ
1;p

μ
2 →mau

μ
a ; pμ

3;p
μ
4 →mbu

μ
b: ð38Þ

First of all, we note that in the quantum-mechanical
setting of Ref. [34] both p1 and p2 are associated with the
momentum of the first incoming black hole. This is
consistent with the equitable identification

pa ¼ ðp1 þ p2Þ=2; pb ¼ ðp3 þ p4Þ=2; ð39Þ
that we will follow. Moreover, the classical limit (38)
prescribes inspecting soft-graviton exchange in the t ¼ k2

channel, in which the graviton’s momentum is taken to zero
uniformly. Here, however, we are going to adhere to an
alternative strategy of the HCL [10]: we compute the
residue of the scattering amplitude on the pole at t ¼ 0
on finite complex kinematics and analytically continue the
result to real kinematics at a later stage. As shown in Fig. 2,
the four-point amplitude then conveniently factorizes into
two three-point ones:

Mðsa;sbÞ
4 ðp1;−p2;p3;−p4Þ

¼−1
t

X
�
MðsaÞ

3 ðp1;−p2;k�ÞMðsbÞ
3 ðp3;−p4;−k∓ÞþOðt0Þ

¼ −ðκ=2Þ2
m2sa−2

a m2sb−2
b t

ðx2ax−2b h21i⊙2sa ½43�⊙2sb

þx−2a x2b½21�⊙2sah43i⊙2sbÞþOðt0Þ; ð40Þ
of which we now have complete understanding.

The helicity factors enter the above amplitude in simple
combinations evaluated on the pole kinematics as

xa=xb ¼ γð1 − vÞ; xb=xa ¼ γð1þ vÞ; ð41Þ

where we have introduced the following interchangeable
variables that describe the total energy of the black-hole
scattering process:

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ pa · pb

mamb
¼ ua · ub: ð42Þ

Evaluating the spin-dependent terms using Eq. (28) and
taking into account the direction of kμ, we get

Mðsa;sbÞ
4 ¼ −ðκ=2Þ2γ2

m2sa−2
a m2sb−2

b t

×ðð1−vÞ2fU12h1jg⊙2sa expð−k ·aaÞj1i⊙2sa

×fU34½3jg⊙2sb expð−k ·abÞj3�⊙2sb

þð1þvÞ2fU12½1jg⊙2sa expðk ·aaÞj1�⊙2sa

×fU34h3jg⊙2sb expðk ·abÞj3i⊙2sbÞþOðt0Þ: ð43Þ

It is straightforward to check that the same result is obtained
if we choose to Lorentz-transform the states symmetrically
to their averages: p1; p2 → pa and p3; p4 → pb.
Before we take the classical limit, we should note that the

above contractions of the Pauli-Lubanski pseudovector are
parity-odd. To obtain a parity even expression, we observe
that on the pole kinematics k2 ¼ 0 the Levi-Civita spin
contractions satisfy

iϵμνρσp
μ
apν

bk
ρaσa ¼ mambγvðk · aaÞ; ð44aÞ

iϵμνρσp
μ
apν

bk
ρaσb ¼ mambγvðk · abÞ: ð44bÞ

These equalities can be derived by squaring the left-
hand sides and computing the resulting Gram determinants
using that k2¼pa ·k¼pb ·k¼pa ·aa¼pb ·ab¼0. Therefore,
introducing a two-form constructed from two initial BH
momenta

wμν ¼ 2p½μ
a p

ν�
b

mambγv
; ½w � a�μ ¼

1

2
ϵμναβwαβaν; ð45Þ

and stripping the unitary transition factors U⊙2sa
12 and U⊙2sb

34

via the GEV, we obtain the classical limit of the scattering
amplitude (43) as

hM4ðkÞi¼−
�
κ

2

�
2m2

am2
b

k2
γ2
X
�
ð1�vÞ2 exp½�iðk ·w�a0Þ�;

ð46Þ

FIG. 2. Four-point amplitude for elastic scattering of two
distinct massive particles.
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where aμ0 ¼ aμa þ aμb is the total spin pseudovector. Note
that from now on we consider the above expression to be
valid for any values of transfer momentum momentum k.
As suggested by Eq. (37) and the scattering-angle

formula of Ref. [12], in the classical picture we consider
the transfer momentum k as a Fourier variable dual to the
impact parameter b, which is a spacelike vector orthogonal
to both of initial momenta, b · pa ¼ b · pb ¼ 0. Therefore,
we define the scattering function

hM4ðbÞi¼
Z

d̂4kδ̂ð2pa ·kÞδ̂ð2pb ·kÞe−ik·bhM4ðkÞi: ð47Þ

The above Fourier transform is easiest performed in the
center-of-mass (COM) frame, where pa ¼ ðEa; pÞ and
pb ¼ ðEb;−pÞ, see Fig. 3. In this frame the eikonal
integration measure [12] becomes explicitly

Z
d̂4kδ̂ð2pa · kÞδ̂ð2pb · kÞe−ik·b

¼COMframe 1

4ðEa þ EbÞjpj
Z

d̂2keik·b
����
k0¼p·k¼0

: ð48Þ

In other words, the integration is strictly spacelike and
restricted by p · k ¼ 0 to the two-dimensional subspace
orthogonal to the initial momenta, which is the same
subspace where the impact parameter is defined. Using
ðEa þ EbÞjpj ¼ mambγv, we compute

hM4ðbÞi¼
κ2mambγ

16v

X
�
ð1�vÞ2

×
Z

d2k
ð2πÞ2k2 exp½ik · ðb∓ ½w�a0�2dÞ�jp·k¼0

¼−
κ2mambγ

32πv

X
�
ð1�vÞ2 log jb∓ ½w�a0�2dj:

ð49Þ

Here by ½w � a0�2d we have denoted the appropriate
spacelike projection of the four-vector w � a0. However,
recall that

½w � a0�μ ¼
ϵμνρσa0νpaρpbσ

mambγv
; ð50Þ

i.e., the vector w � a0 is transverse to pa and pb and hence
lies in the same plane as k and b. Therefore, no information
is lost in the two-dimensional projection above, so we can
safely uplift the scattering function (49) to its Lorentz-
invariant form

hM4ðbÞi¼−Gmamb
γ

v

X
�
ð1�vÞ2 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðb∓w�a0Þ2

q
:

ð51Þ

VI. LINEAR AND ANGULAR IMPULSES

In this section we relate the scattering function (51) in the
impact-parameter space to the classical changes in linear
and angular momentum of a BH after gravitational scatter-
ing off another BH. This problem was treated to all orders
in spins at 1PM order by one of the present authors [26],
producing the result (rewritten in the mostly-minus metric
convention)

Δpμ
a ¼ GmambℜZμ; ð52aÞ

Δaμa ¼ −
Gmb

ma
½pμ

aðaa ·ℜZÞ þ ϵμνρσðℑZνÞpaρaaσ�; ð52bÞ

in terms of an auxiliary complex vector

Zμ ¼ γ

v

X
�
ð1� vÞ2½ημν ∓ ið�wÞμν� ðb ∓ w � a0Þν

ðb ∓ w � a0Þ2
: ð53Þ

Now we can observe that differentiating the scattering
function (51) automatically produces its real and imaginary
parts:

∂
∂bμ hM4ðbÞi ¼ −GmambℜZμ; ð54aÞ

∂
∂aμ hM4ðbÞi ¼ GmambℑZμ: ð54bÞ

Using the known solution (52), we can identify

Δpμ
a ¼ −

∂
∂bμ hM4ðbÞi;

Δaμa ¼ 1

m2
a

�
pμ
aaνa

∂
∂bν − ϵμνρσpaνaaρ

∂
∂aσa

�
hM4ðbÞi: ð55Þ

At this point, we have merely matched the derivatives of
our scattering function (51) to the known result (52). Let us
now promote this empirical matching to a derivation, under
the assumption that our approach is consistent with that
of Ref. [34].

FIG. 3. The BH three-momenta in the center-of-mass frame and
the impact parameter between them.
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Indeed, the first line of Eq. (55) gives precisely the
impulse formula (37) from Ref. [34]. So let us focus on the
second line. In the concurrent preprint [35], Maybee,
O’Connell and one of the current authors have extended
the classical-limit approach of Ref. [34] to include correc-
tions in spin. Their starting point for (the expectation value
of) the lowest-order angular impulse is

ΔSμa ¼ ⟪
Z

d̂4kδ̂ð2pa · kÞδ̂ð2pb · kÞe−ik·b

×

�
−

i
m2

a
pμ
aSνakνM4ðkÞ þ ½Sμa ; iM4ðkÞ�

�
⟫: ð56Þ

Here the amplitude is considered to be a function of a one-
particle spin vector acting on the space of physical spin
degrees of freedom, i.e., the little-group indices. Therefore,
we interpret it as the matrix element

ðSμaÞfagfbg ¼ ð−1Þsεafa1…a2sg · Σ
μ · εfb1…b2sg

a ; ð57Þ

where the prefactor of ð−1Þs is due to the spacelike
normalization of the polarization vectors in Eq. (12c).
The explicit form for such a spin vector at finite spin is
given in Eq. (18). It corresponds to the generator of the
little-group transformations: as an operator it satisfies the so
(3) algebra in the rest frame of pa. This can also be stated
covariantly as

½Sμa ; Sνa� ¼
i
ma

ϵμνρσpaρSaσ: ð58Þ

As M4 is a function of Sμa , these so(3) rotations act as

½Sμa ;M4� ¼
i
ma

ϵμνρσpaνSaρ
∂M4

∂Sσa : ð59Þ

Therefore, we obtain the formula for the change in rescaled
spin

Δaμa ¼ 1

m2
a
⟪
Z

d̂4kδ̂ð2pa · kÞδ̂ð2pb · kÞe−ik·b

×

�
pμ
aaνað−ikνÞ − ϵμνρσpνaaρ

∂
∂aσa

�
M4ðkÞ⟫; ð60Þ

which maps directly to the second line of Eq. (55). Now
that the impulse formulas (55) have meaning on their own,
we see that plugging the scattering function (51) gives a
novel derivation for the complete 1PM solution (52).

VII. SUMMARY AND DISCUSSION

In this paper we have obtained the dynamically complete
solution to the (net) problem of conservative spinning
black-hole scattering at 1PM order as given in Ref. [26],
using minimal-coupling scattering amplitudes with

arbitrarily large quantum spin [30]. We have rederived
the spin-exponentiated structure of such three-point ampli-
tudes in four dimensions in a way that takes into account
the Lorentz boost between the incoming and outgoing
momenta [33]. In Ref. [31] this boost was overlooked but
effectively restored by the introduction of the generalized
expectation value. Here we have shown that considering
this boost streamlines the discussion of the spin exponen-
tiation, as well as allows for a cleaner connection to the
classical notion of spin in general relativity [4].
We have computed the change of the momentum and

spin of the scattered black holes at 1PM order using a four-
point one-graviton-exchange amplitude, which in the hol-
omorphic classical limit [10] is factorized into two three-
point minimal-coupling amplitudes. We have adopted the
formulas of Ref. [34,35] in a way that allowed us to extract
the full spin dependence of the linear and angular impulses
of the black holes. In this way, we obtained a complete
match to the known solution 1PM solution [26], which
allows for spins of the incoming black holes in arbitrary
directions. This is also a significant step forward from the
simpler case of the angular momenta aligned perpendicular
to the scattering plane considered in Ref. [31]. It is
promising that our calculation displayed a sufficiently
uniform level of complexity all the way between the
starting point and the final result, even despite the more
complex nature of the quantum degrees of freedom. This is
thanks to the remarkable fact that the spin multipoles of a
black hole exponentiate [26,38], which we could exploit
and thus avoid explicit multipole expansions.
There are several interesting future directions. One of the

most relevant ones is the extension to higher loop, or PM,
orders [9,12,13,15], which may require to include radiative
corrections [33–35] and finite-size effects [39–42]. One
could also attempt to consider higher curvature corrections,
such as the ones in Refs. [43,44]. It is also interesting to
explore the test-body limit [26,45] to improve our under-
standing of the effective potential in the sense of Ref. [46].
Furthermore, it may prove beneficial to use the double-copy
approach to quantum gravity amplitudes [22,23,47,48],
which has recently seen classical extensions [49–51], and
in this way apply it to the binary-inspiral problem [33,52–
57]. Additional insight may come from studying the same
problem in a supersymmetric setting [58].
In conclusion, our work, together with Refs. [32,35],

opens the way to higher-order calculations for the spin
effects in classical black-hole scattering using the modern
amplitude techniques in an on shell and gauge-invariant
framework.
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APPENDIX: SPIN MULTIPOLES FROM BOOSTS

Here we review the construction of Ref. [33] applied to
the three-point amplitudes and show how it simplifies in the
spinor-helicity formalism. Consider the three-point ampli-
tude in the covariant form as given there:

MðsÞ
3 ¼ Mð0Þ

3 ε2 · exp

�
−i

kμενΣμν

p1 · ε

�
· ε1; ðA1Þ

where ε1 and ε2 are spin-s polarization tensors, the

generators Σμν are given in Eq. (15), and Mð0Þ
3 ¼ −κðp1 ·

εÞ2 corresponds to the gravitational interaction of a scalar
particle. It was proposed that in order to extract classical
multipoles (forming representations of the little group in
the sense of Ref. [4]) the spin states must be evaluated at the
same momenta. On the three-point kinematics, the polari-
zation states for p1 and p2 are related via

ε2 ¼ exp
�

i
m2

pμ
1k

νΣμν

�
ε̃1; ε̃1 ¼ UðsÞ

12 ε1; ðA2Þ

where UðsÞ
12 is a tensor representation of an SO(3) little-

group transformation. Note that in the rest frame of particle
1 the Lorentz transformation pμ

1k
νΣμν ¼ mkiΣ0i is nothing

but the canonical choice for the boost needed to shift p1 to
p1 þ k. One can show that the two exponents commute on
the three-point kinematics, so

MðsÞ
3 ¼ Mð0Þ

3 ε̃1 exp

�
−

i
m2

pμ
1k

νΣμν

�
exp

�
−i

kμενΣμν

p1 · ε

�
ε1

¼ Mð0Þ
3 ε̃1 exp

�
−i

kμενΣ
μν
⊥

p1 · ε

�
ε1; ðA3Þ

where we have defined

Σμν
⊥ ¼ Σμν þ 2

m2
p½μ
1 Σν�ρp1ρ; p1μΣ

μν
⊥ ¼ 0; ðA4Þ

as the operator that corresponds to the transverse spin
tensor (17). Being a transverse tensor, it can be used to
construct representations of the little group. The first such j
spin multipoles of e.g., Ref. [4] are recovered by expanding
the exponential to order j and stripping ε1 and ε̃1. For finite
spin s, it was observed that this exponential truncates at
order 2s, whereas Eq. (A1) truncates at order s [33].

Let us now apply the spinor-helicity formalism to the
above argument. Picking for concreteness the negative
helicity, it was shown in [33] that Eq. (A1) can be rewritten
as our amplitude:

MðsÞ
3 ¼ Mð0Þ

3

m2s

�
2

����
⊙2s

exp

�
−i

kμε−ν σμν

p1 · ε−

�����1
	

⊙2s
: ðA5Þ

On the other hand, in Ref. [31] we noted that in the chiral
spinor-variable basis self-duality of σμν implies

−i
kμε−ν σμν

p1 · ε−
¼ −2i

kμε−ν σ
μν
⊥

p1 · ε−
¼ 2k · a; ðA6Þ

where aμ is given by (27) and σμν⊥ is the transverse
projection of σμν, as in Eq. (A4). The crucial factor of
two arises here because in the spinor variables we cannot
distinguish between the orbital or intrinsic pieces of the
angular momentum. Indeed, the p1 → p2 boost considered
in Eq. (A2) acts on the chiral basis as

i
m2

pμ
1k

νσμν¼ k ·a⇒ j2i⊙2s¼ ek·afU12j1ig⊙2s ðA7Þ

in accord with Eqs. (25) and (28) in the main text. This
boost compensates the factor of two in Eq. (A6), so

MðsÞ
3 ¼ Mð0Þ

3

m2s fU12h1jg⊙2se−k·ae2k·aj1i⊙2s

¼ Mð0Þ
3

m2s fU12h1jg⊙2sek·aj1i⊙2s: ðA8Þ

Now compare this to Eq. (A3), where two distinct expo-
nentials combined into an exponential of a SO(3) rotation
(A4). We see that in the four-dimensional chiral spinor
basis it trivialized down to two exponentials, identical up to
a numerical prefactor.
One might see an apparent contradiction in Eq. (A7).

Namely, that the right-hand side involves the little-group
rotation k · a preserving p1, whereas the left-hand side
corresponds to a boost p1 → p1 þ k. The reason that this is
consistent is because Eq. (A7) is a chirality-dependent
statement. In fact, the corresponding relation for the
antichiral spinors involves a sign flip:

i
m2

pμ
1k

νσ̄μν ¼ −k · a; ðA9Þ

as given in Eq. (25). More concretely, consider the
following relations

½ek·a�αβp1β _β½e−k·a� _β _α ¼ p1α _α; ðA10aÞ

½ek·a�αβp1β _β½ek·a� _β _α ¼ p2α _α; ðA10bÞ
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where piα _α ¼ jiaiα½iaj _α as usual. The first relation
is simply the statement that the Pauli-Lubanski
operator generates little-group rotations, whereas the
second relation shows that thanks to the sign flip k ·

a can effectively act as a boost. Therefore, Eq. (A7)
and Eq. (A9) contain no real contradiction and
reflect the “square root” nature of the spinor-helicity
representation.
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