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Extending our previous studies, we perform high-resolution simulations of inspiraling binary neu-
tron stars in numerical relativity. We thoroughly carry through a convergence study in our currently
available computational resources with the smallest grid spacing of ≈ 63–86 meter for the neutron-
star radius 10.9–13.7 km. The estimated total error in the gravitational-wave phase is of order 0.1 rad
for the total phase of & 210 rad in the last ∼ 15–16 inspiral orbits. We then compare the waveforms
(without resolution extrapolation) with those calculated by the latest effective-one-body formalism
(tidal SEOBv2 model referred to as TEOB model). We find that for any of our models of binary
neutron stars, the waveforms calculated by the TEOB formalism agree with the numerical-relativity
waveforms up to ≈ 3 ms before the peak of the gravitational-wave amplitude is reached: For this
late inspiral stage, the total phase error is . 0.1 rad. Although the gravitational waveforms have an
inspiral-type feature for the last ∼ 3 ms, this stage cannot be well reproduced by the current TEOB
formalism, in particular, for neutron stars with large tidal deformability (i.e., lager radius). The
reason for this is described.

PACS numbers: 04.25.D-, 04.30.-w, 04.40.Dg

I. INTRODUCTION

Gravitational-wave astronomy has vividly revealed
its usefulness for exploring the nature of compact ob-
jects. Advanced LIGO operating since 2015 [1] has
already reported three merger events of binary black
holes [2–4], and the masses and spins of individual
black holes have been successfully determined to mod-
est accuracy despite the cosmological distances to these
sources [5]. A noteworthy feature of these events, partic-
ularly GW 150914 [2], is that they are observed through-
out the inspiral-merger-ringdown phases, which can-
not be fully modeled by the traditional post-Newtonian
(PN) approximation suitable only for the early inspiral
phase [6]. Thus, accurate theoretical waveforms appli-
cable to dynamical phases are essential for the estima-
tion of binary parameters [5] and also the test of general
relativity [7]. For this purpose, the effective-one-body
(EOB) formalism calibrated by numerical-relativity sim-
ulations played a very important role in the data analysis
(see Ref. [5] and references therein). As the quality of
gravitational-wave data will be further improved in the
near future with advanced Virgo [8] in operation since
2017 and upcoming KAGRA [9], accuracy of waveform
models will become more important so as to avoid sys-
tematic errors.

The next target for ground-based detectors is gravita-

tional waves from coalescing binary neutron stars (and
also black hole-neutron star binaries), which will inform
us about finite-size properties of neutron stars along with
their masses. Simultaneous measurements of these quan-
tities will become a powerful method to strongly con-
strain the not-yet-understood equation of state (EOS)
of the neutron-star matter, and its accomplishment is
one of the most important goals of gravitational-wave
astronomy. On one hand, the masses of two neutron
stars will be determined with high accuracy of . 1%
from gravitational-wave signals in the inspiral phase for
a sufficiently high signal-to-noise ratio [10] as far as the
neutron-star spins are small [11]. On the other hand, it
will be challenging to extract quantities associated with
the finite-size effect, because it does not become appre-
ciable until the very late inspiral phase.

Among various proposals, one of the most promising
strategy is to read off tidal deformability, which governs
the late-phase orbital evolution, from gravitational waves
emitted during the inspiral phase up to the merger [12–
18]. This strategy requires an accurate template of grav-
itational waves from binary-neutron-star inspirals tak-
ing into account tidal deformation that influences the
dynamics of the late inspiral orbits. In anticipation of
coming detections of binary-neutron-star mergers, devel-
oping an accurate model of gravitational waveforms for
binary-neutron-star inspirals including the tidal effects is
an urgent task.
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The EOB formalism will play an important role also in
the analysis of gravitational waves from binary neutron
stars. Because the finite-size effect becomes important in
the very late stage of the orbits, PN approximations with
tidal effects [13] are not satisfactory. Indeed, it has been
shown that the lack of knowledge about higher-order PN
point-particle terms prevents us from accurately extract-
ing the tidal deformability [17, 19–23]. The EOB for-
malism can improve the accuracy of the waveform tem-
plates for the dynamical phase via effective incorporation
of higher-order PN terms and non-adiabatic dynamics
close to merger. Motivated by this success, tidal EOB
(TEOB) models have been developed by various authors
to model the coalescence of binary neutron stars [15, 24–
28]. These studies demonstrate that the extraction of
tidal deformability is feasible for an event with a moder-
ately high signal-to-noise ratio [28] (this fact is also con-
firmed by a numerical-relativity study [29]), or by stack-
ing analysis of multiple events [18]. All these results sup-
port the idea that extracting the tidal deformability from
gravitational waves emitted in the late inspiral phase of
binary-neutron-star mergers is a promising way to con-
strain the EOS of neutron-star matter.

However, Ref. [26] also suggests that the current TEOB
approach is not yet accurate enough to model waveforms
for the last few cycles for the case that the neutron-star
radius is large. This implies that further modeling aided
by high-precision waveforms derived by numerical rela-
tivity is required to obtain reliable templates in the final
inspiral stage of neutron star binaries. For this purpose,
a large-scale numerical-relativity simulation is crucial.

Long-term simulations for binary-neutron-star inspi-
rals have recently been performed by several groups aim-
ing at deriving high-precision numerical-relativity wave-
forms [21, 25, 29, 31–41]. These work, in particular the
latest ones, followed the late inspiral phase for & 10 or-
bits up to the onset of merger. However, past numeri-
cal simulations would not be able to obtain gravitational
waveforms with sufficient accuracy due to the following
reasons. First in the early-stage work, initial data with
an unphysical residual eccentricity were employed. This
seriously degrades the accuracy of derived waveforms,
because binary neutron stars in the late inspiral stage
are believed to have a quasi-circular orbit with negligi-
ble eccentricity [42]. This problem has been overcome,
and simulations were performed with much less eccentric
initial conditions in the latest work [21, 29, 31, 32, 41].
However, even in these recent work, the phase error in the
waveforms was likely to be still of order 1 rad because of
the insufficient grid resolutions except for a single highest
resolution model of Ref. [32].

In this paper, we push forward our previous numerical-
relativity studies [21, 29] to a sub-100-meter-resolution
regime. The simulations are performed for about 15–16
inspiral orbits employing the initial data in which the ec-
centricity is sufficiently small (∼ 10−3: see appendix A)
as in our previous studies [21, 29]. The update lies in the
grid resolution improved by a factor of up to ∼ 2.2 from

the previous ones. In the highest-resolution case, the
minimum grid spacing is 63–86 m for the neutron stars
of radius 10.9–13.7 km: The major diameter of neutron
stars is covered by ≈ 270 grid points. We show that the
waveform depends very weakly on the grid spacing at
such a high resolution, and the phase error in the grav-
itational waveforms is estimated to be of order 0.1 rad
among the total phase of & 210 rad. We then show that
a TEOB model can be reliably calibrated with such high-
accuracy numerical gravitational waveforms.

The paper is organized as follows. In Sec. II, we sum-
marize the formulation and numerical schemes employed
in our numerical-relativity study, and also review the
adopted EOS. In Sec. III, we present numerical gravita-
tional waveforms and show that the phase error in grav-
itational waves derived with our highest grid resolution
is of order 0.1 rad. We then compare our best-resolved
waveforms with those derived by the latest TEOB ap-
proach and examine the accuracy of the TEOB wave-
form in Sec. IV. Section V is devoted to a summary.
Throughout this paper, we employ the geometrical units
of c = G = 1 where c and G are the speed of light and
the gravitational constant, respectively.

II. SUMMARY OF OUR SETTING FOR
NUMERICAL-RELATIVITY SIMULATION

In this section, we summarize the formulation and nu-
merical schemes of our numerical-relativity simulations,
EOS employed for neutron stars, definitions of the tidal
deformability for binaries, and our recipe for constructing
a waveform.

A. Formulation, code, and models

We follow the inspiral and early merger stages of bi-
nary neutron stars using a numerical-relativity code,
SACRA [43]. Following our previous work [21, 29], we
employ a moving puncture version of the Baumgarte-
Shapiro-Shibata-Nakamura formalism [44], locally incor-
porating a Z4c-type constraint propagation prescrip-
tion [45] (see Ref. [46] for our implementation) for a so-
lution of Einstein’s equation. In our numerical simula-
tions, a fourth-order finite differencing scheme in space
and time is used implementing an adaptive mesh refine-
ment (AMR) algorithm (see Ref. [43] for details). In
this work, we parallelized and tuned this AMR code sig-
nificantly, and this improvement enables us to perform
a number of high-resolution simulations in a relatively
short time scale: As we describe later, the grid resolu-
tion is more than twice better (i.e., the grid spacing is by
a factor . 2 smaller) than that in our previous work [21].
The required CPU time is 540-650k core hours for the
highest resolution models.

In this work, we prepare ten refinement levels for the
AMR computational domain. Specifically, two sets of



3

TABLE I. Model name, the location of outer boundaries
along each axis denoted by L, and the finest grid spacing,
∆xfinest, in several different grid-resolution runs. The model
name reflects the EOS and mass of neutron stars. ∆xfinest is
listed for N = 182, 150, 130, 110, 102, and 90 in the equal-
mass models and N = 150, 130, 110, 102, and 90 in the
unequal-mass models. We note that the wavelength of grav-
itational waves is initially λ0 ≈ 810 km irrespective of the
models in this paper.

Model L (km) ∆xfinest (m)

B135-135 5860 63, 76, 88, 104, 112, 127

HB135-135 6392 69, 83, 96, 113, 122, 138

H135-135 6991 75, 91, 105, 124, 134, 152

125H135-135 7324 79, 95, 110, 130, 140, 159

15H135-135 7990 86, 104, 120, 142, 153, 173

B121-151 5991 78, 90, 106, 114, 129

HB121-151 6324 82, 95, 112, 121, 137

H121-151 6823 89, 103, 121, 131, 148

125H121-151 7323 95, 110, 130, 140, 159

15H121-151 7822 102, 118, 138, 150, 170

four finer domains comoving with each neutron star cover
the region of their vicinity. The other six coarser do-
mains cover both neutron stars by a wider domain with
their origins fixed at the center of the mass of the binary
system. Each refinement domain consists of a uniform,
vertex-centered Cartesian grid with (2N+1, 2N+1, N+
1) grid points for (x, y, z) (the equatorial plane symme-
try at z = 0 is imposed). The distance from the origin to
outer boundaries along each axis is denoted by L. Here,
L is much larger than the initial wavelength of gravita-
tional waves, λ0 = π/Ω0, with Ω0 being the initial or-
bital angular velocity (see Table I). We always choose it
Ω0 ≈ 0.0155/m0 where m0 is the total mass of the binary
system at infinite separation.

In this work, we consider the models of total mass
m0 ≈ 2.7M� (see Table II). More precisely, we select
equal-mass models with each mass m1 = m2 = 1.35M�
and unequal-mass models with each mass m1 ≈ 1.21M�
and m2 ≈ 1.51M�. For these models, the chirp mass

defined by (m1m2)3/5m
−1/5
0 (where m0 = m1 + m2) is

fixed to be ≈ 1.17524M�. For the unequal-mass mod-
els, the symmetric mass ratio defined by η := m1m2/m

2
0

is chosen to be 0.247 (i.e., the corresponding mass ratio
q = m1/m2 is chosen to be ≈ 0.8025). For these values of
m0, λ0 ≈ 810 km and initial gravitational-wave frequency
f ≈ 370 Hz.

The grid spacing for each domain is ∆xl = L/(2lN),
where l = 0 − 9. In this work, we choose a wide vari-
ety of values for N and examine the convergence prop-
erties of numerical results: For the equal-mass models,
we perform the simulations with N = 182, 150, 130, 110,
102, and 90 and for the unequal-mass models, N = 150,
130, 110, 102, and 90. We note that in our previous
work [21, 29], N was at best 72 [30]. With the high-

TABLE II. Equations of state employed, the radius, RM , and
the dimensionless tidal deformability ΛM of spherical neutron
stars of M = 1.21, 1.35, and 1.51M�. RM is listed in units of
km.

EOS R1.21 R1.35 R1.51 Λ1.21 Λ1.35 Λ1.51

B 10.98 10.96 10.89 581 289 131

HB 11.60 11.61 11.57 827 422 200

H 12.25 12.27 12.26 1163 607 298

125H 12.93 12.97 12.98 1621 863 435

15H 13.63 13.69 13.73 2238 1211 625

est grid resolution, N = 182, the semi-major diameter of
each neutron star is covered by about 270 grid points. For
the simulation with a small-radius neutron star of radius
10.9 km, the best grid spacing is ≈ 63 m (see Table I).
With our setting of m0Ω0 ≈ 0.0155, the binary experi-
ences 15–16 orbits before the gravitational-wave ampli-
tude reaches a peak.

We prepare binary neutron stars in quasi-circular or-
bits with small eccentricity ∼ 10−3 for the initial con-
dition of numerical simulations. These initial conditions
are numerically obtained by using a spectral-method li-
brary, LORENE [47]. The eccentricity reduction is per-
formed by the method of Ref. [46]. The neutron stars
are assumed to have an irrotational velocity field, which
is believed to be an astrophysically realistic (or at least
approximately realistic) configuration [48, 49].

We note that even with the eccentricity-reduced initial
conditions, the small residual eccentricity of ∼ 10−3 still
gives a small damage for getting accurate quasi-circular
waveform. This is in particular the case for carefully com-
paring the numerical waveforms with those by TEOB for-
malisms (see the discussion in Appendix A). The numeri-
cal waveforms for the first 3–4 orbits are not very suitable
for performing the careful analysis of gravitational-wave
data. Thus, when comparing the numerical waveforms
with those by the TEOB formalisms, we only employ
the waveforms for the last 11–12 orbits. We first notice
this fact when we obtain the results of high-resolution
simulations in this paper. This finding reconfirms that
the eccentricity reduction for constructing the initial data
is crucial for accurately deriving the late inspiral wave-
forms.

B. Equations of State

Following our previous work [16, 34, 51], we employ
a parameterized piecewise-polytropic EOS [50] with two
pieces. In this work, our purpose is to accurately clarify
the dependence of inspiral gravitational waveforms on the
tidal deformability. For this purpose, the choice of the
simple EOS is acceptable.

This EOS is written in terms of two segments of poly-
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tropes of the form

P =

{
K0ρ

Γ0 ( for ρ0 ≤ ρ < ρ1)

K1ρ
Γ1 ( for ρ1 ≤ ρ)

(2.1)

where ρ is the rest-mass density, P is the pressure, K0

and K1 are a polytropic constant, and Γ0 and Γ1 are an
adiabatic index. At the boundary of these two piecewise
polytropes, ρ = ρ1, the pressure is required to be contin-
uous, i.e., K0ρ

Γ0
1 = K1ρ

Γ1
1 . Thus, the parameters, which

have to be given, are K0, ρ1, Γ0, and Γ1. Following the
previous studies [16, 34, 51], these parameters are deter-
mined in the following manner: The low-density EOS is
fixed by setting Γ0 = 1.3562395 and K0 = 3.594×1013 in
cgs units. The adiabatic index for the high-density region
is set to be Γ1 = 3, and hence, K1 is determined to be
K1 = K0ρ

Γ0−Γ1
1 . The remaining parameter, ρ1, is varied

for a wide range to prepare neutron stars with a variety of
the radius and tidal deformability (see Table II). We note
that for any EOS employed in this paper, the maximum
mass of spherical neutron stars is larger than 2.0M�; the
approximate maximum mass for neutron stars for which
the mass is accurately measured to date [52] (see Ref. [51]
on the data of the maximum mass for each EOS).

In numerical simulations, we employ the following
modified version of the piecewise polytropic EOS to ap-
proximately take into account thermal effects:

P = Pcold(ρ) + (Γth − 1)ρεth, (2.2)

ε = εcold(ρ) + εth, (2.3)

where Γth is a constant. The cold parts (the first terms)
of both variables are calculated using the original piece-
wise polytropic EOS from ρ, and then the thermal part
of the specific internal energy is determined from ε as
εth = ε − εcold(ρ). Because εth vanishes in the absence
of shock heating, it is regarded as the finite-temperature
part determined by the shock heating in the present con-
text. Following our latest work [21, 29, 46], Γth is chosen
to be 1.8, but this is not relevant for the present study
because we focus only on the late inspiral evolution.

C. Parameters associated with tidal deformability

For modeling the late inspiral orbital motion and cor-
responding gravitational waves of binary neutron stars,
two parameters constructed from the dimensionless tidal
deformability of two neutron stars are often used. One is
the EOB tidal parameter [28] which appears in the equa-
tion of motion of the TEOB formalism and is defined
by

ΛT := 16η(X3
1 Λ1 +X3

2 Λ2), (2.4)

where Xi := mi/m0 and Λi is the dimensionless tidal
deformability of each neutron star. We note that the
originally defined variable is κT2 and it is calculated by
3ΛT /16.

The other parameter is the so-called binary tidal de-
formability, Λ̃, defined by [17]

Λ̃ =
8

13

[
(1 + 7η − 31η2)(Λ1 + Λ2)

−
√

1− 4η(1 + 9η − 11η2)(Λ1 − Λ2)

]
. (2.5)

where we supposed that m1 ≤ m2 and then, Λ1 ≥ Λ2. Λ̃
is related to the leading term associated with the tidal ef-
fect in the gravitational-wave phase in the Fourier space,
and hence, in the real gravitational-wave detection, this
can be regarded as the primarily measured quantity.

One interesting property for ΛT and Λ̃ is that for a
fixed chirp mass, these values are in a narrow range
(within 1% disagreement) as long as we consider the cases
that m0 ≈ 2.7M� and 0.8 ≤ q ≤ 1. Hence, in the follow-

ing, we refer only to Λ̃, supposing that Λ̃ agrees approx-
imately with ΛT . Note that for the equal-mass models
(η = 0.25), ΛT = Λ̃.

D. Extraction of gravitational waves

As a first step toward producing gravitational waves
from numerical data, we extract the outgoing-component
of complex Weyl scalar Ψ4 [43]. If Ψ4 is extracted at a
sufficiently large radius, complex gravitational waveforms
are determined in spherical coordinates (r, θ, φ) by

h(t, θ, ϕ) = − lim
r→∞

∫ t

dt′
∫ t′

dt′′Ψ4(t′′, r, θ, ϕ). (2.6)

Ψ4 can be expanded with respect to the spin-weighted
spherical harmonics of weight −2, −2Ylm, as

Ψ4(t, r, θ, φ) =
∑
lm

Ψl,m
4 (t, r)−2Ylm(θ, φ), (2.7)

where Ψl,m
4 is the expansion coefficient defined by this

equation. In this work, we focus only on the (l, |m|) =
(2, 2) mode because we pay attention only to the equal-
mass or nearly equal-mass binary, and hence, this
quadrupole mode is the dominant one.

We extract Ψ4 at a finite spherical-coordinate radius
of r ≈ 200m0, and then, calculate Ψ2,2

4 as a function of
the retarded time defined by

tret := t− r∗, (2.8)

where r∗ is the so-called tortoise coordinate defined by

r∗ := rA + 2m0 ln

(
rA

2m0
− 1

)
, (2.9)

with rA :=
√
A/4π and A the proper area of the extrac-

tion sphere.
Since Ψ2,2

4 (tret) extracted at a finite radius, r0 ≈
200m0, is different from the true gravitational waveform
observed at null infinity, we then have to compute an
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FIG. 1. The amplitude (A2,2D/m0; upper panels) and phase (Φ; middle panels) of numerical gravitational waveforms with
different grid resolutions for the equal-mass models with HB EOS (left) and 125H EOS (right). In the bottom panels, we also
plot the difference in phase with respect to the best grid resolution (N = 182 case) for N = 90, 102, 110, 130, and 150. The
vertical lines denote the time at which the peak amplitude is reached for N = 182. D denotes the distance to the source.

extrapolated waveform at r0 → ∞. As in our previous
studies [21, 29], for this purpose, we employ the Nakano’s
method (approximately equivalent to the Cauchy match-
ing method) [53–55], by which the waveform at infinity
is calculated by

Ψl,m,∞
4 (tret, r0) = C(r0)

[
Ψl,m

4 (tret, r0)

− (l − 1)(l + 2)

2rA

∫ tret

Ψl,m
4 (t′, r0)dt′

]
,

(2.10)

where C(r0) is a function of r0. Since our coordinates
are similar to isotropic coordinates of non-rotating black
holes, we choose rA = r0[1 + m0/(2r0)]2 and C(r0) =
1 − 2m0/rA. In this setting, tret at r = r0 is given by
Eqs. (2.8) and (2.9).

We also perform the same analysis choosing different
extraction radii as r0/m0 = 156 and 178 and estimate
the error of the gravitational-wave phase coming from
the extraction of Ψ4 at finite radii, because the effect of

the finite-radius extraction still remains in Ψl,m,∞
4 .

For Ψl,m,∞
4 (tret, r0) thus determined, the gravitational

waveform of each mode is obtained by twice integrating
it as [see Eq. (2.6)]

hl,m(tret) := hl,m+ (tret)− ihl,m× (tret)

= −
∫
tret

dt′
∫
t′
dt′′Ψl,m,∞

4 (t′′). (2.11)

For this integration, we employ the method of Ref. [56],
and write hl,m(tret) as

hl,m(tret) =

∫
dω′

Ψl,m,∞
4 (ω′)

max(ω′, ωcut)2
exp(iω′tret),(2.12)

where Ψl,m,∞
4 (ω) is the Fourier transform of Ψl,m,∞

4 (tret)
and ωcut is chosen to be 1.6Ω0. (Note that at the initial

stage, the value of ω is ≈ 2Ω0 > ωcut). We recall again
that in this paper we pay attention only to l = |m| = 2
modes because these are the dominant modes in partic-
ular for the equal-mass binaries.

From Eq. (2.12), the evolution of the amplitude, i.e.,
Al,m = |hl,m|, is immediately determined. For the anal-
ysis employed in our method, we can also define the an-
gular frequency

ω(tret) :=
|ḣ2,2|
|h2,2|

, (2.13)

and subsequently, the gravitational-wave phase by

Φ(tret) :=

∫ tret

dt′ ω(t′). (2.14)

Now, using A2,2 and Φ, the quadrupole gravitational
waveform can be written as

h2,2(tret) = A2,2(tret) exp [iΦ(tret)] . (2.15)

Before closing this section, we note that the angular
frequency defined by Eq. (2.13) is contaminated by the
time derivative of the amplitude. Although the associ-
ated error for our current analysis that focuses only on
the inspiral phase is negligible, future analysis of more
dynamical merger phase will require more appropriate
definitions such as [57]

ωdyn(tret) := Im

(
h∗2,2ḣ2,2

|h2,2|2

)
, (2.16)

where h∗2,2 is the complex conjugate of h2,2.
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III. NUMERICAL RESULTS

Figure 1 plots the amplitude (A2,2D/m0; upper pan-
els) and phase (Φ; middle panels) of numerical gravita-
tional waveforms with different grid resolutions for the
equal-mass models with HB EOS (left) and 125H EOS
(right). D denotes the distance to the source. In the bot-
tom panels for both left and right, we also plot the dif-
ference in phase with respect to the best grid-resolution
(N = 182) results for N = 90, 102, 110, 130, and 150.
This figure shows that the merger occurs earlier for the
poor grid resolutions with N . 130. Specifically, the
evolution of Φ(tret) is spuriously accelerated for such low
grid resolutions. However, for the high grid resolutions
with N & 150, the phase evolution depends only weakly
on the grid resolution. In some models like 15H and
125H models, the merger for N = 182 occurs slightly
earlier than for N = 150. However, the peak amplitude

time difference is as small as ≈ 0.5 microsecond. When
we pay attention to the waveforms only up to the peak
amplitude, the phase difference between N = 150 and
N = 182 is 0.1–0.2 rad irrespective of the models (see
Fig. 2).

The left panel of Fig. 2 plots differences in the
gravitational-wave phase, Φ(tret), at the moment that
the gravitational-wave amplitude forN = 182 reaches the
peak as a function of (182/N)4 for the equal-mass models
with five different EOS. This shows that the phase dif-
ference steeply (as fast as or faster than the fourth-order
convergence) decreases with the improvement of the grid
resolution for N & 100 irrespective of the EOS. In par-
ticular for N & 150, the phase difference is decreased to
0.1–0.2 rad, and the phase error appears to be conver-
gent (besides an irregular error that does not converge
monotonically with the improvement of the grid resolu-
tion: see below for a discussion). This indicates that for
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N & 150 (∆x9 . 100 m), nearly convergent waveforms
with the phase error within ∼ 0.2 rad would be obtained.

The right panel of Fig. 2 plots differences in the
gravitational-wave phase for the unequal-mass models. It
is found that the convergence behavior of the phase dif-
ference is similar to that for the equal-mass models. This
suggests that for N = 150, a nearly convergent waveform
is likely to be also obtained for these unequal-mass mod-
els.

Figure 1 shows that for N . 110, the phase differ-
ence monotonically decreases with the improvement of
the grid resolution. However, for N & 130, the phase
difference does not show such monotonic behavior as
already mentioned. This indicates the presence of an
unidentified source of the numerical error that does not
monotonically converge with the improvement of the grid
resolution. Figure 1 indicates that such error source gen-
erates the error in gravitational-wave phase by ∼ 0.1 rad
irrespective of the EOS employed.

The another phase error sources are the finite-radius
extraction and the violation of the baryon mass conserva-
tion. In Appendix B, we show the phase error due to the
finite-radius extraction is less than 0.04 rad irrespective
of the models.

The violation of the baryon mass conservation may
cause a phase error [31]. We also show that this error is
much smaller than 0.01 rad up to the merger irrespective
of the models in the appendix. Therefore, we have to
bear in mind that in our current numerical waveform,
the phase error of ∼ 0.1 rad cannot be avoided.

Figure 3 plots the peak amplitude of gravitational
waves, hpeak, and the frequency at the peak, fpeak, as
functions of the grid resolution, described by (182/N),
for the equal-mass models (left panel) and as functions
of (150/N) for the unequal-mass models (right panel).

This figure shows that the quantities associated with the
peak depend weakly on the grid resolution. In particu-
lar, it is found that fpeak may be underestimated if the
grid resolution is not high enough. It should be also re-
marked that the fluctuation in fpeak is rather large even
among the high-resolution results. This is reasonable be-
cause the frequency rapidly increases near the amplitude
peak. We should keep in mind that the value of the peak
frequency has an error of 2–3%.

Figure 4 plots the relation between hpeak and fpeak

and between Λ̃ and fpeak following Ref. [16]. This shows
that the relation between hpeak and fpeak depends only
weakly on the mass ratio. Qualitatively this is reasonable
because hpeak should be an increasing function of fpeak.

It is also found that the relation between Λ̃ and fpeak

depends strongly on the mass ratio. We note that Λ̃ is
approximately equal to ΛT for the models employed in
this paper. Thus, our results do not show a universal
relation (see also Ref. [58]). Nevertheless, Fig. 4 shows
that fpeak (and hence hpeak) has valuable information on

Λ̃ as follows: (i) if fpeak is higher than ∼ 2 kHz (i.e.,
hpeakD/m0 & 0.16) for the chirp mass of ≈ 1.1752M�,

Λ̃ . 500, implying that the EOS is rather soft. (ii) if
fpeak is lower than ∼ 1.4 kHz (i.e., hpeakD/m0 . 0.14)

for the chirp mass of ≈ 1.1752M�, Λ̃ & 1000, implying
that the EOS is rather stiff.

IV. COMPARISON BETWEEN
NUMERICAL-RELATIVITY AND TEOB

WAVEFORMS

In this section, we compare the NR waveforms with
those by a TEOB formalism. For the TEOB formalism,
we employ a latest version reported in Ref. [26], in which
the effects of not only the static but also dynamical tides
are taken into account.

In this comparison, we use the NR waveforms without
performing extrapolation to the limit of ∆xfinest = 0 be-
cause as we showed in the previous section (and found
in this section), the numerical error of the waveforms
is small enough to perform the direct comparison. In
the following, we employ the NR waveforms obtained for
N = 182 or N = 150 for the comparison: For the equal-
mass models, we use the two waveforms of different grid
resolutions and show that the results on the comparison
do not lead to any serious difference.

When comparing two waveforms, we first have to align
the time and phase of the NR and TEOB waveforms.
This is done by searching for the minimum of the follow-
ing correlation, Ic, varying τ and φ:

Ic = min
τ,φ

∫ tf

ti

dtret

∣∣∣A2,2
NR(tret) exp [iΦNR(tret)]

− A2,2
TEOB(tret + τ) exp [iΦTEOB(tret + τ) + iφ]

∣∣∣2 .
(4.1)
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For the NR waveforms, we use the data with N = 150.

Here, A2,2
NR and ΦNR denote the amplitude and phase

of gravitational waves for the numerical-relativity data,
respectively. A2,2

TEOB and ΦTEOB denote those by the
TEOB formalism. For calculating the correlation, we
employ the time domain NR waveforms of 20 ms ≤ tret ≤
40 ms. The corresponding gravitational-wave frequency
at tret = 20 and 40 ms is ≈ 410 and 500 Hz, respectively.

The reason that we choose the rather late-time NR
waveforms of 20 ms ≤ tret ≤ 40 ms for the correlation Ic
is as follows: In the early stage of the numerical evolution
with tret . 15 ms, the frequency of gravitational waves al-
ways has an irregular modulation (see Appendix A). For
precisely comparing the NR waveforms with those by the
TEOB approach, such modulation, even if its amplitude
is not very large, introduces the uncertainty in matching.
To remove such uncertainty, we discard the waveforms in

TABLE III. ΦNR −ΦTEOB at t = tpeak in units of radian for
the equal-mass models with N = 182 and 150, and for the
unequal-mass models with N = 150.

EOS (η,N) = (0.250, 182) (0.250, 150) (0.247, 150)

B 0.1 0.3 0.2

HB 0.3 0.6 0.4

H 0.7 0.9 0.7

125H 1.0 1.1 1.1

15H 1.3 1.3 1.3

the early stage. We note that even for tret ≥ 20 ms, there
are & 22 wave cycles (& 11 orbits) in our numerical data.
We confirmed that the choice of the time-window of the
matching does not significantly affect the following result.

In Figs. 5 and 6, we compare the NR waveforms
with the TEOB waveforms. In Table III, we also list
ΦNR−ΦTEOB at the moment that the gravitational-wave
amplitude reaches the peak (referred to as tpeak in the fol-
lowing). Figures 5 and 6 show that up to tpeak−3 ms, the
TEOB waveforms well reproduce the NR waveforms irre-
spective of the EOS and mass ratio: In particular for the
models for which the compactness is large and the tidal
deformability is small (e.g., for B EOS), the agreement
is quite good even at t = tpeak − 1 ms, and the disagree-
ment in the gravitational-wave phase is within 0.3 rad up
to tpeak, which is within the uncertainty due to the phase
error.

On the other hand, for the models for which the com-
pactness is relatively small (e.g., for 125H and 15H EOS),
agreement between the NR and TEOB waveforms be-
comes poor for the last few ms prior to tpeak, leading to
a phase disagreement of & 1 rad, which is greater than
the uncertainty due to the phase error (see Table III).
The interpretation for this is described as follows: For
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FIG. 7. Density profiles on the equatorial plane for the model 15H135-135 with N = 182 at t = tpeak − 1.10 ms (left),
tpeak − 0.55 ms (middle), and tpeak (right).

these small-compactness models, two neutron stars come
into contact at tcont ∼ tpeak − 1 ms (see the left panel
of Fig. 7). Then, after the contact, the tidal deforma-
tion is further enhanced and a dumbbell-like object is
formed (see the middle panel of Fig. 7). However, the
density peaks of the dumbbell-like object are still clearly
separated, and hence, the gravitational waveform has
a chirp-type signal although the waveform is different
slightly from the chirp signal from the separated body;
that is, the evolution process of the system is determined
by hydrodynamics equations (not simply by two-body
equations of motion) and emission process of gravita-
tional waves by the dumbbell-like object. As the dis-
tance between two density peaks decreases sufficiently,
the gravitational-wave amplitude eventually reaches the
peak (see the right panel of Fig. 7), and after the two den-
sity peaks merge, the amplitude significantly decreases.
As mentioned above, for tcont ≤ tret ≤ tpeak, chirp-type
gravitational waves are emitted from a dumbbell-like ob-
ject. However, the evolution of the object and the result-
ing gravitational waveforms cannot be well modeled by
the current TEOB formalism because this stage is beyond
the range of its application.

For the larger-compactness models, similar disagree-
ment is found but only for the short duration because
the tidal effects are weak, and furthermore, tpeak − tcont

is . 1 ms: For such compact models, the separation be-
tween two neutron stars is already small at tret = tcont,
and hence, the time scale of gravitational radiation re-
action is as short as or shorter than the orbital period.
Therefore, the duration of the stage of the dumbbell-
like configuration is quite short and the disagreement
between the NR and TEOB waveforms are not very re-
markable.

Figure 5 and Table III show that irrespective of the
numerical data employed, we obtain approximately the
same results for the comparison between the NR and
TEOB waveforms. This reconfirms that for N & 150, an
approximately convergent waveform (but with the phase
error of order 0.1 rad) can be obtained in our numerical

implementation.
To quantify the disagreement between the NR and

TEOB waveforms, we define a measure of the mismatch
by

M(tret) := 1− |(hNR|hTEOB)|
(hTEOB|hTEOB)1/2(hNR|hNR)1/2

,(4.2)

where (h1|h2) is a function of tret defined (without refer-
ring to detector noises) by

(h1|h2) :=

∫ tret

ti

h1(t′ret)h
∗
2(t′ret)dt

′
ret, (4.3)

and h∗ denotes the complex conjugate of h. Here, ti is
chosen to be 20 ms, and hNR and hTEOB denote the NR
and TEOB waveforms, respectively.

Figure 8 plots M(t) for all the models with N ≥ 150
that we consider in this paper. This shows that the de-
gree of the mismatch steeply increases for the last in-
spiral orbits, in particular for the stiff EOS, due to the
lack of modeling in the TEOB formalism as mentioned
above. On the other hand, up to ∼ tpeak − 3 ms, the
match is quite good: M is smaller than 10−3. This con-
vinces us that the final issue in the TEOB formalism,
in particular for the stiff EOS of large tidal deformabil-
ity, is to take into account dynamics and the waveform
in the dumbbell-like object phase. The phase difference,
ΦNR − ΦTEOB, as well as the mismatch, M, at a given
moment of the retarded time increases nonlinearly with
Λ̃. This suggests that for the improvement of the TEOB
approach, a new nonlinear term of the tidal deformability
is needed. This point will be discussed in our accompa-
nying paper [59].

V. SUMMARY

We presented our latest numerical-relativity results of
long-term, high-accuracy simulations for the inspiraling
binary neutron stars. The simulations were performed
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not only for the equal-mass binaries but also for the
unequal-mass ones. We showed that if the grid resolu-
tion is high enough (i.e., the neutron-star radii are cov-
ered with the grid of its spacing 60–80 m), it is possible to
obtain a nearly convergent gravitational waveform (with
the phase error of order 0.1 rad) from inspiraling binary
neutron stars.

By comparing our high-resolution waveforms with the
TEOB waveforms, we find that the TEOB formalism can
reproduce accurate waveforms for binary neutron stars
up to ∼ tpeak−3 ms irrespective of the neutron star EOS
models. However, it is also found that for tpeak − 3 ms .
t . tpeak (in particular for tpeak − 1 ms . t . tpeak), the
current TEOB formalism cannot reproduce the numerical
waveforms, in particular for the binary neutron stars of
stiff EOS, and the phase error between the numerical and
TEOB waveforms cannot be negligible as & 1 rad at the
amplitude peak for the stiff EOS models. The primary
reason for this is that for such a stage, the evolution of the
system cannot be well reproduced by the current TEOB
equation of motion.

Accurate numerical data is crucial for modeling grav-
itational waveforms in the frequency domain [60]. Our
numerical waveforms are the most accurate ones among
those have been ever derived. We are now developing a
phenomenological model from our numerical waveforms
in the frequency domain, since we find that the numerical
waveforms have a quality enough for the modeling. The
results will be presented in our accompanying paper [59].
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Appendix A: The effects of residual eccentricity in
the numerical waveforms

We here demonstrate that the numerical waveforms in
the early stage of numerical simulations are not suitable
for the precise analysis because of the presence of the
unphysical and irregular modulation in the angular fre-
quency in the numerical waveforms, which is likely to be
generated due to an unphysical setting of initial condi-
tions (see below).

The modulation in the angular frequency of the nu-
merical waveforms is extracted in the following proce-
dure. First, we fit and subtract the non-oscillatory (i.e.,
physical) part of the numerical angular frequency by em-
ploying a function of the form

ωFit (t) =

7∑
n=0,n6=1

an (t1 − t)−(n+3)/8
. (A1)

The choice of this form is motivated by the Taylor-T3
approximant [6, 61], and the coefficients, t1 and an, are
determined by the least-square fitting procedure. The
fitting is performed for 5 ms ≤ tret ≤ 50 ms of the wave-
forms. We checked that the result of the fitting depends
only weakly on the choice of the time window.
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FIG. 9. The modulation in the angular frequency of the numerical waveforms for 15H (left panel) and B (right panel) EOS.
The fitting curves are determined from the data in 17 ms ≤ tret ≤ 27 ms by a sinusoidal function. For these fitting curves, the
eccentricity of the binary orbits is measured to be e ≈ 1.19× 10−3 and 1.05× 10−3 for 15H and B EOS, respectively.

Figure 9 shows the modulation in the angular fre-
quency of the numerical waveforms for the equal-mass
model with 15H and B EOS with N = 150. The modu-
lation is defined by

ωNR − ωFit

ωFit
, (A2)

where ωNR is the angular frequency of the numerical-
relativity waveforms. The fitting curves in this figure
are determined from the data in 17 ms ≤ tret ≤ 27 ms
assuming that the modulation is written as a sinusoidal
function. For e� 1, the residual eccentricity e of the bi-
nary orbits is related to the amplitude of the modulation
in the angular frequency, ∆ω, by ∆ω ≈ 2eω assuming
that the Newtonian relation is satisfied. For these fitting
curves, the eccentricity of the binary orbits is measured
to be e ≈ 1.19 × 10−3 and 1.05 × 10−3 for 15H and B
EOS, respectively. Figure 9 shows that the eccentricity
decreases with time, and it is . 10−3 for & 20 ms irre-
spective of the EOS and binary mass employed.

Figure 9 shows that in the early part of the evolution
with tret . 15 ms, the modulation in the angular fre-
quency behaves in an irregular manner, although that
for tret & 15 ms exhibits a simple damped-oscillation-
like feature (neglecting its fine structure). That is, for
tret . 15 ms, the center of the oscillation is not located at
zero. This irregular oscillation causes an irregular error
in the gravitational-wave phase and makes it difficult to
perform a careful comparison between the numerical and
TEOB waveforms. Therefore, we discard the waveforms
in the early stage, and use only the data with tret ≥ 20 ms
for the comparison in this paper. We note that even when
we discard the data with tret ≤ 20 ms, i.e., first ∼ 6.5− 7
wave cycles, we still have & 22 cycles in the waveforms
up to tpeak.

Our interpretation for this irregular modulation for the
first ∼ 15 ms is that burst-like junk radiation is emitted
just after the simulation is started, and it takes about

15 ms until the system relaxes to a quasi-stationary state.
The junk radiation is caused by unphysical setting of the
initial condition associated with the so-called conformal
flatness approximation for the initial-data problem (e.g.,
see chapter 5 of Ref. [62]).

Appendix B: Phase error due to the finite-radius
extraction and violation of the baryon mass

conservation

According to the Nakano’s method Eq. (2.10), we
extrapolate the gravitational waveforms extracted at
r0/m0 = 156, 178, and 200 to infinity. We find that
the extrapolated waveforms slightly deviate each other
due to the finite-radius extraction. By assuming this er-
ror falls off as 1/r0, we obtain a waveform at infinity from
the waveforms generated by the Nakano’s method. Fig-
ure 10 plots the phase difference between the waveform
generated by the Nakano’s method and the waveform at
infinity as a function of the retarded time. The phase
error due to the finite-radius extraction is as small as
∼ 0.01 rad up to the peak amplitude time and it de-
creases as a function of the extraction radius. We find
a similar trend in the other equal-mass models and the
unequal-mass models.

The baryon mass conservation is slightly violated at
the merger because the conservative mesh refinement is
not implemented in our code [63, 64]. Following Ref. [31],
we estimate the phase error due to the violation of the
baryon mass conservation by

δΦb = ωtret
∆Mb

Mb
, (B1)

where ω is the angular frequency Eq. (2.13) and Mb is the
baryon mass. ∆Mb is the violation of the baryon mass
conservation. Figure 11 plots the estimated phase error
due to the violation of the baryon mass conservation for
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the equal-mass models with N = 182. This plot shows
that the resolution adopted in this work is high enough
to reduce the error in the baryon mass conservation to
≈ 10−4 % up to the peak amplitude time. Consequently,

the phase error is ≈ O(10−4) rad at the peak amplitude
time irrespective of the models. The unequal-mass mod-
els show a similar result.
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