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1 Introduction

Kerr black holes are very special spinning objects. Any stationary axisymmetric extended

body has an infinite tower of mass-multipole moments Iℓ and current-multipole moments

Jℓ, which generally depend intricately on its internal structure and composition. For a

Kerr black hole, every multipole is determined by only the mass m and spin s, through the

simple relation due to Hansen [1],

Iℓ + iJℓ = m

(
is

m

)ℓ

. (1.1)

This distinctive behaviour is a reflection of the no-hair theorem, stating that black holes

in general relativity (GR) are uniquely characterised by their mass and spin (and charge).
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Recent work has suggested that an on-shell expression of the no-hair theorem is that

black holes correspond to minimal coupling in classical limits of quantum scattering ampli-

tudes for massive spin n particles and gravitons. Amplitudes for long-range gravitational

scattering of spin 1/2 and spin 1 particles were found in [2, 3] to give the universal spin-

orbit (pole-dipole level) couplings in the post-Newtonian corrections to the gravitational

potential. Further similar work in [4], up to spin 2, suggested that the black-hole mul-

tipoles (1.1) up to order ℓ = 2n are faithfully reproduced from tree-level amplitudes for

minimally coupled spin n particles.

Such amplitudes for arbitrary spin n were computed in [5], using the representation of

minimal coupling for arbitrary spins presented in [6] using the massive spinor-helicity for-

malism — see also [7, 8]. Those amplitudes were shown in [9, 10] to lead in the limit n → ∞
to the two-black-hole aligned-spin scattering angle found in [11] at first post-Minkowskian

(1PM) order and to all orders in the spin-multipole expansion, while in [12] they were

shown to yield the contributions to the interaction potential (for arbitrary spin orienta-

tions) at the leading post-Newtonian (PN) orders at each order in spin. The importance

of minimal coupling has been especially emphasised in [12], where, by matching at tree-

level to the classical effective action of [13], it was shown that the theory which reproduces

the infinite-spin limit of minimally coupled graviton amplitudes is an effective field theory

(EFT) of spinning black holes, with any deviation from minimal coupling adding further

internal structure to the effective theory.

In this paper we remove the restriction to the aligned-spin configuration in the final

results of [9, 10], and the restriction to the nonrelativistic limit in the final results of [12].

We use on-shell amplitudes to directly compute relativistic classical observables for generic

spinning-particle scattering, reproducing such results for black holes obtained by classical

methods in [11], thereby providing more complete evidence for the correspondence between

minimal coupling to gravity and classical black holes.

The dynamics of spinning black holes is of great interest for gravitational-wave astron-

omy [14], and spin leads to essential corrections which are required for precision analysis

of signals from binary black hole mergers [15]. Incorporating spin into a major theoretical

platform for these experiments, the effective one-body formalism [16, 17], is well established

in the PN approximation [18–24], and was recently extended to the PM approximation by

means of a gauge-invariant spin holonomy [25]. This has been used to compute the dipole

(or spin-orbit) contribution to the conservative potential for two spinning bodies through

2PM order [26]. In addition to the all-multipole binary-black-hole results for generic spins

at 1PM order found in [11], aligned-spin black-hole scattering has been considered also at

2PM order for low multipoles in [27]. Meanwhile, calculating higher-order PN spin cor-

rections has been a particular strength of the EFT treatment of PN dynamics [13, 28–33];

for reviews see [34, 35]. All-multipole-order expressions are also known at the leading PN

orders [36, 37].

Alternatively, there exist many techniques for using scattering amplitudes to compute

classical and quantum corrections to gravitational potentials [38–51], and there has been

significant recent progress in obtaining such corrections in the PM approximation [52–

57]. Using amplitudes allows one to draw upon a powerful armoury of modern on-shell
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methods. Of particular applicability for gravity is the double copy [58, 59], which asserts

that replacing the colour factors in Yang-Mills amplitudes with kinematic factors satisfying

the same Lie algebraic structure yields a gravity amplitude. While only proven at tree-level

for pure gauge theory [60], this conjecture can be applied to both massless and massive

states [61, 62] and has a wealth of non-trivial supporting evidence [63–65]. It raises the

provocative question of whether exact solutions in general relativity satisfy similar simple

relationships to their classical Yang-Mills counterparts, coined the classical double copy [66–

80]. Such a relationship has indeed been found in the gravitational radiation emitted by

spinning sources at 1PM order [81, 82]. Irrespectively, amplitudes techniques have already

been applied in general relativity to determine the sought-after 3PM correction to the

conservative gravitational potential for the first time [56] (see also [83]), by matching to an

effective theory of non-relativistic scalars [55].

Calculating the gravitational potential is versatile but gauge-dependent. Amplitudes

and observables, however, are on-shell and gauge-invariant, leading Kosower and two of

the authors to introduce a direct mapping between the two [84]. General formulae valid

for massive scalar scattering in any quantum field theory, with interactions mediated by

massless bosons, were written down for the impulse ∆pµ and total radiated momentum Rµ,

for any two-body scattering event. By analysing appropriate wavepackets and extracting

powers of ~, results for these quantities in classical electrodynamics at tree and 1-loop

levels were accurately reproduced. The relevance of the same classical limit for radiative

scattering of massive scalars in Einstein gravity was also shown in [85].

In this paper we relax the restriction to scalars and consider conservative scattering of

massive particles with spin. In addition to the (linear) impulse ∆pµ, there is another rele-

vant on-shell observable, the change ∆sµ in the spin (psuedo-)vector sµ, which we will call

the angular impulse. We introduce this quantity in section 2, where we also review classical

results from [11] for binary black hole scattering at 1PM order. In section 3 we consider the

quantum analogue of the spin vector, the Pauli-Lubanski operator; manipulations of this

operator allow us to write expressions for the angular impulse akin to those for the linear

impulse in [84]. Obtaining the classical limit requires some care, which we discuss before

constructing example gravity amplitudes in section 4 from the double copy. In section 5 we

then show that substituting these examples into our general formalism exactly reproduces

the leading terms of all-multipole order expressions for the impulse and angular impulse

of spinning black holes [11]. Finally, we discuss how our results further connect spinning

black holes and scattering amplitudes in section 6.

2 Spin and scattering observables in classical gravity

Before setting up our formalism for computing the angular impulse, let us briefly review

aspects of this observable in relativistic classical physics.

2.1 Linear and angular momenta in asymptotic Minkowski space

To describe the incoming and outgoing states for a weak scattering process in asymp-

totically flat spacetime, we can use special relativistic physics, working as in Minkowski

– 3 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
6

spacetime. There, any isolated body has a constant linear momentum vector pµ and an

antisymmetric tensor field Jµν(x) giving its total angular momentum about the point x,

with the x-dependence determined by Jµν(x′) = Jµν(x) + 2p[µ(x′ − x)ν], or equivalently

∇λJ
µν = 2p[µδν]λ.

Relativistically, center-of-mass (cm) position and intrinsic and orbital angular mo-

menta are frame-dependent concepts, but a natural inertial frame is provided by the di-

rection of the momentum pµ, giving the proper rest frame. We define the body’s proper

cm worldline to be the set of points z such that Jµν(z)pν = 0, i.e. the proper-rest-frame

mass-dipole vector about z vanishes, and we can then write

Jµν(x) = 2p[µ(x− z)ν] + Sµν , (2.1)

where z can be any point on the proper cm worldline, and where Sµν = Jµν(z) is the

intrinsic spin tensor, satisfying

Sµνpν = 0. (2.2)

Equation (2.2) is often called the “covariant” or Tulczyjew-Dixon spin supplementary con-

dition (SSC) [86, 87] in its (direct) generalization to curved spacetime in the context of

the Mathisson-Papapetrou-Dixon equations [88–92] for the motion of spinning extended

test bodies.1 Given the condition (2.2), the complete information of the spin tensor Sµν is

encoded in the momentum pµ and the spin pseudo-vector [97],

sµ =
1

2m
ǫµνρσp

νSρσ =
1

2m
ǫµνρσp

νJρσ(x), (2.3)

where ǫ0123 = +1 and the metric signature is mostly minus, with p2 = m2. Note that

s · p = 0; sµ is a spatial vector in the proper rest frame. Given (2.2), the inversion of the

first equality of (2.3) is

Sµν =
1

m
ǫµνλτp

λsτ . (2.4)

The total angular momentum tensor Jµν(x) can be reconstructed from pµ, sµ, and a point

z on the proper cm worldline, via (2.4) and (2.1).

1A frequently used alternative to the “covariant” SSC (2.2) is a “canonical” or Pryce-Newton-Wigner [93–

95] SSC, of the form Sµν(pν/m + Uν) = 0, for some fixed background unit timelike vector field Uµ. For

a two-body system, Uµ is conveniently chosen to correspond to the system’s center-of-mass velocity. The

canonical SSC choice leads to a canonical phase-space algebra [13, 20, 34, 35, 96]. Translating between

these two SSC choices, at the level of (classical) net (weak) scattering results (as described in the following

subsection), can be accomplished with special-relativistic kinematics at infinity for asymptotic scattering

states. A change of the SSC corresponds to a linear shift of the worldline, linear in the spin, and a linear

shift of the spin tensor, proportional to the worldline shift (accompanied by a definition of a canonical spin

vector orthogonal to Uµ), all depending otherwise only on the momentum and the canonical SSC frame Uµ.

This is discussed in detail in section IV.A of [11]. While we consider in this paper only linear (tree-level)

interactions, such translations for asymptotic scattering states should continue to be valid beyond linear

order, as has been demonstrated to be consistent with well-established post-Newtonian results in [27], in a

restricted context at second order.
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2.2 Scattering of spinning black holes in linearized gravity

Following the no-hair property emphasised in section 1, the full tower of gravitational

multipole moments of a spinning black hole, and thus also its (linearized) gravitational

field, are uniquely determined by its monopole pµ and dipole Jµν . This is reflected in the

scattering of two spinning black holes, in that the net changes in the holes’ linear and

angular momenta depend only on their incoming linear and angular momenta. It has been

argued in [11] that the following results concerning two-spinning-black-hole scattering, in

the 1PM approximation to GR, follow from the linearized Einstein equation and a minimal

effective action description of spinning black hole motion, the form of which is uniquely

fixed at 1PM order by general covariance and appropriate matching to the Kerr solution.

Consider two black holes with incoming momenta pµ1 = m1u
µ
1 and pµ2 = m2u

µ
2 , defining

the 4-velocities uµ = pµ/m with u2 = 1, and incoming spin vectors sµ1 = m1a
µ
1 and

sµ2 = m2a
µ
2 , defining the rescaled spins aµ = sµ/m (with units of length, whose magnitudes

measure the radii of the ring singularities). Say the holes’ zeroth-order incoming proper cm

worldlines are orthogonally separated at closest approach by a vectorial impact parameter

bµ, pointing from 2 to 1, with b · u1 = b · u2 = 0. Then, according to the analysis of [11],

the net changes in the momentum and spin vectors of black hole 1 are given by

∆pµ1 = Re{Zµ}+O(G2),

∆sµ1 = −uµ1a
ν
1 Re{Zν} − ǫµναβu1αa1β Im{Zν}+O(G2),

(2.5)

where

Zµ =
2Gm1m2√

γ2 − 1

[
(2γ2 − 1)ηµν − 2iγǫµναβu

α
1u

β
2

]bν + iΠν
ρ(a1 + a2)

ρ

[b+ iΠ(a1 + a2)]2
, (2.6)

with γ = u1 · u2 being the relative Lorentz factor, and with

Πµ
ν = ǫµραβǫνργδ

u1αu2βu
γ
1u

δ
2

γ2 − 1

= δµν +
1

γ2 − 1

(
uµ1 (u1ν − γu2ν) + uµ2 (u2ν − γu1ν)

) (2.7)

being the projector into the plane orthogonal to both incoming velocities. The analogous

results for black hole 2 are given by interchanging the identities 1 ↔ 2.

If we take black hole 2 to have zero spin, aµ2 → 0, and if we expand to quadratic

order in the spin of black hole 1, corresponding to the quadrupole level in 1’s multipole

expansion, then we obtain the results shown in (5.1) and (5.2) below. In the remainder

of this paper, developing necessary tools along the way, we show how those results can be

obtained from classical limits of scattering amplitudes for one-graviton exchange between

a massive scalar particle and a massive spin-n particle, with minimal coupling to gravity,

with n = 1/2 to yield the dipole level, and with n = 1 to yield the quadrupole level.

3 Spin and scattering observables in quantum field theory

The linear and angular impulses, ∆pµ and ∆sµ, are observable, on-shell quantities. In [84]

a general formalism for calculating the classical impulse ∆pµ in quantum field theory was

– 5 –
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introduced; as the angular impulse is also on-shell similar methods should be applicable. A

first task is to understand what quantum mechanical quantity corresponds to the classical

spin pseudovector of equation (2.3). This spin vector is a quantity associated with a single

classical body, and we therefore begin by discussing single particle states (to set up our

notation) before discussing the spin vector of a quantum state. We then move on to the

change in spin during a scattering event, and finally we will explain the correspondence

region in which a quantum calculation must agree with a classical one. As our aim is to

address black hole scattering processes, we restrict throughout to the case in which our

incoming and outgoing particles are massive.

3.1 Single particle states

We will be interested in both bosonic and fermionic particles, normalising creation and

annihilation operators so that

[ai(p), a
†
j(q)]± = δ̂Φ(p− q)δij , (3.1)

where δ̂Φ(p) is the appropriate delta function for the on-shell phase-space measure:

δ̂Φ(p) ≡ 2Ep(2π)
3δ(3)(p). (3.2)

Single particle states of a given momentum and spin are defined, as usual, by |p, i〉 =

a†i (p)|0〉. Notice that the index i transforms under the little group, which for a massive

particle in four dimensions is SU(2).

Our interest will primarily be in spatially localised particles, which are associated with

a wavefunction φ(p) in momentum space. In general there is also a little group index on

the wavefunction; for our purposes it is sufficient to consider wavefunctions of the form

φ(p)ξi. Thus, we will concern ourselves with states of the form

|ψ〉 =
∑

i

∫
dΦ(p)φ(p)ξi|p, i〉 , (3.3)

where the invariant phase space measure is

dΦ(k) = d̂4k δ̂(+)(k2 −m2) ≡ d4k

(2π)4
2πΘ(k0)δ(k2 −m2) (3.4)

We normalise the wavefunction by choosing
∫
dΦ(p)|φ(p)|2 =∑i |ξi|2 = 1.

3.2 The Pauli-Lubanski spin pseudovector

Now we turn to the question of what operator in quantum field theory is related to the clas-

sical spin pseudovector of equation (2.3). We propose that the correct quantum-mechanical

interpretation is that the spin is nothing but the expectation value of the Pauli-Lubanski

operator

Wµ =
1

2
ǫµνρσP

ν
J
ρσ , (3.5)

– 6 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
6

where Pµ and Jρσ are the translation and Lorentz generators, respectively. In particular,

our claim is that the expectation value

〈sµ〉 ≡ 1

m
〈Wµ〉 = 1

2m
ǫµνρσ〈Pν

J
ρσ〉 (3.6)

of the Pauli-Lubanski operator on a single particle state (3.3) is the quantum-mechanical

generalisation of the classical spin pseudo-vector. Indeed a simple comparison of equa-

tions (2.3) and (3.5) indicates a connection between the two quantities. We will provide

abundant evidence for this link in the remainder of this article. Matrix elements of the

Pauli-Lubanski vector are also relevant in the context of hadronic physics [98, 99].

The Pauli-Lubanski operator is a basic quantity in the classification of free particle

states, although it receives less attention in introductory accounts of quantum field theory

than it should. With the help of the Lorentz algebra

[Jµν ,Pρ] = i~(ηµρPν − ηνρPµ) ,

[Jµν , Jρσ] = i~(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµρJµσ) ,
(3.7)

it is easy to establish the important fact that the Pauli-Lubanski operator commutes with

the momentum:

[Pµ,Wν ] = 0. (3.8)

Furthermore, as Wµ is a vector operator, it satisfies

[Jµν ,Wρ] = i~(ηµρWν − ηνρWµ) . (3.9)

It then follows that the commutation relations of W with itself are

[Wµ,Wν ] = −i~ǫµνρσWρPσ. (3.10)

On single particle states this last commutation relation takes a particularly instructive

form. Working in the rest frame of our massive particle state, evidently W 0 = 0. The

remaining generators satisfy2

[Wi,Wj ] = i~ǫijkWk , (3.11)

so that the Pauli-Lubanski operators are nothing but the generators of the little group.

Not only is this the basis for their importance, but also we will find that these commutation

relations are directly useful in our computation of the change in a particle’s spin during

scattering.

Because Wµ commutes with the momentum, we have

〈p′, j|Wµ|p, i〉 ∝ δ̂Φ(p− p′). (3.12)

We define the matrix elements of W on the states of a given momentum to be

〈p′, j|Wµ|p, i〉 ≡ msµij(p) δ̂Φ(p− p′) , (3.13)

2We normalise ǫ123 = +1, as usual.

– 7 –
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so that the expectation value of the spin vector is

〈sµ〉 =
∫

dΦ(p) |φ(p)|2 ξ∗i sµijξj . (3.14)

The matrix sµij(p), sometimes called the spin polarisation vector, will be important below.

These matrices inherit the commutation relations of the Pauli-Lubanski vector, so that in

particular

[sµ(p), sν(p)] = −i
~

m
ǫµνρσsρ(p)pσ . (3.15)

Specialising now to a particle in a given representation, we may derive well-known [2, 3,

5, 46, 47, 50] explicit expressions for the spin polarisation sµij(p) starting from the Noether

current associated with angular momentum. We provide details in appendix B for the

simple spin 1/2 and 1 cases. For a Dirac spin 1/2 particle, the spin polarisation is

sµab(p) =
~

4m
ūa(p)γ

µγ5ub(p) . (3.16)

Meanwhile, for massive vector bosons we have

sµij(p) =
i~

m
ǫµνρσpνε

∗
i ρ(p)εjσ(p) . (3.17)

We have normalised these quantities consistent with the algebraic properties of the Pauli-

Lubanski operator.

3.3 The change in spin during scattering

Now that we have a quantum-mechanical understanding of the spin vector, we move on to

discuss the dynamics of the spin vector in a scattering process. Following the set-up in [84]

we consider the scattering of two stable, massive particles which are quanta of different

fields, and are separated by an impact parameter bµ. We will explicitly consider scattering

processes mediated by vector bosons and gravitons. The relevant incoming two-particle

state is

|Ψ〉 =
∑

a1,a2

∫
dΦ(p1)dΦ(p2)φ1(p1)φ2(p2)ξa1ξa2e

ib·p1/~ |p1 p2; a1 a2〉 , (3.18)

where the displacement operator insertion accounts for the particles’ spatial separation.

The initial spin vector of particle 1 is

〈sµ1 〉 =
1

m1
〈Ψ|Wµ

1 |ψ〉 , (3.19)

where Wµ
1 is the Pauli-Lubanski operator of the field corresponding to particle 1. Since the

S matrix is the time evolution operator from the far past to the far future, the final spin

vector of particle 1 is

〈s′µ1 〉 = 1

m1
〈Ψ|S†

W
µ
1S|ψ〉 . (3.20)

We define the angular impulse on particle 1 as the difference between these quantities:

〈∆sµ1 〉 =
1

m1
〈Ψ|S†

W
µ
1S|Ψ〉 − 1

m1
〈Ψ|Wµ

1 |Ψ〉 . (3.21)

– 8 –
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Writing S = 1 + iT and making use of the optical theorem yields

〈∆sµ1 〉 =
i

m1
〈Ψ|[Wµ

1 , T ]|Ψ〉+ 1

m1
〈Ψ|T †[Wµ

1 , T ]|Ψ〉 . (3.22)

It is clear that the second of these terms will lead to twice as many powers of the coupling

constant for a given interaction. Therefore only the first term is able to contribute at

leading order. In this paper we exclusively consider tree level scattering A(0), so the first

term is the sole focus of our attention.

Our goal now is to express the leading-order angular impulse in terms of amplitudes.

To that end we substitute the incoming state in equation (3.18) into the first term of

eq. (3.22), and the leading-order angular impulse is given by

〈∆s
µ,(0)
1 〉 = i

m1

∑

a′1,a1

∑

a′2,a2

∫
dΦ(p′1)dΦ(p

′
2)dΦ(p1)dΦ(p2)φ

∗
1(p

′
1)φ

∗
2(p

′
2)φ1(p1)φ2(p2)

× ξ1
∗
a′1
ξ2

∗
a′2
ξ1a1ξ2a2e

ib·(p1−p′1)/~
〈
p′1 p

′
2; a

′
1 a

′
2 |Wµ T − T W

µ| p1 p2; a1 a2
〉
. (3.23)

Scattering amplitudes can now be explicitly introduced by inserting a complete set of states

I =
∑

b1,b2

∫
dΦ(r1)dΦ(r2) |r1 r2; b1 b2〉〈r1 r2; b1 b2| (3.24)

between the spin and interaction operators. In their first appearance this yields

∑

b1,b2

∫
dΦ(r1)dΦ(r2)〈p′1 p′2; a′1 a′2|Wµ|r1 r2; b1 b2〉〈r1 r2; b1 b2|T |p1 p2; a1 a2〉 (3.25)

= m1

∑

b1

∫
dΦ(r1)s

µ
1 a′1b1

(p′1) δ̂Φ(p
′
1 − r1)Ab1a′2a1a2

(p1, p2 → r1, p
′
2)δ̂

(4)(r1 + p′2 − p1 − p2) ,

where, along with the definition of the scattering amplitude, we have used the definition of

the spin polarisation vector (3.16). The result for the other ordering of T and Wµ is very

similar. We will suppress the summation over repeated spin indices from now on.

Substituting into the full expression for 〈∆s
µ,(0)
1 〉 and integrating over the delta func-

tions, we find that the angular impulse is

〈∆s
µ,(0)
1 〉 = i

∫
dΦ(p′1)dΦ(p

′
2)dΦ(p1)dΦ(p2)φ

∗
1(p

′
1)φ

∗
2(p

′
2)

× φ1(p1)φ2(p2)ξ1
∗
a′1
ξ2

∗
a′2
ξ1a1ξ2a2e

ib·(p1−p′1)/~δ̂(4)(p′1 + p′2 − p1 − p2)

×
(
sµ
1 a′1b1

(p′1)Ab1a′2a1a2
(p1, p2 → p′1, p

′
2)

−Aa′1a
′
2b1a2

(p1, p2 → p′1, p
′
2)s

µ
1 b1a1

(p1)

)
.

(3.26)
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We now eliminate the delta function by introducing the momentum mismatch qi = p′i − pi
and performing an integral. The leading-order angular impulse becomes

〈∆s
µ,(0)
1 〉 = i

∫
dΦ(p1)dΦ(p2) d̂

4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)

× φ∗
1(p1 + q)φ∗

2(p2 − q)φ1(p1)φ2(p2)ξ1
∗
a′1
ξ2

∗
a′2
ξ1a1ξ2a2e

−ib·q/~

×
(
sµ
1 a′1b1

(p1 + q)Ab1a′2a1a2
(p1, p2 → p1 + q, p2 − q)

−Aa′1a
′
2b1a2

(p1, p2 → p1 + q, p2 − q)sµ1 b1a1(p1)

)
.

(3.27)

3.4 Passing to the classical limit

The previous expression is an exact, quantum formula for the change in the spin vector

during conservative two-body scattering. As a well-defined observable, we can extract

the classical limit of the angular impulse by following the formalism introduced in [84],

which contains a careful and covariant discussion of the correspondence regime in which

the classical and quantum theories must agree.

We limit ourselves to a simplified, intuitive version of this classical limit. The basic idea

is simple: the wavefunctions must localise the particles, without leading to a large uncer-

tainty in the momenta of the particles. They therefore have a finite but small width ∆x =

ℓw in position space, and ∆p = ~/ℓw in momentum space. This narrow width restricts the

range of the integral over q in equation (3.27) so that q . ~/ℓw. We therefore introduce the

wavenumber q̄ = q/~. We further assume that the wavefunctions are very sharply peaked

in momentum space around the value 〈pµi 〉 = miu
µ
i , where uµi is a classical proper velocity.

We neglect the small shift q = ~q̄ in the wavefunctions present in equation (3.27), and also

the term q2 compared to the dominant 2p · q in the delta functions, arriving at

〈∆s
µ,(0)
1 〉 = i

∫
dΦ(p1)dΦ(p2) d̂

4q δ̂(2p1 · q)δ̂(2p2 · q)|φ1(p1)|2|φ2(p2)|2e−ib·q/~

× ξ1
∗
a′1
ξ2

∗
a′2

(
sµ
1 a′1b1

(p1 + q)Ab1a′2a1a2
(p1, p2 → p1 + q, p2 − q)

−Aa′1a
′
2b1a2

(p1, p2 → p1 + q, p2 − q)sµ1 b1a1(p1)

)
ξ1a1ξ2a2 .

(3.28)

It is convenient to introduce a notation for the expectation values over the wavefunctions
〈〈
f(p1, p2, . . .)

〉〉
≡
∑

a′1,a1

∑

a′2,a2

∫
dΦ(p1)dΦ(p2) |φ1(p1)|2 |φ2(p2)|2

× ξ∗1 a′1ξ
∗
1 a′2

fa′1a
′
2a1a2(p1, p2, . . .)ξ1 a1ξ2 a2 , (3.29)

so that our angular impulse takes the form

〈∆s
µ,(0)
1 〉 = i

〈〈∫
d̂4qδ̂(2p1 · q)δ̂(2p2 · q)e−ib·q/~

(
sµ(p1 + q̄~)A(p1, p2 → p1 + q, p2 − q)

−A(p1, p2 → p1 + q, p2 − q)sµ1 (p1)

)〉〉
. (3.30)
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Notice that in equation (3.30), both the spin vector and the amplitude are matrices with

spinor indices, some of which are contracted together. Reference [84] presents a more

careful and covariant treatment of this process.

An important ~ shift remaining is that of the spin polarisation vector sµ
1 a′1b1

(p1 + ~q̄).

This object is a Lorentz boost of sµ
1 a′1b1

(p1). In the classical limit q is small, so the Lorentz

boost Λµ
νp

ν
1 = pµ1 + ~q̄µ is infinitesimal. In the vector representation an infinitesimal

Lorentz transformation is Λµ
ν = δµν +ωµ

ν , so for our boosted momenta ωµ
νp

ν
1 = ~q̄µ. The

appropriate generator is

ωµν = − ~

m2
1

(pµ1 q̄
ν − q̄µpν1) . (3.31)

This result is valid for particles of any spin as it is purely kinematic, and therefore can be

universally applied in our general formula for the angular impulse. In particular, since ωµν

is explicitly O(~) the spin polarisation vector transforms as

sµ1 ab(p1 + ~q̄) = sµ1 ab(p1)−
~

m2
pµq̄ · sab(p1). (3.32)

The angular impulse becomes

〈∆s
µ,(0)
1 〉 → ∆s

µ,(0)
1 (3.33)

=

〈〈
i

∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄

(
− ~

3 p
µ
1

m2
1

q̄ · s1(p1)A(q) + ~
2
[
sµ1 (p1),A(q)

])〉〉
.

The appearance of a commutator is a manifestation of the spin indices in eq. (3.27), which

are left implicit under the double angle brackets. The formula appears to be of a non-

uniform order in ~, but fortunately this is not really the case: any terms in the amplitude

with diagonal indices will trivially vanish under the commutator; alternatively, any term

with a commutator will introduce a factor of ~ through the algebra of the Pauli-Lubanski

vectors. Therefore all terms have the same weight, ~3, independently of factors appearing in

the amplitude. An analogous formula3 for the leading order, classical, linear impulse is [84]

∆p
µ,(0)
1 =

〈〈
i~3
∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄ q̄µA(0)(p1, p2 → p1 + ~q̄, p2 − ~q̄)

〉〉
. (3.34)

We will make use of both the linear and angular impulse formulae below. They could

be said to encode time-integrated equations of motion, given in terms of the amplitude,

analogously to how instantaneous equations of motion are given in terms of an effective

Lagrangian in equation (20) of [11].

There is a caveat regarding the uncertainty principle in the context of our spinning

particles. In this article we restrict to low spins: spin 1/2 and spin 1. Consequently the

expectation of the spin vector 〈sµ〉 is of order ~; indeed 〈s2〉 = n(n + 1)~2. This requires

us to face the quantum-mechanical distinction between 〈sµsν〉 and 〈sµ〉〈sν〉. Because of

the uncertainty principle, the uncertainty σ2
1 associated with the operator s1, for example,

3Note we have modified the definition of the double angle brackets from [84] by including spins. For

scalar amplitudes these terms drop out as the amplitude spin structure must be diagonal.
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is of order ~, and therefore the difference between 〈s21〉 and 〈s1〉2 is of order ~2. Thus the

difference 〈sµsν〉 − 〈sµ〉〈sν〉 is of order 〈sµsν〉. We are therefore not entitled to replace

〈sµsν〉 by 〈sµ〉〈sν〉, and will make the distinction between these quantities below. One

can overcome this limitation by studying very large spin representations, in which case a

scaling limit is available to suppress 〈sµsν〉 − 〈sµ〉〈sν〉.
The procedure for passing from amplitudes to a concrete expectation value is as fol-

lows. Once one has computed the amplitude, and evaluated any commutators, explicit

powers of ~ must cancel. We then evaluate the integrals over the on-shell phase space of

the incoming particles simply by evaluating the momenta pi as pi = miui. An expectation

value over the spin wave functions ξ remains; these are always of the form 〈sµ1 · · · sµn〉 for
various values of n.

4 Classical limits of amplitudes with spin

We have constructed a general formula for calculating the leading classical contribution to

the angular impulse from scattering amplitudes. In the limit these amplitudes are Laurent

expanded in ~, with only one term in the expansion providing a non-zero contribution.

How this expansion works in the case for scalar amplitudes was established in [84, 85], but

now we need to consider examples of amplitudes for particles with spin. The identification

of the spin polarisation vector defined in eq. (3.13) will be crucial to this limit.

We will again look at the two lowest spin cases, considering tree level scattering of

a spin 1/2 or spin 1 particle off a scalar in Yang-Mills theory and gravity. Yang-Mills

amplitudes will be denoted by An1−0, and those for Einstein gravity as Mn1−0. To ensure

good UV behaviour of our amplitudes, we adopt minimally coupled interactions between

the massive states and gauge fields. This has the effect of restricting the classical value of

the gyromagnetic ratio to gL = 2, for all values of n [12, 100].

4.1 Gauge theory amplitudes

Our gauge theory consists of Yang-Mills theory minimally coupled to matter in the funda-

mental representation of the gauge group. The common Lagrangian will be

L0 = −1

2
trF a

µνF
µν
a +

∑

i

[
(DµΦi)

†(DµΦi)−m2
i |Φi|2

]
, (4.1)

with coupling constant g̃ = g/
√
~ and Φi two massive scalars [85]. For the amplitudes

relevant for our on-shell observables only the t channel contributes, so with colour factors

T̃ a =
√
2T a4 the full tree-level amplitude is

iA0−0 =
ig̃2

2q2
(2p1 + q) · (2p2 − q) T̃1 · T̃2 . (4.2)

The only classically significant contribution from this amplitude comes from the leading

order term in the ~ Laurent expansion. Factors of ~ enter the amplitude in the coupling

4We choose this normalisation as it simplifies the colour replacements in the double copy.
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constant and from the restriction q = ~q̄, yielding

A0−0 =
g2

~3

2p1 · p2 +O(~)

q̄2
T̃1 · T̃2 . (4.3)

Upon substitution into the impulse in eq. (3.34) or angular impulse in eq. (3.33) the ap-

parently singular denominator in the ~ → 0 limit is cancelled. It is only these quantities,

not the amplitudes, that are classically well defined and observable.

Spinor-scalar. We can include massive Dirac spinors ψ in the Yang-Mills amplitudes by

using a Lagrangian L = L0 + LDirac, where the Dirac Lagrangian

LDirac = ψ̄
(
i/∂ −m

)
ψ (4.4)

includes a minimal coupling to the gauge field. The tree level amplitude for spinor-scalar

scattering is then

iAab
1/2−0 =

ig̃2

2q2
ūa(p1 + q)γµub(p1)(2p2 − q)µ T̃1 · T̃2 . (4.5)

We are interested in the pieces that survive to the classical limit. To extract them we must

set the momentum transfer as q = ~q̄ and expand the amplitude in powers of ~.

The subtlety here is the on-shell Dirac spinor product. In the limit, when q is small,

we can follow the logic of eq. (3.32) and interpret ūa(p1 + ~q̄) ∼ ūa(p1) + ∆ūa(p1) as

being infinitesimally Lorentz boosted, see also [101]. One expects amplitudes for spin 1/2

particles to only be able to probe up to linear order in spin (i.e. the dipole of a spinning

body) [4, 5, 9], so in deriving the infinitesimal form of the Lorentz transformation we

expand to just one power in the spin. The infinitesimal parameters ωµν are exactly those

determined in eq. (3.31), so in all the leading terms of the spinor product are

ūa(p1 + ~q̄)γµu
b(p1) = 2p1µδ

ab +
~

4m2
ūa(p1)p1

ρq̄σ[γρ, γσ]γµu
b(p1) +O(~2) . (4.6)

Evaluating the product of gamma matrices via the identity

[γµ, γν ]γρ = 2ηνργµ − 2ηµργν − 2iǫµνρσγ
σγ5 , (4.7)

where ǫ0123 = +1 and γ5 = iγ0γ1γ2γ3, the spinor product is just

ūa(p1 + ~q̄)γµu
b(p1) = 2p1µδ

ab +
~

2m2
1

ūa(p1)p
ρ
1q̄

σ (γσηµρ − γρηµσ)u
b(p1)

− i~

2m2
1

ūa(p1)p1
ρq̄σǫρσµδγ

δγ5ub(p1) +O(~2) . (4.8)

Comparing with our result from eq. (3.16), the third term clearly hides an expression for the

spin 1/2 polarisation vector. Making this replacement and substituting the spinor product

into the amplitude yields, for on shell kinematics, only two terms at an order lower than

O(~2):

~
3Aab

1/2−0 =
2g2

q̄2

(
(p1 · p2)δab −

i

m2
1

p1
ρq̄σpλ2ǫρσλδs

δ ab
1 +O(~2)

)
T̃1 · T̃2 , (4.9)

where we adopt the notation s1
µ
ab = s1

µ
ab(p1).
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Vector-scalar. Now consider scattering a massive vector rather than spinor. The min-

imally coupled gauge interaction can be obtained by applying the Higgs mechanism to

the Yang-Mills Lagrangian,5 which when added to the Lagrangian L0 yields the tree-level

amplitude

iAij
1−0 = − ig̃2

2q2
ε∗i

µ(p1 + q)ενj (p1) (ηµν(2p1 + q)λ − ηνλ(p1 − q)µ

−ηλµ(2q + p1)ν) (2p2 − q)λ T̃1 · T̃2 . (4.10)

To obtain the classically significant pieces of this amplitude we must once more expand

the product of on-shell tensors, in this case the polarisation vectors. In the classical limit

we can again consider the outgoing polarisation vector as being infinitesimally boosted, so

ε∗i
µ(p1 + ~q̄) ∼ ε∗i

µ(p1) + ∆ε∗i
µ(p1).

However, from spin 1 particles we expect to be able to probe O(s2), or quadrupole,

terms [4, 5, 9]. Therefore it is salient to expand the Lorentz boost to two orders in the

Lorentz parameters ωµν , so under infinitesimal transformations we take

εµi (p) 7→ Λµ
ν ε

ν
i (p) ≃

(
δµν −

i

2
ωρσ(Σ

ρσ)µν −
1

8

(
(ωρσΣ

ρσ)2
)µ

ν

)
ενi (p) , (4.11)

where (Σρσ)µν = i (ηρµδσν − ησµδρν). Since the kinematics are again identical to those

used to derive eq. (3.31), we get

ε∗i
µ(p1 + ~q̄) ενj (p1) = ε∗i

µενj −
~

m2
1

(q̄ · ε∗i )pµ1ενj −
~2

2m2
1

(q̄ · ε∗i )q̄µενj +O(~3) , (4.12)

where now εi will always be a function of p1, so in the classical limit ε∗i · p1 = εi · p1 = 0.

Using this expression in the full amplitude, the numerator becomes

nij = 2(p1 · p2)(ε∗i · εj)− 2~(p2 · ε∗i )(q̄ · εj) + 2~(p2 · εj)(q̄ · ε∗i )

+
1

m2
1

~
2(p1 · p2)(q̄ · ε∗i )(q̄ · εj) +

~2

2
q̄2(ε∗i · εj) +O(~3) . (4.13)

How the spin vector enters this expression is not immediately obvious, and relies on Levi-

Civita tensor identities. At O(~), ǫδρσνǫδαβγ = −3! δ[ραδ
σ
βδ

ν]
γ leads to

~(p2 · ε∗i )(q̄ · εj)− ~(p2 · εj)(q̄ · ε∗i ) =
~

m2
1

pρ1q̄
σpλ2ǫδρσλǫ

δαβγε∗i αεjβp1γ

≡ − i

m1
pρ1q̄

σpλ2ǫρσλδs1
δ
ij , (4.14)

where again we are able to identify the spin 1 polarisation vector calculated in eq. (3.17) and

introduce it into the amplitude. There is also a spin vector squared contribution entering

at O(~2); observing this is reliant on applying the identity ǫµνρσǫαβγδ = −4! δ[µαδ
ν
βδ

ρ
γδ

σ]
δ

and the expression in eq. (3.17) to calculate
∑

k

(
q̄ · sik1

)
(q̄ · skj1 ) = −~

2(q̄ · ε∗i )(q̄ · εj)− ~
2q̄2δij +O(~3) . (4.15)

5Regardless of minimal coupling, for vector states with masses generated in this way the classical value

of gL = 2 [12, 100].
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This particular relationship is dependent on the sum over helicities
∑

h ε
∗
h
µενh = −ηµν+

pµ1 p
ν
1

m2
1

for massive vector bosons, an additional consequence of which is that ε∗i · εj = −δij . Incor-

porating these rewritings of the numerator in terms of spin vectors, the full amplitude is

~
3Aij

1−0 =
2g2

q̄2

(
(p1 · p2)δij −

i

m1
p1

ρq̄σp2
λǫρσλδs

δ ij
1 +

1

2m2
1

(p1 · p2)(q̄ · sik1 )(q̄ · skj1 )

−~2q̄2

4m2
1

(
2(p1 · p2) +m2

1

)
+O(~3)

)
T̃1 · T̃2 . (4.16)

The internal sum over spin indices in the O(s2) term will now always be left implicit. In

classical observables we can also drop the remaining O(~2) term, as this just corresponds

to a quantum correction from contact interactions [84].

4.2 Gravity amplitudes

Rather than recompute corresponding gravity amplitudes in perturbative GR,6 we can

easily just apply the double copy. This ability is reliant on our gauge theory choice of

gL = 2, as was noted in [81]. Only with this choice is the gravitational theory consistent

with the low energy spectrum of string theory [12, 81], of which the double copy is an

intrinsic feature.

The generalisation of the traditional BCJ gauge theory replacement rules [58, 59] to

massive matter states was developed by Johansson and Ochirov [61]. In our context the

colour-kinematics replacement is always trivial: all the amplitudes only have a t channel

diagram, and subsequently have identical colour factors. This makes the Jacobi identities

trivial, so by just replacing colour factors with the desired numerator we are guaranteed

to land on a gravity amplitude, provided we replace g → κ
2 , where κ =

√
32πG.7

In particular, if we replace the colour factor in the previous spin n-spin 0 Yang-Mills

amplitudes with the scalar numerator from eq. (4.3) we will obtain a spin n-spin 0 gravity

amplitude, as the composition of little group irreps is simply (2n+ 1)⊗1 = 2n+ 1. Using

the scalar numerator ensures that the spin index structure passes to the gravity theory

unchanged. Thus we can immediately obtain that the classically significant part of the

spin 1/2-spin 0 gravity amplitude is8

~
3Mab = −

(κ
2

)2 4

q̄2

[
(p1 · p2)2δab −

i

m1
(p1 · p2)pρ1q̄σpλ2ǫρσλαsαab

1 +O(~2)

]
, (4.17)

while that for spin 1-spin 0 scattering is

~
3Mij = −

(κ
2

)2 4

q̄2

[
(p1 · p2)2δij −

i

m1
(p1 · p2)pρ1q̄σpλ2ǫρσλδs

δ ij
1

+
1

2m2
1

(p1 · p2)2(q̄ · sik1 )(q̄ · skj1 ) +O(~2)

]
. (4.18)

6We have checked that direct calculations with graviton vertex rules given in [3] reproduce our results.
7Note that, analogously to eq. (4.1), the coupling constant in the Einstein-Hilbert Lagrangian is κ̃ =

κ/
√
~.

8The overall sign is consistent with the replacements in [58, 59] for our amplitudes’ conventions.
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Notice that the O(s) parts of these amplitudes are exactly equal, up to the different spin

indices. This is a manifestation of gravitational universality: the gravitational coupling to

the spin dipole should be independent of the spin of the field, precisely as we observe.

We have deliberately not labelled these as Einstein gravity amplitudes, because the

gravitational modes in our amplitudes contain both gravitons hµν and scalar dilatons φ.

To see this, examine the factorisation channels in the t channel cut of the vector amplitude:

lim
q̄2→0

(
q̄2~3Mij

)
=−4

(κ
2

)2 (
pµ1p

µ̃
1δ

ij− i

m1
pµ1 ǫ

µ̃ρσδp1ρq̄σs1
ij
δ +

1

2m2
1

(q̄ ·sik1 )(q̄ ·skj1 )pµ1p
µ̃
1

)

×P(4)
µµ̃νν̃ p

ν
2p

ν̃
2−4

(κ
2

)2
(
pµ1p

µ̃
1δ

ij+
(q̄ ·sik1 )(q̄ ·skj1 )

2m2
1

pµ1p
µ̃
1

)
D(4)

µµ̃νν̃ p
ν
2p

ν̃
2 , (4.19)

where

P(d)
µµ̃νν̃ = ηµ(νην̃)µ̃ − 1

d− 2
ηµµ̃ηνν̃ and D(d)

µµ̃νν̃ =
1

d− 2
ηµµ̃ηνν̃ (4.20)

are the d-dimensional de-Donder gauge graviton and dilaton projectors respectively. The

pure Einstein gravity amplitude for classical spin 1-spin 0 scattering can now just be read

off as the part of the amplitude contracted with the graviton projector. We find that

~
3Mij

1−0 = −
(κ
2

)2 4

q̄2

[(
(p1 · p2)2 −

1

2
m2

1m
2
2

)
δij − i

m1
(p1 · p2)pρ1q̄σpλ2ǫρσλδs

δ ij
1

+
1

2m2
1

(
(p1 · p2)2 −

1

2
m2

1m
2
2

)
(q̄ · sik1 )(q̄ · skj1 ) +O(~2)

]
. (4.21)

The spinor-scalar Einstein gravity amplitude receives the same correction to the initial,

scalar component of the amplitude.

Note that dilaton modes are coupling to the scalar monopole and O(s2) quadrapole

terms in the gravity amplitudes, but not to the O(s) dipole component. We also do not find

axion modes, as observed in previous applications of the classical double copy to spinning

particles [81, 82], because axions are unable to couple to the massive external scalar.

5 Black hole scattering observables from amplitudes

We are now armed with a set of classical tree-level amplitudes and formulae for calculating

the linear impulse ∆pµ1 and angular impulse ∆sµ1 from them. We also already have a clear

target where the analogous classical results are known: the results for 1PM scattering of

spinning black holes found in [11].

Given our amplitudes only reach the quadrupole level, we can only probe lower order

terms in the expansion of eq. (2.5). Expanding in the rescaled spin aµ1 , and setting aµ2 → 0,

the linear impulse is

∆pµ1 =
2Gm1m2√

γ2 − 1

{
(2γ2 − 1)

bµ

b2
+

2γ

b4

(
2bµbν − b2Πµν

)
ǫνραβu

α
1u

β
2a

ρ
1

−2γ2 − 1

b6

(
4bµbνbρ − 3b2b(µΠνρ)

)
a1νa1ρ +O(a3)

}
+O(G2), (5.1)
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where Πµ
ν is the projector into the plane orthogonal to uµ1 and uµ2 from (2.7). Meanwhile

the angular impulse to the same order is

∆sµ1 = −uµ1a1ν∆pν1 −
2Gm1m2√

γ2 − 1

{
2γǫµνρσu1ρǫσαβγu

β
1u

γ
2

bα

b2
a1ν

−2γ2 − 1

b4
ǫµνκλu1κ

(
2bνbρ − b2Πνρ

)
a1λa

ρ
1 +O(a3)

}
+O(G2).

(5.2)

In this section we demonstrate that both of these results can be recovered by using the

classical pieces of our Einstein-gravity amplitudes.

5.1 Linear impulse

To calculate the linear impulse we substituteM1−0 into the general expression in eq. (3.34).

Following the prescription in section 3.4, the only effect of the momentum integrals in the

expectation value is to set pi → miui in the classical limit. This then reduces the double

angle bracket to the single expectation value over the spin states:

∆p
µ,(0)
1 = −im1m2

(κ
2

)2 ∫
d̂4q̄ δ̂(u1 · q̄)δ̂(u2 · q̄)e−ib·q̄ q̄

µ

q̄2

×
〈
1

2
(2γ2 − 1)− iγuρ1q̄

σuν2ǫρσνδ
sδ1
m1

+
2γ2 − 1

4m2
1

(q̄ · s1)(q̄ · s1)
〉

(5.3)

≡ −4im1m2πG

(
(2γ2 − 1)Iµ − 2iγuρ1u

ν
2ǫρσνδ

〈
aδ1
〉
Iµσ +

2γ2 − 1

2

〈
a1νa1ρ

〉
Iµνρ

)
,

where we have rescaled aµ = sµ/m and defined three integrals of the general form

Iµ1···µn =

∫
d̂4q̄ δ̂(u1 · q̄)δ̂(u2 · q̄)

e−ib·q̄

q̄2
q̄µ1 · · · q̄µn . (5.4)

The lowest rank integral of this type was evaluated in [84], with the result

Iµ =
i

2π
√

γ2 − 1

bµ

b2
, (5.5)

To evaluate the higher rank examples, note that the results must lie in the plane orthogonal

to the four velocities. This plane is spanned by the impact parameter bµ, and the projector

Πµ
ν defined in eq. (2.7). Thus, for example,

Iµν = α2b
µbν + β2Π

µν . (5.6)

Given that we are working away from the threshold value b = 0, the left hand side is

traceless and β2 = −α2 b
2/2. Then contracting both sides with bν , one finds

α2b
2 bµ = 2

∫
d̂4q̄ δ̂(u1 · q̄)δ̂(u2 · q̄)

e−ib·q̄

q̄2
q̄µ(b · q̄) = 1

π
√

γ2 − 1

bµ

b2
, (5.7)

where we have used the result of eq. (5.5). Thus the coefficient α2 is uniquely specified,

and we find

Iµν =
1

πb4
√

γ2 − 1

(
bµbν − 1

2
b2Πµν

)
. (5.8)
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Following an identical procedure for Iµνρ, we can then readily determine that

Iµνρ = − 4i

πb6
√

γ2 − 1

(
bµbνbρ − 3

4
b2b(µΠνρ)

)
. (5.9)

Substituting the integral results into the expression for the leading order classical

impulse, and expanding the projectors from eq. (2.7), then leads to

∆p
µ,(0)
1 =

2Gm1m2√
γ2 − 1

(
(2γ2 − 1)

bµ

b2
+

2γ

b4
(2bµbα − b2Πµα)ǫαρσδu

ρ
1u

σ
2

〈
aδ1
〉

−2γ2 − 1

b6
(4bµbνbρ − 3b2b(µΠνρ))〈a1νa1ρ〉

)
. (5.10)

Comparing with eq. (5.1) we observe an exact match, up to the appearance of spin state

expectation values, between our result and the O(a2) expansion of the result for spinning

black holes from [11].

5.2 Angular impulse

Our expression, equation (3.33), for the classical leading-order angular impulse naturally

has two parts: one term has a commutator while the other term does not. For clarity we

will handle these two parts separately, beginning with the term without a commutator —

which we will call the direct term.

The direct term. Substituting our O(s2) Einstein-gravity amplitude, equation (4.21),

into the direct part of the general angular impulse formula, we find

∆s
µ,(0)
1

∣∣
direct

≡
〈〈

i

∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄

(
− ~

3 p
µ
1

m2
1

q̄ · s1(p1)M1−0

)〉〉

=

〈〈
iκ2

m2
1

∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)

e−ib·q̄

q̄2
pµ1 q̄ · s1(p)

((
(p1 · p2)2 −

1

2
m2

1m
2
2

)

− i

m1
(p1 · p2)pα1 q̄βpγ2ǫαβγδ sδ1(p)

)
+O(s3)

〉〉
. (5.11)

As with the linear impulse, we can reduce the double angle brackets to single, spin state,

angle brackets by replacing pi → miui, so that

∆s
µ,(0)
1

∣∣
direct

= 4πGm2 u
µ
1

(
i
(
2γ2 − 1

)
〈sν1〉Iν +

2

m1
γ uα1u

γ
2ǫαβγδ〈s1νsδ1〉 Iνβ

)
, (5.12)

where the integrals are again defined by eq. (5.4). We can now just substitute our previous

evaluations of these integrals, equations (5.5) and (5.8), to learn that

∆a
µ,(0)
1

∣∣
direct

=− 2Gm2√
γ2−1

uµ1

(
(2γ2−1)

bν
b2
〈
aν1
〉
+
2γ

b4
(
2bνbα−b2Πνα

)
ǫαβγδu

β
1u

γ
2

〈
a1νa

δ
1

〉)
.

(5.13)
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The commutator term. Now we turn to the commutator piece of eq. (3.33). The scalar

part of our Einstein-gravity amplitude, equation (4.21), has diagonal spin indices, so its

commutator vanishes. We encounter two non-vanishing commutators:

= −i~ ǫµδρσs1 ρ
p1σ
m1

,

[sµ1 , q̄ · s1 q̄ · s1] = −2i~ q̄ · s1 ǫµαβγ q̄αs1β
p1 γ
m1

+O(~2) ,
(5.14)

omitting a term which is higher order. Using these expressions in the commutator term,

the result is

∆s
µ,(0)
1 |com = i

〈〈∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄

~
2[sµ(p),M1−0]

〉〉

= iκ2
〈〈∫

d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)
e−ib·q̄

q̄2

(
(p1 · p2)pα1 q̄βpγ2ǫαβγσǫµνρσs1ν

p1ρ
m2

1

+
i

m3
1

(
(p1 · p2)2 −

1

2
m2

1m
2
2

)
q̄ · s1 ǫµνρσ q̄νs1σp1ρ

)〉〉
.

(5.15)

As is familiar by now, we evaluate the integrals over the momentum-space wave functions

by setting pi = miui, but expectation values over the spin-space wave functions remain.

The result can be organised in terms of the integrals Iα and Iαβ defined in equation (5.4):

∆s
µ,(0)
1 |com = 2πiGm2

(
4γǫµνρσ〈s1 ν〉u1 ρǫσαβγuβ1u

γ
2I

α− 2i

m1
(2γ2−1)ǫµνρσu1 ρ〈s1σs1α〉Iαν

)
.

(5.16)

Finally, we perform the integrals using equations (5.5) and (5.8), rescale the spin vector

to aµ1 and combine the result with the direct contribution in eq. (5.13), to find that the

angular impulse at O(a2) is

∆s
µ,(0)
1 = −2Gm1m2√

γ2 − 1

{
(2γ2 − 1)uµ1

bν
b2
〈
aν1
〉
− 2γ

b2
uµ1

(
ηνα − 2bνbα

b2

)
ǫαβγδu

β
1u

γ
2

〈
a1νa

δ
1

〉

+
(2γ2 − 1)

b2
ǫµνρσu1ρ

〈
a1σa1λ

〉(
Πλ

ν −
2bνb

λ

b2

)
+ 2γǫµνρσ

〈
a1 ν
〉
u1 ρǫσαβγu

β
1u

γ
2

bα

b2

}
. (5.17)

This final result agrees in detail with the classical result of equation (5.2), modulo the

remaining spin expectation values.

6 Discussion

Starting from a quantum field theory for massive spinning particles with arbitrary long-

range interactions (mediated e.g. by gauge bosons or gravitons), we have followed a care-

ful analysis of the classical limit (~ → 0) for long-range scattering of spatially localized

wavepackets. We have thereby arrived at fully relativistic expressions for the linear and

angular impulses, the net changes in the linear and intrinsic angular momenta of the mas-

sive particles, due to an elastic two-body scattering process. These, our central results,

expressed in terms of on-shell scattering amplitudes, are given explicitly at leading order
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in the coupling by (3.34) and (3.33). Our general formalism places no restrictions on the

order in coupling, and the expression (3.22) for the angular impulse, like its analog for the

linear impulse found in [84], should hold at all orders.

We have applied these general results to the examples of a massive spin 1/2 or spin

1 particle (particle 1) exchanging gravitons with a massive spin 0 particle (particle 2),

imposing minimal coupling. The results for the linear and angular impulses for particle 1,

∆pµ1 and ∆sµ1 , due to its scattering with the scalar particle 2, are given by (5.10) and (5.17).

These expressions are valid to linear order in the gravitational constant G, or to 1PM order,

having arisen from the tree-level on-shell amplitude for the two-body scattering process.

By momentum conservation (in absence of radiative effects at this order), ∆pµ2 = −∆pµ1 ,

and the scalar particle has no intrinsic angular momentum, sµ2 = ∆sµ2 = 0. The spin 1/2

case provides the terms through linear order in the rescaled spin aµ1 = sµ1/m1, and the spin

1 case yields the same terms through linear order plus terms quadratic in aµ1 .

Our final results (5.10) and (5.17) from the quantum analysis are seen to be in precise

agreement with the results (5.1) and (5.2) from [11] for the classical scattering of a spinning

black hole with a nonspinning black hole, through quadratic order in the spin — except

for the appearance of spin-state expectation values 〈aµ1 〉 and 〈aµ1aν1〉 in the quantum results

replacing aµ1 and aµ1a
ν
1 in the classical result. For any quantum states of a finite-spin

particle, these expectation values cannot satisfy the appropriate properties of their classical

counterparts, e.g., 〈aµaν〉 6= 〈aµ〉〈aν〉. Furthermore, we know that the intrinsic angular

momentum of a quantum spin n particle scales like 〈sµ〉 = m〈aµ〉 ∼ n~, and we would thus

actually expect any spin effects to vanish in a classical limit where we take ~ → 0 at fixed

spin quantum number n. A fully consistent classical limit yielding nonzero contributions

from intrinsic spin would need to take n → ∞ as ~ → 0, to keep 〈sµ〉 ∼ n~ finite.

However, the expansions in spin operators of the minimally coupled amplitudes and

impulses, expressed in the forms we have derived here, are found to be universal, in the

sense that going to higher spin quantum numbers n continues to reproduce the same

expressions at lower orders in the spin operators. We have seen this explicitly here for

the linear-in-spin level, up to spin 1, and the results of [9, 10, 12] strongly suggest that

an application of our formalism to minimally coupled amplitudes for arbitrary spin n will

confirm this pattern. Furthermore, as n → ∞, the spin states can indeed approach the

limit where 〈aµaν〉 = 〈aµ〉〈aν〉 and so forth. (The precise forms of 1/n corrections to the

higher-multipole couplings have been discussed in the subsequent work of [102].) We leave

an analysis of higher spins for future work.

Our formalism provides a direct link between gauge-invariant quantities, on-shell am-

plitudes and classical asymptotic scattering observables, with generic incoming and out-

going states for relativistic spinning particles. It is tailored to be combined with powerful

modern techniques for computing relevant amplitudes, such as unitarity methods as the

double copy. Already with our examples at the spin 1/2 and spin 1 levels, we have seen

that it produces new evidence (for generic spin orientations, and without taking the non-

relativistic limit) for the beautiful correspondence between classical spinning black holes

and massive spinning quantum particles which are minimally coupled to gravity, first noted

in [4]. We look forward to future investigations of the extent to which this correspondence
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holds at higher orders, and to the possibility of its use in producing new results relevant

to the dynamics of astrophysical binary black holes.
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A Conventions

We adopt a mostly minus metric signature, with ǫ0123 = +1. We absorb factors of 2π in

integrand measures by letting d̂nx = dnx/(2π)n, and in delta functions by δ̂(x) = 2πδ(x).

Following [84], our conventions for Fourier transforms are then

f(x) =

∫
d̂4q̄ f̃(q̄)e−iq̄·x , f̃(q̄) =

∫
d4x f(x)eiq̄·x . (A.1)

We also adopt the convention that the Lorentz invariant phase space measure

dΦ(k) ≡ d̂4k δ̂(+)(k2 −m2) , (A.2)

and that δ̂Φ(k) ≡ 2Ek δ̂(k), where k is the spatial 3-vector defining the spatial components

of the 4-vector kµ.

For a given tensor X, total symmmetrisation and antisymmetrisation respectively of

tensor indices are represented by

X(µ1 . . . Xµn) =
1

n!
(Xµ1Xµ2 . . . Xµn +Xµ2Xµ1 . . . Xµn + · · · )

X [µ1 . . . Xµn] =
1

n!
(Xµ1Xµ2 . . . Xµn −Xµ2Xµ1 . . . Xµn + · · · ) .

(A.3)

Our definition of the amplitude differs by a phase factor relative to the standard

definition used for the double copy. Here, in either gauge theory or gravity

iA(p1, p2 → p1 + q, p2 − q) =
∑

(Feynman diagrams) , (A.4)

whereas in the convention used in [58, 59] the entire left hand side is defined as the am-

plitude. This means that one must incorporate extra factors of i in our BCJ numerators,

which leads to an overall minus sign upon squaring in the double copy.
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B Explicit evaluation of the QFT spin vector

We have argued that the spin vector naturally emerges in quantum field theory as the

expectation value of the Pauli-Lubanski operator. On physical particle states the inherent

representation dependence is isolated by the spin polarisation vector sµij , which was defined

in eq. (3.13). Here we develop the tools required to explicitly evaluate this equation, and

explicitly derive the results for spin 1/2 and spin 1 particles.

The definition of the Pauli-Lubanski operator in eq. (3.5) depends on the translation

and Lorentz generators. In the quantum theory, the Noether charges associated with their

respective symmetries can be used to construct explicit field operators. For example, trans-

lation symmetry of the Lagrangian LΨ leads to the existence of a conserved current, the

canonical energy momentum tensor Θµν . We can then represent the translation generator

by the Noether charge

P
µ =

∫
d3xΘ0µ =

∫
d3x

(
Πs∂

µΨs − η0µLΨ

)
. (B.1)

Here Πs = ∂LΨ/∂Ψ̇s is the canonical momentum, with Ψ̇s ≡ ∂0Ψ0. The eigenvalues of the

(normal ordered) field operator promotion of Pµ then define the momentum of a particle.

In the same manner, angular momentum emerges from the conserved charge associated

with Lorentz symmetry. The conserved Noether current is now [103, 104]

Mαµν = xµTαν − xνTαµ (B.2)

where Tµν is the Belinfante tensor, the manifestly symmetric generalisation of the canonical

Θµν which sources the gravitational field.9 The associated charges
∫
d3xM0µν take the form

J
µν =

∫
d3x

(
xµΘ0ν − xνΘ0µ + iΠsSµνΨs

)
≡ L

µν + S
µν . (B.3)

Eigenvalues of the operator promotion of this charge then define the angular momenta of

a particle. The two terms correspond to orbital and intrinsic angular momenta, but as in

GR we cannot uniquely make this splitting; only the total angular momentum is a well

defined, conserved charge.

To uniquely obtain information about the pure spin part of Jµν we need to isolate the

second term. This job is performed automatically by the Pauli-Lubanski operator: orbital

contributions always drop out in its expectation values. These observables must then define

the physical quantity which holds complete information about the intrinsic spin: the spin

vector, sµ.

To see that this holds for any causal field of spin s, we can use the Fourier expansions

of the field operators [104],

Ψs(x) =
∑

α

∫
dΦ(k)

(
aα(k)Uα(k)e

−ik·x + b†α(k)Vα(k)e
ik·x
)

Πs(x) =
∑

α

∫
dΦ(k)

(
bα(k)Yα(k)e

−ik·x + a†α(k)Xα(k)e
ik·x
)
.

(B.4)

9In the sense that the Belifante tensor can be obtained by variations of the action with respect to the

metric. It is given by Tµν = Θµν + i
2
∂α

(

∂LΨ

∂(∂αΨs)
SµνΨs − ∂LΨ

∂(∂µΨs)
SανΨs − ∂LΨ

∂(∂νΨs)
SαµΨs

)

.
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Here α is the little group index, a†α(k) and b†α(k) are particle and antiparticle creation

operators acting on the associated Fock space, and the momentum space tensors are in the

same Lorentz representation as the field. Note that the canonical momentum operator’s

tensors are, by definition, dependent on those in Ψs.

We can now expand the angular momentum operator Jµν . We know from eq. (B.1)

that Lµν contains spatial derivatives - these will act on the Fourier modes in eq. (B.4), so

are replaced by 4-momenta. Thus the inner product

〈p′, a|Jµν |p, b〉 = i〈0|aa(p′) :
∑

α,β

∫
dΦ(k)

2Ek

(
Xα(k)SµνUβ(k) a

†
α(k) aβ(k)

−2x[µkν]Xα(k)Uβ(k) a
†
α(k) aβ(k) + · · ·

)
: a†b(p)|0〉 , (B.5)

where the ellipsis denotes terms containing operators b(p). By virtue of the (anti) commu-

tation relations all such terms do not contribute, since the antiparticle Fock space operators

always annihilate the vacuum. The terms in eq. (B.1) with explicit appearances of the La-

grangian have also disappeared; because the Lagrangian can always be written in terms of

the field equations, it vanishes on physical states.

Let us restrict our attention to the orbital term on the second line, which corresponds

to the inner product of Lµν . How does this contribute to inner products of the Pauli-

Lubanski operator, such as eq. (3.6)? Since on momentum eigenstates Pµ|p, s〉 = pµ|p, s〉,
we will have

ǫµνρσ〈p′, a|PνLρσ|p, b〉 = i
∑

α,β

∫
dΦ(k)

Ek
ǫµνρσp′νkρxσXα(k)Uβ(k) 〈0|aa(p′)a†α(k)aβ(k)a†b(p)|0〉

=
i

E′
p

ǫµνρσp′νp
′
ρxσXa(p

′)Ub(p
′)δ̂(p− p′) = 0. (B.6)

Expectation values of Wµ therefore receive contributions only from the intrinsic spin

part of Jρσ. In particular, the only terms emerging from the vacuum expectation value in

eq. (B.5) equal δ̂Φ(p
′ − k)δaαδ̂Φ(k − p)δβb; evaluating the phase space integral, this is just

δ̂Φ(p− p′). Since the only 4-vector encapsulating the information about a particle’s spin is

the spin vector sµ, we must have that

〈p′, j|Wµ|p, i〉 ≡ msµij(p) δ̂Φ(p− p′) , (B.7)

which is exactly our definition in eq. (3.13).

We now have all the tools needed to calculate this inner product for a given represen-

tation. Let us first consider massive spin 1/2 particles in the Dirac representation. From

the Lagrangian in eq. (4.4), the canonical momentum is π(x) = iψ̄(x)γ0, and the tensors

in the field operator Ψ̂1/2 are the Dirac spinors ua(k) and va(k), where a = ±1/2. Those in

the canonical momentum operator are then iūa(k) and iv̄a(k).

Given we are interested in the spin vector, we restrict attention to the spin part of the

inner product of eq. (B.5). Substituting in the Dirac represenation expressions,

〈p′, a|S(1/2)µν |p, b〉 = − i~

8Ep
ūa(p)γ0[γρ, γσ]u

b(p) δ̂Φ(p− p′) . (B.8)
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To obtain a simple form for the spin polarisation vector we can combine a variant of the

identity in eq. (4.7) with the product ūa(p)γ
µub(p) = 2pµδab to obtain

〈p′, a|S(1/2)µν |p, b〉 = − i~

4Ep

(
2η0ρpσδab − 2η0σpρδab − iǫ0ρσδūa(p)γ

δγ5ub(p)
)
δ̂Φ(p− p′) .

(B.9)

Utilising this expression in eq. (3.6), the Levi-Civita tensor eliminates the terms propor-

tional to the 4-momentum, leaving only the pseudovector part. The remaining tensor and

gamma product evaluates to −2Epūa(p)γ
µγ5ub(p), so in all we find

sµab(p) =
~

4m
ūa(p)γ

µγ5ub(p) , (B.10)

as expected. Now let us turn to the massive vector representation. Massive spin 1 vector

fields have 3 degrees of freedom, so here the tensors in the field operator are complex

polarisation vectors εi(k), where εi(k) · k = 0 and i = 0,±1. The fields can thus be

described as Proca fields, for whom the canonical momenta πµ(x) = −∂0B
µ(x). Thus the

constant tensors in Πµ are −ik0εµi (k). Classical Proca fields are real, so the inner product

of the intrinsic parts of the angular momentum operator is

〈p′, i|S(1)ρσ |p, j〉 =
~

2
〈p, i| :

∑

i,j

∫
dΦ(k)

(
ε∗i µ(k)(Σρσ)

µ
νε

ν
j (k) a

†
i (k) aj(k)

−εiµ(k)(Σρσ)
µ
νε

∗
j
ν(k) ai(k) a

†
j(k) + · · ·

)
: |p, j〉. (B.11)

The terms in the ellipsis vanish through the commutation relations, leaving

〈p′, i|S(1)ρσ |p, j〉 = ~ ε∗iµ(p)(Σρσ)
µνεjν(p) δ̂Φ(p− p′) . (B.12)

Using this result in eq. (3.6) then immediately leads to the spin polarisation vector quoted

in eq. (3.17),

sµij(p) =
i~

m
ǫµνρσpνε

∗
i ρ(p)εjσ(p) . (B.13)

C Spin and scattering observables in electrodynamics

As an additional application of our formalism we can compute the leading order impulse

and angular impulse for spinning particles in classical electrodynamics, whose dynamics

are again described by the spin pseudovector in eq. (2.3). The equation of motion for the

spin of a point particle is the BMT equation [105]

dsµ

dτ
=

e gL
2m

(Fµνsν + uµsνF
νρuρ)− uµsν

duν

dτ
. (C.1)

For classical particles with gL = 2 this simplifies greatly, as the second term will be cancelled

by the spin independent parts of the final term, the Lorentz force, which in this context re-

ceives corrections since the spin introduces a new worldline coupling to the radiation field,10

Sint =
e

m

∫
dτ F̃µν(z(τ))u

µsν(τ) , (C.2)

10As we aim to compare with results from amplitudes for particles with magnetic dipole factors gL, we

must use the classical interaction term related to the magnetic field.
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where the dual field strength F̃µν = −1
2ǫµνρσF

ρσ. Varying with respect to the worldline

leads to a modified Lorentz force,

dpµ

dτ
= e

(
Fµνuν +

d

dτ

(
F̃µν sν

m

)
− sρ

m
uν∂

µF̃ νρ

)
, (C.3)

Iteratively solving the Lorentz and BMT equations with straight line trajectories

r1(τ) = b+ u1τ, r2(τ) = u2τ , (C.4)

where ui are now the constant lowest order expansions of the 4-velocities, is enough to

then extract the leading order impulse and angular impulse. Iteratively solving the Lorenz

gauge Maxwell equation, the radiation field due to particle 2 is given by

Fµν
2 (x) = ie

∫
d̂4q̄ δ̂(q̄ · u2)e−iq̄·x q̄

µuν2 − uµ2 q̄
ν

q̄2
. (C.5)

Substituting into eq. (C.3), the modified leading order Lorentz force is then

dp
µ,(0)
1

dτ
= ie2

∫
d̂4q̄

δ̂(q̄ · u2)
q̄2

e−iq̄·(b+u1τ)

(
γq̄µ − uµ2 q̄ · u1

+
i

2
(q̄ · u1) ǫµνρσ (q̄ρu2σ − u2 ρq̄σ)

s1 ν
m1

− i

2
q̄µǫναρσ (q̄

ρuσ2 − q̄σuρ2)u
ν
1

sα1
m1

)
, (C.6)

allowing us to obtain the impulse by integrating over the entire domain of τ :

∆p
µ,(0)
1 = ie2

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)

e−iq̄·b

q̄2

(
γq̄µ + iq̄µq̄αǫαρσδu

ρ
1u

σ
2

sδ1
m1

)
. (C.7)

The remaining integrals are those defined in eq. (5.4), reducing the expression to

∆p
µ,(0)
1 = − e2

2πb2
√
γ2 − 1

(
γbµ −

(
ηµα − 2bµbα

b2

)
ǫαρσδu

ρ
1u

σ
2

sδ1
m1

)
. (C.8)

This result is a prerequisite for calculating the angular impulse, which similarly integrating

the BMT equation over all τ yields

∆s
µ,(0)
1 = −i

e2

m1

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)

e−iq̄·b

q̄2
ǫµνρσs1 νu1 ρǫσαβγ q̄

αuβ1u
γ
2 −

uµ1s
ν
1

m1
∆p(0)ν . (C.9)

Once again we reach a form that we can integrate, finding

∆s
µ,(0)
1 =

e2

2πm1b2
√
γ2 − 1

(
γuµ1s1 νb

ν + ǫµνρσs1 νu1 ρǫσαβγu
α
1u

β
2 b

γ

− uµ1s1 ν

(
ηνα − 2bνbα

b2

)
ǫαρσδu

ρ
1u

σ
2

sδ1
m1

)
. (C.10)

Given our work in gravity, calculating analogous results from amplitudes is trivial.

The classical contribution to spin 1/2-spin 0 scattering in QED can be easily obtained by

colour stripping the Yang-Mills amplitude in eq. (4.9), and is

~
3Aab

QED =
4e2

q̄2

(
(p1 · p2)δab −

i

m1
pρ1q̄

σpµ2 ǫρσµδs
δ ab +O(~2)

)
. (C.11)
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The tensor structures in this amplitude also appear in the gravity amplitudes used in

section 5, so the calculations are exactly the same; only prefactors change and we lose

higher order spin terms. We find that the linear impulse on particle 1 is

∆p
µ,(0)
1

∣∣
QED

= − e2

2πb2
√
γ2 − 1

(
γbµ −

(
ηµν − 2bµbν

b2

)
ǫνρσδu

ρ
1u

σ
2

〈
sδ
〉

m1

)
, (C.12)

and the angular impulse

∆s
µ,(0)
1

∣∣
QED

=
e2

2πm1b2
√
γ2 − 1

(
γ uµ1bν

〈
sν1
〉
+ ǫµνρσ

〈
s1 ν
〉
u1 ρǫσαβγu

α
1u

β
2 b

γ

− uµ1

(
ηνα − 2bνbα

b2

)
ǫαρστu

ρ
1u

σ
2

〈
s1νs

τ
1

〉

m1

)
. (C.13)

Comparing with the result obtained from the Lorentz force and BMT equation, we observe

an exact match up to the spin expectation values discussed in section 6.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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