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Abstract

We provide analytical closed form solutions for the parallel transport along a

bound geodesic in Kerr spacetime. This can be considered the lowest order

approximation for the motion of a spinning black hole in an extreme mass-ratio

inspiral. As an illustration of the usefulness of our new found expressions we

scope out the locations of spin–spin resonances in quasi-circular EMRIs. All

solutions are given as functions of Mino time, which facilitates the decoupling

of the equations of motion. To help physical interpretation, we also provide an

analytical expression for the proper time along a geodesic as a function of Mino

time.

Keywords: Kerr black hole, analytic solutions, parallel transport, bound orbits

(Some �gures may appear in colour only in the online journal)

1. Introduction

Themotion of a freely falling frame in general relativity is described by the parallel transport of

a frame along a geodesic. This is sometimes also referred to as the motion of a test gyroscope,

i.e. a test particle that carries not only a position but also an orientation.

One situation where this becomes of interests is when a small spinning black hole orbits a

much larger (possibly also spinning) black hole. Such systems—known as extreme mass-ratio

inspirals—occur naturally in the centers of galaxies when a stellar mass black hole is captured

by a supermassive black hole, and form a key potential source of gravitational waves for future

space-based gravitational wave observatories such as LISA.
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Attribution 4.0 licence. Any further distribution of this work must maintain attribution

to the author(s) and the title of the work, journal citation and DOI.
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To �rst approximation—ignoring all effects due to its own mass and spin—the motion of a

smaller (secondary) black hole is described by the parallel transport of its spin along a (bound)

geodesic in the Kerr spacetime. As long as the spin of the primary is aligned with the total

angular momentum of the system, the solution is fairly simple; the test object will follow an

equatorial geodesic, and the spin will precess around the plane spanned by the four-velocity

and total angular momentum.

Beyond this one can include the effects of the secondary’s mass and spin order-by-order.

The corrections to the trajectory are governed by the gravitational self-force (see [1] for a recent

review and references), andMathisson–Papatrou–Dixon force generated by the secondary spin

(see [2–5] for some recent efforts at including its effects).

In this work we are interested in the motion of the secondary spin. In recent years it has

become possible to calculate the correction to the precession rate of the secondary’s spin linear

in the secondary’s mass. First for circular orbits around non-spinning black holes [6–10], and

later extended to eccentric orbits [11–13], and spinning-black holes [14, 15].

Most of these efforts have restricted themselves to the ‘easy’ case where the spin of the

primary is aligned with the total angular momentum. One reason for this is the lack of easily

applicable closed form solutions for the parallel transport along a generic orbit. The purpose

of this work is to �ll this gap.

An elegant procedure for solving the parallel transport equations along a geodesic in Kerr

spacetime was set out by Marck [16] in 1983. (With in recent years some clari�cations being

added by Bini and collaborators [17, 18].) This procedure effectively reduces the parallel trans-

port equations to a single differential equation for the precession angle given a solution for the

geodesic equation.

Closed formanalytic solutions for bound geodesics in Kerr spacetimewere derived by Fujita

and Hikida [19] in 2009. This paper takes their method an extends it to a solution for Marck’s

equation for parallel transport.

The plan of this paper is as follows. In section 2 we review the analytic solution for bound

geodesics found by Fujita and Hikida [19]. Along the way we establish most of the conven-

tions and notations that we will need later. We also repackage the solutions of [19] in a much

more compact and easier to use form. Section 3 then introduces Marck’s formalism for solv-

ing the parallel transport equations, and gives analytical solutions following the procedures of

[19]. In section 4 we illustrate the usefulness of our new found expressions by scoping out

the locations of spin–spin resonances in quasi-circular EMRIs. As a bonus result, appendix C

gives the analytical solution of the evolution of proper time as a function of Mino time along a

geodesic.

The equations in this paper are given in geometric units such that G = c = 1. Appendix B

establishes our conventions for elliptic functions.

2. Geodesic equations

Themetric for a Kerr black hole of unitmass (M = 1) and spin a in (modi�ed)Boyer–Lindquist

coordinates is given by

ds2 = −
(

1− 2r

Σ

)

dt2 +
Σ

∆
dr2 +

Σ

1− z2
dz2 +

1− z2

Σ

(

2a2r(1− z2)

+ (a2 + r2)Σ
)

dφ2 − 4ar(1− z2)

Σ
dt dφ, (1)
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where z is related to the usual polar Boyer–Lindquist coordinate θ by z = cos θ. Furthermore,

∆ := r(r − 2)+ a2 (2)

= (r − r+)(r − r−), (3)

and

Σ := r2 + a2z2. (4)

The locations of the inner and outer event horizon are denoted,

r± = 1±
√

1− a2. (5)

Solving the geodesic equations is aided by the existence of four constants of motion. The �rst

is given by the norm of the 4-velocity uµ, which is set to−1 by the normalization of the proper

time τ . The second and third are the (speci�c) energy E and angular momentum L, given by

the time translation and rotational Killing symmetries of Kerr spacetime,

E := − uµgµν

(

∂

∂ t

)ν

, (6)

and

L := uµgµν

(

∂

∂ φ

)ν

. (7)

Finally, Carter [20] showed that there exist a fourth constant of motion, Q, related to the exis-

tence of a Killing tensor Kµν , which (given as the ‘square’ of the Killing–Yano tensor F )

reads,

Kµν :=FµαFα
ν , (8)

where

F := 2az dr ∧
(

dt − a(1− z2) dφ
)

+ 2ar dz ∧
(

dt − r2 + a2

a
dφ

)

. (9)

We de�ne the Carter constant as

Q := uµKµνu
ν − (L − aE)2. (10)

Using the constants of motion, the geodesic equations in Kerr spacetime can be written in �rst

order form,

(

dr

dλ

)2

=
(

E(r2 + a2)− aL
)2 −∆

(

r2 + (aE − L)2 + Q
)

(11a)

= (1− E2)(r1 − r)(r − r2)(r − r3)(r − r4), (11b)

(

dz

dλ

)2

= Q− z2
(

a2(1− E2)(1− z2)+ L2
+ Q

)

(11c)

= (z2 − z21)
(

a2(1− E2)z2 − z22
)

, (11d)

3
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dt

dλ
=
r2 + a2

∆

(

E(r2 + a2)− aL
)

− a2E(1− z2)+ aL, (11e)

and

dφ

dλ
=

a

∆

(

E(r2 + a2)− aL
)

+
L

1− z2
− aE , (11f)

where we have introduced the Mino(–Carter) time parameter λ [21], de�ned by

dτ = Σ dλ, (12)

in order to decouple the radial and polar equations.

In this paper we identify bound orbits in Kerr spacetime by the locations of the radial turn-

ing points r1 and r2, and the polar turning point z1. The remaining nodes in equations (11b)

and (d) can be found by comparing (11b) and (11d) to (11a) and (11c) and �nding the

zeroes [19],

r3 =
1

1− E2
− r1 + r2

2
+

√

(

r1 + r2

2
− 1

1− E2

)2

− a2Q

r1r2(1− E2)
, (13)

r4 =
a2Q

r1r2r3(1− E2)
, (14)

and

z2 =

√

a2(1− E2)+
L2

1− z21
. (15)

Note that our convention for the second polar root z2 given here (and in equation (11d)) differs

from the de�nitions given in (among others) [19, 22]. The advantage of this convention is that

it allows easy evaluation of the a→ 0 limit.

The equations for the remaining roots can be inverted to obtain E , L, and Q in terms of r1,

r2, and z1 [22]. For convenience (and unity of notation) the explicit expressions are given in

appendix A.

2.1. Trajectories

The geodesic equation (11) can be solved as functions of Mino time in closed form using

elliptic functions [19, 23–26]. We here repeat the explicit solutions for bound geodesics given

by Fujita and Hikida [19], in a much simpli�ed form.

The solutions given in [19] are given in a piecewise manner, making them look more com-

plicated then they are. By applying some of the standard identi�es for elliptic functions their

solutions can be rewritten in a form that applies at all times. That this should be true can be

seen from two simple observations: (1) the solutions should be analytic functions of Mino

time, (2) elliptic functions are analytic functions of their arguments. Consequently, if we are

given an analytic expression of the solution on some interval, then the analytic extension of

that expression should give the solution everywhere.

The solutions of the radial equation (11a) and polar equation (11c) are given by,

r(qr) =
r3(r1 − r2) sn

2
(

K(kr)
π
qr|kr

)

− r2(r1 − r3)

(r1 − r2) sn2
(

K(kr)
π qr|kr

)

− (r1 − r3)
, (16)

4
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and

z(qz) = z1 sn

(

K(kz)
2qz

π
|kz
)

, (17)

where sn is the Jacobi elliptic sine function,K is the complete elliptic integral of the �rst kind,

kr :=
(r1 − r2)(r3 − r4)

(r1 − r3)(r2 − r4)
, (18)

and

kz := a2(1− E2)
z21
z22
. (19)

The solutions are 2π periodic in the radial and polar phases, qr and qz, which evolve linearly

with Mino time

qr :=Υrλ+ qr,0, (20)

qz :=Υzλ+ qz,0, (21)

with ‘frequencies’

Υr =
π

2K(kr)

√

(1− E2) (r1 − r3) (r2 − r4), (22)

and

Υz =
πz2

2K(kz)
, (23)

and where qr,0 and qz,0 are constants giving the value of qr and qz at λ = 0. Furthermore, we

have adopted the convention that qr = 0 corresponds to the periapsis (r = r2), of the radial

motion, and qz = 0 corresponds to up going node (z = 0, z′ > 0) of the polar motion1

The solutions for t and φ are given by

t(qt, qr, qz) = qt + tr(qr)+ tz(qz), (24)

tr(qr) := t̃r

(

am
(

K(kr)
qr

π

∣

∣

∣ kr

))

− t̃r(π)

2π
qr, (25)

tz(qz) := t̃z

(

am

(

K(kz)
2qz

π

∣

∣

∣

∣

kz

))

− t̃z(π)

π
qz, (26)

and

φ(qφ, qr, qz) = qφ + φr(qr)+ φz(qz), (27)

φr(qr) := φ̃r

(

am
(

K(kr)
qr

π

∣

∣

∣ kr

))

− φ̃r(π)

2π
qr, (28)

φz(qz) := φ̃z

(

am

(

K(kz)
2qz

π

∣

∣

∣

∣

kz

))

− φ̃z(π)

π
qz, (29)

1Note that this convention for the polar phase qz differs from the one used by the author in [27] by a shift π/2.
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where am is the amplitude for the Jacobi elliptic functions, and

t̃r(ξr) :=
E(r2 − r3)

√

(1− E2)(r1 − r3)(r2 − r4)

(

(4+ r1 + r2 + r3 + r4)Π(hr; ξr|kr)

− 4

r+ − r−

(

r+(4− aL/E)− 2a2

(r2 − r+)(r3 − r+)
Π(h+; ξr|kr)− (+ ↔ −)

)

+
(r1 − r3)(r2 − r4)

r2 − r3

(

E(ξr|kr)− hr
sin ξr cos ξr

√

1− kr sin
2 ξr

1− hr sin
2 ξr

))

,

(30)

t̃z(ξz) := − E
1− E2

z2 E(ξz|kz), (31)

φ̃r(ξr) := − 2aE(r2 − r3)

(r+ − r−)
√

(1− E2)(r1 − r3)(r2 − r4)

×
(

2r+ − aL/E
(r2 − r+)(r3 − r+)

Π(h+; ξr|kr)− (+ ↔ −)

)

, (32)

φ̃z(ξz) := − L
z2
Π(z21; ξz|kz), (33)

where E and Π are elliptic integrals of the second and third kind,

hr :=
r1 − r2

r1 − r3
, (34)

h± := hr
r3 − r±
r2 − r±

, (35)

and (+ ↔ −) denotes that the preceding term is to be repeated with the + and − symbols in

the subscripts exchanged.

The ‘phases’, qt and qφ, represent the secularly growing linear parts of the solutions

qt :=Υtλ+ qt,0, (36)

and qφ :=Υφλ+ qφ,0, (37)

with

Υt = Υ̃t,r + Υ̃t,z, (38)

Υφ = Υ̃φ,r + Υ̃φ,z, (39)

and

Υ̃t,r := (4+ a2)E + E
(

1

2

(

(4+ r1 + r2 + r3) r3 − r1r2 + (r1 − r3)(r2 − r4)
E(kr)

K(kr)

+ (4+ r1 + r2 + r3 + r4) (r2 − r3)
Π(hr|kr)
K(kr)

)

+
2

r+ − r−

×
(

(4− aL/E)r+ − 2a2

r3 − r+

(

1− r2 − r3

r2 − r+

Π(h+|kr)
K(kr)

)

− (+ ↔ −)

))

, (40)

6
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Υ̃t,z := − a2E +
EQ

(1− E2)z21

(

1− E(kz)

K(kz)

)

, (41)

Υ̃φ,r :=
a

r+ − r−

(

2Er+ − aL
r3 − r+

(

1− r2 − r3

r2 − r+

Π(h+|kr)
K(kr)

)

− (+ ↔ −)

)

, (42)

Υ̃φ,z :=
L

K(kz)
Π(z21|kz). (43)

One useful aspect of these solutions is that they give explicit closed form expressions for

the Mino time frequencies Υi. From these one easily obtains the frequencies with respect to

coordinate (or Killing) time, Ωi by taking the ratio with Υt,

Ωi =
Υi

Υt

. (44)

Moreover, the frequencies with respect to proper time are obtained as

ωi =
Υi

Υτ
. (45)

This requires the average linear increase of proper time with Mino time Υτ , which is given in

appendix C.

3. Parallel transport

We want to �nd a tetrad (ei)µ of (co-)vectors that is parallel transported along a generic bound

geodesic in Kerr spacetime,

uα∇α(ei)µ =
d

dτ
(ei)µ − Γ

α
βµu

β(ei)α = 0. (46)

In the following tetrad indices are denoted by Roman letters and run from 0 to 3, and spacetime

indices are denoted by Greek letters.

In 1983, Marck [16] gave a general procedure for �nding such a tetrad given a solution to

the geodesic equation in Kerr. We here follow his approach.

A geodesic, by de�nition, parallel transports its own 4-velocity, uµ. We can therefore use it

as the �rst leg of our tetrad,

(e0)µ := uµ =

(

−E , 1
∆

dr

dλ
,

1

1− z2
dz

dλ
,L
)

. (47)

Moreover, it follows directly from the de�ning property of a Killing–Yano tensor,∇(αFµ)ν =

0, that Fµαu
α is also parallel transported along a geodesic. In addition, due to Fµν being anti-

symmetric, this vector is orthogonal to uµ. This quantity is sometimes interpreted as the total

(speci�c) orbital angular momentum of the geodesic. For us, it serves to construct the last leg

7
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of our tetrad,

(e3)µ :=
Fµαu

α

√
K

=
1√
K





















−ar
dz
dλ

+ z dr
dλ

Σ

az
(r2 + a2)E − aL

∆

arE − rL
1− z2

a2 z(1− z2) dr
dλ

+ r(r2 + a2) dz
dλ

Σ





















, (48)

where

K := uαKαβu
β
= Q+ (aE − L)2. (49)

The remaining two tetrad legs must lie in the plane perpendicular to the (co-)vectors (e0)µ and

(e3)µ. Following Marck [16] we construct an orthonormal basis for this plane,

(ẽ1)µ :=
1√
K



























−Ξr dr
dλ

+ a2z
Ξ

dz
dλ

Σ

Ξr
(r2 + a2)E − aL

∆

−az

Ξ

(

aE − L
1− z2

)

a
Ξ
2r(1− z2) dr

dλ
− z(r2 + a2) dz

dλ

ΞΣ



























, (50)

and

(ẽ2)µ :=

























E
Ξ

− (1− Ξ
2)
(

(r2 + a2)E − aL
)

ΞΣ

−Ξ

∆

dr

dλ

− 1

Ξ(1− z2)

dz

dλ

−ΞL − (1− Ξ
2)(r2 + a2)

(

L − a(1− z2)E
)

ΞΣ

























, (51)

with

Ξ :=

√

K − a2z2

K + r2
. (52)

It follows that the remaining two legs of our parallel propagated tetrad must be of the form,

(e1)µ := cos ψ(λ)(ẽ1)µ + sin ψ(λ)(ẽ2)µ, (53)

and

(e2)µ := − sin ψ(λ)(ẽ1)µ + cos ψ(λ)(ẽ2)µ. (54)

8
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The requirement that (e1)µ and (e2)µ satisfy the parallel transport equation (46), reduces (after

some straightforward but tedious algebra) to a single �rst order differential equation for ψ(λ),

dψ

dλ
=

√
K
(

(r2 + a2)E − aL
K + r2

+ a
L− a(1− z2)E

K − a2z2

)

. (55)

Since the right-hand side of this equation can be written as the sum of two rational functions,

in r and z respectively, it can be solved in terms standard elliptic functions. Following the same

general procedure as used in [19] to solve the equations for t and φ, we �nd,

ψ(qψ, qr, qz) = qψ + ψr(qr)+ ψz(qz) (56)

ψr(qr) := ψ̃r

(

am
(

K(kr)
qr

π

∣

∣

∣ kr

))

− ψ̃r(π)

2π
qr (57)

ψz(qz) := ψ̃z

(

am

(

K(kz)
2qz

π

∣

∣

∣

∣

kz

))

− ψ̃z(π)

π
qz (58)

with

ψ̃r(ξr) :=
2(r2 − r3)

(

(K− a2)E + aL
)

(K + r22)(K+ r23)
√

(1− E2)(r1 − r3)(r2 − r4)

× Im
(

(r2 + i
√
K)(r3 + i

√
K)Π(hψ; ξr|kr)

)

, (59)

ψ̃z(ξz) := − (a2 −K)E − aL√
Kz2

Π(
a2z21
K ; ξz|kz), (60)

and

hψ := hr
r3 − i

√
K

r2 − i
√
K
. (61)

The phases qr, qz, and qψ are functions of Mino time given by (20), (21), and

qψ = Υψλ+ qψ,0. (62)

Here Υψ is the (Mino time) precession frequency of the tetrad and is given by

Υψ = Υψ,r +Υψ,z, (63)

Υψ,r :=

√
K
(

(r23 + a2)E − aL
)

r23 +K +
(r2 − r3)

(

(K− a2)E + aL
)

(r22 +K)(r23 +K)

× Im

(

(r2 + i
√
K)(r3 + i

√
K)

Π(hψ|kr)
K(kr)

)

, (64)

Υψ,z := − E
√
K +

(K − a2)E + aL√
K

Π(
a2z2

1
K |kz)

K(kz)
. (65)

We thus �nd a complete closed form analytic solution for the parallel propagation of a tetrad

along a generic bound geodesic in Kerr spacetime. A Mathematica implementation of these

solutions is included in the KerrGeodesics package of the Black Hole Perturbation Toolkit

[28].

9
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Figure 1. The ratio of the polar frequency Υz to the precession frequency Υψ evaluated
at the last stable orbit. The left panel shows a 3D plot of this ratio over the full x and a
range. The red bands indicate the 3:2, 5:3, and 7:4 resonances. The maximum value of 2

is achieved at (x, a) = (±
√

2(
√
2− 1),±1). Theminimum value of

√
2 is attained when

either a = 0 or |x| = 1. The right panel shows slices of this plot at individual values of
the spin a.

4. Application: spin–spin resonances for spherical orbits

One corollary of the analytical solution of parallel transport along a bound geodesic (that

was already known fromMarck’s work [16]), is that parallel transport introduces only one new

independent frequency,Υψ, to the three frequencies, (Υr,Υz,Υφ), which characterize a bound

geodesic. Consequently, any time variable effects in the dynamics of a test rigid body around

a black hole has a frequency spectrum that consists of integer combinations of Ωr, Ωz, Ωφ, and

Ωψ.

It can occur that for some bound orbit one such combination vanishes. In such a case an

effect that is normally oscillatory in nature becomes constant, allowing it to grow secularly

overmany orbits. Such a situation is known as an (orbital) resonance. The effects of resonances

involving the orbital frequenciesΩr, Ωz, and Ωφ in extreme mass-ratio inspirals (EMRIs) have

been subject of extensive study [29–39]. The appearance of a fourth frequency Ωψ allows for

the occurrence of new types of resonances.

Having a closed form analytical expression forΥψ (and the other frequencies), is helpful in

�nding out where andwhen such resonance can occur. In this sectionwe demonstrate the utility

of our expressions by mapping out the locations of resonances between the polarΩz frequency

and the precession frequencyΩψ (zψ-resonances) for inclined circular (a.k.a. spherical) orbits
2.

Note that the coordinate time frequenciesΩi satisfy a resonance condition if and only if the

correspondingMino time frequenciesΥi do so as well. Hence, to look for resonances, we can

simply look for (low order) rational ratios Υz/Υψ.

For resonances involving the Ωr it is clear that on a trajectory connecting the weak �eld

limit to the last stable orbit Υr/Υi must pass through all possible resonant ratios between 0

and 1, because by de�nition Υr = 0 at the last stable orbit and Υr = Υi in the weak �eld.

However, for Υz/Υψ there is no such guarantee. It is still true that Υz = Υψ in the weak �eld

limit. Moreover, we observe empirically that the ratio Υz/Υψ increases monotonically with

1/r at �xed a and inclination z1.

2This restriction is pure for the sake of ease of presentation. There is no technical obstruction to �nding the generic

orbit resonances.
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Figure 2. The location of the 4:3 zψ-resonance relative to the location of the innermost
stable spherical orbit. This distance is typical of the order of one gravitational radius,
meaning the 4:3 zψ-resonance is achieved well before the plunge phase.

Hence, we can determine the range of resonances that can occur for spherical orbits by �rst

determining the ratio Υz/Υψ at the innermost stable spherical orbit (ISSO). Figure 1 displays

this ratio as a function of the background spin a and the inclination parameter x := ±
√

1− z21
(with the sign depend on the ‘sense’ of the orbit, i.e. prograde equatorial orbits have x = 1 and

retrograde equatorial orbits x = −1.) The minimal value of this ratio is attained when a = 0

or |x| = 1, in which case our analytic expressions tell us that the ratio is exactly
√
2. From

�gure 1 we also see that the maximum ratio is attained for |a| = 1. To �nd the exact value of

this ratio, we note that the location of the ISSO for an extremal Kerr black hole is determined

by the relations

z21 =
r2
(

3+ 3
√
r − 2

√

3+ 2
√
r + 3r

)

−1+ 3
√
r

, r > 1, (66)

and

r = 1, 0 6 z1 6
1

1+
√
2
. (67)

These relations allow us to evaluate the Υz/Υψ on the ISSO in the extremal limit. We �nd

that the maximum is attained when z1 =
√
2− 1—i.e. x = sign a

√

2(
√
2− 1)—the turnover

point for the two relations above. At this point the ratio becomes 2.
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We thus �nd that the 2:1 zψ-resonance is not accessible during any quasi-circular inspiral,
and the 3:2 zψ-resonance is accessible only in a small part of the parameter space. The low-

est order the zψ-resonance that all quasi-circular inspirals must pass through is the 4:3. The

location of this resonance relative to the ISSO is shown in �gure 2. We see that this resonance

happens around 1M before the ISSO, which should be well before the plunge phase for most

inspirals.

We have here focused purely on the location of the zψ-resonance in the orbital phase

space. In order for something to happen at these resonances we also need dynamics that cou-

ple the corresponding frequency modes. In EMRIs the �rst order gravitational self-force is

independent of the secondary’s spin, and therefore ψ, and hence cannot couple these modes.

In [2] it was argued that the Mathisson–Papapetrou–Dixon correction to the orbital dynam-

ics also cannot provide such coupling at linear order in the spin of the smaller object. It is

however likely that the �rst order self-torque (i.e. the linear in mass ratio correction to the

dynamics of the secondary spin) will couple at these resonances, as will the second order

self-force.

5. Discussion

This paper has provided an explicit closed-form analytic solution for the parallel transport

equation along an arbitrary bound geodesic in Kerr spacetime. This result is useful as the zeroth

order baseline for studying the dynamics of spinning secondaries and tides in extreme mass-

ratio inspirals.

Alternatively, the solutions can be viewed as a providing a set of coordinates to describe

EMRI dynamics, which facilitates a two timescale expansion. The phases qi provide the ‘fast’

variables of the system varying on the orbital timescale, with all other variables varying on the

inspiral timescale. Moreover, the phases qi are de�ned in such a way that at zeroth order their

derivatives with respect to Mino time are independent of the phases themselves. This means

that they provide the necessary starting position to systematically eliminate all variance on the

orbital timescale from the perturbed equations of motion using near-identity transformations,

allowing ef�cient integration of the evolution [40].

As an application of our analytical results, we studied the potential occurrence of zψ-
resonances in precessing quasi-circular EMRIs. We showed that only resonances with 1 <
Ωz/Ωψ < 2 can occur in such inspirals, with resonances with 1 < Ωz/Ωψ <

√
2 occur-

ring in every quasi-circular inspiral. A more detailed study of resonances involving both

generic orbits and arbitrary integer combinations of Ωr, Ωz, and Ωψ will be left to future

work.

Finally, as a bonus feature, we provide an explicit closed form expression for the proper time

along a bound geodesic in appendix C. This should be of particular use for studying physics

occurring predominantly in the local free falling frame following the geodesics, i.e. the study

of tidal disruption of stars on highly eccentric orbits.
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Appendix A. Constants of motion

In order to allow readers to evaluate all formula’s in this work without having to trawl through

the literature, we reproduce the analytic expressions for E , L, and Q in terms of r1, r2, and z1
�rst given by [22].

E =

√

√

√

√

κρ+ 2ǫσ − 2a
√

σ
a2

(

σǫ2 + ρǫκ− ηκ2
)

ρ2 + 4ησ
, (A.1)

L = −g(r2)E −
√

(g(r2)2 + h(r2) f (r2))E2 − h(r2)d(r2)

h(r2)
, (A.2)

and

Q = z21

(

a2(1− E2)+
L2

1− z21

)

(A.3)

with

κ := d(r2)h(r1)− (r1 ↔ r2), (A.4)

ǫ := d(r2)g(r1)− (r1 ↔ r2), (A.5)

ρ := f (r2)h(r1)− (r1 ↔ r2), (A.6)

η := f (r2)g(r1)− (r1 ↔ r2), (A.7)

σ := g(r2)h(r1)− (r1 ↔ r2), (A.8)

and

d(r) :=∆(r)
(

r2 + a2z21
)

, (A.9)

f (r) := r4 + a2
(

r(r + 2)+ z21∆(r)
)

, (A.10)

g(r) := 2ar, (A.11)

and

h(r) := r(r − 2)+
z21∆(r)

1− z21
. (A.12)

Appendix B. Elliptic functions

We here give an overview of the de�nitions of the elliptic functions used throughout this paper.

We generally follow the some notational conventions as Mathematica.

13
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Function De�nition Description

F(ξ|k)
∫ ξ

0
1√

1−k sin2 χ
dχ Elliptic integral of the �rst kind

K(k) F( π
2
|k) Complete elliptic integral of the �rst kind

E(ξ|k)
∫ ξ
0

√

1− k sin2 χ dχ Elliptic integral of the second kind

E(k) E( π
2
|k) Complete elliptic integral of the second kind

Π(h; ξ|k)
∫ ξ
0

1

(1−h sin2 χ)
√

1−k sin2 χ
dχ Elliptic integral of the third kind

Π(h|k) Π(h; π
2
|k) Complete elliptic integral of the third kind

am(u|k) u = F
(

am(u|k)|k
)

Jacobi amplitude

sn(u|k) sin(am(u|k)) Jacobi elliptic sine

Appendix C. Proper time

The explicit closed form solutions for bound geodesics and parallel transport along them are

given as functions ofMino time. However, for some applications it is useful to know the proper

time along the orbit as well, e.g. when constructing explicit local Fermi–Walker coordinates

around the orbit.

The relation between Mino time and proper time is given by

d τ

dλ
= Σ = r2 + a2z2. (C.1)

This equation can be solved through the same means as used to solve the equations for t, φ,
and ψ. We give the explicit solution here,

τ (qτ , qr, qz) = qτ + τr(qr)+ τz(qz), (C.2)

τr(qr) := τ̃ r

(

am
(

K(kr)
qr

π

∣

∣

∣ kr

))

− τ̃ r(π)

2π
qr, (C.3)

τz(qz) := τ̃ z

(

am

(

K(kz)
2qz

π

∣

∣

∣

∣

kz

))

− τ̃ z(π)

π
qz (C.4)

with

τ̃ r(ξr) :=
1

√

(1− E2)(r1 − r3)(r2 − r4)

(

((r1 + r2 + r3)r3 − r1r2)F(ξr|kr)

+ (r1 − r3)(r2 − r4)E(ξr|kr)+ (r2 − r3)(r1 + r2 + r3 + r4)Π(hr; ξr|kr)

−hr(r1 − r3)(r2 − r4) sin ξr cos ξr
√

1− kr sin
2 ξr

1− hr sin
2 ξr

)

, (C.5)

and

τ̃ z(ξz) :=
z2

(1− E2)

(

F(ξz|kz)− E(ξz|kz)
)

. (C.6)

The secular part qτ evolves linearly with λ,

qτ = Υτλ+ qτ ,0, (C.7)
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with ‘frequency’

Υτ = Υ̃τ ,r + Υ̃τ ,z, (C.8)

Υ̃τ ,r :=
(r1 + r2 + r3)r3 − r1r2

2
+ (r1 − r3)(r2 − r4)

E(kr)

2K(kr)

+ (r1 + r2 + r3 + r4)(r2 − r3)
Π(hr|kr)
2K(kr)

, (C.9)

and

Υ̃τ ,z :=
z22

1− E2

(

1− E(kz)

K(kz)

)

. (C.10)

This explicit analytic expression for the Υτ also allows for the calculation of the proper time

frequencies ωi through

ωi =
Υi

Υτ
. (C.11)
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