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A considerable amount of attention has been given to discontinuous Galerkin methods for hyperbolic problems
in numerical relativity, showing potential advantages of the methods in dealing with hydrodynamical shocks
and other discontinuities. This paper investigates discontinuous Galerkin methods for the solution of elliptic
problems in numerical relativity. We present a novel hp-adaptive numerical scheme for curvilinear and non-
conforming meshes. It uses a multigrid preconditioner with a Chebyshev or Schwarz smoother to create a very
scalable discontinuous Galerkin code on generic domains. The code employs compactification to move the outer
boundary near spatial infinity. We explore the properties of the code on some test problems, including one
mimicking Neutron stars with phase transitions. We also apply it to construct initial data for two or three black
holes.

I. INTRODUCTION

Discontinuous Galerkin (DG) methods [1–6] have matured
into standard numerical methods to simulate a wide variety
of partial differential equations. In the context of numerical
relativity [7], discontinuous Galerkin methods have shown ad-
vantages for relativistic hyperbolic problems over traditional
discretization methods such as finite difference, finite volume
and spectral finite elements [8–22] by combining the best as-
pects of all three methods. As computers reach exa-scale
power, new methods like DG are needed to tackle the biggest
problems in numerical relativity such as realistic supernovae
and binary neutron-star merger simulations on these very large
machines [21].

DG efforts in numerical relativity have so far targeted evo-
lutionary problems [8–12, 16–20, 22]. Radice and Rezzolla
[12] showed for spherically symmetric problems that the dis-
continuous Galerkin method could handle strong relativistic
shock waves while maintaining exponential convergence rates
in smooth regions of the flow. Teukolsky [16] showed how
to develop discontinuous Galerkin methods for applications in
relativistic astrophysics. Bugner et al. [17] presented the first
three-dimensional simulations of general relativistic hydrody-
namics with a fixed spacetime background using a discontinu-
ousGalerkinmethod coupledwith aWENOalgorithm. Kidder
et al. [21] showcased the first discontinuous Galerkin code to
use a task-based parallelism framework for applications in rel-
ativisitic astrophysics. Kidder et al. tested the scalability and
convergence of the code on relativistic magnetohydrodynam-
ics problems. Miller et al. [20] developed a discontinuous
Galerkin operator method for use in finite difference codes
and used it to solve gauge wave problems involving the BSSN
formulation of the Einstein field equations. Hebert et al. [23]
presented the first discontinuous Galerkin method for evolving
neutron stars in full General Relativity. Finally, Fambri et al.
[22] used an ADER discontinuous Galerkin scheme to solve
general relativistic ideal magnetohydrodynamics problems in
fixed spacetimes. They compared their DG method to a finite
volume scheme and showed that DG is much more efficient.

This paper explores DG for elliptic problems in numerical
relativity. We develop an elliptic solver with the following

primary features: (i) It operates on curved meshes, with non-
conforming elements. (ii) It supports adaptive h and p refine-
ment, driven by a posteriori error estimators. (iii) It employs
multi-grid for efficient solution of the resulting linear systems.
(iv) It uses compactified domains to treat boundary conditions
at infinity. While each of these features has appeared in the
literature before [2, 24–29], to our knowledge, our solver for
the first time combines all these elements simultaneously and
demonstrate their effectiveness on difficult numerical prob-
lems.
Specifically, the present article is a step toward a solver

for the Einstein constraint equations, which must be solved
to construct initial data for the evolution of compact binary
systems [7, 30, 31]. The constraint equations are generally
rewritten as elliptic equations, and depending on detailed as-
sumptions, this results in one or more coupled non-linear el-
liptic partial differential equations. Construction of initial data
is arguably the most important elliptic problem in numerical
relativity, but not the only one: Elliptic equations also occur
in certain gauge conditions [7] or for implicit time-stepping
to alleviate the computational cost of high-mass-ratio bina-
ries [32, 33] .
The motivation for developing a new solver is multi-fold.

First, current spectral methods have difficulty obtaining certain
initial data sets, such as binaries at short separation containing
a neutron star, where the neutron star has high compactness and
a realistic equation of state [34]. Furthermore, there is a need
for a solver which can routinely obtain high-accuracy. Errors
from inaccurate initial data sets creep into the evolutions with
sizeable effect: Ref. [35] shows that despite only global (local)
differences of 0.02% (1%) in the initial data of the two codes
COCAL and LORENE for irrotational neutron-star binaries,
the gravitational wave phase at the merger time differed by
0.5 radians after 3 orbits. The design of a more accurate code
requires adaptive mesh refinement, load-balancing and scala-
bility which a DG code potentially can provide. The present
work also complements the DG evolution code presented in
Ref. [21], leading to a complete framework for solving both
elliptic and hyperbolic PDEs in numerical relativity.
The organization of the paper is as follows: Section II

presents the components of our discontinuous Galerkin code.
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Section III showcases our hp-adaptive multigrid solver on
increasingly challenging test-problems, each illustrating the
power of the discontinuous Galerkin method. This section
includes a solution for the Einstein constraint equations in the
case of a constant density star. This problem has a surface
discontinuity which mimicks Neutron stars with phase transi-
tions. Lastly, this section also presents solutions for initial-data
of two orbiting non-spinning black-holes to showcase and com-
pare it with the elliptic solver Spells [36] as well as solutions
for the initial data of three black-holes with random locations,
spins and momenta. We close with a discussion in Sec. IV.

II. NUMERICAL ALGORITHM

A. DGFEM discretization

We base our nomenclature on [24, 27–29, 37, 38], which
we summarize here for completeness.

1. Mesh

Our purpose is to solve elliptic equations in a computa-
tional domain Ω ⊂ Rd in d dimensions. To allow for non-
trivial topology and shape of Ω, we introduce a macro-mesh
(also known as a multi-block mesh) E0 consisting of macro-
elements (also known as blocks) e0 ∈ E0 such that (1) the
macro-elements cover the entire domain, i.e., ∪e0∈E0 e0 = Ω,
(2) the macro-elements touch each other at complete faces and
do not overlap; and (3) each e0 ∈ E0 is the image of the ref-
erence cube [−1, 1]d under a mapping Φe0 : [−1, 1]d → e0.
As an example, Fig. 1 shows a macro-mesh of five elements
covering a two-dimensional disk. The macro-mesh represents
the coarsest level of subsequent mesh-refinement.

The macro-mesh E0 is refined by subdividing macro-
elements into smaller elements along faces of constant ref-
erence cube coordinates. Refinement can be multiple levels
deep (i.e. refined elements can be further subdivided), and
we do not assume uniform refinement. The refined mesh E
is referred to as the fine mesh, which is exemplified in panel
(b) of Fig. 1. In contrast to the macro-mesh, the fine mesh
will generally be non-conforming at element boundaries, both
within one macro-element and at boundaries between macro-
elements. We assume that there is at most a 2:1 refinement
difference at any element boundary, i.e. the boundary of a
coarse element faces at most two smaller elements (per di-
mension). Each face of each element e ∈ E is endowed with
an outward-pointing unit-normal n̂. The map Φe0 in macro-
element e0 ∈ E0 induces a map on each fine element e within
e0, denoted

Φe : [−1, 1]d → e. (1)

The reference coordinates of Φe are linearly related to the
reference coordinates of Φe0 .

Turning to boundaries, we define the set of all element
boundaries (internal and external), Γ = ∪e∈E∂e, where ∂e

(b) E(a) E0

(d) ΓI(c) ΓB

FIG. 1. Ingredients into the setup of the domain-decomposition: (a)
The macro-mesh E0 of a 2-dimensional disk consisting of five macro-
elements. (b) A representative mesh derived from the macro-mesh
by refining once in the left-most macro-element. (c) The boundary
mortar ΓB. (d) The interior mortar ΓI.

is the boundary of element e of the fine mesh. Γ is called
the mortar, and it decomposes into a finite set of (d − 1)-
dimensional mortar elements m ∈ M, arising from the faces
of each mesh element e ∈ E, s.t. Γ = ∪m∈Mm and each mortar
element intersects at most at the boundary of two elements.
M splits into interior mortar elementsMI and exterior mortar
elementsMB, withMI ∩MB = 0. Similarly, Γ splits into inte-
rior mortar ΓI = ∪m∈MI m and exterior mortar ΓB = ∪m∈MB m,
cf. Fig. 1, which intersect at (d − 2)-dimensional edges where
the interior mortar touches the exterior boundary. We partition
the exterior mortar elements further into elements where we
apply Dirichlet boundary conditions,MD, Neumann boundary
conditions,MN, and Robin boundary conditions,MR, respec-
tively. This induces sets of boundary points via ΓD = ∪m∈MD m,
ΓN = ∪m∈MN m and ΓR = ∪m∈MR m. We assume ΓD, ΓN and ΓR
are disjoint, i.e. one type of boundary condition is employed
on each connected part of the boundary. Finally, we intro-
duce two definitions to help us simplify equations later in the
text. Firstly, because internal boundaries and external Dirich-
let boundaries are often treated similarly, it is convenient to
defineMID = MI ∪MD and ΓID = ΓI ∪ ΓD. Secondly, we refer
to the set of mortar elements surrounding an element e asMe.
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2. Weak Equations

On the fine mesh E, we wish to discretize the following
model elliptic problem with the symmetric interior penalty
discontinuous Galerkin method [24]:

∂i∂iu(x) + f (x)u = g(x) x ∈ Ω, (2a)
u = gD(x) x ∈ ΓD, (2b)

n̂i∂iu = gN (x) x ∈ ΓN, (2c)
n̂i∂iu + γu = gR(x) x ∈ ΓR. (2d)

In Eqs. (2) and in the following, we employ the Einstein
sum convention, so that the first term in Eq. (2a) represents∑d

i=1 ∂i∂iu, and similar for the left hand side of Eqs. (2c)
and (2d). In accordance with the underlying ideas of DG, we
seek to approximate the solution of Eqs. (2) with polynomials
on each element e ∈ E, without strictly enforcing continuity
across elements. Let Vh,e,pe denote the set of polynomials
on the reference cube [−1, 1]d up to degree pe mapped to el-
ement e ∈ E. We assume the same maximum polynomial
order along each dimension; it is straightforward to extend to
different polynomial order along different dimensions. The
functions in Vh,e,pe are understood to be extended by 0 outside
of e (i.e. on other elements). The global function space is the
direct sum of the per-element polynomial spaces,

Vh =
⊕
e∈E

Vh,e,pe, (3)

where the polynomial order may vary between elements. Be-
cause neighboring element touch, on internal boundaries ΓI
the discretized solution uh ∈ Vh will be represented twice on
touching elements with generally different values on either
element (this is origin of the term ’discontinuous’ in DG).

The discretized solution uh ∈ Vh is determined, such that
the residual of Eqs. (2a) is orthogonal to the function spaceVh .
Within the symmetric interior penalty discontinuous Galerkin
discretization [24, 38], this yields

Lh(uh, vh) = Fh(vh) ∀vh ∈ Vh, (4)

where

Lh(u, v) =
∫
E

∂iv∂iu dx −
∫
ΓID

JuKi {{∂iv}} ds

−
∫
ΓID

JvKi {{∂iu}} ds +
∫
ΓID

σJuKiJvKids

+

∫
E

f uv dx +
∫
ΓR

γuv ds, (5)

and

Fh(v) =
∫
E

gvdx −
∫
ΓD

gD n̂i∂ivds +
∫
ΓD

σgDvds

+

∫
ΓN

gN vds −
∫
ΓR

gRvds. (6)

For internal boundaries, the operators J . K and {{ . }} are
defined by

JqK = q+n+ + q−n− on ΓI, (7)

{{q}} = 1
2

(
q+ + q−

)
on ΓI . (8)

Here q is a scalar function, ’+’ and ’-’ is an arbitrary labeling
of the two elements e+ and e− touching at the interface, and q±

and n± are the function values and the outward pointing unit
normal on the two elements that share the interface. These
operators are extended to external boundaries by

JqK = qn on ΓB, (9)
{{q}} = q on ΓB . (10)

Breaking up the integrals in Eqs. (5) and (6) into integrals
over individual mesh– and mortar–elements, one finds

Lh(u, v) =
∑
e∈E

∫
e

∂iv∂iu dx −
∑

m∈MID

∫
m

JuKi {{∂iv}} ds

−
∑

m∈MID

∫
m

JvKi {{∂iu}} ds +
∑

m∈MID

∫
m

σJuKiJvKids

−
∑

m∈MR

∫
m

γuvds +
∑
e∈E

∫
e

f uv dx, (11)

and

Fh(v) =
∑
e∈E

∫
e

gvdx −
∑

m∈MD

∫
m

gD n̂i∂ivds +
∑

m∈MD

∫
m

σgDvds

+
∑

m∈MN

∫
m

gN vds −
∑

m∈MR

∫
m

gRvds. (12)

For later reference, we will refer to the first four integrals
in Eq. (11) as the stiffness, consistency, symmetry and penalty
integrals respectively and denote them Lstiff

h
(u, v), Lcon

h
(u, v),

Lsym
h
(u, v) and Lpen

h
(u, v) so that we may write

Lh(u, v) =Lstiff
h (u, v) + Lcon

h (u, v) + Lsym
h
(u, v) + Lpen

h
(u, v)

+
∑
e∈E

∫
e

f uv dx −
∫
ΓR

γuv ds. (13)

3. Basis Functions

So far, we have not yet specified a concrete basis for the
polynomial spaces Vh,e,pe introduced in Sec. II A 2. We do so
now. Recall that curvilinear elements e ∈ E are mapped to
reference cubic elements [−1, 1]d . That is, each point x ∈ e
corresponds to a reference cube coordinate ξ = Φ−1

e (x), cf.
Eq. (1).

Along each dimension ξi ∈ [−1, 1], where the subscript
i ∈ {1, . . . , d} denotes dimension, we first choose Ni + 1
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Legendre-Gauss-Lobatto collocation points ξLGL
αi

. The in-
dex αi ∈ {1, . . . , Ni + 1} identifies the point along dimen-
sion i. We take Ni ≥ 1 so that the points with ξi = −1
and ξi = 1, that lie on the faces of the cube, are always col-
location points. The collocation points in all d dimensions
form a tensor product grid of

∏d
i=1(Ni + 1) d-dimensional

collocation points ξLGL
α = (ξLGL

α1 , . . . , ξLGL
αd
) that we index by

α ∈ {1, . . . ,∏d
i=1(Ni + 1)} that identifies a point regardless

of dimension. With respect to these collocation points we
can now construct the one-dimensional interpolating Lagrange
polynomials

lαi (ξ) :=
Ni+1∏
βi=1
βi,αi

ξ − ξLGL
βi

ξLGL
αi
− ξLGL

βi

, ξ ∈ [−1, 1] (14)

and employ their tensor product to define the d-dimensional
basis functions

ψα(ξ) =
d∏
i=1

lαi (ξi). (15)

When evaluating ψα in the physical coordinates x ∈ e, one
usesΦ−1

e : x → ξ to map the function argument. For instance,
the set of test-functions on element e ∈ E becomes

Vh,e,pe = span
{
Φ
−1
e ◦ ψα

}
. (16)

Furthermore, because the ψα form a nodal basis, the expansion
coefficients are the function values at the nodal points ξα, and
each test-function can be written as

ue
h =

∑
α

ue
h

(
ξLGLα

)
ψα =

∑
α

ue
αψα, (17)

where ue
α := ue

h

(
ξLGLα

)
.

4. Semi-Discrete Global Matrix Equations

The global solution over the entire mesh is the direct sum
of the solutions on each element, that is

uh =
⊕
e∈E

ue
h =

⊕
e∈E

∑
α

ue
αψ

e
α . (18)

Thus, with a chosen global ordering of elements e ∈ E and
local ordering of basis functionsψe

α, wemay prescribe a global
index α′ to each of the local expansion coefficients ue

α. With
this, we may now turn Eqs. (11) and (12) into a global linear
system of equations. Let L = Lh(ψα′, ψβ′) =: Lα′β′ , u = uβ′
and F = F(ψα′) =: Fα′ , then the global linear system is

Lu = F . (19)

Instead of forming the full global matrix L and performing
the matrix-vector operator Lu over the global space, we can
restrict the integrals in (11) and (12) to those pertaining to

element e and the mortar elements m of ∂e, and perform
elemental matrix-vector operations.
Equation 19 contains integrals and therefore represents only

a semi-discrete set of equations. In the next section we show
how to make Eq. (19) fully discrete by using quadrature to
approximate the integrals.

5. Quadrature

The integrals in Eqs. (11) and (12) depend on various geo-
metric objects: We define the Jacobian matrix with respect to
the mapping φe : ξ → x on an element as e ∈ E

(J)ij =
∂xi
∂ξ j

, (20)

with an inverse given by

(J−1)ij =
∂ξ i
∂x j

. (21)

The Jacobian determinant is

J = detJ (22)

Similarly, the surface Jacobian for a mortar element m ∈ M is

Sm = J

√
∂ξj

∂x
·
∂ξj

∂x
, (23)

where j is the index of the reference coordinate which is con-
stant on the surface under consideration (no sum-convention).
For a mortar on a macro-element boundary, Sm may change
depending on which of the two macro-element mappings are
used to compute Eqn. (23). This ambiguity is not problematic
as long as all quantities in a mortar integrand are transformed
to the macro-element coordinate system in which Sm is being
computed. The normal is computed by

n̂ = sgn(ξj)
J

Sm

∂ξj

∂x
, (24)

where sgn is the signum function, where j labels the dimen-
sion that is constant on the face under consideration (no sum-
convention).
Let us now consider the stiffness integral in Eq. (11). Be-

cause basis-functions are local to each element, we can con-
sider each element e individually, and we will omit the su-
perscript e to lighten the notational load. Substituting the
expansion of the solution uh = uαψα, as well as v = ψβ , the
stiffness integral becomes

Lstiff
h,e (uh, ψβ) =

∫
e

uα
∂ψα
∂xk

∂ψβ

∂xk
dx. (25)

We recall that we employ the Einstein sum convention, i.e.
Eq. (25) has implicit sums over α and k. The derivatives
∂ψα/∂ξl are just polynomials in ξ , therefore, they can be
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re-expanded in our nodal basis as ∂ψα/∂ξl = Dl
αβ ψβ with

Dl
αβ := ∂ψα/∂ξl(ξβ). The physical derivative ∂ψα

∂xk
is then

∂ψα

∂xk
= (J−1)l

k
Dl
αβψβ . The tensor-grid in Eq. (15) implies

that the matrices Dl
αβ are sparse for d > 1. Using these

expressions, and converting to an integral in the reference
coordinates, we obtain

Lstiff
h,e (uh, vh) = uα

∫
[−1,1]d

(J−1)lkDl
αγψγ(J−1)mk Dm

βδψδ J dξ (26)

= uαLstiff,e
αβ . (27)

We evaluate the integral in Eq. (26) with Gauss-Legendre (GL)
quadrature. This choice follows [39] in the use of a stronger set
of quadrature points (higher order GL grids) to decrease the
error in geometric aliasing. We denote the GL abscissas and
weights by ξ(c)GL and w

(c)
GL, respectively, where c = 1, . . . , NGL.

In multiple dimensions these will be a tensor product of the
1-d GL abscissas and weights denotes by ξσGL and wσGL, re-
spectively. All non-polynomial functions, including geomet-
ric quantities such as J, (J−1)ij, Sm, n̂, are evaluated directly
at ξσGL, whereas polynomial functions like the trial function
uh and the test function ψh —which naturally are represented
on the Legendre-Gauss-Lobatto grid— are interpolated to the
GL–quadrature points. Denoting the interpolation matrix by
Iσα := ψα(ξσGL), we find

Lstiff,e
αβ u

∑
σ

wσ

(
J (J−1)lkDl

αγψγ(J−1)mk Dm
βδψδ

) �����
ξσ
GL

(28)

= Dl
αγ Iσγ(J−1

σ )lk wσ Jσ(J−1
σ )mk IσδDm

βδ . (29)

Here Icm = ψm(ξζGL
) is an interpolation matrix from the

GLL points to the GL points. The other volume integrals in
Eq. (13) are computed in a similar manner.

The mortar integrals are a bit more involved owing to the
extra book-keeping arising from the two elements (named ’+’
and ’-’) that touch at the boundary m ∈ M, each with their
own local basis-functions, denoted by ψ−α and ψ+α . Taking the
penalty-integral as an example, for test-functions vh that are a
basis-function of the ’-’ element, the definition Eq. (7) yields

Lpen
m,h
(uh, ψ−α) =

∫
m

σJuhKkJψ−αKkds (30)

=

∫
[−1,1]d−1

σ
(
u−h − u+h

)
ψ−α Sm dξ . (31)

Equation (31) contains both u−
h
and u+

h
; therefore, when sub-

stituting in their respective local expansions, u±
h
= u±αψ

±
α , and

pulling the coefficients outside the integral, we see that the
penalty term will result in entries of the global matrix equation
(19) that couple the two elements e±. Once the coefficients u±α
are moved outside the integral, the remaining integral only de-
pends on basis-functions ψ±α and geometric quantities. These
integrals are evaluatedwithGL-quadrature, which is expressed
in terms of interpolation matrices I±αρ := ψ±α(ξ

ρ
GL), where ρ

labels the GL collocation points on the boundary [−1, 1]d−1

mortar

Ihp

Ip

Ip

FIG. 2. A representation of a 2:1 interface in two dimensions. On
the left we have a 4th-order element and on the right we have two
elements of degree 8 and degree 2 respectively. The data on the faces
of these three elements will be used in themortar integrals of equation
5, but since the interface is non-conforming, we need to interpolate
the face data to a shared broken polynomial space on the mortar. To
ensure that the face data on each element is in a polynomial space
which a subset of the polynomial space on the mortar, we demand
that the polynomial degree p on the mortar is the maximum of the
polynomial degrees on either side. For the lower mortar face (red)
this would be max(4, 3) = 4 and for the upper mortar face (green) this
would be max(4, 6) = 6. Since the left element must interpolate it’s
face data to a space containing two faces, we use the hp-interpolation
operator Ihp . On the right side, each element has to map its data
from one face to one face, so we use the p-interpolation operator Ip .

and α labels the local basis-functions in e±, which are to be
evaluated in the suitably mapped ξGL locations.

B. Penalty Function

The penalty parameter σ in Eqs. (5) and (11) is a spatially
dependent function on boundaries m ∈ M, defined by

σ = C
p2
m

hm
, (32)

where pm and hm represent a typical polynomial degree and a
typical length-scale of the elements touching at the boundary,
respectively, and where the parameter C > 0 is large enough
such that L (·, ·) is coercive. We choose pm = max(p+, p−)
and we set hm = min(J+/Sm, J−/Sm) as this has yielded the
best results empirically. Here J± is the volume Jacobian on e±

mapping [0, 1]d to e±, and Sm is the surface Jacobian mapping
[0, 1]d−1 to the boundary face of e±.

C. Norms

Throughout the following sections we will use the energy
norm,

| |ν | |∗ =
(∑
e∈E

∫
e

|∇ν |2dx +
∑
m∈Γ

∫
m

|
√
σJνK|2ds

) 1
2

, (33)
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Algorithm 1 Multigrid Preconditioned Newton-Krylov:
Solves Eq. (35).Niter,NK and tolNK are user-specified

parameters.
1: procedure NK(u0)
2: k ← 0
3: while k ≤ Niter,NK or | |R(uk )| | ≥ tolNK do
4: δuk ← LSOLVE(uk , R(uk ), JR(uk ))
5: uk+1 ← uk + δuk
6: k ← k + 1
7: end while
8: return uk
9: end procedure

and the L2 norm,

| |ν | |2 =
(∫
Ω

ν2dx
) 1

2

=

(∑
e∈E

∫
e

ν2dx

) 1
2

. (34)

Here, ν is a scalar function on Ω.

D. Multigrid-Preconditioned Newton-Krylov

1. Newton-Krylov

In general, a set of elliptic partial differential equations can
be written in the form

R (u) = 0, (35)

where u is the solution and R is a non-linear elliptic opera-
tor. Defining the Jacobian of the system by JR(u) ≡ ∂R

∂u (u),
Newton-Raphson iteratively refines an initial guess for the
solution u(k) by solving the following linear system for the
correction δu(k) = u(k+1) − u(k):

JR(u(k))δu(k) = −R(u(k)). (36)

Upon discretization as described in Sec. II A, Eq. (36) results in
a N × N linear system. Once Eq. (36) is solved, the improved
solution is given by u(k+1) = u(k) + δu(k). The Newton-
Raphson iterations are continued until the residual R(u(k)) is
sufficiently small. At each step, the linear system is solved by
a linear solver we abbreviate as LSOLVE . The full algorithm
is described in Algorithm 1.

For three-dimensional problems with a large number N of
degrees of freedom, the Jacobian J is too large to form fully
and partition across processes. For building a scalable solver,
we are therefore limited to iterative solvers, the most popular
class of which are the Krylov solvers [40] such as the Conju-
gate Gradient method or GMRES, which only involve matrix-
vector operations. In this paper we use the flexible conjugate
gradient Krylov [41] solver at each Newton-Raphson step, as
summarized in Algorithm 2, where u0 denotes the initial guess
of the linear solver, and Nits is the number of iterations.

Algorithm 2 Flexible Conjugate Gradients: Solves Eq. (36),
with the variable u representing δu(k). Niter,FCG and tolFCG are

user-specified parameters.
1: function LSOLVE(u0,R,J)
2: r0 ← Ju0 + R
3: k ← 0
4: while k++ ≤ Niter,FCG or | |rk | | ≥ tolFCG do
5: vk ← VCYCLE(rk, Jvk )
6: wk ← Jvk
7: αk ← vk · rk
8: βk ← vk · wk
9: if k = 0 then
10: dk ← vk
11: qk ← wk
12: ρk ← βk
13: else
14: γk ← vk · qk−1
15: dk ← vk − (γk/ρk−1)dk−1
16: qk ← wk − (γk/ρk−1)qk−1
17: ρk ← βk − γ2

k
/ρk−1

18: end if
19: uk+1 ← uk + (αk/ρk )dk
20: rk+1 ← rk − (αk/ρk )qk
21: end while
22: return uk
23: end function

A typical Krylov solver will take O(
√
κ) iterations to reach a

desired accuracy, where the condition number κ is defined as
the ratio of the maximum eigenvalue and minimum eigenvalue
of JR. For the discontinuous galerkin method, the discretized
Laplacian matrix has a condition number that grows with p-
refinement and h-refinement (see [2, 42] for example) and
therefore the number of iterations will grow with each AMR
step unless Eq. (36) is preconditioned.

2. Multigrid preconditioner

We use a multigrid V-cycle [43] as a preconditioner for
each FCG solve (called on line 4 in Algorithm 2). Multigrid
is an multi-level iterative method aimed at achieving mesh-
independent error reduction rates through a clever method of
solving for the error corrections on coarser grids and prolong-
ing the corrections to the finer grids. For a detailed overview
of multigrid methods see [43]. The main drawback of multi-
grid is its complexity. In this section we will briefly describe
the components of the multigrid algorithm employed in solv-
ing problems in this paper with hp-grids in parallel with the
interior penalty discontinuous Galerkin method.

3. Multigrid Meshes

Multigrid uses a hierarchy of coarsened meshes, labeled
with l = 0, . . . L, where l = L represents the fine mesh E on
which the solution is desired, and l = 0 represents the coarsest
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Level L

Surrogate

Level L-1

Coarsen

Enforce
2:1 balance

Level 0

Level L-1

Surrogate

Level L

Undo
2:1 balance

Refine

FIG. 3. A structural representation of a multigrid v-cycle. The nodes
in yellow are actual grid-levels, while the nodes in blue represent
surrogate grids which are not necessarily 2:1 balanced. In order for a
multigrid v-cycle to represent a symmetric operation, the grid levels
along the down arrow are exactly the same as the grid-levels along
the up arrow. Level 0 represents the coarsest possible mesh.

mesh. One V-cycle proceeds from the fine grid to the coarsest
grid, and back to the fine grid, as indicated in Fig. 3. We
construct the coarse meshes l = L − 1, . . . 0 by successively
coarsening. Coarsening by combining 2d elements into one
element can lead to interfaces with a 4:1 balance, even if the
original mesh is 2:1 balanced. We avoid such 4:1 balance with
surrogate meshes, which have been used before in large-scale
FEM multigrid solvers, see for example [44, 45]. A surrogate
mesh is the naively h-coarsened mesh, as indicated in blue in
Fig. 3. If the surrogate mesh has indeed interfaces with 4:1
balance, the desired 2:1 balance is enforced by refining at the
unbalanced interfaces. This results in the coarsened mesh on
Level l = L − 1, and iteratively down to l = 0. It is easy to
show that at each coarsening the coarse level l − 1 mesh is
strictly coarser than the level l fine mesh. Following this, we
must make a decision as to what polynomial degree we choose
for the coarsened elements. We take the minimum polynomial
degree of the 2d children elements for each parent element of
the coarsened mesh, ensuring that functions on the coarse grid
can be represented exactly on the fine mesh, a property we will
utilize below in Eq. (42). Lastly, it is important to note that we
never purely p-coarsen on any of the multigrid levels. We do
not store the multigrid meshes because we have empirically
shown that the coarsening, refining and balancing is not the
bottleneck for the multigrid algorithm.

4. Multigrid algorithm

Having constructed the coarse meshes, we can now turn
to the multigrid algorithm, summarized in Algorithm 3. It
consists of several important components most importantly
smoothing and inter-mesh operators like coarsening, balancing
of the mesh, restriction and prolongation. We now look at each
of these in turn.

Algorithm 3 Multigrid Preconditioner Vcycle.
L denotes the number of multigrid Levels.

1: function Vcycle( fL, JL)
2: for l = L, 1 do
3: vl ← 0
4: vl ← SMOOTHER(vl, fl, Jl)
5: Coarsen grid
6: Balance grid
7: fl−1 ← IT

l
( fl − Jlvl) . Restriction

8: end for
9: v0 ← 0
10: v0 ← SMOOTHER(v0, f0, J0)
11: for l = 1, L do
12: Refine grid
13: vl ← Il(vl−1) + vl . Prolongation
14: vl ← SMOOTHER(vl, fl, Jl)
15: end for
16: return vL
17: end function

Algorithm 4 Chebyshev Smoothing
Niter,Cheb and Λ are user-defined parameters.

1: function SMOOTHER(x, b, J)
2: p← 0
3: λmax, x ← CGEIGS(x, b, J)
4: λmin ← λmax/Λ
5: c← (λmax − λmin)/2
6: d ← (λmax + λmin)/2
7: for k = 1...Niter,Cheb do
8: r ← b − Jx

9: α←


d−1 k = 1
2d(2d2 − c2)−1 k = 2
(d − αc2/4)−1 k , 1, 2

10: β← αd − 1
11: p← αr − βp
12: x ← x + p
13: end for
14: return x
15: end function

5. Multigrid Smoother

We explore two different smoothers, Chebyshev smoothing
and a Schwarz smoother. Both of these avoid explicit storage
of the matrix, as required by smoothers like the Gauss-Seidel
method [46].
Chebyshev smoothing [47], a type of polynomial

smoother [40] requires only matrix-vector operations and
has been shown to work satisfactorily in scalable multigrid
solvers [48]. Our implementation of Chebyshev smoothing
[47] is presented in Algorithm 4. For this algorithm there are
two user-defined parameters: Niter,Cheb and Λ. Typical values
we use for Niter,Cheby are in the range 8 − 15 and Λ is usually
set in the range 10 − 30. Chebyshev polynomial smoothers
require a spectral bound on the eigenvalues of the linear oper-
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Algorithm 5 CG Spectral Bound Solver
Niter,eigs is a user-defined parameter.

1: function CGEIGS(x1, b, J)
2: r1 ← b − Jx1
3: p1 ← r1
4: λmax ← 0
5: for k = 1, Niter,eigs do
6: αk ← (rk · rk )/(pk · Jpk )
7: xk+1 ← xk + αk pk
8: rk+1 ← rk − αk Jpk
9: βk ← (rk+1 · rk+1)/(rk · rk )
10: pk+1 ← rk+1 + βk pk

11: λk ←


1
a1
+
√
β1
a1 if k = 1

1
ak
+
βk−1
ak−1
+
√
βk−1
αk−1

if k , 1

12: λmax = max(λk, λmax)
13: end for
14: return λmax, xk+1
15: end function

ator. We use conjugate gradients to estimate the eigenvalues of
a general symmetric linear operator, as implemented in Algo-
rithm 5. It can be shown [49] that each iteration of conjugate
gradients obtains one row of the underlying linear operator in
tri-diagonal form:

©­­­­­­­­­­«

1
α1

−
√
β2
α1

0 · · · 0

−
√
β2
α1

1
α2
+

β2
α1
−
√
β3
α2

...

0
. . . 0

... −
√
βk−1
αk−2

1
αk−1
+

βk−1
αk−2

−
√
βk

αk−1

0 · · · 0 −
√
βk

αk−1
1
αk
+

βk
αk−1

ª®®®®®®®®®®¬
(37)

The values αk and βk in this expression are obtained from the
conjugate gradients algorithm 5 on lines 6 and 9. Furthermore,
the eigenvalues of each of the sub tri-diagonal matrices is a
subset of the eigenvalues of the full matrix. So at each iteration
we can get an estimate of the bound by using the Gershgorin
circle theorem [50]. Our Alg. 5 combines the CG steps with
the estimation of the bound λmax of the largest eigenvalue.
Besides estimating the spectral radius, we also use the CG

iterations to further smooth the solution. This adds robustness
to multigrid algorithms [51].

While the Chebyshev smoother is easy to implement, it is re-
liant on a robust estimate of the largest eigenvalue and this may
not be always true in our case. Thus we also implement an ad-
ditive Schwarz smoother in the manner of [25], which is much
more robust. The Schwarz smoother works by performing lo-
cal solves on element-centered subdomains and then adding a
weighted sum of these local solves to obtain the smoothed so-
lution. A simple example of one of these subdomains (where
the grid is both p and h-uniform) is shown in Figure 4. More
generally, the Schwarz subdomain centered on element ec of

FIG. 4. A simple 2-D Schwarz subdomain, with no h-nonconforming
or p-nonconforming boundaries. In grey is the element e which is
the center of the subdomain. The light grey area is the overlap (of
size δξ ) into the other elements. The subdomain is composed of
everything in light and dark grey.

the mesh is constructed as follows: Starting with all colloca-
tion points on ec , one adds all boundary points of neighboring
elements which coincide with faces, vertices or corners of ec .
Around these collocation points, one then adds Noverlap − 1
layers of additional collocation points (in Fig. 4, Noverlap = 2).
If the mesh has non-uniform h or p refinement, the resulting
set of collocation points will have ragged boundaries.
The solutions on the individual Schwarz subdomains are

combined as a weighted sum. The weights differ with each
collocation point of each subdomain. In 1-D, for a Schwarz
subdomain centered on element ec with left and right neigh-
bours ec−1 and ec+1 we define an extended LGL coordinate
ξext for a collocation point x as follows:

ξext(x) =
{
ξ∗ x ∈ ec,
ξ∗ ± 2 x ∈ ec±1,

(38)

where ξ∗ is the LGL coordinate of the collocation point x in the
reference coordinate system of the macro-element containing
ec . This definition takes care of the case when a Schwarz
subdomain contains a face that is on a tree boundary.
We denote the overlap size as δξ and compute it as the

width of the Schwarz subdomain overlap in the coordinate
ξext. With these definitions we compute the weights for this
1-D subdomain using the function wh : R→ R defined as

wh(ξext) =
1
2

(
φ

(
ξext + 1
δξ

)
− φ

(
ξext − 1
δξ

))
, (39)

where the φ function is given by

φ(ξ) =
{
sgn(ξ), |ξ | > 1,
1
8 (15ξ − 10ξ3 + 3ξ5), |ξ | ≤ 1.

(40)
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FIG. 5. A plot of the Schwarz weighting function defined by
Eq. (39). The dark grey shaded region is the center element of the
Schwarz subdomain ec and the light grey shaded region is the overlap
of width δξ . For this plot, we set δξ = .25.

Algorithm 6 Schwarz Smoother
Niter,Sch is a user-defined parameter.

1: function SMOOTHER(x, b, J)
2: for k = 1...Niter,Sch do
3: r ← b − Jx
4: for s = 1...Nsubs do
5: rs ← Rsr
6: Solve RsJRT

s δxs = rs
7: end for
8: x ← x +

∑
s RT

s Wsδxs
9: end for
10: return x
11: end function

We have plotted the weighting function wh in Figure 5.
For Schwarz subdomains in d-dimensions, the weights are

computed as a product of 1-dimensional weights along each
dimension,

W =
d∏
i=1

wh(ξiext ). (41)

For the Schwarz subdomain solves we need to define the fol-
lowing operators: Rs is the restriction operator for a Schwarz
subdomain, it reduces the data on the mesh to the nodes of
the subdomain. RT

s is the transpose of this operator. Ws are
the weights for a Schwarz subdomain, computed by evaluating
Eq. (39) on the nodes of the subdomain. With these defini-
tions, the Schwarz smoother algorithm is listed in Alg. 6. In
Alg. 6, Ns indicates the number of smoothing cycles (typically,
Ns = 3), Nsubs indicates the number of subdomains which for
our implementation is equal to the number of elements. The
linear system on line 6 of Alg. 6 is of the size of the Schwarz-
subdomain; we solve it with conjugate gradients to a relative
tolerance of 10−3.

6. Multigrid Inter-mesh Operators

Let us now turn to the implementation of restriction and
prolongation operators. For clarity, we use the following nota-
tion: a superscript lowercase h refers to the children elements
and an uppercase H refers to the parent element.
We recall our requirement that the polynomial order of a

coarse element is smaller than or equal to the polynomial
orders of its children elements (cf. Sec. II D 3). This ensures
that a parent element’s Lagrange polynomial space is always
embedded in the broken Lagrange polynomial space of its
children. In particular, the coarse-mesh basis-functions can be
written, exactly, as

ψH
α = (IHh )βαψ

h
β, (42)

where (IH
h
)βα = ψH

α (ξ
β
h
) is the interpolation-matrix of

the coarse-mesh basis-functions to the fine-mesh collocation
points, and where we utilized our choice of a nodal basis.
For h-refinement, each ψh

β has support in only one of the
child-elements and, consequently, the implicit sum over β in
Eq. (42) goes over the basis-elements of all children elements.
The preceding paragraph immediately suggests the natu-

ral definition of the prolongation operator from a coarse-grid
function uH = uH

α ψ
H
α to a fine-grid function uh = uhβψ

h
β such

that uh ≡ uH . This yields

uhβ = uH (ξβ
h
) = (IHh )βαuH

α , (43)

so that (IH
h
) represents the prolongation operator.

Because the left hand side operator for the weak equations
—e.g. L(·, ·) in Eqn. (13)— is a bilinear form, the residual
will also be a bilinear form, which we will denote B(·, ·); on
the coarse grid. Equation (42) therefore implies

B( · , ψH
α ) = (IHh )βαB( · , ψh

β ), (44)

which defines our coarse grid residual.
Lastly, let us consider restriction of the operators itself.

After linearization around the current solution u0, the problems
we consider here take the form

∇2δu + f (u0)δu = 0, (45)

for some function f . The associated weak form reads

Lh(δu, ψα) +
∫

f (u0)ψαδu dx = 0 ∀ ψα . (46)

The weak Laplacian operator (Lh(·, ·)) can be computed on
any coarse grid via Eqn. (13) without any need for a re-
striction operator. The second term will require either a
restriction operator on f (u0), or a restriction operator on
Oh
αβ ≡

∫
f (u0)ψh

βψ
h
αdx. We choose the latter. By Eq. (42), it

holds that∫
f (u0)ψH

α ψ
H
β dx = (IHh )γα(I

H
h )δβ

∫
f (u0)ψh

γψ
h
δ dx,

(47)
so that the restricted operator in matrix form becomes

OH = (IHh )
T Oh (IHh ). (48)
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E. hp-Adaptivity

One of the great advantages of the discontinuous Galerkin
method is that it naturally allows for two different methods
of refining the grid, h-adaptivity, where one subdivides the
element into smaller sub-elements, and p-adaptivity, where
one increases the order pe of the polynomial basis on an ele-
ment. The combination of both h-adaptivity and p-adaptivity
is called hp-adaptivity. If one strategically p-refines in smooth
regions of the mesh and h-refines in discontinuous regions
of the mesh, then it is possible to regain exponential conver-
gence in particular error norms for problems with non-smooth
functions. In the next four sections we will discuss the four
components of our hp-adaptive scheme. These are: (1) The
expected convergence of the solution on a series of adaptively
refined hp-meshes (2) an a posteriori error estimator to de-
cide which elements will be refined; (3) a driving strategy that
determines based on the convergence of the error estimator
whether to h-refine or p-refine; (4) an efficient method to ap-
ply discrete operators in multi-dimensions on an hp-grid. We
discuss these four items in order in the follow subsections.

1. Expected Convergence

For quasi-linear problems with piecewise-analytic solutions
u on polygonal domains, the convergence of the energy norm
(Eq. 33) of the analytical error for the numerical solution uh
is

| |u − uh | |∗ ≤ C

(∑
e∈E

h2se−2
e

p2ke−3
e

| |u| |2
Hke

)1/2

. (49)

Here Hke is the Sobolev space on element e with Sobolev
order ke and 1 ≤ se ≤ min(pe + 1, ke) [52–55]. For uniform
refinement and uniform Sobolev order k across elements, we
expect | |u−uh | |∗ ≤ Chmin(p+1,k)−1. Thus, for smooth problems
we expect | |u − uh | |∗ ≤ Chp .
One can show [56] that there exists a series of hp-adaptive

refinement steps where the convergence of the energy norm is
asymptotically bounded by

| |u − uh | |∗ ≤ C1 exp(−C2DOF1/(2d−1)). (50)

Here C1 and C2 are constants, d is the dimension of the
mesh and DOF is the number of degrees of freedom, in other
words the number of grid points on the mesh.

2. A Posteriori Error Estimator

Ref. [55] derives a local a posteriori error estimator for an
interior penalty hp-DG discretization of the following class of
strongly nonlinear elliptic problems with Dirichlet boundary
conditions

− ∇ · a(x, u,∇u) + f (x,∇u) = 0. (51)

The error estimator can be computed locally on each element
by the following prescription. Given a discretized solution uh ,
first define quantities on each element e or mortar element m
by

Re ≡ f (uh,∇uh) − ∇ · a(uh,∇uh), e ∈ E, (52a)
Jm,1 ≡ Ja(uh,∇uh)Km, m ∈ MI, (52b)
Jm,2 ≡ JuhKm, m ∈ MI, (52c)
Jm,3 ≡ Juh − gDKm, m ∈ MD. (52d)

From these quantities we compute the followings integrals
on an element e and mortar m:

η2
e = h2

ep2
e | |Re | |20,e, (53a)

η2
m,1 = hmp−1

m | |Jm,1 | |20,m, (53b)

η2
m,2 = σh−1

m p2
m | |Jm,2 | |20,m, (53c)

η2
m,3 = σh−1

m p2
m | |Jm,3 | |20,m, (53d)

Here, | |.| |20,e =
∫
e
(.)2dx =

∫
[−1,1]d J(.)2dξ and | |.| |20,m =∫

m
(.)2ds =

∫
[−1,1]d−1 Sm(.)2dξ . Furthermore, he is the di-

ameter of the element e, pm, hm and σ are defined in Eq. (32)
and J, Sm are defined in Eq. (22) and Eq. (23).
Following [55], we take the local estimator on the element

to be

η2(e) = η2
e +

∑
m⊂Me

η2
m,1 +

∑
m⊂Me\MD

η2
m,2 +

∑
m⊂Me∩MD

η2
m,3,

(54)
whereMe andMd are the sets of mortar elements touching

the element e and ∂Ωd respectively (see Sec.II A 1). The es-
timator provides an estimate of the error in the energy norm,
| |u − uh | |∗, see Eq. (33). Similar error estimators for various
classes of linear and non-linear elliptic PDEs can be found in
[52, 57–62]. Equations (53) are typically computed on the
physical grid on which the elliptic PDE is solved. For highly
stretched grids (for instance, when a mapping inverse in ra-
dius is used to push the outer boundary to very large radius
R ∼ 103 · · · 1010), the geometric factors in Eqs. (53) can dis-
tort the error estimates. For those cases, we will sometimes
introduce a fiducial grid of identical structure and connectiv-
ity, that avoids or mitigates excessive grid-stretching. Once a
fiducial grid is chosen, its geometric properties can be used in
Eqs. (53) and the corresponding norms. Below, we demon-
strate that such a “fiducial-grid” error-estimator allows efficient
hp-refinement even in highly stretched computational domains.
This problem is encountered below in Sec. III C and discussed
there in greater detail.

3. Driving Strategy

The a posteriori estimator Eq. (54) indicates which elements
to refine. Then the choice must be made for each cell, whether
to h-refine or p-refine elements with a large error η(e). In the
survey paper [63], Mitchell andMcClain looked at 15 different
hp-adaptive strategies with a finite elements scheme. Their
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Algorithm 7 hp-AMR Driving Strategy
γh and γp are user-defined parameters.

1: procedure SMOOTH-PRED
2: if η2(e) is large then
3: if η2(e) > η2

pred(e) then
4: h-refine element
5: η2

pred(echildren) ← γh
( 1

2
)d ( 1

2
)2peη2(e)

6: else
7: p-refine element
8: η2

pred(e) ← γpeη
2(e)

9: end if
10: end if
11: end procedure

results indicate that the strategy known as smooth-pred, first
introduced in [64] performs quite well, if not the best under
the example problems they tested. For this reason alone we
use it, but our code is flexible enough to use any of strategies
studied in Mitchell and McClain’s paper.

The idea behind the smooth-pred strategy is based on the
observation that for a locally smooth solution, the energy norm
Eq. (33) η(e) will converge as hp , (see Sec. II E 1). To take
advantage of this observation, we first predict the error in the
next refinement step and test if this prediction satisfies the
smooth error convergence law, if so we p-refine, otherwise we
h-refine. The full algorithm is given in Algorithm 7.

In Algorithm 7, η2(e) is the square of the error estimator,
Eq. (54) of the element under consideration, and η2

pred(e) is the
predicted error estimator from the last AMR step assuming
the solution on the element is smooth. We always start with
ηpred(e) = 0, so that each element will first be p-refined, before
h-refinement is considered.
The parameters γp and γh influence the behavior of Alg. 7

as follows: As long as the actual η2(e) is small compared to
the predicted η2

pred(e) , Line 3 implies continued p-refinement.
Since Line 8 reduces the predicted η2

pred by a factor γp , this
means, that p-refinement continues as long as each increment
in pe reduces the error-estimator η2(e) by a factor γp , i.e.
as long as exponential convergence is obtained with conver-
gence rate better than √γp . If this convergence-rate is not
observed, the driver switches to h-refinement, and γh begins
to matter. In this case, a large γh will preferably switch back
to p-refinement, whereas a small γh will prefer continued h-
refinement. All runs shown in the remainder of this paper use
γp = 0.1. The runs differ in γh , which is used to tune h- vs
p-refinement, and in how many elements are refined in each
AMR-iteration, which is used to control how quickly AMR
increases the number of degrees of freedom. However for the
majority of the runs we find that γh = 0.25 is a good choice.
In the numerical examples of this paper we use the follow-

ing two alternatives for the conditional on line 2 of Alg. 7, i.e.
to decide which elements should be refined: In the first test-
problem, we refine if η2 is greater than some constant factor
times the mean η̄2 across all elements e. This criterion was

used in the original description of the hp-AMR scheme (See
[64]). In the remaining problems we refine a percentage of
elements with the largest η(e). We change criterion because
the estimator may vary over orders of magnitude and this vari-
ation may change at each refinement step. In such cases, the
percentage criterion robustly captures more of the elements
with a large estimator than thresholding on a constant times
the average estimator). However, the constant factor times
the mean method has the advantage that it is computationally
cheap and does not require a global sort of the estimator over
all cores like the percentage method does. When we use the
percentage indicator, we make use of the highly parallel global
sort outlined in [65].

4. On-the-fly hp Tensor-Product Operations

To solve the elliptic equations with multigrid on grids that
are hp-adaptively refined, a large number of different operators
must be generated at run-time. In no specific order, we need
at least the following linear operators

• interpolation operators on faces, edges and volumes of
size (p′ + 1) × (p+ 1) in 1-D, where p is the order of the
original data and p’ is the order of the new interpolated
data

• restriction operators on faces, edges and volumes of size
(p + 1) × (p′ + 1) in 1-D, where p’ is the order of the
original data and p is the order of the new restricted data

• derivative operator of order p on the reference element,
which has size (p + 1) × (p + 1) in 1-D.

We can take advantage of the tensor product nature of the
reference element in order to efficiently generate these opera-
tors on demand. All of the operators listed can be reduced to
a tensor product of 1-D operators when applied in d ≥ 2 di-
mensions. Upon requiring a certain operator in a calculation,
the process is then as follows

1. Check if the 1-D version of the operator has already
been computed in the database, if it has been computed,
retrieve and goto step 3, if not goto step 2.

2. Compute the 1-D version of the operator and store in the
MPI process-local database.

3. Apply the 2-D or 3-D version of the operator on a vector
by using optimized Kronecker product matrix vector
operation on the nodal vector v: (A1D⊗B1D)®v for d = 2,
or (A1D ⊗ B1D ⊗ C1D)®v for d = 3. Here A, B,C denote
the 1-D matrices of the respective operator, as applied
to the first, second, and third dimension.

A Kronecker product matrix vector operation can be ef-
ficiently performed using a series of BLAS matrix-multiply
calls, see [66] for example.
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F. Implementation

To implement the multi-block adaptive mesh refinement
we use the p4est library, which has been shown to scale to
O(100,000) cores [67]. We use PETSc [68] for the Krylov
subspace linear solves and the Newton Raphson iterations.
The components of the multigrid algorithm are written by the
authors and do not use PETSc.

III. TEST EXAMPLES

We examine the components of our code through three test
examples, the first a linear Poisson problem solved on a square
grid where the solution is only C2-smooth at the (0, 0) grid
point. The second example is a non-linear elliptic problem,
where we solve the Einstein constraint equations for the initial
data of a constant density star. We then end the test examples
section with a linear problem on a cubed-sphere with stretched
outer boundary and a solution that falls off as r−1 with radial
coordinate r as r → ∞. Each test is aimed at isolating differ-
ent aspects of the puncture black-hole problem, whose solution
contains points that are C2-smooth and falls off as r−1. The
puncture black-hole problem further requires us to solve non-
linear Einstein constraint elliptic equations on a cubed-sphere
mesh.

A. Poisson with H4−ε solution

The first test problem we will investigate numerically is
taken from [69], where the authors solve ∇2u = f on Ω =
(0, 1)2 with the solution chosen as

u = x (1 − x) y (1 − y)
[(

x − 1
2

)2
+

(
y − 1

2

)2
]3/2

. (55)

Here u ∈ H4−ε , where ε > 0 so fromEq. (49)we expect third
order convergence for uniform refinement. We have confirmed
this numerically. However, with hp-adaptivity, it is possible
to achieve | |u − uh | |∗ ∼ exp(DOF 1

3 ), as we show in Fig. 6.
Notice also the close agreement between the estimator and
energy norm | |u− uh | |∗. The final mesh is shown in Fig. 7. Of
note is the fact that the elements with the lowest polynomial
order (p=4) are only in the vicinity of the C2-smooth (0, 0)
grid-point and the refinement level of the mesh is locally much
higher here as well. Here we used AMR parameters γh = 10,
γp = 0.1; at each AMR iterations all cells were refined which
have η2(e) larger than 1/4 of the overall mean of all η2(e). For
this problem, we performed a survey of different choices for
γh and γp . We found rather modest dependence on γh within
0.25 . γh . 10, with γh = 10 leading to the good balance
between h− and p−refinement shown in Fig. 7. Our preferred
value for the rest of the paper (γh = 0.25) also yields good
convergence, but leads to a more uniform polynomial degree
through the mesh.
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FIG. 6. Problem A, Eq. (55): Convergence of the energy norm
estimator η2 and the error between the numerical solution uh and the
analytic solution u in the energy norm | | · | |∗ (Eq. 33) and the L2 norm
| | · | |2 (Eq. 34).

FIG. 7. Problem A, Eq. (55): Visualization of the solution and the
hp-refined computational mesh. Top portion: The computational
grid, color-coded by polynomial degree, with height representing the
solution u. Bottom portion: Color-coded by h-refinement level. A
cell on level l has size 2−l of the overall computational domain.
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FIG. 8. ProblemA, Eq. (55): Iteration-count of the flexible conjugate
gradient (FCG) Krylov subspace solver versus the Multigrid precon-
ditioned FCG solver (MG-FCG). The MG-FCG completes all solves
in ≤ 3 iterations.
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B. Constant density star

For the next test problem, taken from [70], we solve the
Einstein constraints in the simplest possible scenario, a con-
stant density star. The goal of this test problem is to investigate
how the elliptic solver behaves for problems that contain sur-
face discontinuities that mimick surface and phase transition
discontinuities in a Neutron star. The Einstein constraint equa-
tions for the case of a constant density star reduce to

∇2ψ + 2πρψ5 = 0, (56)

where ρ is the density of the star and ψ is the conformal factor
which describes the deviation of the space from flat space. In
[70] the authors solve the above equation for the case of a star
with radius r0 and mass-density

ρ =

{
ρ0 r ≤ r0

0 r > r0,
(57)

where r is the radial spherical polar coordinate. Since the
star is in isolation, the boundary condition at infinity is ψ =
1, corresponding to a asymptotically-flat space. For such a
problem, there is an analytic solution given by

ψ =

{
Cuα(r) r ≤ r0
β
r + 1 r > r0.

(58)

with C = (2πρ0/3)−1/4 and

uα(r) ≡
(αr0)1/2

(r2 + (αr0)2)1/2
. (59)

The parameters α and β are determined from the continuity
of ψ and it’s first derivative at the surface of the star, and are
given by

β = r0(Cuα(r0) − 1) (60)

ρ0r2
0 =

3
2π

α10

(1 + α2)3
(61)

We solve the above problem on a cubic domain with
ρ0 = 0.001 and analytic Dirichlet boundary conditions on
a boundary at 8r0. The non-linear term in Eqn. 56 is handled
by first interpolating ψ onto the GL quadrature points of an
element, evaluating ψ5 at the GL quadrature points and then
performing the necessary Gaussian quadrature sum on each
element. Figure 9 showcases the convergence of the solution
and the nice agreement between the energy norm estimator η2

and the energy norm of the analytic error. To achieve this con-
vergence we used the following AMR parameters, γh = 0.25,
γp = 0.1. At each AMR refinement iteration, 10% of the
elements are refined. In Figure 10 we show a comparison be-
tween multigrid-preconditioned FCG iterations and unprecon-
ditioned FCG iterations. We notice that for the preconditioned
case, the iteration count is roughly constant with increases in

20 40 60 80 100
DOF1/3

10−10

10−9

10−8

10−7

10−6

10−5

10−4
η

||u− uh||∗
||u− uh||∞
||u− uh||2

FIG. 9. Problem B, Eq. (56): Convergence of the energy norm
estimator η2 and the error between the numerical solution uh and the
analytic solution u in the energy norm | | · | |∗ and the | | · | |2 norm
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FIG. 10. Comparison of the average number of iterations per Newton-
Raphson step when using a Chebyshev smoothed Multigrid precon-
ditioner and no preconditioner.

DOF,whereas the unpreconditioned iterations growwithDOF.
Finally, in Figure 11we show themesh after the last AMR step.
This mesh showcases the highest h-refinement around the star
boundary (yellow circle) as expected, since this area is not
smooth.

C. Cubed sphere Meshes and Stretched Boundary Elements

So far, we have only investigated meshes with a regular,
Cartesian structure and with a rectangular outer boundary at
close distance. Wewill now investigate scenarios with a spher-
ical outer boundary, where we use a macro-mesh arising from
the 3-dimensional generalization of Fig. 1 (a). We will also
place the outer boundary at very large radius, typically 109, to
approximate boundary conditions at infinity. Typically, such
problems have solutions which fall off as a power series in 1/r .
Figure 12 shows the structure of the mesh we will use: a

central cube, surrounded by two layers of six deformed macro-
elements each. The inner layer interpolates from the cubical
inner region to a spherical outer region. The outer layer has
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FIG. 11. Visualization of hp-refined computational mesh for Prob-
lem B, Eq. (56). Top portion: The z = 0 cross-section of the
computational grid, color-coded by the polynomial degree and with
height representing the solution ψ. Bottom portion: Volume ren-
dering of the z ≤ 0 part of the computational domain, color-coded
by the h-refinement level. A cell on level l has size 2−l of the overall
computational domain.

FIG. 12. The mesh structure for a computational domain with
spherical outer boundary. This structure consists of 13macro-meshes
(shown in different colors). For clarity, only the z ≤ 0 part of the
mesh is shown.

spherical boundaries both at its inner and outer surface, and
thus radial coordinate lines that are always orthogonal to the
angular coordinate lines. This allows to apply a radial co-
ordinate transformation in the outer layer, to move its outer
boundary to near infinity. Because we know the solution will
fall off as 1/r we use an inverse mapping in the outer six
spherical wedges of the cubed-sphere (blocks 0-5 in Fig. 12).
This mapping is defined as follows. Denote the physical grid
variable with r ∈ [r1, r2] and the collocation-point integration
variable as x ∈ [x1, x2], then the inverse mapping is defined by

r =
m

x − t
, (62)

where

m =
x2 − x1
1
r2
− 1

r1
, t =

x1r1 − x2r2
r1 − r2

. (63)

We will investigate the discontinuous Galerkin method on
the following test problem which captures many of the above
features:

∇2u = 3(1 + x2 + y2 + z2)− 5
2 , (64)

with Ω = {(x, y, z) : x2 + y2 + z2 < R} and Dirichlet bound-
ary conditions given by the analytical solution, which is a
Lorentzian function u = (1+ r2)−1/2. The Lorentzian function
falls off as a power series in 1/r as r →∞.
To solve this test problem we run two schemes: uniform

p-refinement and adaptive p-refinement. We run only with p-
AMR because the underlying solution is smooth everywhere
so there is very little to no benefit in running with hp-AMR for
this problem (which we also found to be the case empirically).
For the uniformly refined run, we start with refinement level
l = 4, i.e. with 23l = 4096 elements in each of the 13 macro-
elements, and increase p from 2 to 11.

To achieve pure p-AMR with the hp-AMR scheme outlined
in Sec. II E, we start with refinement level l = 2, i.e. with
23l = 64 elements in each of the 13 macro-elements, and with
polynomial order pe = 1 in all elements. We set γh=106, γp=
106 and in each AMR iteration, we refine the 25% elements
with the largest estimator. Figure 13 shows the convergence of
the p-AMR scheme versus the p-uniform scheme. We stop at
the maximum polynomial order currently allowed in the code,
p= 19. Comparing the L∞ norm between the p-AMR and p-
uniform runs, the number of degrees of freedomper dimension,
DOF1/3, is roughly cut in half. The L2 norm is slower to
converge because it is dominated by the contributions of the
outer stretched wedges, and this region is less aggressively
refined by the AMR. Figure 14 shows the final mesh for the
problem. The AMR algorithm increases the polynomial order
p predominantly in the centre, where the solution has the most
structure.

Strong coordinate stretching, as performed via the inverse
map Eq. (62) leads to the following problem: The error estima-
tor η2(e) utilizes integrals in physical coordinates in Eqs. (52).
For strongly stretched grids (e.g. with inverse mappings where
R is orders of magnitude larger than other length scales in the
problem) these volume integrals will place a large emphasis
on the regions at large distance. AMR will then aggressively
refine in the stretched region despite the pointwise errors (as
measured by the L∞ norm for individual elements) being very
small. Such regions tend to have a very low L∞ because the
numerical solution is very accurate there, but a high L2 be-
cause of the large volume in the stretched region, thus also
explaining why the L2 norm of the p-AMR run in Fig. 13 fails
to converge as smoothly as the L∞ norm.

We solve this problem by introducing a “compactified grid”,
which has the same structure as the physical grid, but without
the compactification in the physical grid. We then compute
the integrals for the estimator in Eqs. (53) on this compactified
grid. The integrands, Eqs. (52), are as before computed on
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FIG. 13. Problem C, Eq. (64): Convergence of the solution as the
degree p is uniformly increased across all elements for uniform case
and as the degree p is adaptively increased in the amr case. (Dirichlet
BC at R=1000).

FIG. 14. Visualization of the final mesh for problem C. Shown
is a xy-plane slice of the mesh which has been warped so that the
height of the surface corresponds to the value u of the solution, color
coded by the polynomial degree. For ease of visualization, grid-
points are mapped onto the compactified grid on which the estimator
ηe is computed; the compactified outer radius R = 3 corresponds to
the physical outer radius R = 1000.

the physical grid. In essence, this procedure merely changes
the weighting of the different regions of the grid via the Ja-
cobians J in the integrals and the parameters he, hm which
are now computed on the compactified grid. In practice, we
use as compactified grid a cubed-sphere mesh where the outer
spherical shell extends from radius 2 to radius 3, and where
the middle cube has a side-length of 2/

√
3.

Figure 15 shows the convergence of the L∞ norm using the
compactified grid versus the non-compactified grid. For R =
1000, the standard estimator (“non-compact η”) convergeswell
for the first 10AMR iterations, but then stalls. For R = 109, the
standard estimator fails to yield convergence of the solution at
all. For both cases, the new estimator (“compact η”) results in
good convergence. We stress that the compactified estimator
is only used in driving the AMR refinement. The DG-scheme
is always formulated in the physical domain, and also the error
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FIG. 15. Problem C, (Eq. 64): Convergence of the solution in the
L2 norm (See Eq. 34) as the degree p is adaptively refined with a
compact and non-compact estimator. (Dirichlet BC at R=1000 and
R = 109). All runs use the AMR/dG parameters of the p-amr run in
Figure 13.
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FIG. 16. Comparison of four different methods of preconditioning
FCG. All runs use the AMR/dG parameters of the p-amr run in
Figure 13.

plotted in Fig. 15 is computed from the solution on the physical
domain with outer boundary R = 1000 or 109. The p-AMR
run shown in Fig. 13 uses the compactified estimator.
Finally, we investigate the efficiency of preconditioners for

the p-AMR run with R = 1000 and the compactified estima-
tor, i.e. the run plotted in orange in Figs. 13 and 15. Fig-
ure 16 presents the iteration counts for four different kinds
of preconditioning. Chebyshev-smoothed multigrid precondi-
tioner loses efficiency on cubed spheres with stretched bound-
aries, possibly due to a poorly estimated upper eigenvalue
in Alg. 5. However, using the more powerful domain de-
composition additive Schwarz method, we can regain the
efficiency of the multigrid-preconditioner seen in the pre-
vious two sections. Here, the Schwarz subdomains have
Noverlap = 2, and eachmulti-grid iteration employs Niter,Sch = 3
iterations of Schwarz-smoothing with rtol=1e-3. Chebyshev
uses Niter,eigs = 15 iterations for the eigenvalue estimate, and
Niter,Cheb = 15 iterations in the Chebyshev smoother.
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D. Puncture Initial Data

There are various approaches to solving for binary black
hole initial data sets and these approaches are primarily dis-
tinguished by the initial choice of hypersurface and how the
physical singularity inside the black holes is treated. One pos-
sibility when considering two black holes is to work onR3 with
two balls excised[71–73]. This approach has been shown to
work well with the spectral finite element method (e.g. [74]),
but is more problematic for finite-difference codes because
special stencils must be created near the curved boundaries.
Another popular approach, which is more amenable to finite
difference codes is the puncture method [75], where an elliptic
equation is solved on R3, with two points where the solution
becomes singular. These points represent the inner asymp-
totically flat infinity (Brill-Lindquist topology). The puncture
method simplifies the numerical method because no special
inner boundary condition has to be considered, however the
solution is onlyC4 smooth at the puncture points [75]. Without
using contrived coordinate systems to remove the C4-smooth
nature of the punctures (See [76] for example), spectral meth-
ods cannot perform optimally, because they would require the
solution to be smooth on the computational domain in order to
obtain exponential convergence. We choose to solve for binary
black hole initial-data with the puncture method in this paper
for two reasons. The first is that the method does not couple
well with traditional spectral schemes as discussed above and
this allows us to compare the discontinuous Galerkin method
to the spectral method. Secondly, the equationwemust solve is
less complicated than the excision case because it only involves
a solve for a single field, the conformal factor, as opposed to
the 5 fields one must solve for with the excision method (see
e.g. [74]), so it is easier to implement numerically.

Nevertheless, puncture data provides a testing ground for
many of the new techniques developed here: Singular points
which benefit from h-refinement; smooth regions that benefit
from p-refinement; a spherical outer boundary requiring the
cubed-sphere domain shown in Fig. 12; and a boundary at
infinity (or near infinity) which requires a compactified radial
coordinate. Moreover, for testing of adaptivity, it is easy to
add arbitrarily many black holes each represented by its own
singularity, at arbitrary coordinates with arbitrary spins.

For the case of puncture data, the initial data equations of
general relativity reduce down to a single equation [75]:

− ∇2u =
1
8

Āi j Āi jψ
−7 (65)

where Āi j is a spatially dependent function given by

Āi j =
3
2

∑
I

1
r2
I

[2PI
(in

l
j) − ( fi j − nlin

l
j)Pk

I nI
k +

4
rI

nl(iεj)klS
k
I nlI ].

(66)
Here, niI are the spatially varying components of the radial
unit-vector n̂I (®x) = (®x − ®cI )/| ®x − ®cI | relative to the position
®cI of the I-th black hole [75]. The constant vectors PI and
SI quantify the momentum and spin of the I-th black-hole and
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FIG. 17. Convergence of the SpEC–elliptic solver with manually
adopting the domain-decomposition and manual adjustment of reso-
lution to compensate for the singularities. Plotted are differences to
the next-lower resolution at four points in the computational domain.

ψ = 1 +
∑

I
mI

2rI + u. The boundary condition is

u→ 0, | ®x | → ∞. (67)

We solve the above elliptic PDE using first the spectral code
SpEC and then the dG solver presented in this paper. We
solve for the case of two orbiting equal mass black holes with
momenta ±.2, zero spin and initial positions (±3, 0, 0) in units
of total massM. This is the test case used in [77]. Since there is
no analytical solution, we will compare the solutions between
refinement levels at four reference points on the x-axis. These
are (0, 0, 0), (3, 0, 0), the location of the right-most puncture,
(10, 0, 0) and (100, 0, 0).
The SpEC solver was already used to solve for puncture

data in [78, 79]. This spectral code is apriori not well suited
for puncture data which results in a non-smooth solution u(®x).
Because we know where the singularities of the punctures
are, this can be overcome manually, by covering the punctures
with very small rectangular blocks, at high enough resolution,
to compensate for the loss of exponential convergence. Figure
17 shows the difference in the solution at the four reference
points as the resolution is manually increased. We emphasize
that this solution obtained with SpEC depents on (i) prior
knowledge of the locations of the singularities; and (ii) tuning
of SpEC’s mesh and resolution by hand.
For the dG solver, we start with a uniformly refined cubed-

sphere mesh at level l = 1, i.e. 13 blocks, each consisting of
eight cells. The outer radius at 1011M and the size of the inner
cube is 10M. We start further with elements of polynomial
order p = 2. The location of the punctures is not utilized in
the dG code, and all mesh-refinement is automatic, driven by
Alg. 7 with parameters γh = .25 and γp = .1 and we refine the
top 12.5% of elements. In order to run a Schwarz smoother for
this problem we would need to transfer ghost-data for the op-
erator described by Eqn. (48) whenever a Schwarz subdomain
contains a ghost element. While this is by no means problem-
atic, we have not yet implemented the infrastructure to do it, so
we just use a Chebyshev smoother when we precondition this
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FIG. 18. Problem D: Black hole initial data with two punctures.
Convergence of the error between the dG solution and the SpEC
solution.

Puncture 1 Puncture 2 Puncture 3
m 0.2691 0.4063 0.3245
x 0.0152 -2.316 -1.0279
y -0.6933 1.8274 -2.2711

Px 0.0585 -0.0284 0.1640
Py 0.0082 -0.1497 0.0515
Sz -0.0134 -0.0332 -0.0708

TABLE I. The randomly generated parameters for the three black
holes. We list the mass m, the position (x, y, 0), the momentum
(Px, Py, 0) and the spin (0, 0, Sz ) of the black holes.

problem with Multigrid. Figure 18 shows the convergence of
the four reference points with respect to the finest grid SpEC
solution between AMR levels. We first see that in terms of
overall DOF, the dG solver doesn’t do much worse than the
finely tuned SpEC solver, even though the dG solver has to
adaptively find the punctures, has a larger initial error and has
no h-or-p coarsening, so mistakes in the refinement cannot be
fixed. Thus, taken all of this into account, the convergence
is highly satisfactory. The bounce in the (3, 0, 0) at the sec-
ond to last iteration arises because the dG-solution oscillates
around the SpEC solution and coincidentally is shown near a
zero-crossing. Figure 20 shows the solution on the final mesh,
which has the highest h-refinement exactly at the points of the
punctures, as desired.

Next, we solve for the puncture initial data of three black-
holes randomly located in the xy-plane, with random spins
and random momenta. Spectral solvers such as SpEC cannot
perform well when the singular points on the grid are not
known in advance. Thus, we end this paper showcasing a
problem that our discontinuous Galerkin code can solve, but
SpEC cannot. Table III D illustrates the parameters for the
randomly placed punctures and their spin and momenta.

Figure 21 shows the convergence of four points, three at the
location of the punctures, and one at (100, 0, 0). We use amr
parameters γh = 0.25, γp = 0.1, Frefined = 0.125 for this run.

FIG. 19. Problem D (Black hole initial data with two punctures):
Visualization of the hp-refined computational mesh. The bottom
portion of the image shows a volume rendering of the z < 0 portion
of the computational domain, with two blocks removed, and color-
coded by the h-refinement level. The top portion of the image shows
the z = 0 cross-section of the computational grid, color-coded by the
polynomial degree, with the height representing the solution u. For
ease of visualization, grid-points are mapped onto the compactified
grid on which the estimator ηe is computed; the compactified outer
radius R = 3 corresponds to the physical outer radius R = 1011.

IV. CONCLUSION AND FUTUREWORK

We presented a new code for solving elliptic equations in-
tended for numerical relativity. The methodology we use dif-
fers from other codes in the field in many important respects.
In particular, we use a discontinuous Galerkin method to dis-
cretize the equations, an hp-adaptive mesh refinement scheme
driven by an a posteriori estimator and a matrix-free, scalable
Multigrid preconditionedNewton-Krylov solver. Individually,
many of the features of our code have been implemented be-
fore [2, 25, 28, 29, 45], but they have never been combined
together to create a general dG solver. In particular, the com-
bination of curved meshes (cf. Fig. 12) and non-conforming
elements is novel and is crucial for generic solution-driven
AMR. Moreover, the compactified AMR-driver introduced in
Sec. III C is also new, enabling AMR on compactified compu-
tational domains with outer boundary near infinity. Lastly, the
use of a multigrid-preconditioned solver with a Schwarz (or
Chebyshev) smoother on non-polygonal meshes has not been
investigated in a dG setting until this paper.
For BBH puncture data, our new code approaches the accu-

racy of existing, specialized codes like SpEC. In addition, the
automatic AMR in the new code does not require manual tun-
ing of the computational mesh, and does not utilize any prior
knowledge of features of the solution like the location of black
hole punctures. The new code already improves on the more
specialized codes by being able to handle an arbitrary number
of puncture-black holes. AMR can also automatically resolve
discontinuities without prior knowledge of their existence (cf.
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FIG. 20. Problem E (Black hole initial data with three punctures):
Visualization of the solution, and the hp-refined computational mesh.
Top portion: the z = 0 cross-section of the computational grid,
color-coded by the polynomial degree, with the height representing
the solution u. Middle portion: volume rendering of the z < 0
part of the computational domain, with two blocks removed, and
color-coded by the h-refinement level. Bottom portion: Zoom into
the middle portion, highlighting the region near the three punctures
with highest refinement level. For ease of visualization, grid-points
are mapped onto the compactified grid on which the estimator ηe is
computed; the compactified outer radius R = 3 corresponds to the
physical outer radius R = 1011.
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FIG. 21. Problem D: Black hole initial data with three randomly
generated punctures. Convergence of the error between AMR steps
at four different points, three corresponding to the location of the
punctures and one at (100, 0, 0).

Fig. 11).
Moving forward, there are still several areas of improvement

our code could possibly benefit from:

1. Load balancing: For problems that require adaptive
mesh refinement andmulti-grid, there will naturally be a
unbalanced number of degrees of freedom (DOF) across
processors and this can slow down the Krylov iterations
substantially. This can be amended by incorporating
a task-based parallelism framework for load balancing.
The elliptic solver developed in this article will be in-
corporated task-based parallel code SpECTRE, which is
concurrently being developed [21].

2. Anisotropic refinement: Most realistic problems have
some anisotropy and therefore a solver would benefit
from anisotropic mesh refinement. Indeed, most of the
problems in this paper could have had better convergence
with anisotropic refinement, for instance, Problem C is
spherically symmetric, and puncture data is approxi-
mately spherically symmetric at large distance. We use
the p4est framework for mesh refinement and while it
has support for anisotropic refinement, the direction of
the anisotropy has to be known a priori. We look to
go beyond this and have general refinement in a future
edition of our code.

3. Hybridizable dG: The discontinuous Galerkin method
can be quite expensive in terms of the amount of DOF
it requires to converge to a certain error. Recently, a
method called Hybridizable dG has been coupled with
matrix-free multigrid methods to solve elliptic problems
with substantially reduced DOF over the classical dG
method [80, 81]. Whether this method can be fully
incorporated into the complex scheme presented in this
paper, will be an area of further inquiry.

In future work, we plan to use this solver to expand the
physics in compact object initial data, for instance, neutron star
initial data for equation of state with phase-transitions, neu-
tron stars with very high compactness (where current solvers
fail [34]), or compact objects in alternative theories of gravity,
or with novel matter fields like boson stars.
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