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Abstract The organisation of mammalian genomes into loops and topologically associating

domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and

many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also

mediates sister chromatid cohesion, which is essential for chromosome segregation. Current

models of chromatin folding and cohesion are based on assumptions of how many cohesin and

CTCF molecules organise the genome. Here we have measured absolute copy numbers and

dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-

correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-

phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound.

Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic

cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the

implications of these findings for how cohesin can contribute to genome organisation and

cohesion.

DOI: https://doi.org/10.7554/eLife.46269.001

Introduction
In interphase, eukaryotic genomes form long-range interactions that lead to the formation of chro-

matin loops and topologically associating domains (TADs) (Dixon et al., 2012; Nora et al., 2012;

Rao et al., 2014). These interactions organise chromatin structurally and contribute to gene regula-

tion and recombination. Cohesin complexes are not only required for the formation of chromatin

loops and TADs (Gassler et al., 2017; Rao et al., 2017; Schwarzer et al., 2017; Wutz et al., 2017),

but also for sister chromatid cohesion, a prerequisite for chromosome segregation in mitosis and

meiosis (reviewed in Morales and Losada, 2018). In interphase, cohesin is enriched at specific posi-

tions genome-wide, most of which are also associated with CCCTC-binding factor (CTCF)

(Parelho et al., 2008; Wendt et al., 2008). CTCF consensus binding sites are frequently oriented

convergently at TAD borders (Rao et al., 2014; de Wit et al., 2015; Guo et al., 2015; Vietri Rudan

et al., 2015) and depletion of CTCF leads to a reduction in insulation between TADs (Nora et al.,

2017; Wutz et al., 2017). The mechanism by which cohesin and CTCF contribute to the generation

of TADs is unknown, but it has been proposed that cohesin acts by extruding loops of DNA until it
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encounters convergently-oriented CTCF sites (Sanborn et al., 2015; Fudenberg et al., 2016), thus

generating long-range interactions by tethering distal regions of the same chromosome together.

Additionally, cohesin is thought to mediate sister chromatid cohesion by physically entrapping two

different DNA molecules, one from each sister chromatid (Gruber et al., 2003; Ivanov and Nas-

myth, 2005; Haering et al., 2008). How cohesin can perform these two apparently distinct functions

is poorly understood.

Cohesin is a ring-shaped protein complex composed of four core subunits. The subunits SMC1,

SMC3 and SCC1 (also called Rad21 or Mcd1) form a tripartite ring structure and associate via SCC1

with a fourth subunit, which exists in two isoforms in mammalian somatic cells termed STAG1 and

STAG2 (also known as SA1 and SA2). Cohesin’s binding to and release from chromosomes are medi-

ated by the proteins NIPBL and WAPL, respectively. Recruitment of cohesin to chromatin in vivo

depends on NIPBL and its binding partner MAU2 (Ciosk et al., 2000; Gillespie and Hirano, 2004;

Takahashi et al., 2004; Watrin et al., 2006; Schwarzer et al., 2017). NIPBL also stimulates cohe-

sin’s ATPase activity in vitro, an activity thought to be essential for loading of cohesin onto DNA

(Arumugam et al., 2003; Weitzer et al., 2003; Hu et al., 2011; Ladurner et al., 2014;

Murayama and Uhlmann, 2014; Petela et al., 2018). WAPL, on the other hand, is required for

cohesin’s release from chromatin in interphase and prophase, presumably via opening of the cohesin

ring (Gandhi et al., 2006; Kueng et al., 2006; Chan et al., 2012; Buheitel and Stemmann, 2013;

Eichinger et al., 2013; Tedeschi et al., 2013; Huis in ’t Veld et al., 2014). Upon experimental

depletion of WAPL in interphase cells, cohesin relocalises to axial elements termed vermicelli

(Tedeschi et al., 2013). This coincides with global compaction of chromatin that is detectable via

DNA and chromatin staining and also by mapping long-range chromatin interactions via Hi-C, indi-

cating that cohesin turnover on chromatin is essential for normal genome organisation

(Tedeschi et al., 2013; Gassler et al., 2017; Haarhuis et al., 2017; Wutz et al., 2017). In S and G2

phase of the cell cycle, those cohesin complexes that mediate cohesion are protected from WAPL’s

releasing activity by the protein sororin, which is essential for maintaining sister chromatid cohesion

(Rankin et al., 2005; Schmitz et al., 2007) in the presence of WAPL (Nishiyama et al., 2010;

Ladurner et al., 2016).

Although the regulation of cohesin – chromatin interactions has been well studied, quantitative

insight into how cohesin contributes to chromatin loop and TAD formation is lacking. Most Hi-C

studies into cohesin-mediated chromosome organisation are performed on a population of cells.

The few studies that used Hi-C to investigate the genome organisation of single cells have found

that chromosome organisation is variable from cell to cell (Nagano et al., 2013; Flyamer et al.,

2017; Gassler et al., 2017; Nagano et al., 2017; Stevens et al., 2017), raising the possibility that

TADs might be the product of ongoing loop extrusion events that occur stochastically and are

detectable only when averaging across a cell population. Recent microscopy studies have reported

structural features consistent with a TAD-like organisation in single cells (Boettiger et al., 2016;

Bintu et al., 2018; Szabo et al., 2018), however cell to cell heterogeneity was also detected

(Bintu et al., 2018).

To gain insight into how cohesin might function within a single cell, we have used quantitative

mass spectrometry (MS) (Picotti and Aebersold, 2012) to determine the copy number of soluble

and chromatin-bound cohesin complexes and ChIP-seq to analyze cohesin’s genomic distribution in

populations of HeLa cells synchronised in G1, G2 and prometaphase. We combined these ensemble

approaches with automated fluorescence-correlation spectroscopy (FCS) and fluorescence recovery

after photobleaching (FRAP) to determine cohesin copy number and residence time on chromatin in

individual synchronised HeLa cells. Our findings, as well as those reported in mouse embryonic stem

cells and the human cell line U2OS (Cattoglio et al., 2019), suggest that a fraction of cohesin and

CTCF enrichment sites along chromosome arms may be unoccupied in a single cell at any one time.

We discuss the implications of these findings for how cohesin might contribute to genome organisa-

tion and sister chromatid cohesion.
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Results

Mass spectrometry analysis of cohesin copy number
To determine the number of cohesin complexes that exist in HeLa cells, a widely used human cell

line, we synchronised cells in G1 phase, G2 phase or prometaphase using thymidine and nocodazole

arrest/release protocols. We verified synchronisation efficiency using fluorescence activated cell sort-

ing (FACS) of propidium iodide-stained cells (Figure 1—figure supplement 1A) and determined the

number of cells collected in each condition. We separated soluble proteins from chromatin-bound

proteins by differential centrifugation and released proteins from chromatin by DNase and RNase

treatment. Soluble proteins were isolated from between 1400 and 4,200 cells, depending on cell

cycle stage, and chromatin-bound proteins were isolated from 62,500 ± 3,100 cells. Liquid chroma-

tography-MS (LC-MS) analyses using an LTQ Orbitrap Velos revealed that each fraction was enriched

in marker proteins known to be soluble (glucose metabolising enzymes) and chromatin-bound (core

histones), respectively (Figure 1—figure supplement 1B). For absolute quantification, an aliquot of

each sample was combined with an equimolar mixture of isotopically labelled proteotypic reference

peptides generated with the equimolarity through equaliser peptide (EtEP) strategy

(Holzmann et al., 2009). This reference set consisted of one peptide from SMC1, five peptides from

SMC3, three peptides from SCC1 and STAG1 and two from STAG2 (Appendix 1—table 1). Sched-

uled selective reaction monitoring (SRM) analyses of the samples obtained in two experiments were

each performed in technical duplicates on a 5500 QTRAP instrument.

Using this approach, we found that the cohesin subunits SMC3 and SCC1 were present in approx-

imately 417,000 and 350,000 copies per G1 cell (Figure 1, see Table 1 for exact values and Fig-

ure 1—figure supplement 2 for individual peptide counts). The excess SMC3 detected over SCC1

is consistent with the previously reported existence of SMC1-SMC3 dimers not bound to SCC1

(Losada et al., 2000; Sumara et al., 2000; Waizenegger et al., 2000). However, consistent with a

1:1:1 stoichiometry of these subunits on chromatin, between 61,000 and 69,000 copies of SMC1,

SMC3 and SCC1 were detectable on chromatin in G1. STAG2 has been reported to be in excess of

STAG1 in HeLa cells (3:1 in HeLa nuclear extract, Losada et al., 2000; ~12–15:1 in SCC1 immunopre-

cipitates from HeLa total cell extract, Holzmann et al., 2011). We consistently detected more

STAG2 than STAG1 in all conditions (Figure 1, Table 1). We detected around 15,000 copies of chro-

matin-bound STAG1 and 45,000 copies of STAG2 in G1, suggesting that cohesin-STAG2 is present

in approximately three-fold excess over cohesin-STAG1 on chromatin in HeLa cells in G1; this ratio

increased to 4.6-fold in G2 and decreased to 2.9-fold in prometaphase. The combined total of

STAG1 and STAG2 on chromatin was 60,000; taken together this suggests that, on average,

Table 1. LC-MS quantification of cohesin subunit copy number.

Absolute quantification of cohesin subunits in chromatin or soluble extracts isolated from G1, G2 or prometaphase synchronised HeLa

cells, adjusted for cell number. Data are tabulated as [mean - s.d., mean + s.d.] of two biological replicates and two technical repli-

cates (s.d. = standard deviation). Values in bold or italics derive from quantification of one peptide or two peptides, respectively.

Underlined values derive from quantification of a single biological replicate. For individual peptide counts, see Figure 1—figure sup-

plement 2.

G1 G2 Prometaphase

Protein Chromatin-bound Soluble Chromatin-bound Soluble Chromatin-bound Soluble

SMC1 61125 [47609,
74640]

- 142290 [120274,
164306]

- 12461 [11497,
13425]

-

SMC3 66430 [53421,
79440]

350228 [312360,
388095]

158478 [129846,
187111]

622117 [557712,
686522]

14165 [12173,
16158]

899510 [816643,
982376]

SCC1 69275 [54577,
83972]

281140 [199837,
362444]

149500 [127373,
171627]

356850 [270483,
443217]

13973 [10478,
17468]

494155 [314240,
674070]

STAG1 14718 [11295,
18140]

114355 [104557,
124152]

23017 [17947, 28087] 120960 [119860,
122061]

2797 [1842, 3752] 152033 [147488,
156577]

STAG2 44812 [37745,
51879]

144160 [131233,
157086]

106106 [93591, 118621] 235980 [213879,
258081]

8112 [6863, 9361] 336062 [305203,
366922]

DOI: https://doi.org/10.7554/eLife.46269.008
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between 60,000 and 70,000 cohesin complexes exist in chromatin fractions isolated by differential

centrifugation from HeLa cells in G1 phase.

The stoichiometry of cohesin complexes remains constant throughout
G1, G2 and prometaphase
As described above, cohesin functions both in genome organisation and in sister chromatid cohe-

sion. Models for cohesin function during these processes have proposed that cohesin might exist in

a variety of stoichiometries (Nasmyth, 2011; Hassler et al., 2018). According to the ‘monomeric

ring’ model, cohesin complexes are predicted to exist as monomeric complexes with a core subunit

composition ratio of 1:1:1:1. The ‘handcuff’ model in contrast, proposes that cohesin complexes that

mediate cohesion exist as dimeric cohesin rings bridged by a single STAG subunit; that is these com-

plexes exist in a 1:1:1:0.5 subunit ratio, with 0.5 being the stoichiometry of the sum of STAG1 and

STAG2 proteins relative to the other three subunits (Zhang et al., 2008; Zhang and Pati, 2009).

Previous experiments have indicated that approximately half of all chromatin-bound cohesin com-

plexes become cohesive during DNA replication (Gerlich et al., 2006; Kueng et al., 2006;

Schmitz et al., 2007). Thus, to be consistent with the handcuff model, our measurements should

have revealed a 1:1:1:1 stoichiometry for chromatin-bound cohesin before DNA replication and a

1:1:1:0.75 stoichiometry after replication.

A cohesin subunit stoichiometry of 1:1:1:1 has been previously reported for cohesin complexes

immunoprecipitated from unfractionated HeLa cells (Holzmann et al., 2011). To compare the stoi-

chiometry of soluble and chromatin-bound cohesin, we used SCC1 antibody beads to
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Figure 1. LC-MS quantification of cohesin subunit copy number. Absolute quantification of cohesin subunits in (A)

chromatin or (B) soluble extracts isolated from G1, G2 or prometaphase synchronised HeLa cells, adjusted for cell

numbers to derive copy number per cell. Data are plotted as mean ± standard deviation from two biological

replicates and two technical replicates. For absolute values and exceptions, see Table 1. For individual peptide

counts, see Figure 1—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.46269.002

The following source data and figure supplements are available for figure 1:

Source data 1. The Microsoft Excel file lists all proteins identified by LC-MS in the SCC1 immunoprecipitations

used to determine cohesin stoichiometry (Figure 1—figure supplements 3 and 4).

DOI: https://doi.org/10.7554/eLife.46269.007

Figure supplement 1. LC-MS cell synchronisation and fractionation efficiency.

DOI: https://doi.org/10.7554/eLife.46269.003

Figure supplement 2. LC-MS quantification of cohesin subunit copy number.

DOI: https://doi.org/10.7554/eLife.46269.004

Figure supplement 3. LC-MS quantification of cohesin subunit stoichiometry.

DOI: https://doi.org/10.7554/eLife.46269.005

Figure supplement 4. LC-MS quantification of cohesin subunit stoichiometry.

DOI: https://doi.org/10.7554/eLife.46269.006
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immunoprecipitate cohesin from soluble and chromatin fractions isolated from G1, G2 and prometa-

phase HeLa cells and then subjected the immunoprecipitates to LC-MS analysis on an LTQ Orbitrap

instrument. The ratios of SMC1, SMC3 and STAG1/2 relative to SCC1 were below one in all experi-

mental conditions, possibly reflecting a loss of co-precipitating material during sample processing. It

is therefore likely that this method underestimates the ratio of cohesin subunits to SCC1. We identi-

fied SMC1, SMC3 and STAG1/2 at ratios of 0.89, 0.95 and 0.83 relative to SCC1 in immunoprecipi-

tates from G1 chromatin, at 0.9, 0.97 and 0.85 in G2 and at 0.88, 0.98 and 0.88 in prometaphase

(Figure 1—figure supplements 3 and 4, Appendix 1—table 2). Thus, the stoichiometry of cohesin

remains close to 1:1:1:1 in G1, G2 and prometaphase. Importantly, the 95% confidence interval for

the ratio of STAG1/2 to SCC1 on G2 chromatin was 0.77–0.93. Since this is likely to be an underesti-

mation of the true STAG1/2:SCC1 ratio, our experiments are consistent with the monomeric ring

model for cohesion establishment. However, this approach is unable to distinguish between 1:1:1:1

and 2:2:2:2 subunit ratios. Therefore, we cannot exclude that a fraction of cohesin complexes exists

as dimers or multimers, as proposed in the accompanying study (Cattoglio et al., 2019).

Fluorescence correlation spectroscopy analysis of cohesin, CTCF and
other cohesin regulators
By measuring the changes in photon counts caused by single molecule fluctuations within a small illu-

mination volume, fluorescence correlation spectroscopy (FCS) allows determination of a number of

biophysical parameters, including the concentration of fluorescently-tagged proteins within living

cells. To this end, we used HeLa cell lines in which the cohesin subunits SCC1, STAG1, STAG2 and

NIPBL, WAPL, sororin, and CTCF were homozygously tagged with enhanced green fluorescent pro-

tein (EGFP) at their endogenous loci using CRISPR-Cas9 genome editing (Figure 2—figure supple-

ment 1). We synchronised these cell lines in G1 phase, G2 phase or prometaphase using thymidine

and nocodazole arrest/release protocols similar to those used in our MS analysis. FCS measurements

were automatically acquired from multiple positions in the nucleus and cytoplasm (Figure 2A) and

protein concentrations were computed (Figure 2B, Appendix 1—table 3). The G1 concentrations of

SCC1 and STAG2 in the nucleus were measured to have a median of 330 nM and 280 nM, respec-

tively. Consistent with our LC-MS data, the concentration of nuclear STAG1 was lower, at around 70

nM. The cytoplasmic concentration of all proteins measured was low and frequently fell below the

detection limit of FCS (Appendix 1—table 3). To estimate the stoichiometry of our proteins of inter-

est, we compared the fluorescence intensity of the molecules detected by FCS in our EGFP-tagged

cell lines to those detected in a cell line that expressed freely diffusing monomeric EGFP (mEGFP).

The counts per molecule (CPM) in all our EGFP-tagged cell lines was similar to that of mEGFP,

Table 2. FCS quantification of copy number of cohesin subunits and regulators.

Absolute copy number of cohesin subunits and regulators obtained from FCS protein concentration measurements in the nucleus/

chromatin and cytoplasmic compartment of cells (Figure 2—source data 1). Copy numbers were calculated by multiplying the protein

concentrations by the cell cycle-specific volume of the respective cellular compartment and Avagadro’s constant as described in Mate-

rials and Methods. Missing or italicised numbers indicate that the number of successful FCS measurements was not sufficient to esti-

mate the protein concentration. Note that the EGFP-sororin cell line displayed a mitotic defect, raising the possibility that EGFP-

sororin may be hypomorphic. Data are tabulated as the median. The 68% interval of the distribution is listed in brackets.

G1 G2 Prometaphase

Protein nucleus/chromatin cytoplasm nucleus/chromatin cytoplasm nucleus/chromatin cytoplasm

SCC1 250755 [160752; 387511] 10690 [2426; 28277] 291939 [228902; 547040] 6279 [2917; 9460] 52195 [35147; 72881] 203259 [138338; 303046]

STAG1 50062 [26338; 95212] 1738 [419; 6726] 90712 [59923; 152640] 1048 [359; 3369] 10714 [6958; 16682] 34860 [26096; 50824]

STAG2 221261 [158694; 291715] 18168 [5571; 59386] 281503 [202964; 384802] 29080 [9410; 92086] 67163 [46974; 105183] 249048 [183810; 360561]

NIPBL 146764 [107180; 202180] 7314 [3462; 13262] 162915 [101109; 218244] 10537 [4819; 18812] 32357 [22248; 44222] 135313 [114223; 172737]

WAPL 91114 [68317; 115878] - 100084 [70256; 125633] - 20196 [13253; 30023] 88677 [68173; 141144]

SORORIN 44396 [21054; 84541] 1216 [363; 3551] 104939 [40639; 163976] 4580 [832; 27180] 25099 [16846; 38736] 103462 [61909; 139749]

CTCF 181157 [131295; 259610] 3671 [1192; 6294] 206494 [157309; 284756] 9708 [9256; 10160] 51898 [32725; 80216] 143505 [87355; 243766]

DOI: https://doi.org/10.7554/eLife.46269.012
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Figure 2. Fluorescence correlation spectroscopy of cohesin subunits and regulators. FCS measurements to estimate the concentration of endogenously

GFP-tagged proteins in the nucleus/chromatin and cytoplasm of G1, G2 and prometaphase cells. (A) FCS measurements were taken at different

positions (three in the nucleus/chromatin, two in the cytoplasm) in cells in G1 (top), G2 (middle) or prometaphase (bottom), whereby photon counts

were recorded for 30 s at each position. Example images for SCC1-EGFP H2B-mCherry in the GFP (left), DNA (middle) and transmission channels are

Figure 2 continued on next page
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indicating that most cohesin complexes and cohesin regulators exist as monomers (the mean of the

median protein of interest: free mEGFP CPM ratios was 1 ± 0.3, Appendix 1—table 4). This also

indicates that the concentrations obtained using FCS represent the total fraction of diffusing

proteins.

We next converted the protein concentration values to absolute copy numbers using cell volumes

calculated from 3D segmentation of the nucleus and an estimate of the cell to nucleus volume ratio

(Table 2). Using this approach, we estimated that approximately 260,000 copies of SCC1-mEGFP,

50,000 copies of STAG1-EGFP and 240,000 copies of STAG2-EGFP exist per G1 cell. This compares

to 350,000 copies of SCC1, 130,000 copies of STAG1 and 160,000 copies of STAG2 per G1 cell as

estimated by LC-MS. Using bootstrapping, we estimated that the two orthogonal methods agree to

within an average factor of 1.5, and that a ratio of one, that is equal protein numbers for the two

methods, was within 68% of the error for 6 out of 9 conditions (Appendix 1—table 5, see Discus-

sion). As also observed in the LC-MS dataset, the total copy number of cohesin subunits increased in

G2 cells compared to G1 cells (Tables 1 and 2). The intracellular concentration of cohesin was main-

tained in G2 despite this increase in total copy number, since the volume of G2 cells also increased

(Figure 2, Table 2, Appendix 1—table 3).

We found that NIPBL, WAPL, sororin and CTCF were all sub-stoichiometric relative to SCC1 in

G1 and G2 HeLa cells, although the 68% distribution intervals for nuclear SCC1 and NIPBL over-

lapped in G1 (Figure 2B and Appendix 1—table 3). Sub-stoichiometry between NIPBL and cohesin

is consistent with estimates comparing nuclear levels of fluorescently tagged SCC1 and NIPBL in the

human cell line HCT116 (Rhodes et al., 2017).

Dynamics of chromatin-bound cohesin
Our FCS experiments allowed us to measure the number of cohesin complexes that reside in the

nucleus but not the number of chromatin-bound complexes, that is those that might actually contrib-

ute to chromatin architecture and sister chromatid cohesion. To investigate the dynamics of nuclear

cohesin in G1 and G2 phase (Figure 3—figure supplement 1A), we performed inverse fluorescence

recovery after photobleaching (iFRAP) using the same SCC1-EGFP cell line that was used in our FCS

experiments (Figure 3A,B). Consistent with previous studies that relied on ectopically expressed

Figure 2 continued

shown. Scale bar: 10 mm. (B) Probability density violin plots of the GFP-based protein concentrations determined from each FCS measurement (dots)

after data fitting and quality control. Note that the EGFP-sororin cell line displayed a mitotic defect, raising the possibility that EGFP-sororin may be

hypomorphic. Data were derived from 2 to 4 experiments per condition, 16–254 cells, and 80–1270 FCS measurements. Data associated with this figure

are included in Figure 2—source data 1.

DOI: https://doi.org/10.7554/eLife.46269.009

The following source data and figure supplement are available for figure 2:

Source data 1. The zip file contains the data used to generate Figure 2 and Table 2, Appendix 1—tables 5 and 6.

DOI: https://doi.org/10.7554/eLife.46269.011

Figure supplement 1. Cell line characterisation.

DOI: https://doi.org/10.7554/eLife.46269.010

Table 3. FCS/iFRAP estimates of soluble, dynamic and stable nuclear SCC1-mEGFP copy number.

Copy numbers were calculated by multiplying the median nuclear FCS copy number measurements

(Table 2) by the average and s.d. population fractions as determined by iFRAP (Figure 3C).

Copy number

G1 G2

soluble 91318 ± 10277 79239 ± 21371

dynamic 159437 ± 10277 104952 ± 26360

stable 0 107748 ± 26360

total 250755 291939

DOI: https://doi.org/10.7554/eLife.46269.015
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Figure 3. Dynamics and distribution of nuclear SCC1-mEGFP in G1 and G2 phase. (A) Images of inverse

fluorescence recovery after photobleaching (iFRAP) in SCC1-mEGFP cells in G1 and G2 phase (Figure 3—figure

supplement 1A). Half of the nuclear SCC1-mEGFP fluorescent signal was photobleached and the mean

fluorescence in the bleached and unbleached regions was monitored by time-lapse microscopy. (B) The difference

in fluorescence signals between the bleached and unbleached regions was normalised to the first post bleach

image and plotted (mean ± S.D., n = 19 per condition). (C) SCC1-mEGFP distribution in the nucleus in G1 and G2

phase. Dynamic and stable populations were estimated using curve fittings from Figure 3—figure supplement

1B,C. Soluble populations were estimated by measuring the reduction in signal intensity in the unbleached area

after bleaching (Figure 3—figure supplement 1G). (D) FCS/FRAP estimates of soluble, dynamic and stable

nuclear SCC1-mEGFP copy number (see Table 3 for exact values).

DOI: https://doi.org/10.7554/eLife.46269.013

The following figure supplement is available for figure 3:

Figure supplement 1. Dynamics and distribution of nuclear SCC1-mEGFP in G1 and G2 phase.

DOI: https://doi.org/10.7554/eLife.46269.014

Holzmann et al. eLife 2019;8:e46269. DOI: https://doi.org/10.7554/eLife.46269 8 of 31

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.46269.013
https://doi.org/10.7554/eLife.46269.014
https://doi.org/10.7554/eLife.46269


GFP-tagged cohesin subunits (Gerlich et al., 2006; Schmitz et al., 2007; Ladurner et al., 2014;

Ladurner et al., 2016), the recovery kinetics obtained from G1 phase cells could largely be fitted

using a single exponential function, indicating cohesin was dynamically bound to chromatin with a

residence time of 13.7 ± 2.2 min (Figure 3—figure supplement 1B,D). We refer to this population

of cohesin as ‘dynamic’. Previous work has revealed that it arises from repeated loading and WAPL-

mediated release events (Gandhi et al., 2006; Kueng et al., 2006; Chan et al., 2012; Buheitel and

Stemmann, 2013; Eichinger et al., 2013; Tedeschi et al., 2013; Huis in ’t Veld et al., 2014). Also

consistent with previous studies, the recovery kinetics obtained from cells in G2 phase could only be

fitted using a double exponential function with a dynamic residence time of 10.0 ± 3.1 min and a sta-

ble residence time of 8.6 ± 4.1 hr (Figure 3—figure supplement 1C,D,E and Gerlich et al., 2006).

Since highly mobile proteins diffuse from the unbleached area to the bleached area during the

bleaching time period, the reduction in GFP signal in the unbleached area provides an estimate of

the soluble fraction of SCC1-EGFP (Figure 3—figure supplement 1G). This reduction in GFP signal

was not due to general photobleaching, since this signal did not decrease in the nuclei of cells that

were not subjected to iFRAP (Figure 3—figure supplement 1G, ‘unbleached’). According to our

FCS analysis, approximately 250,000 copies of SCC1-GFP reside in the nucleus in G1. Our iFRAP

analysis allowed us to estimate that approximately 64 ± 4% (160,000 ± 10,000) of these molecules

are bound to chromatin (Figure 3C,D, Table 3). In G2, we estimate that 37 ± 9% of nuclear SCC1-

EGFP is bound stably to chromatin, 36 ± 9% is bound dynamically and 27 ± 7% is soluble

(Figure 3C). Taking into account our FCS measurements of SCC1-EGFP copy number in G2 phase,

we estimate that around 108,000 ± 26,000 cohesin molecules are stably bound, 105,000 ± 26,000

bind dynamically and 79,000 ± 21,000 are soluble (Figure 3D, Table 3). Thus, our LC-MS and FCS

estimates of the number of SCC1 molecules bound to chromatin in a HeLa cell agree to within a fac-

tor of 2.3 in G1 and a factor of 1.4 in G2 (Appendix 1—table 1, Table 3). We suspect that this differ-

ence is caused by the removal of a fraction of dynamically chromatin-bound cohesin during sample

preparation for LC-MS (see Discussion).

A mathematical model for cohesin binding to chromatin
We observed that the number of chromatin-bound cohesin complexes increased by around a factor

of two in G2 cells compared to G1 cells, as measured directly by LC-MS (Table 1) and indirectly by

integrating our FCS and FRAP data (see above). This increase coincides with the appearance of a

stably-bound population of cohesin. To explore whether the observed increase in cohesin’s resi-

dence time is sufficient to explain the two-fold increase in chromatin-bound cohesin complexes, we

performed mathematical modelling. For this we considered the inter-conversion between the differ-

ent unbound and chromatin-bound forms of nuclear cohesin (Figure 4A). By performing a number

of algebraic substitutions (see Materials and methods), we generated an equation that allows us to

plot the equilibrium distribution of the unbound and dynamically chromatin-bound forms of cohesin

as a function of the stably chromatin-bound fraction (Figure 4B). The fraction of stable cohesin (s) in

G2 phase cells is ~0.37 (Figure 3C). According to our model, if s = 0.37 the chromatin-bound frac-

tion (bT) should be 0.77 (Figure 4B). This is very close to the experimentally-determined fraction of

chromatin-bound cohesin in G2 (0.73, Figure 3C). Therefore, we propose that the only major distinc-

tion between cohesin dynamics in G1 and G2 phase cells is that a fraction of cohesin becomes stably

bound in G2 phase.

Implications of absolute cohesin copy numbers for the occupancy of
cohesin enrichment sites
Our current knowledge regarding the genomic distribution of human cohesin and its regulators

derives largely from population-based ChIP-seq experiments. The distribution of human cohesin on

DNA has only been analysed for the ‘mappable’ non-repetitive part of the genome, and most ChIP

experiments that have been performed for this purpose have only revealed the relative distribution

of cohesin and can therefore not be used for a quantitative analysis. Nevertheless, it is interesting to

compare the absolute number of cohesin complexes that we have measured here with data on cohe-

sin enrichment sites in the human genome. We have identified around 37,000, 35,000 and 47,000

sites for SMC3, STAG1 and STAG2, respectively in the mappable fraction of the human genome in

G1-synchronised HeLa cells (Figure 5A, Appendix 1—table 6). 88% of SMC3 sites overlap with the

Holzmann et al. eLife 2019;8:e46269. DOI: https://doi.org/10.7554/eLife.46269 9 of 31

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.46269


combined enrichment sites of STAG1 and STAG2, and 77% overlap with CTCF (Figure 5B, Appen-

dix 1—table 7.).

If we assume that cohesin occupies the HeLa genome (7.9 Mb; Landry et al., 2013) with equal

frequency as in the ‘mappable’ human genome (2.7 Mb) there should be around 117,000 cohesin

enrichment sites per HeLa cell (~40,000 � 2.7 � 7.9). If one assumes that all ~160,000 dynamically

chromatin-bound cohesin complexes identified in a single cell by FCS/FRAP are positioned at the

117,000 cohesin enrichment sites, it is therefore theoretically possible that every site is occupied

simultaneously by cohesin in a single G1 cell. However, for reasons explained in the Discussion, at

any given time many cohesin complexes may not be positioned at cohesin enrichment sites, in which

case not all of these could be simultaneously occupied by cohesin.

We identified around 41,000 CTCF binding sites in ChIP-seq experiments performed in G1-

arrested HeLa cells (Figure 5A, Appendix 1—table 7). Using the same logic as described above,

this equates to around 120,000 potential CTCF binding sites per HeLa cell. Using FCS, we estimated

that approximately 180,000 copies of GFP-tagged CTCF reside in the nucleus in G1 (Table 2). It is

unknown what fraction of these molecules is bound to chromatin in HeLa cells, and whether CTCF

binds to chromatin as multimers, as has been proposed (Pant et al., 2004; Yusufzai et al., 2004;

Bonchuk et al., 2015). Given that we estimate that the number of CTCF molecules in the nucleus is

similar to the number of CTCF binding sites, and assuming that at steady state not all CTCF mole-

cules are chromatin bound, it is possible that not every site is occupied simultaneously by CTCF in a

single G1 cell (see Discussion).

If cohesin/CTCF enrichment sites represent positions at which cohesin loop extrusion frequently

stalls, an estimate as to the average distance a cohesin complex might travel during loop extrusion

could be made by determining the genomic distances between pairs of cohesin enrichment sites. If

every ChIP-seq peak were distributed equally within the mappable genome, we would expect to

detect around one peak every 67.5 kb (2.7 Mb � 40,000). We found that SMC3 enrichment sites

were actually distributed over a very broad range of distances, ranging from less than 10 kb apart to

greater than 2 Mb (Figure 5C). However, around 80% percent of the detected SMC3 enrichment

sites resided within 100 kb of each other. We note that this predicted cohesin loop size is very simi-

lar to those calculated for the loops formed by the related condensin complex on mitotic chromo-

somes (Gibcus et al., 2018; Walther et al., 2018) and is also consistent with the range of loop sizes

predicted to exist in interphase chromatin (Wutz et al., 2017). As described above, it is possible

that not every cohesin enrichment site is occupied simultaneously in a single cell, and the size of a
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Figure 4. Mathematical model of cohesin chromatin binding in G1 and G2 phase. (A) Model describing transitions

between unbound (U), dynamic (D) and stable (S) forms of nuclear cohesin. The ‘k’s refer to the first order rate

constants (with a dimension of time�1) of individual transitions. (B) Equilibrium distribution of the unbound and

dynamic forms of cohesin as a function of the stable fraction. The grey line represents the fraction of nuclear

cohesin that is chromatin-bound (BT). The red line represents the fraction of nuclear cohesin that is stably

chromatin-bound (S). The black dots represent the experimentally observed values of BT and S in G1 and G2.
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loop formed by a cohesin complex might depend on where in between the two adjacent cohesin

enrichment sites cohesin initially binds. Nevertheless, this analysis suggests that at least some cohe-

sin complexes might extrude loops around 100 kb in size. This is in line with predictions of loop

extrusion processivity based on polymer modelling (120–240 kb; Fudenberg et al., 2016).

cell population single cell
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Figure 5. Genomic distribution of SMC3, STAG1, STAG2 and CTCF in G1 phase. (A) Enrichment profiles of SMC3, STAG1, STAG2 and CTCF along an

exemplary 100 kb region of chromosome 3, illustrating typical distribution and co-localisation of sequencing read pileups. Genes within this region are

depicted above. SMC3 and CTCF were immunoprecipitated from HeLa Kyoto using anti-SMC3 and anti-CTCF antibodies, respectively. EGFP-STAG1

and STAG2-EGFP were immunoprecipitated from the respective genome-edited cell lines using anti-GFP antibodies. (B) Area-proportional threefold

eulerAPE Venn diagram (www.eulerdiagrams.org/eulerAPE/) illustrating genome-wide co-localisation between SMC3, CTCF, and the combined set of

STAG1 and STAG2 coordinates. (C) Pie chart depicting categories of pairwise genomic distances between SMC3 enrichment sites. (D) Schematic

comparing the occupancy of cohesin and CTCF across a cell population and within a single cell. Incomplete occupation of cohesin and CTCF binding

sites can explain why chromatin loops are not uniform and how cohesin can ‘skip’ past CTCF binding sites.
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Discussion

A comparison between LC-MS and FCS measurements of cohesin copy
number
As mentioned above, our LC-MS and FCS-derived estimates of total cohesin subunit copy number

were within an overall factor of 1.3 of one another in G1 and 1.4 in G2 (Appendix 1—table 5). Given

the major differences between these orthogonal techniques, the similarity between both datasets is

remarkable. The estimated copy numbers for STAG1 showed larger differences, however. Several

factors, including experimental variability (intra-assay variability for each of the two methods

was ~20–30%), could have contributed to this discrepancy (see Materials and methods). Our FCS-

derived estimates of chromatin-bound SCC1 were 2.3-fold higher than our LC-MS estimates in G1

and 1.4-fold higher in G2. It is possible that a fraction of dynamically chromatin-bound cohesin com-

plexes was lost during the purification steps that preceded our LC-MS analysis.

Occupancy of cohesin and CTCF enrichment sites in a single cell
In the loop extrusion model of cohesin-mediated genome organisation, cohesin is predicted to bind

to chromatin and translocate to extrude loops (Nasmyth, 2001; Sanborn et al., 2015;

Fudenberg et al., 2016). This model therefore predicts that chromatin-bound cohesin must tran-

siently exist at other sites in addition to those identifiable by standard ChIP-seq. Consistently, cali-

brated ChIP-seq experiments suggest that significant amounts of budding yeast cohesin localises to

regions between peaks (Hu et al., 2015). Direct evidence of cohesin-mediated loop extrusion is so

far missing, however the budding yeast orthologue of the related SMC complex condensin has been

shown to translocate unidirectionally along DNA (Terakawa et al., 2017) and perform loop extrusion

of DNA in vitro (Ganji et al., 2018). Fission yeast and vertebrate cohesin can translocate along DNA

in vitro (Davidson et al., 2016; Kanke et al., 2016; Stigler et al., 2016) and ChIP-seq studies in bac-

teria, yeast and mammalian cells have all revealed that cohesin/SMC enrichment sites can vary in

their positions (Lengronne et al., 2004; Hu et al., 2015; Ocampo-Hafalla et al., 2016;

Busslinger et al., 2017; Wang et al., 2017; Petela et al., 2018; Wang et al., 2018). If cohesin is

indeed mobile on chromatin, our finding that the number of chromatin-bound cohesin complexes is

similar to the number of potential cohesin binding sites means it is unlikely that every cohesin enrich-

ment site is occupied in a single G1 cell. However, if cohesin performs loop extrusion as a monomer,

and the cohesin ChIP-seq binding sites that overlap with CTCF represent stalled extrusion events, it

could be that a single cohesin complex could occupy the two cohesin enrichment sites present at

the base of chromatin loops. This would decrease the number of cohesin complexes required to

simultaneously occupy all cohesin enrichment sites in a single cell.

We estimate that there are around 120,000 potential CTCF binding sites and 180,000 copies of

CTCF per HeLa cell nucleus. This suggests that if the chromatin-bound fraction of CTCF is below

around 0.67, not all CTCF binding sites would be occupied simultaneously. This would provide a

potential explanation as to how cohesin might ‘skip’ past the CTCF sites identified within TADs

(Figure 5D) and also how longer chromatin loops can form following WAPL depletion despite no

detectable change in CTCF distribution (Gassler et al., 2017; Haarhuis et al., 2017; Wutz et al.,

2017). Similar conclusions regarding the copy number and occupancy of cohesin and CTCF have

recently been drawn in mouse embryonic stem cells and human U2OS cells (Hansen et al., 2017;

Cattoglio et al., 2019). Importantly, these authors concluded that only around 49% of nuclear CTCF

molecules are actually chromatin-bound (Hansen et al., 2017).

Cohesin residence time and genome organisation
Our FRAP data indicate that in G1, cohesin is bound to chromatin dynamically with a residence time

of around 13 min, although our measurements cannot exclude that there are also more short-lived

interactions between cohesin and chromatin as reported earlier (Ladurner et al., 2014). To try to

understand whether dynamic cohesin complexes might participate in loop extrusion, it is interesting

to consider how fast cohesin would have to extrude to generate a chromatin loop of a defined size

within its estimated residence time. To generate a 100 kb loop (the genomic distance that covers

more than 80% of cohesin enrichment sites; Figure 5C), a dynamically chromatin-bound cohesin

complex would need to extrude at around 8 kb/min. Since we found that the distance between
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neighbouring cohesin enrichment sites was highly variable and cohesin occupancy at these sites is

likely to be below 100%, an alternative estimate as to the dimensions of a typical chromatin loop is

to use the median TAD size determined in Hi-C experiments (~185 kb, Rao et al., 2014). Using this

value, dynamically chromatin-bound cohesin would need to extrude at rates of around 14 kb/min.

These calculated rates of dynamic cohesin-mediated loop extrusion are close to the predicted rate

of loop extrusion by cohesin in HeLa cells (22.5 kb/min, Rao et al., 2017), condensin II in chicken

cells (6–12 kb/min, Gibcus et al., 2018), SMC complexes in B. subtilis (54 kb/min, Wang et al.,

2017) and the maximal rate of loop extrusion observed for yeast condensin in vitro (90 kb/min,

Ganji et al., 2018).

Genome organisation and sister chromatid cohesion
The ring model of sister chromatid cohesion proposes that cohesive cohesin complexes topologically

entrap replicated sister chromatids Haering et al. (2008). If cohesin extrudes loops of chromatin, it

is possible that it does so without topological entrapment, raising the possibility that two popula-

tions of cohesin exists in cells, one that is competent for loop extrusion and the other for cohesion

(Srinivasan et al., 2018). Cohesion is believed to be mediated by stably-bound complexes, which

comprises around half of all chromatin-bound cohesin in G2 (Figure 3C and Gerlich et al., 2006).

Depletion of WAPL results in the stabilisation of cohesin complexes on chromatin and a dramatic

change in chromatin architecture, indicating that stably-bound cohesin complexes are able to func-

tion in chromosome organisation and that alteration of cohesin’s residence time may influence this

process (Kueng et al., 2006; Tedeschi et al., 2013; Gassler et al., 2017; Haarhuis et al., 2017;

Wutz et al., 2017). However, the number and position of TADs and loops does not differ signifi-

cantly between G1 and G2 cells (Wutz et al., 2017), that is chromatin architecture does not detect-

ably change even though many cohesin complexes are stably bound to chromatin in G2. This raises

the interesting possibility that stably-bound cohesive cohesin in G2 is functionally distinct from the

stably-bound cohesin found in cells depleted of WAPL. If so, it is possible that this is because the

former might interact with two stretches of chromatin topologically and the latter might do so non-

topologically.

Considering the notion that around half of chromatin-bound cohesin is stably-bound in G2 and

may not function in loop extrusion, we were interested to use our LC-MS, FCS and FRAP data to

compare the number of dynamically chromatin-bound cohesin complexes in cells synchronised in G1

and G2. If chromatin loops are formed by dynamically bound cohesin one might expect that more of

these complexes are present on chromatin in G2-phase to be able to form long-range chromatin

interactions on both sister chromatids. However, even though the total number of cohesin com-

plexes bound to chromatin in G2 is twice of that in G1, our FRAP data indicate that the number of

dynamically chromatin-bound cohesin complexes is actually reduced (Tables 1, 2 and 3, and

Figure 3D). Thus, either stably-bound cohesin participates in genome organisation in some way –

without any of the changes in chromatin structure observed following WAPL depletion – or the two-

fold increase in DNA content in G2 must be organised by relatively fewer cohesin complexes.

Implications of cohesin copy number measurements for cohesion at
centromeric regions
Using FCS and iFRAP, we estimated that around 213,000 cohesin complexes are bound to chromatin

in a typical G2 cell, of which around half are bound stably to chromatin (Table 3, Figure 3D). Since

the stable fraction is the one thought to mediate cohesion (Gerlich et al., 2006), this suggests that

around 108,000 cohesin complexes establish cohesion between replicated genomes that each con-

tain 117,000 predicted cohesin enrichment sites. Thus, if cohesion is mediated by monomeric cohe-

sin, it is unlikely that it is established at every cohesin enrichment site in a single cell. This is

consistent with the finding that proximity to a cohesin enrichment site does not correlate with prox-

imity between sister chromatids in G2 (Stanyte et al., 2018).

Our results obtained with prometaphase arrested HeLa cells imply that the situation may be dif-

ferent at centromeres. Using LC-MS, we estimated that only around 14,000 cohesin complexes were

bound to chromosomes in these cells (Figure 1 and Table 1). These numbers are in good agreement

with the previous observation that approximately 90% of all chromatin-bound cohesin complexes

dissociate from chromosomes in prophase and prometaphase (Waizenegger et al., 2000;
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Gerlich et al., 2006). Since previous immunofluorescence microscopy experiments have shown that

in prometaphase-arrested cells cohesin is predominantly detected at centromeres (Giménez-

Abián et al., 2004) and because ChIP experiments could not detect cohesin in the non-repetitive

part of the genome in such cells (Wendt et al., 2008), we assume that most of the 14,000 cohesin

complexes that we found on prometaphase chromosomes must have represented cohesin at centro-

meres. Since the HeLa cells used in this study contained on average 64 chromosomes (Landry et al.,

2013), our measurements indicate that each of these chromosomes might contain around 200 cohe-

sin complexes in its centromeric region.

With this study, we have measured the number of cohesin complexes and cohesin regulatory pro-

teins in a human cell line that is widely used for studying chromatin organisation and mechanisms of

sister chromatid cohesion. We have approximated how many of those cohesin complexes may par-

ticipate in these two functions and have related this to the genomic distribution of cohesin enrich-

ment sites throughout the cell cycle. Our findings suggest that at least some but possibly many of

the predicted cohesin enrichment sites are unoccupied in a single cell at a given timepoint, implying

that our current models of chromatin organisation and sister chromatid cohesion derived from large

populations of cells may not fully reflect the situation in individual cells.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Cell line (H. sapiens) HK CRISPR
SCC1-mEGFP + H2B-
mCherry

parental genome-edited
cell line from
Davidson et al. (2016)

Cell line (H. sapiens) HK CRISPR
EGFP-STAG1

this paper See Materials and
methods subsection
‘Generation of EGFP-tagged
NIPBL and STAG1
HeLa Kyoto cell lines’

Cell line (H. sapiens) HK CRISPR
STAG1-EGFP H8 + H2B-
mCherry

parental genome-
edited cell line
from Cai et al. (2018)

Cell line (H. sapiens) HK CRISPR
STAG2-EGFP F2 + H2B-
mCherry

parental genome-
edited cell line
from Cai et al. (2018)

Cell line (H. sapiens) HK CRISPR
EGFP-NIPBL F1 + H2B-
mCherry

this paper See Figure 2—figure
supplement 1 and Materials
and methods
subsection ‘Generation
of EGFP-tagged NIPBL
and STAG1 HeLa Kyoto
cell lines’

Cell line (H. sapiens) HK CRISPR
EGFP-WAPL H3 + H2B-
mCherry

parental genome-edited
cell line from
Ladurner et al. (2016);
Cai et al. (2018)

See Figure 2—
figure supplement 1

Cell line (H. sapiens) HK CRISPR
EGFP-SORORIN
D3 + H2B-mCherry

parental genome-edited
cell line from
Ladurner et al. (2016)

See Figure 2—
figure supplement 1

Cell line (H. sapiens) HK CRISPR
CTCF-EGFP F2

Wutz et al. (2017);
Cai et al. (2018)

Cell line (H. sapiens) HK H2B-mCherry Neumann et al. (2010)

Antibody Rabbit polyclonal
Anti-SMC3

Peters laboratory Antibody ID:k727 ChIP, Figure 5

Antibody Rabbit polyclonal
Anti-CTCF

Merck Cat #:07–729
RRID:AB_441965

ChIP, Figure 5

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Antibody Rabbit polyclonal
Anti-WAPL

Peters laboratory Antibody ID:A1017 Western blotting
(1:1000),
Figure 2—figure
supplement 1

Antibody Rabbit polyclonal
Anti-sororin

Peters laboratory Antibody ID:A953 Western blotting
(1:1000),
Figure 2—figure
supplement 1

Antibody Rat polyclonal
Anti-NIPBL

Absea Cat #:010702F01 Western blotting
(1:1000),
Figure 2—figure
supplement 1

Antibody Mouse monoclonal
Anti-tubulin

Sigma Cat #:T-5168
RRID:AB_477579

Western blotting
(1:50000),
Figure 2—figure
supplement 1

Antibody Rabbit polyclonal
Anti-GFP

Abcam Cat #:ab290
RRID:AB_303395

ChIP, Figure 5

Data reporting and accessibility
No statistical methods were used to predetermine sample size. The experiments were not rando-

mised. The investigators were not blinded to allocation during experiments and outcome assess-

ment. The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier

PXD012712. The FCS data with the autocorrelation curves used to compute protein concentrations

are included in Figure 2—source data 1.

Generation of EGFP-tagged NIPBL and STAG1 HeLa Kyoto cell lines
The EGFP-NIPBL and EGFP-STAG1 cell lines were generated by homology-directed repair using

CRISPR Cas9(D10A) paired nickase (Ran et al., 2013). A donor plasmid comprising homology arms

(700–800 bp (NIPBL) and 1300–1500 bp (STAG1) on either side of the coding sequence start site)

and EGFP were cloned into plasmid pJet1.2 (Thermo Scientific, K1232). Cas9 guide RNA sequences

were identified using the website crispr.mit.edu (NIPBL guide A: gTCCCCGCAAGAGTAGTAAT;

NIPBL guide B: gGTCTCACAGACCGTAAGTT; STAG1 guide A: gACAATACTTACTGTAACAC;

STAG1 guide B: gTATTTTTTAAGGAAAATTT) and inserted into plasmid pX335 (a gift from Feng

Zhang, Addgene, 42335). HeLa Kyoto cells (Landry et al., 2013) were transfected with donor, Cas9

nickase plasmids and Lipofectamine 2000 (Invitrogen, 11668019). Media were replaced the next day

and cells were maintained for 7 days before sorting GFP positive cells by flow cytometry into 96 well

plates. EGFP-NIPBL clone F1 and EGFP-STAG1 clone H7 were selected after verification of homozy-

gous GFP insertion by PCR of genomic DNA, immunoblotting and inspection by microscopy.

Cell line characterization
All cell lines were free from detectable mycoplasma contamination and have been authenticated by

STR fingerprinting (Vienna Biocenter Core Facilities). PCR of genomic DNA was used to verify homo-

zygous GFP insertion in all EGFP-tagged HeLa Kyoto cell lines. The following primers were used:

EGFP-NIPBL: ATCGTGGGAACGTGCTTTGGA, GCTCAGCCTCAATAGGTACCAACA. EGFP-WAPL:

TGATTTTTCATTCCTTAGGCCCTTG, TACAAGTTGATACTGGCCCCAA. EGFP-sororin: GCTAGCCC

TACGTCACTTCC, TGCAGTCCCAGTACACAACG.

Western blotting was used to detect proteins of interest in HeLa Kyoto w.t. and GFP-tagged cell

lines. For western blotting of GFP-tagged NIPBL and WAPL HeLa Kyoto cell lines, cells were resus-

pended in RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.5% Na-deoxy-

cholate and 0.1% SDS), supplemented with pepstatin, leupeptin and chymostatin (10 mg/ml each)

and PMSF (1 mM). Protein concentration was determined using the Bradford Protein Assay (Bio-Rad

Laboratories). Samples were separated by SDS-PAGE and western blotting was performed using the
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antibodies described below. For western blotting of GFP-tagged sororin HeLa Kyoto cell line, a

chromatin extract was prepared as described previously (Ladurner et al., 2014). Antibodies used:

rabbit anti-WAPL (Peters laboratory ID A1017), rabbit anti-sororin (Peters laboratory ID A953), rat

anti-NIPBL (Absea 010702F01) and mouse anti-tubulin (Sigma, T-5168).

iFRAP
For live-cell imaging, cells were seeded into LabTek II chambered coverslips (ThermoFisher Scientific)

in cell culture medium without riboflavin and phenol red, and cultured at 37˚C and 5% CO2 during

imaging. Cells in G1 and G2 phase were identified by nuclear and cytoplasmic distribution of DHB-

mKate2 signals, respectively. 1 mg/ml cycloheximide was added to the imaging medium 1 hr before

the imaging to reduce new synthesis of SCC1-mEGFP. Both FRAP and iFRAP experiments were per-

formed using an LSM880 confocal microscope (Carl Zeiss) with a 40 � 1.4 NA oil DIC Plan- Apochro-

mat objective (Zeiss). Photobleaching was performed in half of nuclear regions with 2 iterations of

488 nm laser at max intensity after acquisition of two images. Fluorescence was measured in

bleached- and unbleached regions followed by background subtraction with 1 min interval. iFRAP

curves were normalised to the mean of the pre-bleach fluorescent intensity and to the first image

after photobleaching. Curve fitting was performed with single exponential functions f(t)=EXP(-

kOff1*t) or double exponential functions f(t)=a*EXP(-kOff1*t)+(1-a)*EXP(-kOff2*t) in R using the min-

pack.lm package (version 1.2.1). Dynamic and stable residence times were calculated from 1/kOff1

and 1/kOff2 respectively. Double exponential curve fitting was performed under constraint that 1/

kOff2 is in range between 1.5 hr and 15 hr. Soluble fractions were estimated by the reduction of

fluorescence signals in unbleached area after photobleaching.

Chromatin immunoprecipitation and Illumina sequencing
Cells were synchronised in G1 phase using the same procedure as described for LC-MS. ChIP was

performed as described (Wendt et al., 2008). Ten million cells were used for one ChIP experiment.

Cells were crosslinked with 1/10 medium volume of X-link solution (11% formaldehyde, 100 mM

NaCl, 0.5 mM EGTA, 50 mM Hepes pH 8.0) at room temperature for 10 min and subsequently

quenched with 125 mM glycine for 5 min. Cells were washed with PBS and collected by mechanical

scraping and pelleted by centrifugation. Cell pellets were lysed in lysis buffer (50 mM Tris-HCl pH

8.0, 10 mM EDTA pH 8.0, 1% SDS, protease inhibitors) on ice for 20 min. The DNA was sonicated

for 6 cycles (30 sec on/off) using a Biorupter. Ten volumes of dilution buffer (20 mM Tris-HCl pH 8.0,

2 mM EDTA pH 8.0, 1% Triton X-100, 150 mM NaCl, 1 mM PMSF) was added to the lysate, which

was then pre-cleared using 100 ml Affi-Prep Protein A beads at 4˚C. Immunoprecipitation was per-

formed with rabbit IgG or specific antibody overnight; Affi-Prep Protein A beads were then added

for a further 3 hours. Anti-GFP antibody ab290 (Abcam, United Kingdom) was used to immunopre-

cipitate EGFP-STAG1 and STAG2-EGFP. An antibody raised against peptide CEMAKDFVEDDTTHG,

Peters lab antibody ID: k727, was used to immunoprecipitate SMC3. Anti-CTCF antibody 07-729

(Merck, Germany) was used to immunoprecipitate CTCF. Beads were washed twice with Wash buffer

1 (20 mM Tris-HCl pH 8.0, 2 mM EDTA pH 8.0, 1% Triton X-100, 150 mM NaCl, 0.1% SDS, 1 mM

PMSF), twice with Wash buffer 2 (20 mM Tris-HCl pH 8.0, 2 mM EDTA pH 8.0, 1% Triton X-100, 500

mM NaCl, 0.1% SDS, 1 mM PMSF), twice with Wash buffer 3 (10 mM Tris-HCl pH 8.0, 2 mM EDTA

pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.5% deoxycholate), twice with TE buffer (10 mM Tris-HCl pH 8.0,

1 mM EDTA pH 8.0), and eluted twice with 200 ml elution buffer (25 mM Tris-HCl pH 7.5, 5 mM

EDTA pH 8.0, 0.5% SDS) by shaking at 65˚C for 20 min. The eluates were treated with RNase-A at

37˚C for 1 hour and proteinase K at 65˚C overnight. Addition of 1 ml glycogen (20 mg/ml) and 1/10th

volume sodium acetate (3 M, pH 5.2) was followed by extraction with phenol/chloroform/isoamyl

alcohol (25:24:1) and precipitation with ethanol. DNA was resuspended in 100 ml of H2O, and ChIP

efficiency was quantified by quantitative PCR (qPCR). The DNA samples were submitted to Vienna

BioCenter Core Facilities for library preparation and Illumina deep sequencing.

ChIP-seq peak calling and site overlap counting
Illumina sequencing results of ChIPseq experiments were mapped against the human hg19 reference

assembly using bowtie2 (bowtie-bio.sourceforge.net/bowtie2/index.shtml); the resulting alignments

from two biological replicate experiments for each immunoprecipitation were combined as BAM
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files using samtools merge (samtools.sourceforge.net/). Peaks were called by MACS 1.4.2 (liulab.

dfci.harvard.edu/MACS/) with a P-value threshold of 1e-10 using sample and control inputs. Peak

overlaps were calculated by using multovl 1.3 (github.com/aaszodi/multovl). Since occasionally two

peaks from one dataset overlap with a single peak in another dataset, the output of such an overlap

is displayed as a connected genomic site and counted as one single entry. Consequently, the overall

sum of peak counts is reduced when displayed in overlaps.

LC-MS methods
Cell culture
HeLa cells were cultured as previously (Nishiyama et al., 2010). Cells were synchronised in G2 phase

by a double thymidine block (24 hr block in 2 mM thymidine, 8 hr release and 16 hr block in 2 mM

thymidine) followed by a 6 hr release into G2 phase. Cells were synchronised in Prometaphase by a

double thymidine block followed by a 6 hr release and a 4 hr block in Prometaphase using a final

concentration of 100 ng/ml nocodazole. Cells were synchronised in G1 phase using the same proce-

dure as described for Prometaphase cells, but after mitotic shake off, cells were washed twice and

cultured for a further 6 hr. Cells were counted using a CASY counter (Schärfe, Germany) and cell

counts were verified by manual counting.

Preparation of soluble and chromatin extracts
two � 107 HeLa cells in G1, G2 and Prometaphase were re-suspended in 0.5 ml lysis buffer (20 mM

Hepes pH 7.6, 150 mM NaCl, 10% glycerol, 0.2% NP40, 1 mM NaF, 1 mM sodium butyrate, 1 mM

EDTA and 10 mg/ml (w:v) each of leupeptin, pepstatin and chymostatin) and cells were lysed with 20

strokes using a dounce homogenizer. Chromatin and soluble fractions were separated by centrifuga-

tion at 1000 g for 3 min at 4˚C. The soluble supernatant was centrifuged for a further 20 min at

20000 g at 4˚C (soluble extract). The chromatin pellet was washed by resuspension in 1 ml lysis

buffer and centrifugation at 1000 g for 3 min at 4˚C. Washing was repeated for a total of 10 times.

The chromatin pellet was then re-suspended in 250 ml nuclease buffer (lysis buffer complimented

with a final concentration of 0.04 units/ml micrococcal nuclease, 0.1 mg/ml RNase A, 20 mM CaCl2
and 0.04 ml Turbo DNase per ml nuclease buffer), incubated for 2 hr at 4˚C and for 15 min at 37˚C

and finally centrifuged at 20000 g for 5 min (chromatin extract). 90% of soluble and chromatin

extracts were used for immunoprecipitation and 10% (corresponding to 2 � 106 cells) were precipi-

tated using acetone. To compensate for losses during acetone precipitation the protein concentra-

tion was measured before and after precipitation using Bradford reagent (on average 17% loss). The

protein pellets were resuspended in 1 ml 500 mM tetraethylammonium chloride (TEAB, Fluka) (solu-

ble extract) and 50 ml 500 mM TEAB (chromatin extract), respectively. Proteolysis of soluble and

chromatin total cell extracts was performed using a double digest protocol. After reduction in 1 mM

tris(2-carboxyethyl)phosphine (TCEP) at 56˚C for 30 min and alkylation in 2 mM methyl methanethio-

sulfonate (MMTS, Fluka) for 30 min, proteins were digested with 500 ng LysC per 20 ml extract

(Wako, Richmond, VA) at 37˚C for 4 hr. Proteins were then digested with 500 ng trypsin per 20 ml

extract (MS grade trypsin gold, Promega) for 16 hr at 37˚C.

Absolute quantification of cohesin in total cell extracts using SRM on 5500
QTRAP
Immediately before LC-SRM analysis, digested soluble and chromatin cell extracts were labelled

with the light version of the mTRAQ reagent according to the manufacturer’s instructions. For quan-

tification in total soluble extracts, 1.5 mg (experiment 1) and 2 mg (experiment 2) of HeLa extract

were used. The mTRAQ light-labelled extract was spiked with heavy labelled reference peptides (2.5

and 5 fmol for the soluble extract and 10 fmol for the chromatin extract). Samples were then sepa-

rated on a Dionex Ultimate 3000 RSLCnano-HPLC equipped with a C18 PepMap100 column (75 mm

ID �500 mm length, 3 mm particle size, 100 Å pore size) (Dionex, Amsterdam, The Netherlands)

using the following gradient of solvents A (2% ACN, 0.1% FA) and B (80% ACN, 10% TFE, 0.08%

FA) at a flow rate of 250 nl/min: from 2%B to 40% B over 300 min. The mass spectrometer was oper-

ated in scheduled SRM mode with the following parameters: multiple reaction monitoring (MRM)

detection window of 360 s, target scan time of 2.5 s, curtain gas of 20, ion source gas 1 of 15,
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declustering potential of 75, entrance potential of 10. Q1 and Q3 were set to unit resolution. The

pause between mass ranges was set to 2.5 ms. Three SRM transitions per peptide were monitored.

Immunoprecipitation of cohesin complexes
Immunoprecipitation (IP) was performed as described (Holzmann et al., 2011). In brief, extracts

were incubated on a rotary shaker with 30 ml SCC1 antibody-conjugated beads for 2 hr at 4˚C (anti-

body raised against peptide FHDFDQPLPDLDDIDVAQQFSLNQSRVEEC; Peters lab antibody ID:

A890, k575). Beads were then collected by centrifugation and washed three times with 30 beads vol-

ume lysis buffer and three times with 30 beads volume lysis buffer minus detergent and protease

inhibitor. Finally, beads were washed once with 30 bead volumes of 5 mM Hepes pH 7.8 and 150

mM NaCl. 10 ml of beads were used for elution with 0.2 M glycine pH 2.0 and analysed using SDS-

PAGE. 20 ml of beads were re-suspended with 40 ml 500 mM TEAB and subjected to protease elu-

tion essentially as described (Holzmann et al., 2011). Proteolysis was performed using a double

digest protocol using LysC and trypsin (Holzmann et al., 2011).

Analysis of shotgun proteomics data
For peptide identification, the RAW-files were loaded into Proteome Discoverer (version 2.1.0.81,

Thermo Scientific). All MS/MS spectra were searched using MS Amanda (Search Engine Version

2.2.6.11097) (Dorfer et al., 2014). RAW-files were searched against the human swissprot database

(2017-04-02; 20.153 sequences; 11,315.842 residues), using the following search parameters: the

peptide mass tolerance was set to 10 ppm and the fragment mass tolerance to 0.8 Da. Trypsin was

specified as the proteolytic enzyme, cleaving after lysine and arginine except when followed by pro-

line. The maximal number of missed cleavages was set to 2. Beta-methylthiolation on cysteine was

set as fixed and oxidation on methionine was set as variable modification. Proteins were grouped

applying a strict parsimony principle and filtered to 1% false discovery rate (FDR) on PSM and pro-

tein level using the Percolator algorithm (Käll et al., 2007) as integrated in Proteome Discoverer.

Proteins identified by a single spectra were removed. In all six samples combined (soluble and chro-

matin-bound cohesin from cells in G1, G2 and prometaphase), we identified 377 and 265 different

proteins in two independent experiments (Figure 1—source data 1). In both experiments, core

cohesin subunits were among the 14 most abundant proteins identified according to the number of

peptide spectrum matches.

Absolute quantification of purified cohesin using SRM on 5500 QTRAP
Immediately before LC-SRM analysis, digested cohesin was labelled with the light version of the

mTRAQ reagent according to the manufacturer’s instructions. Labelling efficiency was checked by

LC-MS experiments on Orbitrap and found to be >98%. mTRAQ light-labelled cohesin was spiked

with 10 fmol (biological experiment 1) and 15 fmol (biological experiment 2), respectively of mTRAQ

heavy labelled reference peptides. Preparation of heavy reference peptides was performed essen-

tially as described (Holzmann et al., 2011), but peptide EQLSAER was replaced by ELAETEPK. To

remove excess of 2-propanol samples were concentrated in a Speed Vac for 10 min to a final volume

of approximately 25% of the starting volume and re-diluted with 0.1% trifluoroacetic acid (TFA,

Pierce). Samples were then separated on a Dionex Ultimate 3000 RSLCnano-HPLC equipped with a

C18 PepMap100 column (75 mm ID �500 mm length, 3 mm particle size, 100 Å pore size) (Dionex,

Amsterdam, The Netherlands) using the following gradient of solvents A (2% ACN, 0.1% FA) and B

(80% ACN, 10% TFE, 0.08% FA) at a flow rate of 250 nl/min: from 2%B to 40% B over 120 min. Pep-

tides eluting from the nanoLC were analysed on a 5500 QTRAP instrument (ABSCIEX, Foster City,

CA) equipped with a nano-electrospray source with an applied voltage of 2.3 kV. The mass spec-

trometer was operated in scheduled SRM mode with the following parameters: MRM detection win-

dow of 180 s, target scan time of 1.5 s, curtain gas of 20, ion source gas 1 of 15, declustering

potential of 75, entrance potential of 10. Q1 and Q3 were set to unit resolution. Pause between

mass ranges was set to 2.5 ms. Three SRM transitions per peptide (Appendix 1—table 1) were

selected and optimised for collision energy by direct infusion of heavy reference peptides. Collision

cell exit potentials (CXP) were calculated by dividing Q3 mass by a factor of 29.
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SRM data analysis
SRM data were analysed in Skyline (version 2.5.0.6157). Peptides were quantified based on the

height of the elution apex to prevent incomplete quantification due to partially covered elution

peaks within the scheduled measurements. Transitions were manually reviewed, and low-quality tran-

sitions retracted from subsequent quantification. Soluble SMC1 quantification was not possible since

the single SMC1 peptide was filtered out during analysis. Quantitative results were further analysed

in R (version 3.4.3).

FCS methods
Cell culture
HeLa Kyoto (HK) cells (RRID: CVCL_1922) were a gift from S. Narumiya (Kyoto University, Kyoto,

Japan [Landry et al., 2013]) and grown in 1x high-glucose DMEM (Thermo Fisher Scientific;

#41965039) supplemented with 10% (v/v) FBS (Thermo Fisher Scientific; #10270106; qualified, Euro-

pean Union approved, and South American origin), 1 mM sodium pyruvate (Thermo Fisher Scientific;

#11360070), 2 mM L-glutamine (Thermo Fisher Scientific; #25030081) and 100 U/mL penicillin-strep-

tomycin (Thermo Fisher Scientific; #15140122) at 37˚C and 5% CO2 in 10 cm cell culture dishes

(Thermo Fisher Scientific). Cells were passaged every two to three days by trypsinization using

0.05% Trypsin-EDTA (Thermo Fisher Scientific; #25300054) at a confluency of 70–90%.

Generation of stably expressing H2B-mCherry cells
To generate cells stably expressing H2B-mCherry as DNA marker, cells were transfected with a plas-

mid encoding H2B-mCherry. In brief, 2 mg of pH2B-mCherry plasmid DNA was incubated with 200

mL of jetPRIME buffer and 4 mL of jetPRIME (Polyplus Transfection; #114–07) for 15 min before addi-

tion to cells grown to 80% confluency in one well of a Nunc 6-well plate (Thermo Fisher Scientific;

#140685) containing 2 mL of complete cell culture medium. After 4 hr the transfection mix was

changed to complete cell culture medium. Cells stably expressing H2B-mCherry were selected with

0.5 mg/mL puromycin (InvivoGen; #ant-pr-1).

Cell preparation for FCS experiments
For each FCS experiment, HK wild-type (WT) cells were seeded together with HK cells homozygously

expressing the EGFP-tagged protein of interest (POI) into individual wells of a Nunc 6-well plate

(Thermo Fisher Scientific; #140685) at a concentration of 2 � 105 cells per well and grown overnight

in a cell culture incubator. Alternatively, HK WT cells stably expressing H2B-mCherry

(Neumann et al., 2010) were seeded together with genome-edited cell lines additionally expressing

H2B-mCherry. On the next morning, 2 mM thymidine (Sigma-Aldrich; #T1895) in complete cell cul-

ture medium was added per well to arrest cells at the G1/S boundary. After 24 hr the thymidine

block was released by washing the cells three times with pre-warmed D-PBS. Directly after release

from the G1/S block, cells were trypsinized and 8 � 103 to 2 � 104 cells were seeded into individual

wells of a 96-well glass bottom plate (zell-kontakt; #5241–20) or a Nunc 8-well LabTek #1.0 cham-

bered coverglass (Thermo Fisher Scientific; #155411). HK WT cells in one well were transiently trans-

fected with a plasmid encoding free mEGFP (pmEGFP-C1; Addgene plasmid #54759, kindly

provided by J Lippincott-Schwartz) using FuGENE6 Transfection Reagent (Promega; #E2693) accord-

ing to the manufacturer’s instructions, while HK WT cells in another well remained untransfected. 8

hr after release from the first G1/S block, 2 mM thymidine in complete cell culture medium was

added per well. After 16 h cells were released from the second thymidine block as described before

by washing with D-PBS and adding complete cell culture medium.

FCS measurements of cells in G2 and G1 phases were performed in the same experiment at time

windows 6–9 hr and 14–20 hr, respectively, after release from double thymidine arrest. In prepara-

tion for G2/G1 phase experiments, cells were washed with D-PBS and 350 mL imaging medium

(CO2-independent imaging medium without phenol red; custom order based on #18045070 from

Thermo Fisher Scientific; supplemented with 20% v/v FBS (Thermo Fisher Scientific; #10270106;

qualified, European Union approved, and South American origin), 1 mM sodium pyruvate (Thermo

Fisher Scientific; #11360070) and 2 mM L-glutamine (Thermo Fisher Scientific; #25030081)) was

added per well. For cells not expressing H2B-mCherry as DNA marker, the imaging medium con-

tained 50 nM SiR-DNA (Spirochrome; #SC007; [Lukinavičius et al., 2015]).
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For FCS experiments of prometaphase cells, 6 hr after release from double thymidine arrest, the

complete cell culture medium was changed to imaging medium as described for G2/G1 experiments

and additionally supplemented with 330 nM nocodazole (Sigma-Aldrich; #SML1665). FCS measure-

ments of cells in prometaphase arrest were performed 2–15 hr after addition of nocodazole.

FCS measurements
FCS measurements and fluorescence images were recorded on a Zeiss LSM780, Confocor3, laser

scanning microscope equipped with a fluorescence correlation setup and a temperature control

chamber. Imaging was performed at 37˚C and using a C-Apochromat UV-visible-IR 40X/1.2-NA

water objective lens (Zeiss). Data acquisition was performed either manually or with an automatic

workflow by using ZEN 2012 Black software (Zeiss) and the software described in Politi et al.

(2018). An in-house-designed objective cap and a water pump enabled automatic water immersion

during data acquisition.

The effective confocal volume was determined using a 50 nM fluorescent dye solution containing

an equimolar mix of Alexa Fluor 488 (Thermo Fisher Scientific; #A20000) and Alexa Fluor 568

(Thermo Fisher Scientific; #A20003). The dye solution was excited with the 488 nm laser (laser at

0.6% excitation (exc.) power) and the 561 nm laser (laser at 0.15% exc. power) and photon counts

were recorded for 30 s and six repetitions using two avalanche photodiode detectors (APD). The

band pass filters (BPs) were set to 505–540 nm and 600–650 nm, respectively. For FCS measure-

ments of cells homozygously expressing EGFP-tagged POIs, photon counts were recorded from

three points in the nucleus/chromatin and 2–3 points in the cytoplasm using the 488 nm laser with

an exc. power between 0.6% and 1% depending on the protein expression level. Each FCS measure-

ment lasted 30 s and only one repetition was performed per FCS point. To determine background

fluorescence intensities and photon counts, FCS measurements of HK WT cells were performed. Sim-

ilarly, in order to determine the count per molecule (CPM) of free EGFP, FCS measurements of HK

WT cells expressing freely diffusing EGFP were conducted. These FCS measurements were taken

manually at one point both in the nucleus/chromatin and the cytoplasm for 30 s each by using the

same laser settings as described above for the EGFP-tagged POIs. An image indicating the FCS

positions inside a cell was acquired before starting the FCS measurements. When data were

acquired with the automatic workflow (30/34 data sets), a 3D image-stack was acquired at the end

of the FCS-measurements for estimating the nuclear/chromatin volume.

FCS analysis
Based on visual inspection of the images indicating the FCS positions, cells not corresponding to the

desired cell cycle stage, dead cells and FCS points outside the cell or in the wrong subcellular com-

partment were excluded. From the remaining measurements, the autocorrelation function (ACF), a

fit to a two-component diffusion model, and protein concentrations were determined (Politi et al.,

2018). For several cell lines, the POI-EGFP concentration in the cytoplasm of interphase cells was so

low that the recorded photon counts were close to background noise impairing a reliable estimation

of the ACF. To account for this, only FCS measurements for which the fits fulfilled following condi-

tions R2 >0.92, c2/N < 1.2 (N number of ACF time points) were included (~60% of the data). Further

outliers were removed based on Tukey’s fences of 3 times the interquartile range of CPMs and

CPMs below 10 times the mean CPMs measured for mEGFP-C1. The last quality control left on aver-

age 59% of the total data.

The number of molecules listed in Table 2 was estimated from the protein concentrations mea-

sured by FCS multiplied by the volumes of the respective compartments and the Avogadro’s con-

stant. For each cell, the nucleus/chromatin volume Vnuc was obtained from the segmented chromatin

signal of the 3D image-stack acquired at the end of the FCS measurement (Walther et al., 2018). In

case of failed segmentation or lack of 3D images (<20% of the cases) the average volume for the

specific cell-line and stage has been used. The cytoplasmic volume was calculated from

Vcyt ¼ Vcell � Vnuc »Vnuc Vr � 1ð Þ where we assume that the ratio of cell to nucleus/chromatin volume

Vr ¼ Vcell=Vnuc is constant for a specific cell stage. The following ratios were used: G2/G1-

phase Vr ¼ 3:04; Prometaphase Vr ¼ 5:72. The volume ratio values were obtained from 3D time-lapse

imaging data of HK cell lines (Cai et al., 2018; Walther et al., 2018). These time-lapse imaging data

sets include cellular volumes for mitotic stages from prophase, prometaphase up to cytokinesis from
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over 600 cells. Prophase (mitotic standard phase 1) volumes were used as a proxy for G2 volumes.

Prometaphase volumes (mitotic standard phase 5, 6, 7) were used for the volumes of nocodazole-

arrested prometaphase cells.

Bootstrapping was used to compute statistics of the ratios between FCS measurements and data

from LC-MS or from Cai et al. (2018) (Appendix 1—table 4, Appendix 1—table 5). For this, we

sampled with replacement the measurements of two methods to compute 100,000 pairs. For each

of these bootstrapped pair we compute the ratio. From the distribution of the ratios, we finally cal-

culated the medians and 68% distribution intervals.

Whereas LC-MS measurements represent the average of a potentially diverse population of Hela

cells, FCS-measurements rely on monoclonal populations of EGFP-tagged Hela cell lines. It is there-

fore possible that clonal variability (Walther et al., 2018) could contribute to the differences

between our LC-MS and FCS measurements. FCS only measures fluorescent molecules, thus any

protein in which the fluorophore is not visible, for example due to photobleaching or slow matura-

tion, will not be detected. Also, FCS cannot detect completely immobile molecules, although it can

detect local fluctuations of chromatin-bound molecules, which may arise either by movement of the

chromatin itself or by diffusion of molecules along chromatin. We corrected for the presence of a

non-diffusible pool by accounting for photobleaching (Wachsmuth et al., 2015; Politi et al., 2018),

however it remains possible that our FCS measurements underestimated the number of chromatin-

bound molecules.

Mathematical modelling of cohesin dynamics in G1 and G2
The absolute copy number of nuclear cohesin CT is the algebraic sum of the copy number of

unbound (U), dynamically-bound (D) and stably bound (S) cohesin forms:

CT ¼UþDþ S¼UþBT (1)

where BT represents the sum of all chromatin-bound cohesin complexes. Assuming that the rates of

chromatin binding and unbinding are balanced:

kon �U ¼ koff � D (2)

where the k’s refer to the first order rate constants (with a dimension of time�1) of individual steps in

the mechanism. Using the definitions of U = CT – BT and D = BT – S:

kon CT �BTð Þ ¼ koff � BT � Sð Þ (3)

the expression for BT:

BT ¼
kon

konþ koff
CT þ

koff

konþ koff
S (4)

which is convenient to normalise to total cohesin level (CT):

bT ¼
kon

konþ koff
þ

koff

konþ koff
s (5)

by introducing the fraction of total (bT = BT/CT) and stable (s = S/CT) bound cohesin complexes. This

equation tells us that stabilisation of cohesin on chromatin will lead to an increase of the chromatin-

bound fraction. Furthermore, the increase of the chromatin-bound fraction (bT) becomes a linear

function of the stable fraction (s) if the kinetic parameters (kon and koff) are constant, that is they are

not influenced by the stabilisation of a fraction of cohesin on the chromatin. The linear relationship

between the chromatin-bound (bT) and stable (s) fractions has a slope of
koff

konþkoff
with an intercept

of kon
konþkoff

. Notice that the sum of the slope and the intercept equals to one.

Equation 5 allows us to plot the equilibrium distribution of different cohesin forms as a function

of the stable fraction (s) (Figure 4B). The diagonal red line represents the fraction of the stable form

(s) with a slope of one. Since bT = d + s, the difference between the chromatin-bound (bT) and sta-

ble (s) forms is the dynamic (d) form. The value of the unbound form (u) is given by the difference

between the bT line (Equation 5) and one.
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Cells in G1 phase do not have any stable cohesin (s = 0), therefore their bound-chromatin fraction

(bT = 0.635) defines the intercept of Equation 5 (Figure 4B,G1 black circle). Since the slope is (1 –

intercept) which is equivalent to the fraction of unbound cohesin in G1 (0.365), Equation 5 has the

following parametric form:

bT ¼ 0:635þ 0:365 � s (6)

The experimentally derived fraction of stable cohesin (s) in G2 phase cells is 0.367 (Figure 3C).

According to Equation 6, at s = 0.367 the chromatin-bound fraction (bT) should have a value of

0.769 (=0.635 + 0.365*0.367) (Figure 4B,G2 black circle), consistent with the experimentally esti-

mated value of 0.728 (Figure 3C).
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Cai Y, Hossain MJ, Hériché JK, Politi AZ, Walther N, Koch B, Wachsmuth M, Nijmeijer B, Kueblbeck M, Martinic-
Kavur M, Ladurner R, Alexander S, Peters JM, Ellenberg J. 2018. Experimental and computational framework
for a dynamic protein atlas of human cell division. Nature 561:411–415. DOI: https://doi.org/10.1038/s41586-
018-0518-z, PMID: 30202089

Cattoglio C, Pustova I, Walther N, Ho JJ, Hantsche-Grininger M, Inouye CJ, Hossain MJ, Dailey GM, Ellenberg J,
Darzacq X, Tjian R, Hansen AS. 2019. Determining cellular CTCF and cohesin abundances to constrain 3D
genome models. eLife 8:e40164. DOI: https://doi.org/10.7554/eLife.40164, PMID: 31205001

Holzmann et al. eLife 2019;8:e46269. DOI: https://doi.org/10.7554/eLife.46269 24 of 31

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.46269.018
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126990
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126990
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126990
https://www.ebi.ac.uk/pride/archive/projects/PXD012712
https://www.ebi.ac.uk/pride/archive/projects/PXD012712
https://www.ebi.ac.uk/pride/archive/projects/PXD012712
https://doi.org/10.1016/j.cub.2003.10.036
https://doi.org/10.1016/j.cub.2003.10.036
http://www.ncbi.nlm.nih.gov/pubmed/14614819
https://doi.org/10.1126/science.aau1783
http://www.ncbi.nlm.nih.gov/pubmed/30361340
https://doi.org/10.1038/nature16496
http://www.ncbi.nlm.nih.gov/pubmed/26760202
https://doi.org/10.1186/s12915-015-0168-7
http://www.ncbi.nlm.nih.gov/pubmed/26248466
https://doi.org/10.1038/emboj.2013.7
https://doi.org/10.1038/emboj.2013.7
http://www.ncbi.nlm.nih.gov/pubmed/23361318
https://doi.org/10.1038/nature22063
https://doi.org/10.1038/nature22063
http://www.ncbi.nlm.nih.gov/pubmed/28424523
https://doi.org/10.1038/s41586-018-0518-z
https://doi.org/10.1038/s41586-018-0518-z
http://www.ncbi.nlm.nih.gov/pubmed/30202089
https://doi.org/10.7554/eLife.40164
http://www.ncbi.nlm.nih.gov/pubmed/31205001
https://doi.org/10.7554/eLife.46269
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Appendix 1

DOI: https://doi.org/10.7554/eLife.46269.019

Appendix 1—table 1. Peptide list. Isotopically labelled reference peptides used to quantify

cohesin subunit abundance and stoichiometry in HeLa cells. Note that SMC3 peptide ELAETEPK

was replaced with peptide EQLSAER in one of the two SCC1 immunoprecipitation experiments.

Protein Peptide sequence

SMC1 VANYIK

SMC3 ELAETEPK

SMC3 EQLSAER

SMC3 SNPYYIVK

SMC3 TDLYAK

SMC3 YYEVK

SCC1 DVIDEPIIEEPSR

SCC1 ETGGVEK

SCC1 LIVDSVK

STAG1 EDLLVLR

STAG1 LELFTNR

STAG1 YSADAEK

STAG2 LELFTSR

STAG2 YSVDAEK

DOI: https://doi.org/10.7554/eLife.46269.020

Appendix 1—table 2. LC-MS quantification of cohesin complex stoichiometry.

Quantification of cohesin subunits in SCC1 immunoprecipitates from chromatin or soluble

extracts isolated from G1, G2 or prometaphase synchronised HeLa cells. Numbers are

normalised relative to SCC1 abundance. Data are tabulated as mean [mean – s.d., mean + s.d.]

from two biological replicates and two technical replicates. For individual peptide counts, see

Figure 1—figure supplement 4.

G1 G2 Prometaphase

Protein
chromatin-
bound Soluble

chromatin-
bound Soluble

chromatin-
bound Soluble

SMC1 0.89 [0.87,
0.91]

0.86 [0.78,
0.94]

0.9 [0.82, 0.98] 0.77 [0.74,
0.8]

0.88 [0.81,
0.95]

0.84 [0.77,
0.91]

SMC3 0.95 [0.82,
1.08]

0.96 [0.79,
1.13]

0.97 [0.82,
1.12]

0.99 [0.8,
1.18]

0.98 [0.8, 1.16] 0.98 [0.8,
1.16]

SCC1 1 [0.91, 1.09] 1 [0.94, 1.06] 1 [0.92, 1.08] 1 [0.93, 1.07] 1 [0.91, 1.09] 1 [0.91, 1.09]

STAG1 0.15 [0.11,
0.19]

0.04 [0.01,
0.07]

0.11 [0.09,
0.13]

0.04 [0.03,
0.05]

0.13 [0.1, 0.16] 0.08 [0.05,
0.11]

STAG2 0.68 [0.56, 0.8] 0.7 [0.59,
0.81]

0.74 [0.66,
0.82]

0.76 [0.71,
0.81]

0.75 [0.53,
0.97]

0.73 [0.61,
0.85]
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Appendix 1—table 3. Protein concentration of cohesin subunits and regulators as

measured by FCS. Concentration of proteins in nM obtained from FCS measurements in the

nucleus/chromatin (identified by the H2B-mCherry or SiR-DNA signal) and cytoplasmic

compartment of cells. In G1 and G2 phase the protein concentrations in the cytoplasm were

close to or below the detection limit, leading to >70% failed quality control (Figure 2—source

data 1). Missing or italicised numbers indicate that the number of successful FCS

measurements was not sufficient to estimate the protein concentration. Note that the EGFP-

sororin cell line displayed a mitotic defect, raising the possibility that EGFP-sororin may be

hypomorphic. Data are tabulated as the median; the 68% interval of the distribution is listed in

brackets.

G1 G2 Prometaphase

Protein
nucleus/
chromatin cytoplasm

nucleus/
chromatin cytoplasm

nucleus/
chromatin cytoplasm

SCC1 332.00
[235.46;
464.19]

5.65 [1.56;
14.57]

290.03
[232.68;
494.03]

2.92 [1.52;
4.73]

98.55 [75.46;
135.37]

83.40 [61.79;
109.13]

STAG1 70.53 [41.61;
128.47]

1.32 [0.28;
3.79]

85.12 [65.32;
141.73]

0.45 [0.17;
1.53]

24.15 [16.23;
35.94]

15.95 [12.90;
21.11]

STAG2 282.54
[204.85;
375.89]

11.58 [3.48;
37.06]

281.55
[201.39;
372.99]

14.14 [4.65;
44.77]

105.42 [76.14;
149.19]

85.54 [60.34;
116.91]

NIPBL 196.95
[158.06;
300.70]

4.74 [2.40;
9.11]

166.18
[115.84;
223.47]

4.58 [2.53;
9.64]

56.83 [48.74;
75.62]

59.53 [45.93;
69.90]

WAPL 114.27 [86.52;
143.70]

- 98.07 [80.84;
116.29]

- 43.85 [35.51;
64.59]

43.71 [37.76;
61.59]

SORORIN 64.92 [35.49;
103.77]

0.90 [0.30;
2.38]

110.83 [53.43;
178.44]

2.17 [0.44;
13.05]

50.60 [35.37;
78.17]

40.76 [29.19;
61.15]

CTCF 187.65
[143.48;
247.89]

2.16 [0.55;
3.36]

166.60
[121.77;
226.64]

3.65 [3.40;
3.91]

93.18 [60.86;
136.82]

57.51 [34.12;
85.08]

DOI: https://doi.org/10.7554/eLife.46269.022

Appendix 1—table 4. Ratio of counts per molecule of EGFP-tagged proteins and

monomeric mEGFP. Distributions were estimated by bootstrapping the experimental

measurements (100,000 repetitions with replacement). Data are tabulated as the median; the

68% interval of the distribution is listed in brackets.

G1 G2 Prometaphase

Protein
nucleus/
chromatin cytoplasm

nucleus/
chromatin cytoplasm

nucleus/
chromatin cytoplasm

SCC1 0.79 [0.58,
1.20]

0.79 [0.58,
1.19]

0.85 [0.60,
1.31]

0.85 [0.60,
1.31]

0.85 [0.63,
1.10]

0.85 [0.63,
1.10]

STAG1 0.66 [0.39,
0.92]

0.66 [0.39,
0.93]

0.61 [0.19,
0.90]

0.61 [0.19,
0.90]

1.09 [0.81,
1.30]

1.09 [0.80,
1.30]

STAG2 0.92 [0.60,
1.19]

0.92 [0.60,
1.18]

0.94 [0.56,
1.19]

0.94 [0.56,
1.19]

1.07 [0.75,
1.31]

1.07 [0.75,
1.31]

NIPBL 1.01 [0.74,
1.57]

1.01 [0.74,
1.57]

0.96 [0.72,
1.28]

0.96 [0.72,
1.28]

0.91 [0.65,
1.28]

0.90 [0.65,
1.27]

WAPL 1.15 [0.90,
1.51]

1.15 [0.90,
1.51]

1.21 [0.99,
1.57]

1.21 [0.99,
1.57]

0.87 [0.66,
1.06]

0.87 [0.66,
1.06]

SORORIN 1.14 [0.83,
1.62]

1.14 [0.83,
1.61]

1.07 [0.75,
1.67]

1.07 [0.75,
1.67]

0.67 [0.44,
0.88]

0.67 [0.44,
0.89]

CTCF 0.87 [0.69,
1.08]

0.87 [0.69,
1.08]

0.74 [0.57,
0.96]

0.74 [0.57,
0.96]

0.85 [0.65,
1.03]

0.85 [0.65,
1.03]
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Appendix 1—table 5. Ratio of total protein copy number as estimated by FCS and LC-MS.

Distributions were estimated by bootstrapping the experimental measurements (100,000

repetitions with replacement). Data are tabulated as the median; the 68% interval of the

distribution is listed in brackets.

G1 G2 Prometaphase

Protein Ratio FCS:LC-MS Ratio FCS:LC-MS Ratio FCS:LC-MS

SCC1 1.26 [0.79, 2.07] 1.49 [0.89, 2.20] 1.80 [1.21, 2.87]

STAG1 2.36 [1.25, 4.33] 1.53 [0.93, 2.33] 3.29 [2.37, 4.24]

STAG2 0.76 [0.55, 1.04] 1.04 [0.76, 1.45] 1.04 [0.77, 1.37]

DOI: https://doi.org/10.7554/eLife.46269.024

Appendix 1—table 6. Number of peaks called following SMC3, STAG1, STAG2 and CTCF

ChIP-Seq in G1 phase. Peaks called using MACS peak caller version 1.4.2 with a p-value

threshold of 1e-10.

Protein Number of ChIP-seq peaks

SMC3 36713

STAG1 35068

STAG2 47063

CTCF 41502

DOI: https://doi.org/10.7554/eLife.46269.025

Appendix 1—table 7. Counts of solitary and co-localising peaks called following SMC3,

STAG1, STAG2 and CTCF ChIP-Seq in G1 phase. SMC3, CTCF, and the combined set of

STAG1 and STAG2 Chip-seq peaks identified in G1 HeLa cells. All subsets are shown.

Overlap Number of ChIP-seq peaks

SMC3 alone 1895

STAG1/2 alone 13718

CTCF alone 5842

SMC3 + STAG1/2 4234

SMC3 + CTCF 2286

STAG1/2 + CTCF 5402

SMC3 + STAG1/2 + CTCF 27725

DOI: https://doi.org/10.7554/eLife.46269.026

Holzmann et al. eLife 2019;8:e46269. DOI: https://doi.org/10.7554/eLife.46269 31 of 31

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.46269.024
https://doi.org/10.7554/eLife.46269.025
https://doi.org/10.7554/eLife.46269.026
https://doi.org/10.7554/eLife.46269

