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Dynamic reconfiguration of functional brain
networks during working memory training
Karolina Finc 1✉, Kamil Bonna1,2, Xiaosong He 3, David M. Lydon-Staley 3,4, Simone Kühn5,6,

Włodzisław Duch1,2 & Danielle S. Bassett 3,7,8,9,10,11

The functional network of the brain continually adapts to changing environmental demands.

The consequence of behavioral automation for task-related functional network architecture

remains far from understood. We investigated the neural reflections of behavioral automation

as participants mastered a dual n-back task. In four fMRI scans equally spanning a 6-week

training period, we assessed brain network modularity, a substrate for adaptation in biological

systems. We found that whole-brain modularity steadily increased during training for both

conditions of the dual n-back task. In a dynamic analysis,we found that the autonomy of the

default mode system and integration among task-positive systems were modulated by

training. The automation of the n-back task through training resulted in non-linear changes in

integration between the fronto-parietal and default mode systems, and integration with the

subcortical system. Our findings suggest that the automation of a cognitively demanding task

may result in more segregated network organization.
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The brain constantly adjusts its architecture to meet the
demands of the ever-changing environment. Such neural
adaptation spans multiple time scales, being observed over

seconds to minutes during task performance1–5, over days to
weeks during learning6–8, and over years during development9.
Like many other complex biological systems, the adaptability of
the brain is supported by its modular structure10. Intuitively,
modularity allows for dynamic switching between states of seg-
regated and integrated information processing, whose balance is
constantly adjusted to meet the requirements of our cognitive
faculties11,12. Understanding the patterns of these adjustments
and determining the rules that explicate their relation to human
behavior is one of the most important challenges for cognitive
neuroscience.

It is hypothesized that simple, highly automated sensorimotor
tasks can be maintained by a highly segregated brain organiza-
tion, while more complex and cognitively demanding tasks
require integration between multiple subnetworks13. Indeed,
switching from a segregated to a more costly integrated network
architecture is consistently reported as human participants tran-
sition to challenging tasks with heavy cognitive load1–5; in con-
trast, network organization during simple motor tasks remains
highly segregated3,4. Whether shifts toward network integration
depend on the level of task complexity or on the level of task
automation remains to be delineated12. Is it possible that a
complex, but fully automated task, can be performed without the
need for costly network integration?

Longitudinal studies, during which participants are scanned
multiple times while mastering a specific task, can shed light on
patterns of network adaptation related to learning and task
automation12. For example, Bassett et al.7 showed that training on
a visuomotor task over the course of 6 weeks leads to increased
autonomy between task-relevant subnetworks in motor and
visual cortices. In another study, Mohr et al.8 found increased
segregation of the default-mode system after short-term visuo-
motor training. Collectively, these findings suggest that an
increase in network segregation and a decrease in integration may
constitute a natural consequence of task automation. However,
these results refer to the training of simple motor tasks, which do
not require extensive network integration, in contrast to complex
tasks involving higher-order cognitive functions such as cognitive
control12. The consequence of complex cognitive task automation
on the balance between network segregation and network inte-
gration remains unknown.

In this study, we investigated whether mastering a demanding
working memory task affects the balance between network seg-
regation and integration during task performance. Does effortless
performance of the demanding cognitive task lead to the same
increase in network segregation that is characteristic of simple
motor tasks3,8? Is the breakdown of network segregation during
the changing demands of the cognitive task still necessary when
the cognitive task is automated? Finally, do we observe stronger
separation of subnetworks relevant to cognitive control when
tracking dynamical brain network reorganization throughout the
course of training? To address these questions, participants
underwent four functional magnetic resonance imaging (fMRI)
scans while performing an adaptive dual n-back task taxing
working memory over a 6-week training period. The dual n-back
task consisted of visuospatial and auditory tasks that were per-
formed simultaneously14. In the visuospatial portion of the task,
participants had to determine whether the location of the sti-
mulus square presented on the screen was the same as the loca-
tion of the square n-back times in the sequence; in the auditory
portion of the task, participants had to determine whether the
heard consonant was the same as the consonant they heard n-
back times in the sequence. To ensure that participants mastered

the task due to training, and not simply due to a repeated
exposure to the task, we compared their performance to an active
control group. While participants from both the experimental
and the control groups performed the same version of the dual n-
back task, with interleaved 1-back and 2-back blocks, inside the
fMRI scanner, only the experimental group trained their working
memory using an adaptive version of the task in 18 training
sessions outside the scanner. We examined network reconfi-
guration using static functional network measures to distinguish
distinct task conditions, and using dynamic network measures to
study fluctuations of network topology across short task blocks.

First, we investigated global changes in network segregation
(modularity) across different task conditions as compared with
rest. In line with the aforementioned research, we expected
modularity to decrease during dual n-back task performance
compared with rest, and also to decrease as the demands of the n-
back task increased. We also hypothesized that over the course of
training, network segregation during the n-back task would
increase, and the extent of demand-related modularity change
would decrease. In the systems relevant to working memory
performance—the frontoparietal and the default mode systems15

—we expected an increase in autonomy throughout the course of
training. To verify this hypothesis, we utilized previously devel-
oped dynamic network methods7 to assess the recruitment and
integration of the default-mode and frontoparietal systems.
Finally, we expected that changes in network architecture would
correspond to the level of task automation and training progress.

Our results demonstrate that adult human brain functional
networks not only reorganize during a working memory task but
also can be modulated by the level of expertise in the task. After
working memory training, brain networks are more segregated.
The increase in segregation is visible at the whole-brain level for
static networks, and also evidenced by an increased segregation of
the default-mode and task-positive systems when considering
dynamic changes in network organization. Automation of the
working memory task is accompanied by nonlinear changes in
coupling between the default-mode and frontoparietal systems
and engagement of the subcortical system. Together, these results
shed new light on the mechanisms underlying brain network
reorganization accompanying the automation of performance on
cognitively demanding tasks.

Results
Behavioral changes during training. Behavioral improvement in
the task can either occur as a result of training or occur in
response to repeated exposure to a task across multiple scanning
sessions. To distinguish the effect of intensive working memory
practice and task automation from the effect of repeated expo-
sure, we employed an active control group. When participants
from the experimental group underwent the challenging, adap-
tive, dual n-back working memory training, participants from the
control group performed a single, non-adaptive, 1-back working
memory task (Fig. 1).

The dual n-back task (1-back and 2-back conditions) was
performed in the scanner on the first day of the experiment
(Naive), after 2 weeks of training (Early), after 4 weeks of training
(Middle), and after 6 weeks of training (Late). We measured
participant performance as a d0, a measure based on signal
detection theory that takes into account both response sensitivity
and response bias16 (see Methods). Better cognitive performance
is characterized by higher values of d0. We expected that
participants from the experimental group would exhibit a
substantial increase of d0 during training, particularly for the 2-
back condition in comparison with the 1-back condition, the
latter being easy to master even without extensive training.
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Using multilevel modeling (see Methods), we found that
participants had significantly different d0, depending on the
training stage (Naive, Early, Middle, Late), condition (1-back vs. 2-
back), and group (experimental vs. control). Specifically, we found
a significant session × condition × group interaction (χ2(3)= 9.39,
p= 0.02; Fig. 2). The greatest improvement was observed in the
experimental group when comparing “Naive” to “Late” training
phases during the 2-back condition (mean 43.2% d0 improvement;
paired t test, two-sided: t(20)= −9.17, p < 0.0001, Bonferroni-
corrected). For comparison, the control group exhibited a 24.3%
increase in d0 during the 2-back condition (paired t test,two-sided:
t(20)=−6.45, p < 0.0001, Bonferroni-corrected). The increase in
d0 was significantly larger for the experimental group than for the
control group (two-sample t test two-sided: t(20)=−4.12, p=
0.004, Bonferroni-corrected; Fig. 2d).

In the 1-back condition, the experimental group displayed a
12.2% increase in d0 (paired t test, two-sided: t(20)=−3.18, p=
0.02, Bonferroni-corrected); no improvement was found in the
control group (paired t test, two-sided: t(22)=−1.91, p= 0.28,
Bonferroni-corrected) (see Fig. 2c). The change in d0 during the
1-back condition did not differ between the two groups (two-
sample t test, two-sided: t(39.64)=−0.52, p= 0.47). Interest-
ingly, in the experimental group we observed no significant
difference in performance between the 1-back condition and the
2-back condition after training (paired t test, two-sided: t(20)=
0.02, p= 0.98), while in the control group, the difference in
performance between conditions remained substantial (paired
t test, two-sided: t(20)= 4.91, p= 0.0016, Bonferroni-corrected).
This finding suggests that the 2-back condition, which was much
more effortful before training (“Naive” phase), was performed
effortlessly after training, at the same level as the 1-back task.

In sum, the results demonstrate that the experimental group
gradually improved in behavioral performance measured during
the fMRI scanning sessions, and that this improvement was
significantly greater than the corresponding effect in the control
group. We also replicated these findings using an alternative
measure of behavior, penalized reaction time (pRT) which
incorporates a measure of accuracy (see Supplementary Fig. 3
and Supplementary Methods).

Whole-brain network modularity changes. To establish whether
complex working memory task training leads to increased

network segregation at the whole-brain level, we investigated
network modularity during different sessions and load condi-
tions. Here, we employed a common community detection
algorithm known as modularity maximization17, which we
implemented using a Louvain-like locally greedy algorithm. The
modularity quality function to be optimized encodes the extent to
which the network can be divided into nonoverlapping com-
munities. Intuitively, a community is a group of densely inter-
connected nodes with sparse connections to the rest of the
network17. Modularity is a relatively simple measure of segrega-
tion, with high values indicating greater segregation of the brain
into nonoverlapping communities, and low values indicating
lesser segregation. Because modularity depends upon the net-
work’s total connectivity strength, we normalized each mod-
ularity score by dividing it by the mean of the corresponding null
distribution calculated on a set of randomly rewired versions of
the original networks18 (see Methods for details).

Functional network modularity may vary, depending on the
difficulty of the task. Several studies have reported a reduction in
modular structure during demanding n-back conditions2,3,5.
Here, we first investigated the differences between the high-
demand 2-back condition and the low-demand 1-back condition
as compared with a baseline resting-state scan acquired during
the first session (“Naive”) for all subjects. Using multilevel
modeling, we found a significant main effect of condition
(χ2(2)= 84.13, p < 0.00001). Planned contrast analysis revealed
that network modularity during the dual n-back task was lower
than network modularity during the resting state (paired t test,
two-sided: β=−0.20, t(88)=−11.37, p < 0.00001). Furthermore,
modularity was significantly reduced during the 2-back condition
relative to the 1-back condition (paired t test, two-sided: β=
−0.08, t(296)=−2.60, p= 0.01; Fig. 3). We note that the results
reported here use a functional brain parcellation composed of 264
regions of interests provided by Power et al.19; in robustness tests,
we performed the same analyses using the Schaefer parcellation,
and obtained the similar results (see Supplementary Fig. 16).

The modularity of functional brain network architecture
decreases appreciably during challenging task conditions, but is
the breakdown in modularity still present when the demanding
task is mastered? To address this question, we tested whether
modularity during the dual n-back task changed, depending on
the session, task condition, and group. Using a multilevel model
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Fig. 1 Study design. (Left) The dual n-back working memory task was performed in the scanner on the first day of the experiment (Naive), after 2 weeks of
training (Early), after 4 weeks of training (Middle), and after 6 weeks of training (Late). (Right) We investigated (1) changes in static modularity across task
conditions (1-back versus 2-back), and (2) dynamic fluctuations in network community structure from block to block.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15631-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2435 | https://doi.org/10.1038/s41467-020-15631-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(see Methods), we found a significant main effect of session (χ2

(2)= 19.40, p= 0.0002) and of group (χ2(1)= 6.62, p= 0.01).
However, the experimental and control groups did not differ by
session (χ2(1)= 1.44, p= 0.69), nor did we observe a significant
session by condition interaction (χ2(1)= 1.50, p= 0.68). A
planned contrast comparison showed that participants’ whole-
brain functional network modularity significantly increased from
“Naive” to “Middle” sessions (paired t test, two-sided: β= 0.15, t
(114)= 2.61, p= 0.01) and from “Naive” to “Late” sessions
(paired t test, two-sided: β= 0.24, t(114)= 4.05, p= 0.0001;
Fig. 4a, b). The experimental group showed a higher network
modularity (M= 3.09) than the control group (M= 2.87). To
summarize, we showed that the modularity of the functional
brain network generally increased during the training period.
However, the degree to which modularity changed between load
conditions remained stable. Groups did not differ significantly in
the change of modularity. These results suggest that the
functional brain network shifts toward a more segregated
organization as a result of behavioral improvement after training
and also after repeated exposure to the task. Although network
modularity increased to a similar extent in both conditions, the
demand-dependent change in modularity remained stable. One

could interpret these results as suggesting that a general increase
in modularity reflects the fact that less expensive information
processing is required within segregated brain subsystems after
training of the complex task.

To further explore the changes in modularity that might be
specific to each group and condition, we performed additional
analyses comparing modularity measured before and after
training (Fig. 4c, d). Specifically, we employed separate paired
t tests to investigate differences in modularity for each group and
condition between “Naive” and “Late” sessions. We found a
significant increase of modularity in the experimental group in
the 1-back condition (paired t test, two-sided: t(20)=−3.66, p=
0.006, Bonferroni-corrected) and in the 2-back condition (paired
t test, two-sided: t(20)=−3.33, p= 0.013, Bonferroni-corrected).
The increase in modularity observed in the control group was not
significant for either the 1-back condition (paired t test, two-
sided: t(20)=−2.35, p= 0.11, Bonferroni-corrected) or the 2-
back condition (paired t test, two-sided: t(20)=−1.88, p= 0.28,
Bonferroni-corrected). The change of modularity from “Naive” to
“Late” sessions did not significantly differ between groups for the
1-back condition (two-sample t test, two-sided: t(39.88)=−0.80,
p= 0.42) or for the 2-back condition (two-sample t test,
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two-sided: t(39.99)=−1.05, p= 0.30). These results indicate that
the experimental group displays increased network modularity
for both task conditions when moving from “Naive” to “Late”
sessions, suggesting that network segregation may be a con-
sequence of the 6-week working memory training. While the
same effect was not present in the control group, we did not
observe a significant group × session interaction, and therefore
further work is needed to inform our conclusions.

Behavioral gains resulting from working memory training
differed across participants, suggesting the existence of individual
differences in learning capabilities. Therefore, we also tested
whether the increase of modularity observed during the 2-back
condition in the experimental group was correlated with
behavioral performance after training as measured by a decrease
in d0. However, we did not find a significant relationship between
these two variables (Pearson’s correlation coefficient r= 0.08,
p= 0.71; Supplementary Fig. 20). This finding suggests that the
change of modularity is a general consequence of training and
may not reflect individual differences in behavioral improvement.

Our results confirmed the existence of a decrease in modularity
during increased cognitive demands. However, changes in
modularity during training were not different across conditions
or experimental groups. A significant increase in modularity from
“Naive” to “Late” sessions was found for the 1-back and 2-back
conditions for the experimental group, which suggests the
enhancement of network segregation associated with task
automation.

Dynamic reorganization of large-scale systems. The modular
architecture of functional brain networks is not static, but instead
can fluctuate appreciably over task blocks. Here, we used a
dynamic network approach to answer the question of whether
large-scale brain systems change in their fluctuating patterns of
expression during training. Based on a previous study of motor
sequence learning7, we expected that systems relevant to working
memory—the frontoparietal and the default mode—would
become more autonomous over the 6 weeks of working memory
training (Fig. 5a). To formally test our expectation, we investi-
gated the dynamic reconfiguration of the network’s modular

structure as subjects switched between blocks of the dual n-back
task. Pooling across conditions and sessions, we constructed a
multilayer network model of the data, in which each block cor-
responds to a unique layer, each region corresponds to a node,
and each functional connection corresponds to an edge. We then
employed a multilayer community detection algorithm that
estimates each node’s module assignment in each network
layer20. The presence of fluctuations in community structure
across task blocks is indicated by variable assignments of nodes to
modules across layers. For each subject and session, we sum-
marized these data in a module allegiance matrix P, where each
element Pij represents a proportion of blocks for which node i and
node j were assigned to the same module. We also applied a
normalization to allegiance matrices, to remove any potential bias
introduced by differences in the number of nodes within each
subsystem. Following the functional cartography framework
described by Mattar et al.21, we used P to calculate the recruit-
ment of all 13 large-scale systems, as well as the pairwise inte-
gration among them (see Methods for details). We selected these
measures to maintain consistency with the methodology used in a
previous study on the effects of motor sequence training on the
dynamics of functional brain networks7. Recruitment is defined
for each system separately, while integration is calculated for pairs
of systems. Intuitively, high recruitment indicates that nodes of
the system are consistently assigned to the same module across
different layers; this consistency reflects the non-random nature
of brain dynamics, in which a functional module is persistently
recruited for a task. High integration indicates that pairs of nodes
(where one region of the pair is located in one system and the
other region of the pair is located in the other system) are fre-
quently classified in the same module across layers). We used a
multilevel model to test whether recruitment and integration
coefficients differed between scanning sessions and experimental
groups.

First, we examine dynamic topological changes in the
frontoparietal and default-mode systems, which were directly
related to our hypothesis. Using a multilevel model, we observed a
significant session × group interaction effect when considering
changes in the recruitment of the frontoparietal system during
training (χ2(3)= 9.03, p= 0.028; Fig. 5b). The largest increase in
frontoparietal recruitment was observed in the experimental
group when comparing “Early” to “Late” training phases (paired
t test, two-sided: β= −0.07, t(120)=−2.892, p= 0.027, Bonfer-
roni-corrected; Fig. 5b). No significant changes from “Naive” to
“Late” training phases were observed in the control group (paired
t test, two-sided: β=−0.03, t(120)=−1.169, p= 1, Bonferroni-
corrected). Turning to an examination of the default mode, we
found a significant main effect of session (χ2(3)= 24.17, p <
0.0001) and of group (χ2(1)= 3.96, p= 0.046) on system
recruitment (Fig. 5c). However, the interaction effect between
session and group was not significant (χ2(3)= 2.66, p = 0.48).
Planned contrasts revealed that the default mode recruitment
increased steadily in both groups, and we observed the largest
increase between “Naive” and “Late” sessions (paired t test, two-
sided: β= 0.09, t(123) 5.00, p < 0.0001). The experimental group
displayed a higher default-mode recruitment than the control
group (paired t test, two-sided: t(165.6)=−3.03, p= 0.003). We
found a significant session × group interaction effect on the
integration between the frontoparietal and default-mode systems
(χ2(3)= 14.25, p= 0.0025) (Fig. 5d). The integration between these
two systems decreased from “Naive” to “Late” sessions only in the
experimental group (paired t test, two-sided: β= 0.07, t(120)=
4.37, p= 0.0002, Bonferroni-corrected). However, groups differed
from “Naive” to “Early” (two-sample t test, two-sided: β= 0.07,
t(120)= 2.16,p= 0.03) and from “Early” to “Middle” sessions
(two-sample t test, two-sided: β=−0.06, t(120)=−2.70, p= 0.02,
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uncorrected). Source data are provided as a Source Data file.
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Bonferroni-corrected): whereas the experimental group displayed
an inverted U-shaped curve of integration with training, the
control group displayed the opposite pattern. Collectively, these
results suggest that the increase of frontoparietal system recruit-
ment and the decrease of integration between the default-mode
and frontoparietal systems reflect training-specific changes in dual
n-back task automation. In contrast, the increase in default-mode
system recruitment may reflect more general effects of behavioral
improvement, as it was observed in both experimental and control
groups.

Next, we asked whether changes in dynamic topology could be
observed in other large-scale systems. Using multilevel modeling,
we observed three distinct types of changes occurring over time
regardless of the group (p < 0.05, FDR-corrected; Fig. 6a–c): an
increase in system recruitment, (2) an increase in the integration
between task-positive systems, and (3) a decrease in the
integration between default mode and task-positive systems
(Supplementary Fig. 7, Supplementary Tables 1 and 2). First, we
observed an increase in the recruitment beyond the default-mode
system—in salience—and auditory systems (Supplementary
Fig. 7a–c). Second, we observed an increase in the integration
between task-positive systems, including frontoparietal and
salience, dorsal attention and salience, and dorsal attention and

cingulo-opercular (Supplementary Fig. 7d–f). Third, for the
default-mode system, we observed a decrease in integration with
other task-positive systems: salience and cingulo-opercular
(Supplementary Fig. 7g–i). In addition, we also observed a
decrease in integration between the memory and somatomotor
systems, and between the default-mode and auditory systems
(Supplementary Fig. 7j, k). We observed a similar pattern of
changes for the Schaefer parcellation (Supplementary Figs. 17
and 18a). These results suggest that the increase of within-module
stability, the increase of default-mode system independence from
task-positive systems, and the decrease of integration between
task-positive systems reflect general effects of task training.

We also investigated the relationship between across-session
change in system recruitment or integration and across-session
change in behavioral performance for all large-scale systems. For
both brain and behavioral variables, we measured the change
from the first (“Naive”) to the last (“Late”) training sessions (see
Fig. 7a; Supplementary Table 6). We found a significant positive
correlation between change in behavior, as operationalized by a
change in d0 (2-back minus 1-back),and change of the default
mode (r= 0.33, p= 0.03, uncorrected) and salience (r= 0.34,
p= 0.03; uncorrected) systems recruitment. Greater behavioral
improvement was also associated with a higher increase of
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integration between frontoparietal and salience systems (r= 0.35,
p= 0.02, uncorrected) and a higher decrease of integration
between default-mode and task-positive systems: frontoparietal
(r=−0.31, p= 0.04, uncorrected) and salience (r=−0.41, p=
0.006, uncorrected). Analogous relationships for default-mode
recruitment and default-mode–frontoparietal integration with
behavioral improvement were observed for an alternative
measure of performance (pRT; Supplementary Fig. 9a). Note
that the correlation for the change in the d0 measure has opposite
sign when compared with the correlation with the change of pRT,
consistent with the fact that these two measures have different
interpretations (the lower pRT, the better; the higher the d0, the
better). In summary, a higher increase of stability in the default-
mode and salience systems, together with a decrease of default
mode–task-positive system integration may support behavioral
improvement in the task, regardless of whether the task was
additionally trained or not.

Finally, we also observed session × group interaction effects
beyond the default mode and frontoparietal systems (p < 0.05,
uncorrected; Fig. 6d, e; Supplementary Tables 3 and 4).
Specifically, in the experimental group, we observed a nonlinear
change in the integration of the subcortical system with the dorsal
attention, ventral attention, cingulo-opercular, and auditory
systems. An initial increase in integration with the subcortical
system (from “Naive” to “Early”) was followed by a decrease in
the integration at later time intervals. Interestingly, we observed
the reverse pattern for the change in integration between the
subcortical and default-mode systems: the integration first
decreased from “Naive” to “Early” sessions, and then increased
from “Early” to “Middle” sessions for the experimental group
(Supplementary Fig. 8; Supplementary Table 5). The pattern of
changes in integration also differed between the groups,
particularly so for the integration between cingulo-opercular
and memory systems, cingulo-opercular and uncertain systems,
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and dorsal attention and somatomotor systems. These results
suggest that task automation during initial stages of working
memory training might also be supported by an increased
communication between subcortical and other large-scale
systems.

We further tested whether changes in systems recruitment or
integration from “Naive” to “Early” sessions were associated with
performance improvement displayed by the experimental group.
Interestingly, we found that the behavioral change was positively
correlated with change of integration between multiple systems,
in particular: dorsal attention and somatomotor, dorsal attention
and subcortical, frontoparietal and somatomotor, dorsal attention
and cingulo-opercular, salience, and default mode. In contrast,
the increase of integration of subcortical system and cingulo-
opercular systems was negatively correlated with the change in
task performance (Fig. 7b; Supplementary Table 7). This pattern
of associations between behavioral and network changes suggests
that inter-systems communication might be necessary for
efficient task performance during initial stages of training.

In summary, we observed two patterns of dynamic changes in
network topology following working memory training. The first
pattern reflects improved behavioral performance, and is
characterized by a gradual increase in default-mode autonomy
and in the integration between task-positive systems. The second
pattern reflects changes related to task automation specifically in
the experimental group and is characterized by nonlinear changes
in default mode–frontoparietal integration, and in the integration
with the subcortical system.

Discussion
In this study, we aimed to verify the hypothesis that training on
an effortful cognitive task—a dual n-back—increases the segre-
gation of task-related functional brain networks. We found that
whole-brain modularity significantly differed between task con-
ditions, being the highest in the resting state, lower in the 1-back
condition, and even lower in the 2-back condition. In the
experimental group, modularity increased in response to working
memory training. We also observed two patterns of changes in
the dynamic network topology following training: (i) a gradual
increase in the segregation of default mode and task-positive
systems, and (ii) a nonlinear change in the default
mode–frontoparietal integration and integration of the sub-
cortical system. The general behavioral improvement in the task
in response to training was positively correlated with an increase
in the recruitment of the default-mode system and a decrease in
its integration with the frontoparietal system. Collectively, these
findings suggest that segregation of the default-mode and task-
positive systems supports general improvement in the task, while
dynamic communication of the default mode with the fronto-
parietal and subcortical systems supports more specific network
changes related to automation of the working memory task.

We observed that modularity during the resting state was
higher than during performance of the dual n-back task, and the
modularity during the low-demand task condition (1-back) was
higher than the modularity during the high-demand task condi-
tion (2-back). Our results are consistent with previous studies
providing evidence that network segregation is lowest (while
integration is highest) during a demanding n-back task, when
compared with a less demanding motor task or resting state3,4.
The observed difference between working memory loads is con-
sistent with a previous study from Vatansever et al.2 who reported
higher modularity during the 3-back condition compared with
the 0-back condition, and also consistent with a previous study
from Finc et al.5 who reported higher modularity during the 2-
back condition compared with the 1-back condition. Collectively,

the findings also support the Global Workspace Theory (GWT)13,
by showing that less demanding, highly automated tasks can be
performed within segregated modules, while more challenging
tasks require integration between multiple modules.

Despite the consistency between our findings and prior work, it
is important to note that these previous studies did not address
the question of whether a fully mastered demanding cognitive
task would still require a costly integrated workspace or could
instead be executed within specialized brain modules. Here, our
study expands upon prior work by offering the first evidence
supporting the latter hypothesis. We observed that although
modularity of the network generally increased through n-back
training, as measured during both 1-back and 2-back conditions
in the experimental group, the modularity difference between the
two conditions was preserved. This finding suggests that training
resulted in the increase of the baseline network segregation
during the task, which supports our hypothesis that mastered
cognitive tasks can be executed within a segregated network.
Modularity measured during the high-demand 2-back condition
after training exceeded the modularity during the low-demand 1-
back condition before training. However, even if the baseline
network segregation increased after the training, some level of
modularity breakdown during increasing cognitive demands
seems to be induced.

Interestingly, we did not observe differences between the
experimental and control group in the increase of network
modularity. The control group displayed a small increase of
modularity in the 1-back condition, suggesting that the segrega-
tion of the functional brain network may increase rapidly, also in
response to repeated exposure to the task. The control group
performed the dual n-back task four times during scanning ses-
sions, which resulted in a small behavioral improvement. This
result suggests that the increase of network segregation may be
sensitive to varying intensity of training in the task. Future studies
with a larger sample size should examine whether such gradation
exists.

The modular structure of functional brain networks is not
static, but instead undergoes dynamic reconfiguration throughout
a range of cognitive processes1,22–26. Recently developed dyna-
mical approaches to study brain networks are sensitive to the
temporal nature of the underlying neural signal, and therefore
can be used to probe the fluctuating patterns of connectivity
elicited by task performance. Using just such a dynamical
approach, Bassett et al.7 showed that the modular structure of
human brain functional networks fluctuates appreciably during
motor-visual learning, and that the degree of fluctuations changes
during a 6-week training paradigm. Task-relevant, motor and
visual networks exhibited increasing autonomy as the duration of
training increased, marking the emergence of automatic beha-
vioral responses. In light of this prior work, we hypothesized that
networks relevant to working memory function—including the
frontoparietal and default-mode systems—would increase their
autonomy after extensive training on a working memory task.

Here, we used a multilayer community detection algorithm to
determine whether modular structure of large-scale systems
change in response to n-back training. We further applied mul-
tilevel modeling27 to test for possible group and session differ-
ences in the dynamic network measures while controlling for
differences in individual baseline values. In testing our hypoth-
esis, we held in mind the observations of previous studies, which
have noted that the frontoparietal and default-mode systems can
both cooperate and compete during tasks that require cognitive
control, such as the n-back task15,28. Understanding the nature of
interactions between these two systems is therefore essential for
explaining the neural adaptation that occurs in response to
evolving cognitive demands. It is also not known whether
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dynamic interactions between these two networks may evolve
during cognitive training. Using dynamic network metrics, we
showed that the default-mode system increased its recruitment in
both groups, indicating that regions within this system were
coupled with other communities less often. The experimental
group displayed an increased frontoparietal recruitment and an
inverted U-shaped curve of integration between the default-mode
and frontoparietal systems with training. Enhanced default mode
intra-communication and decreased inter-communication with
the frontoparietal system were associated with better behavioral
outcomes after training (Fig. 8). We also observed significant
changes in dynamic network topology beyond the frontoparietal
and default-mode systems. In particular, regardless of the group,
we observed an increased recruitment of the salience and auditory
systems, decreased integration between the default-mode and
other task-positive systems (including salience and cingulo-
opercular), and increased integration between task-positive sys-
tems (including frontoparietal and salience, dorsal attention and
salience, dorsal attention and cingulo-opercular). These results
suggest the existence of the trade-off between segregation and
integration: whereas segregation increases between some systems,
the integration increases or decreases between others.

Some studies suggest that competitive interactions between the
task-positive frontoparietal system and the task-negative default-
mode system might be essential for higher-order cognitive
functions15,28. The frontoparietal system is composed of spatially
distributed brain areas, including the lateral prefrontal cortex,
anterior cingulate, and inferior parietal cortex29. Its activity is
commonly linked to the performance of tasks requiring cognitive
control, such as the n-back working memory task29,30. Prior work
offers evidence that the frontoparietal system is highly flexible
and dynamically interacts with other systems in response to the
changing demands of cognitive tasks1,23. In contrast, the default-
mode system exhibits high activity during internally directed
cognition, such as mind wandering and autobiographical mem-
ory31. The default-mode system is composed of spatially dis-
tributed brain areas, including the medial prefrontal cortex,
posterior cingulate, lateral parietal cortex, and both lateral and
medial temporal cortices31,32. The default mode’s activity is fre-
quently anticorrelated with the activity of systems that engage in

demanding cognitive tasks, such as the frontoparietal and dorsal
attention systems33. Recent studies, however, challenge a com-
mon view about existing antagonism between default mode and
frontoparietal systems, suggesting that the interaction between
these two systems is necessary for efficient behavioral control34,35;
default-mode regions display a positive coupling with task-
positive brain systems during working memory task
performance36,37 and may dynamically switch their connections
to support inter-module communication in high-demand n-back
task conditions5,38. Our observations expand upon prior studies
by demonstrating that the increase in default-mode segregation
and decrease of integration between the default-mode and fron-
toparietal systems may be an indicator of behavioral improve-
ment during working memory training. Moreover, the previous
study reported the relationship between the default-mode con-
nectivity changes and static modularity changes during n-back
task5. In our exploratory analysis, we also showed that default-
mode recruitment fluctuated between task conditions, and was
significantly higher in the 1-back condition than in the 2-back
condition (Supplementary Fig. 19) and, similar to modularity,
increased steadily in both groups. Here, we also observed a
positive relationship between the change in default-mode
recruitment and change of modularity from “Naive” to “Late”
session (Supplementary Fig. 21). As we did not observe the
relationship between changes of modularity and behavioral
improvement, we may conclude that studying the dynamics of
modular network structure enables a better prediction of beha-
vioral outcomes in response to training.

Our results are also consistent with prior observations that the
default-mode and frontoparietal systems may interact in a task-
dependent manner with the salience, cingulo-opercular, and
dorsal attention systems15,39. Bressler and Menon39 proposed a
model whereby efficient cognitive control is supported by the
dynamic switching between functionally segregated frontoparietal
and default-mode systems mediated by cingulo-opercular and
salience systems. Cocchi et al.15 proposed that task-related
reconfiguration is possible through flexible interactions within
and between overlapping meta-systems: (i) the executive meta-
systems,responsible for the processing of sensory information,
and (ii) the integrative meta-system,responsible for flexible
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integration of brain systems. These two meta-systems are com-
posed of transient coupling between three large-scale systems: the
frontoparietal system,the cingulo-opercular/salience system, and
the default-mode system. During high-demand task conditions,
the executive meta-system is formed by extensive interactions
between frontoparietal and cingulo-opercular/salience systems,
and the default-mode system is more segregated and less inte-
grated with the frontoparietal system40. Our results extend these
findings by presenting the evolving reconfigurations of large-scale
networks during mastery of the working memory task. We
showed that regardless of the group the default-mode system
reduced coupling with the cingulo-opercular and salience sys-
tems. These results suggest that increased segregation of the
default mode and task-positive networks may be a consequence of
more efficient task performance. A similar pattern of changes was
observed across two different subdivisions of the cortex into
systems (Power and Schaefer), together suggesting that the sal-
ience and cingulo-opercular systems that are thought to be
responsible for switching between antagonistic frontoparietal and
default-mode systems, appear to be more integrated with the
frontoparietal system and less integrated with the default-mode
system. This pattern of relations may be due to diminished
requirements for switching between these two systems when the
task is well learned.

Similar to modularity, the lack of group differences in the
pattern of these changes suggests that the increased the default-
mode autonomy and increased integration of task-positive sys-
tems might be related to a general improvement in task perfor-
mance. Such behavioral improvement, although much smaller
than in the experimental group, was also observed in the control
group during the 2-back condition. As participants performed the
task four times in the scanner, they inevitably trained the task to a
small extent. The presence of network reorganization in the
control group may suggest that changes in the default-mode
autonomy and integration of task-positive systems occur rela-
tively fast, even when the training is not intense. As participants
of our study were scanned in 2-week intervals, we could not
capture what behavioral improvement is necessary to invoke such
network reorganization. To better understand the dynamics of
these neuroplastic changes, future studies should examine day-to-
day network reorganization in response to training with different
intensities.

We also observed that groups differed in patterns of changes in
the subcortical system coupling. Specifically, the experimental
group displayed an inverted U-shaped curve of changes in (i) the
integration between the subcortical system and the dorsal atten-
tion system, and (ii) the integration between the ventral attention
system and the cingulo-opercular system; notably, the control
group displayed the opposite pattern. We observed the opposite
effect for coupling between the subcortical and default-mode
systems. Nonlinear changes in subcortical activity were also
observed in previous studies of the effects of working memory
training41. Consistent with our results, Kühn et al.41 found that
activity in the subcortical regions increased after 1 week of
working memory training, and decreased after 50 days of train-
ing. Previous studies suggested that subcortical activity can
mediate changes in working memory ability42. Because an
inverted U-shaped curve of changes in frontoparietal activity was
also observed following working memory training41,43, we spec-
ulate that subcortical activity may influence changes in the
frontoparietal system. Yet, results based on observation of brain
activity changes cannot provide information on how these two
systems interact. Our results show that in the initial training
phase, the subcortical system switched coupling from task-
positive systems to the default mode system. We observed the
opposite pattern for the frontoparietal system, which instead first

increased and then decreased its interaction with the default-
mode system. We speculate that the subcortical system supports
segregation of the task-positive and default-mode systems. Future
studies using effective connectivity approach could examine
whether such a cause and effect relationship exists.

The dynamic network approach extends our understanding of
training-related changes in brain function. Studies focusing on
changes in brain activity during a working memory training
reported a decrease of task-positive systems activation41,43,
commonly interpreted as a reflection of increased neural effi-
ciency within systems engaged in the task44. Here, we reported a
similar effect using a standard GLM-based approach (see Sup-
plementary Figs. 10 and 11; Supplementary Tables 8 and 9). We
also showed that our findings on the dynamic network changes
cannot be simply explained by the changes in brain activity
(Supplementary Fig. 12). The frontoparietal system dynamically
interacts with other large-scale systems15, and it is reasonable to
expect that working memory training might influence interac-
tions in the whole network. We observed training-related
increases in the segregation of the default mode and task-
positive systems that suggest more efficient and less costly pro-
cessing within these systems after training. Greater segregation of
the default-mode system and task-positive systems and smaller
integration between these systems were associated with beha-
vioral performance improvement. Moreover, we showed that an
increase of integration between multiple large-scale systems in
early phase of training was related to a greater behavioral
improvement in the experimental group, indicating that some
level of network integration is necessary when the task is not fully
automated. Taken together, the dynamic network approach
provides a unique insight into the plasticity and dynamics of the
human brain network.

Methods
Subjects. Fifty-three healthy volunteers (26 female; mean age: 21.17; age range:
18–28 years) were recruited from the local community through word-of-mouth
and social networks. All participants were right-handed, had normal or corrected-
to-normal vision, and had no hearing deficits. Seven participants did not complete
the study: one due to brain structure abnormalities detected at the first scanning
session, and six due to not completing the training procedure. The final sample
consisted of 46 participants who completed the entire training procedure, parti-
cipated in all four fMRI scanning sessions, and had neither history of neurological
or psychiatric disorders nor gross brain structure abnormalities. After the first
fMRI scan, participants were matched by sex and randomly assigned to one of the
two training groups: experimental and control (see the next section Experimental
Procedures). Each group consisted of 23 subjects with no group differences in age
(two-sample t test: t(42.839)= 0.22, p= 0.83) or fluid intelligence (two-sample t
test: t(42.882)= 0.51, p= 0.61), as measured by Raven’s Advanced Progressive
Matrices (RAPM)45. Informed consent was obtained in writing from each parti-
cipant, and ethical approval for the study was obtained from the Ethics Committee
of the Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in
Bydgoszcz, Poland, in accordance with the Declaration of Helsinki.

Experimental procedures. The study was performed at the Centre for Modern
Interdisciplinary Technologies, Nicolaus Copernicus University in ToruÅ
(Poland). Each participant who completed the entire study procedure attended a
total of 24 meetings at the laboratory. During the first meeting, participants were
familiarized with the study procedure and timeline, and were asked to provide basic
demographic information and informed consent. During the second meeting,
participants performed fluid intelligence testing with RAMP45. Then, participants
were scheduled for fMRI testing, which was performed before training, after
2 weeks of training, after 4 weeks of training, and after 6 weeks of training. Each
fMRI session was scheduled to be on the same day of the week and at the same
hour for each participant. These schedules varied in exceptional cases (holidays,
illness of participant, emergency). However, scanning procedures were always
performed between 24 h to 48 h after the last training session. After the first fMRI
session, participants were randomly assigned to one of two training groups: (1)
experimental, which trained working memory with an adaptive dual n-back task14,
and (2) a passive control group which interchangeably performed an auditory and
spatial 1-back task. We included this second group to control for differences in the
effect of training on task performance and fMRI signatures driven by repeated
exposure to a task.
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Two versions of the dual n-back task were used: (1) an adaptive dual n-back was
used in the training sessions of the experimental group only, and (2) an identical
dual n-back task with two conditions (1-back and 2-back) used during fMRI
scanning of both groups. Both scanning and training versions of the dual n-back
task consisted of visuospatial and auditory tasks performed simultaneously.
Visuospatial stimuli consisted of eight blue squares presented sequentially for 500
ms on the 3 × 3 grid with a white fixation cross in the middle of the black screen;
auditory stimuli consisted of eight polish consonants (b, k, w, s, r, g, n, and z)
played sequentially in headphones. Participants were asked to indicate by pressing
a button with their left index finger whether the letter heard through the
headphones was the same as the letter n-back in the sequence, and by pressing a
button with their right index finger to indicate whether the square on the screen
was in the same location as the square n-back in the sequence.

In the training version of the task, the n level of the dual n-back task increased
adaptively when participants achieved 80% correct responses in the trial, and the n
level decreased when participants made >50% errors in the trial. After each trial,
the n level achieved by a participant was recorded, and the mean n level during
each of 18 training session was used later to calculate the total training progress
(Supplementary Figs. 1 and 2). Participants from the control group performed a
single 1-back with auditory or visuospatial stimuli variants. To minimize boredom
of participants, the order of the 1-back variants was randomly selected at the
beginning of each training session. Therefore, each participant from the control
group had the same number of training trials on single auditory and visuospatial n-
back tasks. Participants completed a total of 18 sessions (30 min each) under the
supervision of the experimenter. Each participant completed 20 blocks (each
consisting of 20+ n trials, depending on the n level achieved by the participant) of
the n-back task during each training session. The study was double-blind; the
experimenter performing the fMRI examination was not aware of the group
assignment of the participants, and participants were not aware that the study was
designed in a way that there were two groups (experimental and control). The
apparatus used in the study consisted of two 17” Dell Inspiron Laptops, and two
pairs of Sennheiser headphones. Stimulus delivery was controlled by a Python
adaptation of the dual n-back task used by Jaeggi et al.14 (http://brainworkshop.
sourceforge.net/).

In the fMRI scanning version of the task, participants performed the dual n-
back task with two levels of difficulty: 1-back and 2-back. Each session of the task
consisted of 20 blocks (30 s per block; 12 trials with 25% of targets) of alternating 1-
and 2-back conditions. To enable dynamic network comparison across blocks, we
did not add any systematic variation to block length and block order. The
instruction screen was displayed for 4000 ms before each block, informing the
participant of the upcoming condition. Both visual and auditory stimuli were
presented in a pseudorandom order. Participants were asked to push the button
with their right thumb if the currently presented square was in the same location as
the previous square (1-back) or two squares back in the sequence (2-back) and, at
the same time, push the button with their left thumb when the currently played
consonant was the same as the previous consonant (1-back) or two consonants
back (2-back). The participants had 2000 ms to respond, and were instructed to
respond as quickly and accurately as possible. The experimental protocol execution
and control (stimulus delivery and response registration) employed version 17.2. of
Presentation software (Neurobehavioral Systems, Albany, NY), as well as MRI
compatible goggles (visual stimulation), headphones (auditory stimulation), and
response grips (response registration) (NordicNeuroLab, Bergen, Norway). Before
each scanning session, participants performed a short dual n-back training session
outside the fMRI scanner to (re-)familiarize them with the rules of the task.

All participants received equal monetary remuneration (200 PLN) for study
participation together with a radiological description and a CD containing their
anatomical brain scans.

Data acquisition. Neuroimaging data were collected using a GE Discovery MR750
3 Tesla MRI scanner (General Electric Healthcare) with a standard 8-channel head
coil. Structural images were collected using a three-dimensional high-resolution
T1-weighted gradient-echo (FSPGR BRAVO) sequence (TR= 8.2 s, TE= 3.2 ms,
FOV= 256 mm, flip angle= 12 degrees, matrix size 256 × 256, voxel size= 1 ×
1 × 1 mm, 206 axial oblique slices). Functional scans were obtained using a T2*-
weighted gradient-echo, echo-planar imaging (EPI) sequence sensitive to BOLD
contrast (TR= 2000 ms, TE= 30 ms, FOV= 192 mm, flip angle= 90 degrees,
matrix size= 64 × 64, voxel size 3 × 3 × 3mm, 0.5-mm gap). For each functional
run, 42 axial oblique slices were acquired in an interleaved acquisition scheme, and
5 dummy scans (10 s) were obtained to stabilize magnetization at the beginning of
the EPI sequence. Resting-state (10 min 10 s, 305 volumes) data were acquired at
the beginning of each scanning session. During the resting state, participants were
asked to focus their eyes on the fixation cross in the middle of the screen. The dual
n-back task data (11 min 30 s; 340 volumes) were acquired using the same data
acquisition settings (see Experimental Procedures for the task description.

Behavioral performance. To measure behavioral performance in the dual n-back
scanning sessions, we incorporated d’, a signal detection theory statistic16. This
measure combines both response sensitivity and response bias. For every subject,
session, task condition, and stimulus modality, we first divided all responses into
four categories: (1) hits—button press for targets, (2) misses—lack of response for

targets, (3) false alarms— button press for non-targets, and (4) correct rejections—
lack of response for non-targets. We defined hit rate H and false alarm rate F as:

H ¼ #hits
#hitsþ#misses

ð1Þ

F ¼ #false alarms
#false alarmsþ#correct rejections

ð2Þ
We calculated d0 measure as:

d0 ¼ ZðHÞ � ZðFÞ; ð3Þ
where Z(x) is the inverse of the cumulative Gaussian distribution. To get finite
values of d0 for the situations in which H or F was equal to 0 or 1, we used modified
values of either 0.01 or 0.99 instead. For each participant, we calculated average d0
for both modalities to represent a cumulative measure of performance during the
dual n-back task. We also calculated behavioral performance using an alternative
measure, penalized reaction time (pRT), which incorporates a measure of accuracy
(see Supplementary Fig. 4 for variability changes for these measures).

Data processing. After converting from DICOM to NifTI format, functional and
anatomical data were structured according to the BIDS (Brain Imaging Data
Structure) standard46 and validated with BIDS Validator (https://bids-standard.
github.io/bids-validator/). Neuroimaging data was preprocessed using fMRIPrep
1.1.147 a Nipype48-based tool. See Supplementary Methods for details on anato-
mical data processing. Functional data were slice time corrected using 3dTshift
from AFNI v16.2.0749 and motion corrected using MCFLIRT (FSL v5.0.950). This
process was followed by co-registration to the corresponding T1w using boundary-
based registration51 with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.1).
Motion correcting transformations, BOLD-to-T1w transformation and T1w-to-
template (MNI) warp were concatenated and applied in a single step using
antsApplyTransforms (ANTs v2.1.0) employing Lanczos interpolation.

Physiological noise regressors were extracted by applying CompCor52. Principal
components were estimated for the two CompCor variants: temporal (tCompCor)
and anatomical (aCompCor). A mask to exclude signal with cortical origin was
obtained by eroding the brain mask,ensuring that it only contained subcortical
structures. Six tCompCor components were then calculated including only the top
5% variable voxels within that subcortical mask. For aCompCor, six components
were calculated within the intersection of the subcortical mask and the union of the
CSF and WM masks calculated in T1w space, after their projection to the native
space of each functional run. Frame-wise displacement53 (FD) was calculated for
each functional run using the implementation of Nipype. The internal operations
of fMRIPrep use Nilearn54, principally within the BOLD-processing workflow. For
more details of the pipeline see https://fmriprep.readthedocs.io/en/latest/
workflows.html.

Non-smoothed functional images were denoised using Nilearn54 and Nistats.
We implemented voxel-wise confound regression by regressing out (1) signals from
six aCompCor components, (2) 24 motion parameters representing 3 translation
and 3 rotation timecourses, their temporal derivatives,and quadratic terms of both,
(3) outlier frames with FD > 0.5 mm and DVARS (Derivative of rms VARiance
over voxelS)55 with a threshold of ±3 SD, together with their temporal derivatives,
(4) task effects and their temporal derivatives56, and (5) any general linear trend.
Time series were filtered using a 0.008–0.25-Hz band-pass filter. We excluded four
high motion participants (two from the control group, and two from the
experimental group) with a mean FD larger than 0.2 mm and more than 10% of
outlier volumes in any scanning session (Supplementary Fig. 5).

Functional connectivity estimation. Functional connectivity is a measure of the
statistical relation between time series of spatially distinct brain regions. Time series
can be defined as signals from single voxels or as the mean of the signals from
anatomically or functionally defined groups of voxels, also known as brain par-
cels57. Here, we used a functional brain parcellation composed of 264 regions of
interests (ROIs) provided by Power et al.19. This parcellation was based on meta-
analysis, and has previously been used in many studies focused on task-based
network reorganization2,5,23. To validate our results, we also used a 300-ROI
parcellation provided by Schaefer et al.58, which is based on transitions of func-
tional connectivity patterns.

We created N ×N correlation matrices by calculating the Pearson’s correlation
coefficient between the mean signal time-course of region i and the mean signal
time-course of region j, for all pairs of ROIs (i, j). We retained only positive
correlations for further analysis. In the case of the dual n-back task, we employed a
weighted correlation measure, to control for delays due to the hemodynamic
response function (HRF)56. In this procedure, we first convolved task block
regressors with the HRF and applied a filter to retain only positive values of the
resultant time series. Then, original time series were filtered according to the task
condition and positive values of the HRF-convolved time series. Next, the weighted
correlation coefficient was calculated between the concatenated block time series,
with weights taken from the corresponding HRF-convolved signals. Finally,
Fisher’s transformation was employed to convert Pearson’s correlation coefficients
to normally distributed z-scores. This procedure resulted in 264 × 264 (Power
parcellation) and 300 × 300 (Schaefer parcellation) correlation matrices for each
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subject, session, and task condition (resting state, 1-back, 2-back). For the dynamic
network analyses, we calculated the weighted correlations for each block of the n-
back task, resulting in 264 × 264 × 20 and 300 × 300 × 20 matrices, where the third
dimension represents the number of task blocks (20 interleaved blocks of 1-back
and 2-back).

Static modularity. To calculate the extent of whole-brain network segregation, we
employed a Louvain-like community detection algorithm59 to optimize a common
modularity quality function17. This algorithm partitions the network into com-
munities, where nodes in a given community are highly interconnected among
themselves, and sparsely interconnected to the rest of the network. The modularity
quality index, Q, to be optimized was defined as follows:

QS ¼
1
2μ

X

ij

ðAij � γVijÞδðgi; gjÞ; ð4Þ

where μ ¼ 1
2

P
ijAij is the total edge weight of the network, Aij is the strength of the

edge between node i and node j, and γ is the structural resolution parameter. The
Kronecker delta function δ(gi, gj) equals one if nodes i and j belong to the same
module, and equals zero otherwise. The term Vij represents the connectivity
strength expected by chance in the configuration null model:

Vij ¼
kikj
2m

; ð5Þ

where ki and kj are the weighted degrees of nodes i and j, respectively, and m ¼
1
2

P
ijAij is the sum of all nodal weighted degrees.
Since the Louvain algorithm is non-deterministic, we run it 100 times, and then

consider the network partition with the highest modularity score across these runs.
It is important to note that the values of graph theoretical metrics can vary
markedly depending on the sum of connection strengths in the network60. To take
this effect into account, we normalized each individual modularity value against a
set of modularity values calculated for randomly rewired networks18. For this
purpose, we created 100 null networks using random rewiring of each original
functional network. Then, modularity scores were calculated for each null network,
thereby creating a null distribution. Finally, we normalized modularity values by
dividing them by the mean of the corresponding null distribution.

Multilayer modularity. To calculate measures of recruitment and integration, we
performed multilayer modularity maximization used a generalized Louvain-like
community detection algorithm introduced by Mucha et al.20. This algorithm
allows the optimization of a modularity quality function on a network with mul-
tiple layers. In our study, networks calculated for each separate block were con-
sidered as consecutive layers of the multilayer network. For each subject, session,
and multilayer network, we ran 100 optimizations of the modularity quality
function, defined as:

QML ¼ 1
2μ

X

ijsr

½ðAijs � γsVijsÞδsr þ δijωsr �δðgis; girÞ; ð6Þ

where Aijs represents the element of the adjacency matrix at slice s,Vijs represents
the element of the null model matrix at slice s, gir provides the community
assignment of node i in slice r, μ ¼ 1

2

P
ijκjr is the total edge weight of the network,

where κjs= kjs+ cjs is the strength of node j in slice s, the kjs is the interslice
strength of node j in slice s, and cjs= ∑rωjsr. For all slices, we used the
Newman–Girvan null model, also known as the configuration model, defined as:

Vijs ¼
kiskjs
2ms

; ð7Þ

where ms ¼ 1
2

P
ijAijs is the total edge weight of slice s. In this optimization, there

are two free-parameters: γs and ωjsr. The parameter γs is the structural resolution
parameter for slice s, and the parameter ωisr represents the connection strength
between node j in slice s and node j in slice r. These two parameters can be used to
tune the size of communities within each layer and the number of communities
detected across all layers, respectively. Here,in line with previous studies we set γ=
121. Due to the interleaved nature of our experimental design, ω= 1 for slices from
the same task condition, and ω= 0.5 for slices from different task conditions.

Network diagnostics. Multilayer community detection results in a single-module
assignment N × T matrix, where each matrix element represents the module
assignment of a given node for a given slice. To summarize the dynamics of module
assignments for each subject and session, we calculated an N ×N module allegiance
matrix, P, where the element Pij represents the fraction of network layers for which
node i and node j belong to the same community7,21:

Pij ¼
1
OT

XO

o¼1

XT

t¼1

ak;oi;j ; ð8Þ

where O is the number of repetitions of the multilayer community detection
algorithm (here, O= 100), and T is the number of slices (here 20 task blocks). For

each optimization o and slice t,

ak;oi;j ¼ 0; if nodes i and j are in the same module

1; otherwise:

�
ð9Þ

To characterize the dynamics of large-scale systems recruitment and
integration, we employed methods of functional cartography7,21. These measures
allow us to summarize how often regions from the system of interest are assigned
to the same module. We can define the recruitment of system S as:

RS ¼
1
n2S

X

i2S

X

j2S
Pi;j: ð10Þ

The recruitment of system S is high when regions within the system tend to be
assigned to the same module throughout all task blocks. Similarly, we can define
the integration coefficient between system Sk and system Sl as:

ISkSl ¼
1

nSk nSl

X

i2Sk

X

j2Sl
Pij: ð11Þ

Systems of interest are highly integrated when regions belonging to two
different systems are frequently assigned to the same community.

To remove potential bias introduced by the differences in the number of nodes
within each system, we used permutation approach to normalize values of
recruitment and integration coefficients. For each subject and session, we created
Nperm= 1000 null module allegiance matrices by randomly permuting
correspondence between ROIs and large-scale systems. We then calculated
functional cartography measures for all permuted matrices. This procedure
yielded null distributions of recruitment and integration coefficients resulting
solely from the size of each system. In order to obtain normalized values of Rs
and ISkSt , we divided them by the mean of the corresponding null distribution. We
also calculated recruitment and integration coefficients based on multilevel
community detection for signed networks (Supplementary Methods, Supplementary
Figs. 13–15).

Statistical modeling. Due to the nested nature of the study data, we used two-level
(trials nested within participants) and three-level (trials nested within sessions
nested within participants) multilevel models27 (MLM) at four points during our
analysis of the data. In all cases, random intercepts were estimated. The significance
of models was estimated with chi-square tests, where models with increasing
complexity were compared and the resulting value of likelihood ratio test (χ2) and
corresponding p-value were reported61. The MLM analysis was performed using
nlme62 R package.

Behavioral changes during training. To investigate behavioral changes in
behavioral performance depending on the session, task condition, and group, we
used a three-level multilevel model with d0 as the dependent variable and with
group (two factors: experimental and control), condition (two factors: 1-back and
2-back, reference category: 1-back), and session (four factors: Naive, Early, Middle,
Late; reference category: Naive) as independent variables. In addition to the main
effects (group, condition, session), we included the following interaction terms:
group × session, condition × session, group × condition, and group × condition ×
session.

Modularity at baseline. To investigate the dependence of static modularity at
baseline on task condition, we used a two-level multilevel model with static
modularity as the dependent variable and with task condition (3 factors: rest, 1-
back, 2-back, two orthogonal contrasts: rest vs. 1-back and 2-back, 1-back vs. 2-
back) as the independent variable. The main effect of condition was tested.

Training-dependent changes in static modularity. To investigate the
dependence of static modularity on the session, task condition, and group,we used
a three-level multilevel model with static modularity as the dependent variable and
with group (two factors: experimental and control), condition (two factors: 1-back
and 2-back), and session (four factors: Naive, Early, Middle, Late, reference
category: Naive) as independent variables. In addition to the main effects (group,
condition, session), we included the following interaction terms: group × session,
condition × session, group × condition, and group × condition × session.

Changes in dynamic network metrics. To investigate changes in the integration
and recruitment of large-scale systems, we used a two-level multilevel model with
the diagnostic measure (recruitment or integration) as the dependent variable and
with group (two factors: experimental and control) and session (four factors: Naive,
Early, Middle, Late, reference category: Naive) as independent variables. In
addition to the main effects (group, session), we included the following interaction
term: group × session.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary

Data availability
The raw behavioral data and fMRI results are available for download at https://osf.io/
wf85u/ (https://doi.org/10.17605/OSF.IO/WF85U). The source data underlying Figs. 2–7,
and Supplementary Figs. 1–21 are provided as a Source Data file. The raw fMRI data are
available from the corresponding author on request.
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Code availability
All code used for neuroimaging and behavioral data processing and statistical data
analyses are publicly available at https://osf.io/wf85u/ (https://doi.org/10.17605/OSF.IO/
WF85U).
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