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Abstract 

Age-related memory impairments have been linked to differences in structural brain parameters, 

including cerebral white matter (WM) microstructure and hippocampal (HC) volume, but their 

combined influences are rarely investigated. In a population-based sample of 337 older 

participants (Mage=69.66, SDage=3.92 years) we modeled the independent and joint effects of 

limbic WM microstructure and HC subfield volumes on verbal learning. Participants completed 

a verbal learning task over five learning trials and underwent magnetic resonance imaging 

(MRI), including structural and diffusion scans. We segmented three HC subregions on high-

resolution MRI data and sampled mean fractional anisotropy (FA) from bilateral limbic WM 

tracts identified via deterministic fiber tractography. Using structural equation modeling, we 

evaluated the associations between learning rate and latent factors representing FA sampled from 

limbic WM tracts, and HC subfield volumes, as well as their latent interaction. Results showed 

limbic WM and the interaction of HC and WM – but not HC volume alone – predicted verbal 

learning rates. Model decomposition revealed HC volume is only positively associated with 

learning rate in individuals with higher levels of WM anisotropy. We conclude that structural 

characteristics of limbic WM regions and HC volume jointly contribute to verbal learning in 

older adults.  
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Hippocampal Subfields and Limbic White Matter Jointly Predict Learning Rate in Older Adults 

Age-related deficits in verbal learning and memory have a long history of study in 

psychological and cognitive sciences (Kausler, 1994; Korchin and Basowitz, 1957; Salthouse, 

1985). Individual differences in learning and memory in older adults are linked with differences 

in both regional gray matter volumes in the medial temporal lobe (MTL; Petersen et al., 2000) 

and microstructural measures of limbic white matter (WM) pathways (see Madden et al., 2012 

for a review). However, few studies to date have investigated the influences of both classes of 

neuroanatomical correlates of verbal learning, using two magnetic resonance imaging (MRI) 

modalities, in a population-based cohort of older adults. Arguably, modeling learning and 

memory as a function of a larger, integrated neural system affords a more balanced perspective 

over traditional univariate modeling of individual neural structures (Aggleton, 2014).  

Verbal learning is commonly tested via serial presentation of lexical stimuli, followed by 

tests of free or cued recall and recognition. For instance, multiple neuropsychological 

instruments assessing verbal learning repeatedly present the same stimulus list over multiple 

successive learning trials; following each presentation, participants freely recall as many items as 

possible (Baldo et al., 2002; Schmidt, 1996). Although the sum of recalled items is commonly 

used as measure of aggregate performance, the slope of change in memory performance across 

learning trials can serve as an estimate of the rate of learning (Jones et al., 2005). Although many 

studies have explored the neural correlates of age-associated decrements in delayed mnemonic 

retrieval, fewer have investigated the structural brain correlates associated with learning rate 

(Gifford et al., 2015). These initial studies suggest that individual differences in learning rate are 

associated with hippocampal (HC) volumes in normal aging and mild cognitive impairment 

(Bonner-Jackson et al., 2015; Gifford et al., 2015), and may afford a more sensitive behavioral 
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correlate of brain organization. Although prior work has linked larger hippocampal subregional 

volumes in Cornu Ammonis (CA) and dentate gyrus (DG) to better verbal learning, associative 

memory, and higher longitudinal retest improvements (Bender et al., 2013; Mueller et al., 2011; 

Shing et al., 2011), this has not been investigated as a correlate of learning rate.  

In addition to HC, other established neuroanatomical correlates of age-associated 

memory decline include structurally linked afferent and efferent limbic WM pathways measured 

via diffusion magnetic resonance imaging (dMRI; Bender et al., 2016; Bennett et al., 2014; 

Charlton et al., 2013; Fletcher et al., 2013; Henson et al., 2016; Metzler-Baddeley et al., 2011a; 

Sasson et al., 2013; Sepulcre et al., 2008; Stoub et al., 2006; see Preston and Eichenbaum, 2013; 

Shing et al., 2008 for reviews). In particular, these extant reports implicate cingulum bundle, 

including dorsal and parahippocampal segments, fornix, and uncinate fasciculus (UF) as primary 

WM correlates of age-related memory declines. Furthermore, associations between total HC 

volume and memory in older adults are inconsistent (Van Petten, 2004), and suggest other, less 

elucidated factors may modify this relationship. One possibility is that its structure includes 

multiple functionally and cytoarchitectonically distinct subregions, which show differential 

associations with aging and with mnemonic processes (Braak et al., 1996; Duvernoy, 2005; 

Insausti et al., 1998; Kiernan, 2012; Wilson et al., 2006). This perspective suggests that the 

relationship between total HC volume and memory may be attenuated by the lack of functional 

and structural specificity (Van Petten, 2004). Alternatively, associations between HC volume and 

memory may be modified by related factors, such as the extent of WM connectivity (Metzler-

Baddeley et al., 2019). However, the statistical interaction between HC volumes and limbic WM 

microstructure has not been tested previously. 
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Investigating the links of different HC subfields and limbic WM fiber tracts to episodic 

memory requires a sufficiently large sample and the incorporation of multiple MRI measurement 

approaches. The Berlin Aging Study-II (BASE-II; Bertram et al., 2014; Gerstorf et al., 2016) 

includes over 1500 healthy older adults, a subset of whom underwent MRI neuroimaging. The 

sample is sufficiently large to permit the use of structural equation modeling (SEM), which 

allows the confirmatory construction of learning performance and brain parameters as latent 

factors, moving from an observed level to a more valid construct level. These latent factors then 

serve as a basis for exploring brain–behavior associations as between–construct correlations, 

independent of measurement error. Thus, following the plea of Brandmaier et al. (2013), we use 

SEM as a statistical tool that combines the benefits of both confirmatory and explanatory modes 

of scientific inquiry. 

Specifically, we were interested in modeling the rate of learning across five free recall 

trials of a test of verbal learning (Helmstaedter and Durwen, 1989; Schmidt, 1996) to test the 

notion that rate of learning is a more sensitive correlate of brain structure and organization than 

the intercept. By evaluating the combined contributions from both limbic WM and HC subfield 

volumes under the SEM framework, our goal was to simultaneously model multiple distinct, but 

interdependent structural neural correlates of learning.  Our initial approach was more 

exploratory by freely estimating all associations between individual HC and WM factors and 

verbal learning slope and intercept. We expected a similar pattern of anatomical associations 

with learning as previously reported: higher FA in cingulum and fornix tracts and larger 

hippocampal volumes, particularly of CA and DG (Bender et al., 2016; Bennett et al., 2014; 

Madden et al., 2012). Herein, we also tested the general hypothesis that aggregate, latent 

measures of HC volume and limbic white matter fractional anisotropy in older adults are both 
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associated with verbal learning rate. Furthermore, we hypothesized that individual differences in 

rates of learning would be associated with individual differences in the interaction between HC 

volume and FA in limbic WM. 

Methods 

Participants. Study data were drawn from the first wave of the BASE-II cohort (Bertram 

et al., 2014; Gerstorf et al., 2016), a population-based study of older and younger adults living in 

Berlin, Germany. The baseline cohort included 1532 older adults from 60 to 88 years of age. 

None of the participants took medication that might affect memory function, and none had 

neurological disorders, psychiatric disorders, or a history of head injuries. All participants 

reported normal or corrected to normal vision and were right-handed. All participants were 

invited to two cognitive sessions with an exact interval of seven days and at the same time of day 

to avoid circadian confounding effects on session differences in performance. Participants were 

tested in groups of 4–6 individuals. The ethics section of the German Psychological Society 

approved the study (SK 012013_6). All participants had provided informed consent in accord 

with the Declaration of Helsinki.  

After completing the comprehensive cognitive assessment in BASE-II, MR-eligible 

participants were invited to take part in one MRI session within a mean time interval of 3.2 

months after the cognitive testing. The subsample consisted of 345 older adults aged 61–82 years 

(mean age 70.1 years, SD = 3.9 years, 39% female). We excluded six participants following 

technical errors in cognitive test administration, and we excluded two additional participants 

with scores below 25 on the Mini-Mental Status Examination (MMSE; Folstein et al., 1975). 

Most participants’ MMSE scores were well above this cut-off (mean = 28.61, SD = 1.15). 

BASE-II participants in the MRI cohort did not differ from those who did not undergo MRI 
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scanning in terms of educational attainment, cognitive performance, or MMSE scores (for all, t < 

1.0), although the MRI cohort was significantly younger than the non-MRI cohort (t = 2.577, p < 

.05) by approximately 6 months. The final sample retained for analysis included 337 older adults 

(mean age = 69.66, SD = 3.92 years). Sample demographics showed a greater proportion of men 

(61.7%) than women (38.3%), and mean level of years of education nearing one year of 

university (mean = 14.07, SD = 2.90 years).  

Magnetic Resonance Imaging (MRI) 

Image acquisition. All MRI data were acquired on a 3T Siemens Magnetom Tim Trio 

scanner. For most cases, a 32-channel head coil was used, although in two cases a 12-channel 

coil was used as the 32-channel coil provided an uncomfortable fit. MRI data acquisition 

included a T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence, 

acquired in the sagittal plane with a single average, repetition time (TR) = 2,500 ms, echo time 

(TE) = 4.77 ms, with an isotropic voxel size of 1.0 × 1.0 × 1.0 mm, using a 3D distortion 

correction filter and pre-scan normalization with FOV = 256, and GRAPPA acceleration factor = 

2. Acquisition also included a single T2-weighted, turbo spin echo (TSE) high-resolution 

sequence in a coronal direction, oriented perpendicularly to the long axis of the left HC, with 

voxel size = 0.4 × 0.4 × 2.0 mm, 30 slices. TR = 8,150 ms, TE = 50 ms, flip angle = 120°, 

positioned to cover the entire extent of the HC. A single-shot, echo-planar imaging, diffusion 

weighted sequence was also acquired in transverse plane with TR = 11,000 ms, TE = 98 ms, in 

60 gradient directions, diffusion weighting of b = 1,000 s/mm2, seven volumes collected without 

diffusion weighting (b = 0) and generalized autocalibrating partially parallel acquisitions 

(GRAPPA) acceleration factor = 2 with an isotropic voxel of 1.70 mm3.  
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Diffusion MRI Processing. All diffusion-weighted images (DWI) underwent an initial 

quality control (QC) process using DTIPrep v. 1.2.4 (Oguz et al., 2014), software to eliminate 

noisy gradient directions and correct for motion and eddy currents.  

Free water estimation and removal. The influence of partial volume artifacts from 

cerebral spinal fluid (CSF) is an established limitation of the single-tensor diffusion tensor 

imaging (DTI) model that is often used in the context of tractography (Concha et al., 2005; 

Metzler-Baddeley et al., 2011b; Pasternak et al., 2009), particularly in regions directly adjacent 

to ventricular CSF, such as the fornix (Jones and Cercignani, 2010; Metzler-Baddeley et al., 

2011a). To address this limitation, tensor data were corrected for CSF contamination on a voxel-

by-voxel basis, using the free water elimination MATLAB code (FWE; Pasternak et al., 2009), 

resulting with free-water corrected diffusion tensors. The free water corrected tensors were then 

decomposed using FSL to produce FA image maps.  

Sample template creation. We used DTI-TK (Zhang et al., 2006) software to align all 

participants’ data into a common template.  The complete procedures for inter-subject 

registration are detailed in Supplementary Materials.  

Region of Interest (ROI) creation. Individual ROIs reflecting seed regions, regions of 

inclusion, and regions of exclusion were drawn on the template-space FA image, colored by 

orientation image output as an option by DTI-TK in ITK-SNAP (www.itksnap.org; Yushkevich 

et al., 2006). All template-space ROIs were nonlinearly deprojected to native space, where they 

were inspected for errors by one of the authors (A.R.B.). Following published deterministic 

tractography approaches for these regions (Bennett et al., 2014; Malykhin et al., 2008; Metzler-

Baddeley et al., 2011a), we created ROIs for tractography of four, bilateral limbic WM: dorsal 

cingulum bundle (CBD), parahippocampal cingulum bundle (CBH), posterior fornix, and 
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uncinate fasciculus (UF). The procedures for tractography mask creation, placement, and spatial 

transformation from standard to native space are detailed in Supplementary Materials.  

Constrained spherical deconvolution (CSD) tractography. To enhance the anatomical 

validity and minimize the potentially confounding influences of crossing fiber populations, we 

performed diffusion MR tractography using constrained spherical deconvolution (CSD), a 

method that fits a fiber orientation distribution (FOD) to each voxel and performs tractography 

based on peaks in the FOD (Tournier et al., 2007; Tournier et al., 2004). CSD tractography is 

considered superior to other commonly used approaches for delineating WM tracts of interest, 

such as white matter skeletonization, due to greater anatomical precision for any given tract 

(Metzler-Baddeley et al., 2011a). MRtrix3 (Tournier et al., 2007; Tournier et al., 2004) software 

was used for CSD-based deterministic tractography on the DWI data following QC, but before 

any free water correction. Response function estimation used the method previously described 

(Tournier et al., 2013) with maximum spherical harmonic degree = 4. Following default 

procedures ("Beginner DWI Tutorial," 2017), two separate FOD images were produced using the 

estimated response function, one using a whole brain mask, and the other using the thresholded 

FA mask (here FA prior to free water elimination was used). The whole brain mask was used 

only for tractography of the fornix, as using the thresholded FA masked FOD data did not permit 

sufficient information for reliable tractography of fornix, whereas use of the whole brain mask 

for other regions produced excessive spurious and anatomically implausible streamlines (i.e., 

crossing sulci). For fornix, a secondary mask was also applied, in which the operator (A.R.B.) 

drew an inclusionary ROI to cover the fornix, but exclude other regions of the ventricles, the 

thalamus, and choroid plexus. Additional exclusionary masks were liberally applied outside 

these regions to limit any spurious streamlines. The thresholded, FA-masked FOD data were 
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used for CSD tractography of the other regions: CBD CBH, and UF. All streamline outputs were 

inspected by the same person (A.R.B.) using the MRtrix image viewer to ensure complete 

inclusion and to check for spurious streamlines (see Fig. SM1 for an example of sampled 

streamlines). Additional information on streamline inspection is available in Supplementary 

Materials. Following streamline generation and inspection, we used streamlines to sample 

median free-water corrected FA values, and then calculated the mean value across all streamlines 

in each tract of interest.  

Hippocampal subfield morphometry. HC subfield regions included were based on 

methods from prior work (Bender et al., 2013; Daugherty et al., 2016; Mueller et al., 2011; 

Mueller et al., 2007; Shing et al., 2011), and included separate regions for SUB, and 

aggregations of CA1 and 2 (CA1/2), and an aggregation of CA3 and the DG (CA3/DG).  

Optimized automated segmentation. We used the Automated Segmentations of 

Hippocampal Subfields (ASHS; Yushkevich et al., 2015a; Yushkevich et al., 2010) software 

with a customized atlas for HC subfield morphometry (Bender et al., 2018). Because it uses 

multi-atlas label fusion methods, ASHS may be more sensitive to individual differences in HC 

subfield morphology, than single-atlas approaches, such as Freesurfer. The customized atlas was 

built using a modified version of the manual demarcation and tracing rules described previously 

(Daugherty et al., 2016; Keresztes et al., 2017; see Supplementary Materials for more 

information). 

ICV correction. We sampled the intra-cranial vault (ICV) as described previously 

(Bender et al., 2013; Keihaninejad et al., 2010), using the brain extraction tool (BET; Smith, 

2002) in FSL 5.0 (Jenkinson et al., 2005; 2012) on the MPRAGE images (further detail is 

provided in Supplementary Materials).  
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Cognitive Testing 

The Verbal Learning and Memory Test (VLMT; Helmstaedter and Durwen, 1989) is a 

German version of the Rey Auditory Verbal Learning Test (Schmidt, 1996). Participants heard a 

list of 15 nouns, serially presented via headphones. Presentation of the list was followed by a 

recall phase in which a computer screen prompted the participants to type as many words as they 

could remember from the list. This was repeated over five learning trials, each with the same 

word list. The same list of German nouns was used for all participants. The present analyses are 

based on the five verbal learning trials and do not include data from the delayed recall and 

recognition tasks that are also part of the VLMT. 

Data Conditioning 

ICV values were divided by 1,000 to align the scales of HC subfields and ICV, and to 

increase numerical stability in the parameter estimation. We corrected each of the subregional 

HC volumes for ICV using the analysis of covariance approach (Bender et al., 2013; Jack et al., 

1989; Raz et al., 2005). All analyses reported below used the adjusted HC subfield volumes. In 

addition, all FA values were centered at their respective sample means and HC subfield volumes 

were standardized to z-scores.  

Data Analysis 

Overview. Data modeling and analysis was performed in Mplus 7 (Muthén and Muthén, 

2012). We used latent factor analysis to explore associations among verbal learning, HC subfield 

volumes, and WM FA within an overall multivariate model. Model specification proceeded in an 

iterative fashion. The first step involved specifying, testing, and refining individual measurement 

models for latent factors in each domain, including: 1) a latent growth model across learning 

trials (specified below) yielded LVs for intercept and slope, 2) three separate HC subfield 
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volume LVs, and 3) four LVs representing mean FA of four WM tracts of interest (see Table 

SM1 for factor loadings). Following this, we combined these individual measurement models 

with a structural model to test associations across domains between all latent factors (Fig. 1). 

Next, we specified an additional model to test the fit of separate second-order LVs representing 

the HC and WM factors (Fig. 2A). Second-order LVs are constructed from other estimated LVs, 

rather than observed indicators. Thus, this approach permits estimation of overall HC and WM 

factors based on their constituent LVs by subregion or tract, which should provide more reliable 

brain factor estimates. We then tested regression paths from the second-order LVs HC and WM 

to the learning slope LV. Last, we modeled the latent interaction (Fürst & Ghisletta, 2009; 

Maslowsky, Jager, & Hemken, 2014; Little, Bovaird, & Widaman, 2006) between the HC and 

WM LVs to test the hypothesis that the association between HC volume and learning is modified 

by WM microstructure.   

All models used full information maximum likelihood (FIML) to account for missing 

data without requiring pairwise deletion. Goodness of model fit was assessed by multiple indices 

including chi-square (χ2), chi-square value divided by degrees of freedom (χ2/df), comparative fit 

index (CFI), root mean square error of approximation (RMSEA), and standardized root mean 

square residual (SRMR). We evaluated models according to commonly accepted goodness-of-fit 

thresholds, that is, non-significant chi-square values, CFI values > 0.95, RMSEA values reliably 

< 0.05, and SRMR values < 0.05 indicate good model fit (Bentler, 1990; Hooper et al., 2008). 

Verbal learning latent growth model. We modeled verbal learning by fitting a latent free 

basis model (McArdle, 1986), a type of latent growth model (LGM; Duncan et al., 2013; 

Meredith and Tisak, 1990) to the five learning trials. LGM is commonly used to assess latent 

change over successive occasions, and generally includes a LV for the intercept, and LVs 
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representing hypothesized change trajectories. LGM commonly specifies fixed factor loadings in 

incrementing value following a specific change function (i.e., linear, quadratic, etc.) across 

sequential indicators. In contrast, the latent free basis model fixes the factor loadings of the first 

and last trials at one and zero, respectively; the other factor loadings are freely estimated. 

Descriptions of the full modeling procedures for the LGM are reported in Supplementary 

Materials. Briefly, however, it should be noted that initial attempts to fit the LGM with only 

intercept and linear slopes were poor fit for the data (Table SM3). However, latent basis models 

may be the best approaches for estimating relative change over trials when linear, quadratic, 

cubic or other functional patterns do not provide a good fit for the data (Berlin et al., 2013).  

WM tract and HC subregional factor models. To model each brain imaging parameter, 

we used a confirmatory factor analysis (CFA) approach (see Supplementary Materials for a 

complete description). That is, we fit individual, single-LV models for each of the three HC 

subfield volumes and for each combination of the four WM tracts. For each single-LV model, 

left and right hemisphere brain parameter measures (i.e., FA or mm3 brain volume) served as 

dual indicators (Bender and Raz, 2015; Raz et al., 2005). In all dual-indicator models of brain 

imaging parameters, the LV’s variance parameter was fixed to 1 and the factor loadings for both 

indicators were freely estimated, as were the residual variances. This approach of separate LVs 

per region was preferred over combining all indicator loading into a single factor (see 

Supplemental Materials for a complete description).  

Combined model. Next, we specified a combined model that included: (a) the verbal 

learning intercept and slope LVs; (b) the three LVs of HC subfields volume; and (c) four LVs of 

FA in WM tracts. Then we estimated a fully crossed latent covariance matrix for each combined 

model. We used bootstrapped resampling with 1,000 draws to generate confidence intervals 
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around the combined model parameters, and to test significance of the combined model 

parameters.  

Second-order factor model. In the following steps, we re-specified the model to estimate 

two second-order factors: one representing all four WM LVs and one representing the four HC 

subfield LVs (Fig. 2A). This model was initially estimated with covariances freely estimated 

among LVs. Following the observation of good fit, we then respecified the model to include 

directional regression paths from the LVs representing both WM and HC to the LGM slope and 

intercept LVs. Although such regression procedures imply causal relationships, it is worth noting 

that the data were cross-sectional and thus cannot inform regarding order or directionality of age-

related changes (Lindenberger et al., 2011).  

Latent moderated structural equation (LMS) models. Following successful convergence 

and estimation of the second-order factor model, we followed published suggestions for 

modeling the latent interaction (Fürst & Ghisletta, 2009; Maslowsky, Jager, & Hemken, 2014; 

Little, Bovaird, & Widaman, 2006) between the LVs for the HC and WM second-order factors. 

We then compared model fit between the models with and without the latent interaction using 

log-likelihood ratio tests. In addition, we estimated difference in R2 and variance accounted for in 

learning rate with and without estimating the interaction between WM and HC. Next, we applied 

the Johnson-Neyman (1936; Preacher et al., 2006) technique for plotting the effects of each LV 

in the interaction, WM and HC, on the learning rate LV, at different levels of the other. That is, 

we plotted the effects of HC volume on learning rate at different levels of WM. Last, we tested 

simple slopes of each WM or HC predictor on learning slope for each level of the other.  

Covariate models. To determine if the regression paths to verbal learning from the two 

latent factors representing the brain (i.e., WM and HC), and from their latent interaction are 
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influenced by relevant demographic variables, we re-evaluated the second-order factor and LMS 

models with the inclusion of the covariates, age in years, sex, and number of years of formal 

education. Years of age and education were centered at their respective sample mean.  

Results 

Associations between WM, HC, and learning parameters. Initial models for WM and HC 

showed that individual factor models by subregions or WM tracts fit better than single factors 

models (Table SM2). Similarly, the latent basis free LGM fit better than modeling learning as a 

linear slope. Furthermore, combining the verbal learning LGM with the individual factors for the 

seven LVs representing HC subfield volumes and limbic WM tracts also resulted in excellent fit. 

This combined model estimated associations between the seven LVs representing the structural 

brain parameters – free-water corrected FA in four limbic WM fiber tracts and ICV-corrected 

volumes in three HC subregions – and verbal learning (Fig. 1). 

In the combined model, we found that higher learning rate was significantly associated 

with higher FA in CBH (std. est. = 0.207, p = .002) and fornix (std. est. = 0.160, p =.025).  No 

additional significant associations were observed between HC subfield LVs and verbal learning. 

Of note, the intercept factor was not significantly associated with any brain factor or with the 

slope LV.  
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Figure 1. Diagram of the ‘combined model,’ with only significant correlations (i.e., p < .05) 
shown. The estimated model included the fully saturated latent correlation matrix. Larger ellipses 
with small double-headed arrows represent latent variables (LVs) with variance either fixed at 1 
or freely estimated (*). Small single-headed arrows between LVs and their respective observed 
indicators reflect factor loadings, with the value of the factor loading pre-specified as an integer 
or freely estimated (*). The rectangles reflect the observed indicators for each measurement, and 
the small circles with double-headed arrows reflect their residuals and residual variance; all 
residual error variance parameters were freely estimated. In the LGM portion on the right side of 
the figure, (right) factor loadings for the LGM slope LV were originally estimated using a latent 
basis free model. The intercept (all factor loadings fixed to 1), and slope with factor loadings 
represent individual differences in growth across the verbal learning trials. (See Table SM3 for a 
comparison for factor loadings and fit to a model with linear slope). Larger curved bidirectional 
arrows represent significant covariances between LVs (p < .05), and covariance path values 
reflect standardized parameters. The figure shows only the significant associations within each 
brain domain (i.e., among HC subfield LVs, and among LVs for WM tract FA), and between 
WM and HC factors. In addition, the bold covariance double-headed arrows show significant 
associations between brain LVs and the slope LV for the LGM on learning trials.  
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Table 1. Differences in explained variance with and without latent interaction 
 
  Original Model    Latent Interaction Model  Difference 

Model βYX1 βYX2 R2   βYX1 βYX2 βX1X2 R2 ΔR2 

No Covariates 0.452 0.290 0.074  0.372 0.293 0.486 0.110 0.036 

Age 0.426 0.030 0.038  0.358 0.048 0.479 0.077 0.040 

Age, Sex 0.416 0.019 0.036  0.297 -0.050 0.461 0.060 0.025 

Age, Sex, Edu 0.391 0.024 0.032  0.227 -0.273 0.483 0.050 0.017 

 
Note. R2 and ΔR2 (i.e., change in R2) was calculated using the formula provided by Maslowsky et 
al., (2015). βYX1: SEM model parameter for regression path to verbal learning slope latent 
variable (LV) from latent factor WM (X1). βYX2: SEM model parameter for regression path to 
verbal learning slope LV from latent factor HC (X2). βX1X2: Covariance between the LVs for HC 
and WM. R2 values reflect only variance in verbal learning slope LV explained by the two latent 
factors WM (X1) and HC (X2), and by their latent interaction. ΔR2: difference in R2 values with 
and without latent interaction. In covariate models, R2 estimates reflect inclusion of age, sex and 
education.  
 

Second-order factor model. Based on the combined model, we also specified a model in 

which the four WM factors UF, CBD, CBH, and fornix, load onto a second-order LV 

representing WM FA, and the three HC subfield factors SUB, CA1/2, and CA3/DG load onto a 

second-order LV representing HC volume (Fig. 2A). Following the observation of a 

nonsignificant relationship between brain LVs and the intercept of the LGM, we re-specified the 

model to only estimate the direct paths between the two second order LVs and the learning slope 

LV; this model specification proved a good fit for the data (Table SM2). In addition, the R2 

values output by Mplus showed the second order factors accounted for a large and significant 

proportion of the variance in their constituent LVs (Table SM4). However, the only significant 

covariance between LVs was a positive association between the WM factor representing 

combined FA and the learning slope parameter (r = .195, p = .007). Notably, HC was associated 
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with neither the WM factor nor the learning curve LV. In addition, the LGM intercept LV was 

also unrelated to other latent factors. 

Latent moderation model. Next, using the LMS approach as implemented in Mplus, we 

estimated 1) the latent interaction between the HC and WM second-order LVs, and 2) the direct 

regression paths from the HC and WM second-order LVs and the latent interaction parameter to 

the intercept and slope on the LGM (Fürst & Ghisletta, 2009; Maslowsky, Jager, & Hemken, 

2014; Little, Bovaird, & Widaman, 2006). The use of the maximum likelihood estimation with 

robust standard errors (MLR) estimator necessary for LMS in Mplus does not provide standard 

fit indices for model comparison. Thus, we used log-likelihood ratio tests to compare fit between 

the models with and without the latent interaction. Modeling the latent moderation effect resulted 

in a significantly better fit (Table SM6). In addition, we estimated difference in R2 and variance 

accounted for in learning rate with and without estimating the interaction between WM and HC 

and calculated the differences in explained variance using the formula provided by Maslowsky et 

al. (2015; Table 1). The model with the latent interaction explained an additional 3.6% of 

variance in verbal learning over models without estimating parameter. 

Next, we followed the Johnson-Neyman (1936) technique for plotting the effects of each 

LV in the interaction, WM and HC, on the learning rate LV, at different levels of the other. That 

is, we plotted the effects of WM on learning rate at different levels of HC volume, and vice 

versa. Last, we extended this approach to test simple slopes of each WM or HC predictor on 

learning slope for each level of the other predictor (Clavel, 2015; Fig. 3). The effects of both HC 

and WM factors on rate of verbal learning is only apparent at higher levels of the other. That is, 

the positive effect of HC volume on the learning slope LV is only apparent at values of the WM 

factor above the sample mean. Moreover, the effect of WM on the verbal learning slope LV is 
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only significant in individuals with HC factor scores above the sample mean (Fig. SM3). We 

confirmed this by re-specifying the model to include additional constraints to test the simple 

slope of HC on verbal learning separately for WM factor standardized values of ± 0.5 (Clavel, 

2015). Model results showed that whereas the low slope of HC on the learning LV at –0.5 on the 

WM factor was nonsignificant (est. = 0.050, p = .841; 95% CI = –0.436 to 0.535), the high slope 

was significant (est. = 0.536, p = .015; CI = 0.105 to 0.967). The positive relationship between 

HC volume and verbal learning rate was only apparent among those with higher FA in limbic 

WM. 

To further probe the moderation effect, we saved the standardized factor scores from the 

model using the factor score regression method. Subsequently, we subdivided the sample 

distributions for the standardized WM and HC factors into tertiles and used these to examine the 

results of Johnson-Neyman plots. We compared mean levels of the learning slope and intercept 

LVs across the nine groups (i.e., 3 WM tertiles ´ 3 HC tertiles). For the first HC tertile, the mean 

learning intercept was significantly higher in the first WM tertile (mean = 5.767, sd = 1.228) than 

in the third WM tertile (mean = 5.179, sd = 1.163; t(77) = 2.182, p = .032), but did not differ in 

slope (p = .130). That is, those participants with the lowest levels of both WM and HC had 

higher mean recall than those with smaller HC and higher FA in limbic WM. For the third or 

highest tertile of HC, the mean learning slope was significantly lower in the first WM tertile 

(mean = 3.494, sd = 3.217) than in both the second WM tertile (mean = 5.236, sd = 2.122; t(73) 

= –2.899, p < .001), and the third WM tertile (mean = 6.235, sd = 2.487; t(70) = –4.067, p < 

.001). 

Examining zero-order correlations between learning slope and HC volume by different 

levels of WM (Fig. 4, Top) showed individuals in the lowest tertile of FA in limbic WM exhibit 
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negative associations between HC volume and learning slope (r = –0.317, p = .001), which 

differed from those both in the middle WM factor tertile (r = 0.207, p = .028) and in the third 

WM factor tertile representing highest FA (r = 0.346, p < .001). We then performed additional 

comparisons between effects, separately for each tertile of the HC factor distribution (Fig. 4, 

Bottom). In the middle and highest HC tertiles, the associations between HC volume and 

learning slope differed between those at the highest and lowest levels of WM. We repeated this 

approach to evaluate differences in the correlation between the slope and intercept LVs across 

the different levels of WM, separately for each HC factor tertile. Among participants in the third 

HC factor tertile, those in the highest tertile of the WM factor higher intercept LV was associated 

with lower slope (r = –0.265); however, this relationship was positive in both the middle (r = 

0.512), and lower WM tertiles (r = 0.224). 

Covariate models. We repeated the modeling process to assess demographic influences of 

three relevant covariates: years of age, and educational attainment, both centered at their 

respective sample means, and participant sex. Model fit was acceptable across all covariate 

models (Table SM5). Following inclusion of the three covariates, the path representing direct 

effect from the WM LV to learning rate was no longer significant (estimate = .227, p = 0.256; 

95% CI = –0.165 to 0.620). However, the path from the HC´WM latent interaction term to the 

learning rate LV remained significant (estimate = 0.483, p = .013; 95% CI = 0.102 to 0.864).  

There were other significant covariate effects worth noting. Older age was associated 

with lower learning slope (estimate = –0.530, p = .011; 95% CI = –0.937 to –0.124) and with 

smaller HC (estimate = –0.267, p < .001; 95% CI = –0.399 to –0.135). Model results also 

revealed a significant effect of sex on the intercept LV (estimate = 0.592, p = .011; 95% CI = 

0.137 to 1.046) showing superior performance by women over men. 
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Next, we evaluated the differences in levels of covariates across the tertiles of WM and 

HC. Separately, for each of the three HC factor tertiles we evaluated one-way ANOVAs with age 

as the dependent variable and WM tertile as the independent variable. There was only a 

significant effect of WM tertile on age for the lowest tertile of the HC factor, F(1,110) = 4.837, p 

= .030. Post hoc Student’s t-tests showed that among the participants in the first tertile of HC 

factor (n = 112), those whose WM factor scores were in the lowest (i.e., first) tertile were 

significantly younger than those in the third tertile: t(77) = –2.152, p = .035. That is, in 

participants with smaller hippocampi, younger age was associated with lower FA in limbic WM. 

We repeated this process to evaluate differences in educational attainment. The ANOVA showed 

a significant effect of WM tertile on education only for the second tertile of HC, F(1,110) = 

9.564, p = .003. Post hoc Student’s t-tests showed that among the participants in the second 

tertile of the HC factor (n = 113), those with lowest WM factor scores had fewer self-reported 

years of formal education than those with the highest limbic FA: t(72) = –3.060, p = .003. 
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Figure 2. Data modeling steps for second-order models and latent moderated structural equation 
models. A. Initial specification of the second-order latent variable (LV) model. No covariances 
or regression paths between LVs are illustrated. B. Reduced illustration of the specified model 
(indicators and error variances not shown). Initial specification without latent interaction 
included regression paths from the HC and WM/FA second-order LVs to the slope and intercept 
LVs. Dashed lines indicate nonsignificant regression paths, and solid lines reflect significant 
paths. C. The latent interaction model showing significant paths from HC and WM/FA factors to 
the slope LV. The dot symbolizes the latent interaction between the HC and WM/FA factors. 
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Figure 3. Johnson-Neyman plot illustrating the decomposed interaction to test the moderating 
effect of limbic white matter FA (WM) on the effect of hippocampal volume (HC) on the verbal 
learning slope LV. The x-axis represents the continuous moderator – here, the standardized white 
matter (WM) factor score, and the y-axis represents the effect of the hippocampus (HC) latent 
variable (LV) in the latent interaction on the verbal learning slope parameter, adjusted for other 
model parameters. The solid regression line reflects the association between the adjusted effect 
of the hippocampal factor on the learning slope LV, as a function of level in the WM factor. The 
dotted lines represent the upper and lower 95% confidence band around the regression slope. The 
solid horizontal line at y = 0, and the dotted vertical line at x = 0 are superimposed to assist with 
interpretation. Regions where the confidence bands overlap with y = 0 indicates the levels of the 
x-variable in which the effect represented by the regression slope are not significant; this is 
denoted by dark gray shading. The confidence bands overlap with zero until the WM factor score 
is slightly greater than 0.15, demonstrating that the adjusted effect of HC volume on learning is 
only apparent at non-negative values of the WM factor (i.e., area with lighter gray shading).  
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Figure 4. Decomposition of the effects of the latent interaction between hippocampus (HC) and 
white matter (WM) on the latent variable (LV) representing the slope across learning trials based 
on WM tertiles. All axes scales are depicted using standardized scores. For all plots, separate 
symbols and fitted regression lines represent each of the three tertiles of the WM distribution 
representing low, middle, and high FA values. In all, the solid regression line and circle symbols 
represent the lowest third of the WM factor distribution, the short-dashed regression line and 
triangle symbols represent the middle third, and the top third are represented by the long-dashed 
regression line and square symbols.  Top: Scatter plot showing the HC LV factor score on the x-
axis plotted against the learning slope LV on the y-axis, separately for each of the three tertiles of 
the WM distribution. Higher HC volume is associated with higher learning slope only in the 
middle and highest tertiles of the WM factor. For the lowest tertile of WM, higher HC volume is 
associated with lower learning rate.  Bottom:  Scatter plots showing the HC factor score (x-axis) 
plotted against the learning slope LV (y-axis), separately for each of the three tertiles of the WM 
distribution. Separate plots by tertiles of the HC factor: lowest (left), middle (middle), and 
highest (right). 
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Discussion 

We used latent factor modeling to evaluate the relationships between multiple limbic 

structures and learning in a large, population-based cohort study of older adults. The present 

study yielded several notable results concerning associations between limbic WM 

microstructure, HC subfield volumes, and verbal learning. First, a latent factor formed from FA 

in limbic WM regions and uncinate was consistently associated with faster rate of learning. 

Moreover, the latent factor representing volume of the hippocampus was not significantly related 

to learning rate in the total sample. However, evaluating the latent interaction between HC and 

WM factors revealed an important moderation effect: hippocampal volume was only positively 

related to learning rate in older adults with more coherent diffusion in limbic WM, possibly 

reflecting more intact WM microstructure. In contrast, larger hippocampal volume was 

associated with lower learning rate for individuals with lower WM anisotropy. This has 

substantial implications for the use of HC volume as a biomarker of brain and cognitive aging.  

Van Petten’s (2004) meta-analysis of the relationship between hippocampal volume and 

memory notes substantial heterogeneity in this association among older adults. The present 

findings offer one possible explanation for some of this variation. Indeed, Van Petten notes that 

data from one study of population neuroimaging supported a weak but significant association 

between total hippocampal volume and immediate and delayed verbal recall (Hackert et al., 

2002), with an age-residualized effect of r = 0.12. However, that review found that smaller and 

more selectively sampled study cohorts were often more likely to report the positive association 

between HC volume and memory in older adults. In comparison, the present population-based 

cohort study of aging more closely resembles the Rotterdam Study, in which the age-residualized 

effects of HC volume on memory were rather modest. Thus, population neuroimaging studies 
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that include less selectively screened samples should evaluate the associations between HC 

volume and memory as conditioned on differences in WM microstructure.  

Learning rate has been previously associated with total HC volume in older adults with 

and without memory impairments (Bonner-Jackson et al., 2015). However, this is the first study 

to link differences in limbic WM with learning, modeled as a growth function. HC afferent and 

efferent pathways via the fornix and cingulum play a crucial role in mnemonic encoding and 

recall (Aggleton and Brown, 1999), underlining the need to examine structural connections 

beyond the HC (Aggleton, 2014). Prior reports evaluating the combined associations of limbic 

WM diffusion parameters and HC volumes on episodic memory show mixed effects. Whereas 

higher FA in CBH and fornix has been linked with better episodic memory, the relationships of 

total HC volume are inconsistent (Ezzati et al., 2015; Metzler-Baddeley et al., 2011a). We found 

that higher FA in the ventral (i.e., parahippocampal) portion of the cingulum bundle and the 

fornix was consistently associated with higher learning rate. Moreover, the association between 

HC volume and learning rate was positive in individuals with higher FA in limbic WM; 

however, this relationship was negative in those with low limbic FA.  

These results support the notion that the intercept and slope of learning may reflect 

different demographic factors like age, sex, and education, as well as differences in other 

cognitive abilities including verbal knowledge, processing speed, and cognitive status (Jones et 

al., 2005). One possibility is that the different patterns of WM and HC reflect different genetic 

and life course influences. We found higher educational attainment was associated with higher 

limbic WM microstructure in those in the middle tertile of HC. However, whether this might also 

serve as an indicator of risk for subsequent decline will require further analysis with longitudinal 

data. Future studies might also benefit from applying non-parametric approaches to identify non-
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linear moderation patterns like local SEM (Hildebrandt et al., 2009; Hülür et al., 2011) or SEM 

trees (Brandmaier et al., 2013). For example, local SEM could be used to move a window over 

all participants sorted by WM factor values and then plot estimated model parameters over WM 

factor values. 

The present findings also highlight the utility of SEM latent factor approaches for 

modeling relationships between multiple neural correlates and cognitive measures as latent 

factors, free from inherent measurement error. This also permits simultaneous estimation of 

associations between related factors, while precluding the need to correct for multiple 

comparisons. To the best of our knowledge, this is the first time that the hippocampus has been 

modeled in this fashion – as a second-order latent factor formed by individual subregional 

factors. Such an approach may provide a more reliable volumetric estimate of hippocampal 

structural integrity, particularly in comparison to age-biased estimates of single volumetric 

indicators from automated segmentation procedures (Wenger et al., 2014).  

Furthermore, specifying the latent interaction between the HC and WM latent factors 

resulted in a better model fit and explained more variance in learning rate. There are a limited 

number of valid statistical approaches for demonstrating such differential patterns of 

relationships in cross-sectional data. Mediational approaches are sometimes used to model more 

complex relationships between brain regions, age and cognition (Metzler-Baddeley et al., 2019; 

Salthouse, 2011). Despite violating essential assumptions of temporal ordering necessary to test 

causal relationships, this nevertheless points to an important modeling need – showing that 

associations between two variables vary across levels of a third. Moderation approaches are more 

appropriate for these types of cross-sectional data, and as we show, can illuminate new patterns 

of brain-cognition relations in the population. 	
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Limitations and Directions for Future Work 

The results of the present study need to be interpreted in light of its limitations. First, the 

present data are cross-sectional and hence cannot reveal the order and directionality of age-

related changes (Lindenberger et al., 2011). Second, we chose to include participants with 

MMSE scores of 25 and 26, raising the possibility that a small number of participants may have 

been in the process of developing dementia. There were also several notable technical 

limitations. First, higher b-values and multi-shell diffusion MRI data can improve resolution of 

crossing fibers and we recommend their use in future studies. Second, we used aggregate values 

of WM parameters across tracts of interest, which does not permit more specific anatomical 

localization of possible effects in cerebral WM. Future studies should try to discern whether 

specific tract segments are differentially associated with learning and memory (Colby et al., 

2012). As the number of brain variables of interest grows (e.g., many regions of interest, or even 

voxel-level analyses), one may consider statistical approaches that appropriately deal with 

situations with large number of predictors and relatively small sample sizes, such as 

regularization (Jacobucci et al., 2019). Moreover, future studies should also compare changes in 

WM and HC measures as correlates longitudinal changes in learning (Bender and Raz 2015; 

Bender et al., 2016). Also, the 2mm slice thickness associated with the high-resolution structural 

imaging sequence for HC subfield volumetry used in this study may have come with cost of 

inducing greater partial volume artifacts. In addition, HC subfield measurement was limited to 

the body. Although some published methods permit segmentation of the head and tail, this may 

simply introduce further methodological heterogeneity (Yushkevich et al., 2015b). Work 

currently in progress should help extend valid segmentation of HC subfields to head and tail of 

the HC using a harmonized protocol (Wisse et al., 2017).  
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Last, there are also assumptions and limitations associated with specifying interactions in 

latent space (Moosbrugger et al., 1997). One concern is that established estimation methods 

impose potentially problematic assumptions regarding orthogonality of error structures (Little et 

al., 2006). However, most published work with such SEM approaches for testing latent factor 

moderation specify exogenous LVs based on unreliable observed variables. Here, we used a 

second-order LV, and although this may be a viable method for circumventing such concerns, 

such an approach has not been compared before with other latent moderation approaches. Thus, 

further work is needed to establish better practices for estimating interactions between 

continuous LVs.  

Conclusion 

In the present study, we delineated multimodal neural correlates of verbal learning in 

older adults, including specific limbic WM fiber tracts and HC subregions. We show 

hippocampal volumetric associations with verbal learning are dependent on the levels of FA in 

limbic WM fiber tracts. Given that the present sample was unimpaired and did not widely differ 

in age, we consider this result as encouraging (cf. Salthouse, 2011), while recognizing that it 

needs to be replicated and extended in future cross-sectional and longitudinal investigations. 

These findings also suggest future studies should account for differences in WM microstructure 

when considering total hippocampal volume as a correlate of learning and memory in older 

adults.  
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