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Highlights. 

 A novel thresholding method for brain networks based on k-nearest neighbors (kNN) 

 kNN applied on resting state fMRI from a big cohort of healthy subjects BASE-II 

 kNN built networks present greater small world properties than density threshold  

 kNN built networks present scale-free properties whereas density threshold did not 

Abstract 

In recent years, there has been a massive effort to analyze the topological properties of brain 

networks. Yet, one of the challenging questions in the field is how to construct brain networks 

based on the connectivity values derived from neuroimaging methods. From a theoretical point 

of view, it is plausible that the brain would have evolved to minimize energetic costs of 

information processing, and therefore, maximizes efficiency as well as to redirect its function 

in an adaptive fashion, that is, resilience. A brain network with such features, when 

characterized using graph analysis, would present small-world and scale-free properties.  

In this paper, we focused on how the brain network is constructed by introducing and testing 

an alternative method: k-nearest neighbor (kNN). In addition, we compared the kNN method 

with one of the most common methods in neuroscience: namely the density threshold. We 

performed our analyses on functional connectivity matrices derived from resting state fMRI of 

a big imaging cohort (N=434) of young and older healthy participants. The topology of 

networks was characterized by the graph measures degree, characteristic path length, clustering 

coefficient and small world. In addition, we verified whether kNN produces scale-free 

networks. We showed that networks built by kNN presented advantages over traditional 
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thresholding methods, namely greater values for small-world (linked to efficiency of networks) 

than those derived by means of density thresholds and moreover, it presented also scale-free 

properties (linked to the resilience of networks), where density threshold did not. A brain 

network with such properties would have advantages in terms of efficiency, rapid adaptive 

reconfiguration and resilience, features of brain networks that are relevant for plasticity and 

cognition as well as neurological diseases as stroke and dementia.  

Keywords: brain network, resting-state fMRI, functional connectivity, k-nearest neighbor, 

small-world networks, scale-free networks 

 

1. Introduction  

Our brain can be thought as a complex network. This view is supported by histological, 

structural and functional studies, showing complex levels of interaction in the brain. Complex 

networks applied to neuroscience, hypothesize a network created from inter-connected brain 

areas, brain areas are called nodes and their connections are described as links (Fornito, 

Zalesky, and Bullmore 2016; Bullmore and Sporns 2009). Local interconnections can form 

clusters. Clusters play an important role as functional segregators, processing specialized 

information and keeping this information at a certain location (Rubinov and Sporns 2010; 

Bullmore and Sporns 2009). Nevertheless, these centers of specialized information processing 

are most likely not isolated from each other, thus, one expects intercommunication among the 

clusters, so that, the information can exchanged in the brain. The connections involved in global 

intercommunication among different functionally segregated regions would play the role of so-

called functional integrators. Moreover, it is of advantage that all process described above are 

preserved in cases of external or internal perturbations.  
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An interesting scientific question is, what an optimal brain network would look like or phrased 

differently: What would be the most efficient way that the brain could work? The concept of 

small-world organization in networks was introduced by Watts and Strogatz (1998), when they 

investigated biological, technological and social networks (Watts and Strogatz 1998). This 

concept is very broad and appears in many other fields and disciplines where complex networks 

are used, e.g. the power grid networks, social networks, computer science, biology (Telesford 

et al. 2011; Amaral et al. 2000). It has been suggested that the optimal brain network is 

topologically reflected by having high clustering and short paths connecting the clusters among 

themselves (Bassett and Bullmore 2006). This points to the fact that it is equally important to 

have centers processing specialized information, as it is to have fast communication between 

them.  

To keep these processes properly working in face of external or internal perturbation, the brain 

network should be resilient, that is maintaining its activity in the face of faults. Thus, besides 

the small-worldness characteristics, it is desirable that brain networks show scale-free 

properties. A network is scale-free if its degree distribution follows a power-law function. This 

property has been associated with network resilience (Cohen et al. 2000; Albert, Jeong, and 

Barabási 2000; Albert and Barabási 2002). There are multiple studies on brain networks which 

suggest the presence of scale-free networks (Eguíluz et al. 2005; van den Heuvel et al. 2008). 

A brain network with such characteristics would bring advantages as both segregate and 

integrated information processing and enables rapid adaptive reconfiguration, which is 

important for plasticity and cognition (Baronchelli et al. 2013). Besides, it is very plausible that 

the brain would evolve to minimize energetic costs of information processing, that is, maximize 

efficiency (Hilgetag and Goulas 2016; Bassett and Bullmore 2006). 
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Brain networks can be extracted using various neuroimaging measures: correlations of both 

functional (e.g. functional magnetic resonance imaging (fMRI), electroencephalography 

(EEG)) and structural data (e.g.  diffusion tensor imaging (DTI), structural MRI). The focus of 

this article is on networks based on functional correlations from resting state fMRI (rsfMRI). 

In rsfMRI, subjects lie in the scanner at rest without performing a specific task so that the 

spontaneous activity of the brain can be measured. Brain regions are said to be functionally 

connected and therefore, exchanging information, if they present temporal correlation.  

Typically, connectivity between areas or voxels is inferred using Pearson’s correlation 

coefficient, resulting in a large connectivity matrix, sizing number of brain areas/voxels * brain 

areas/voxels. The connectivity can serve as a distance function between brain regions, where 

high connectivity values are interpreted as short distance between pairs of nodes and vice-

versa, low connectivity values are interpreted as long distances. Nevertheless, there is no 

consensus on how to treat these connectivity values, resulting in a major problem in brain 

network analysis: the network construction.  

A common practice in network construction is to set a threshold to define where nodes are 

connected and where they are not. The most frequently used thresholds are called absolute and 

density threshold, where respectively, only connections that surpass a fixed given connectivity 

strength are kept or stronger connections matching a given density are kept. Once the full 

connectivity matrix is thresholded, the final network can be weighted or binary. Weighted 

networks are those where the connectivity strength is kept, whereas binary ones, the 

connectivity strength is set to 1. Binary networks are often used in neuroscience and therefore 

we focus our study in them. In addition the graph measurements, needed to compute the small-

worldness, are also defined solely for the binary networks. Noteworthy is that, no thresholding 

method is unbiased, and there is no consensus about the optimal way to choose a certain 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/628453doi: bioRxiv preprint first posted online May. 5, 2019; 

http://dx.doi.org/10.1101/628453


threshold. Usually an educated guess is recommended, based on the network features one aims 

to stress (van Wijk, Stam, and Daffertshofer 2010). The most frequently applied threshold in 

network neuroscience is the density threshold because it ensures that the networks are 

constructed with the same budget (the same wiring cost). However, networks emerging from 

this construction method do not always present the characteristic of being optimally efficient 

and resilient, namely the small-world and scale-free properties. 

Here, we propose an alternative network construction method borrowed from machine 

learning, called k-nearest neighbor (kNN) graph construction (Luxburg 2007; Daitch, Kelner, 

and Spielman 2009). Numerous methods in machine learning are based on graphs. The 

fundamental issue of graph construction also emerges naturally: there is a set of items and a 

distance function between the pairs of items. The question is how to connect the items by edges 

and form a graph, in such a way that the resulting graph is informative for machine learning 

tasks such as clustering, classification, etc. This problem has been extensively explored in 

machine learning and various solutions were developed (Ng, Jordan, and Weiss 2002; Zhou et 

al. 2004; Daitch, Kelner, and Spielman 2009; Luxburg 2007). When using kNN to construct a 

network, the main difference from the density or absolute threshold is that the selection of links 

is based on local structure and similarities, that is, links that belong to the same neighborhood. 

In the kNN method, each node of the network is allowed to have exactly 𝑘 connections to its 

nearest neighbours. In other words, for each node, the 𝑘 strongest connections are kept. kNN 

had been previously used in neuroscience in algorithms for classification (Arbabshirani et al. 

2013; Suárez Sánchez et al. 2014; Zhu et al. 2007), MRI segmentation of the brain (Gang et al. 

2013), EEG-based assessment of neurophysiological changes (Kortelainen, Väyrynen, and 

Seppänen 2011) and in combination with minimum spanning tree graph construction 

(Alexander-Bloch et al. 2010).  
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In this paper, we formally introduce the kNN graph construction method for the construction 

of brain networks. Then, we show the advantages of this method. For that, we applied kNN to 

a big cohort of healthy participants (N=434) of the Berlin Aging Study II (BASE-II) subjected 

to resting state fMRI. We show that the kNN network construction leads to the optimally 

efficient network with small-world characteristics. Moreover, we show that these networks are 

scale-free, whereas the networks resulting from the traditional network construction do not 

show this property.  

2. Methods 

2.1. Participants 

MR eligible participants were recruited within the Berlin Aging Study II (BASE-II, 

https://www.base2.mpg.de/en; for additional information about the cohort see (Bertram et al. 

2014), resulting 438 healthy adults (20-80 years old). None of the participants was on 

medication that may have affected memory function or had a history of head injuries, medical 

(e.g., heart attack), neurological (e.g., epilepsy), or psychiatric disorders (e.g., depression). 

Four subjects were excluded due to excessive movement calculating using framewise 

displacement (FD) (FD>0.5 (Power et al. 2012)) during the MRI acquisition, resulting in a total 

of 434 healthy participants. 

2.2. Data acquisition 

Brain images were collected on a Siemens Tim Trio 3T scanner (Erlangen, Germany) using a 

12-channel head coil. A T1-weighted magnetization prepared gradient-echo sequence 

(MPRAGE) based on the ADNI protocol (TR=2500ms; TE=4.77ms; TI=1100ms, acquisition 

matrix=256×256×176; flip angle = 7˚; 1x1x1mm3 voxel size) was used to obtain structural 
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images. Whole brain functional resting state images were collected over a period of 10 minutes 

by using a T2*-weighted EPI sequence sensitive to BOLD contrast (TR=2000ms, TE=30ms, 

image matrix=64×64, FOV=216mm, flip angle=80º, slice thickness=3.0mm, distance 

factor=20%, voxel size 3×3×3mm3, 36 axial slices). Participants were instructed to look at a 

fixation cross and relax during data acquisition. 

2.3. Resting state fMRI preprocessing 

To ensure for steady-state longitudinal magnetization, the first 5 images were discarded. First, 

the acquired data was corrected for slice timing and then realigned, followed by corregistration 

between structural individual T1 images and functional images. Segmentation into gray matter, 

white matter, and cerebrospinal fluid were performed. Data was then spatially normalized to 

stereotactic space of the Montreal Neurological Institute (MNI) and spatially smoothed with a 

6-mm full width at half maximum [FWHM]) to improve signal-to-noise ratio. Afterwards, 

motion and signals from white matter and cerebrospinal fluid were regressed. Data was filtered 

(0.01 – 1 Hz) to reduce physiological high-frequency respiratory and cardiac noise and low-

frequency drift and, finally, detrended. All steps of data preprocessing were performed in 

MATLAB 2012b (ww.mathworks.com) using SPM12 (Wellcome Trust Centre for 

Neuroimaging, London, United Kingdom) except filtering that was applied using the REST 

toolbox (Song et al. 2011). Additionally, to control for the effect of motion on functional 

connectivity measures, the voxel-specific mean framewise displacement were calculated (FD; 

Power and colleagues (Power et al. 2012). Subjects with FD higher than the recommended 

threshold of 0.5 were excluded (N=4). 

2.4. Functional connectivity matrix 
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To build the resting state functional connectivity matrices, nodes and connectivity strength 

must be defined. Here the nodes were created based on the AAL atlas (Tzourio-Mazoyer et al. 

2002), cerebellum was excluded, resulting in 90 regions of interest and therefore 90 nodes. The 

node-averaged time series were extracted for each subject using the REST toolbox (Song et al. 

2011). As explained above, the BOLD signal was corrected for motion, white matter and 

cerebrospinal fluid, as nuisance signals of no interest. Connectivity strength was obtained using 

Pearson’s correlation coefficient resulting in a 90 x 90 matrix. Connectivity values that were 

not statistically significant (p-value > = 0.05) were excluded.  

2.5. Graph construction  

The goal was to construct an informative binary graph from the connectivity matrix. Here we 

applied the kNN method to functional connectivity matrices constructed as described in 2.4. In 

addition, we compared graphs built with kNN to those built based on a density threshold, the 

most common method in neuroscience.  

The density threshold method considers a particular threshold for each subject in such a way 

that only the highest connections are kept until the desired density is reached. In turn, the kNN 

method connects each node to its k-nearest neighbors. The k-nearest neighbors of a node are 𝑘 

nodes with the highest connectivity values to the node. This procedure can lead to non-

symmetric graphs. When denoting the set of k-nearest nodes to node 𝑖 by 𝐾𝑁𝑁(𝑖), if 𝑗 ∈

𝐾𝑁𝑁(𝑖), it does not necessary mean that 𝑖 ∈ 𝐾𝑁𝑁(𝑗). However, the connectivity matrix is 

symmetric, and it is desirable to have a symmetric graph as well. To solve this issue, we 

connected a pair of nodes 𝑖 and 𝑗, if 𝑖 ∈ 𝐾𝑁𝑁(𝑗) or 𝑗 ∈ 𝐾𝑁𝑁(𝑖). Note that the edges in the 

final graph have no weight and the final graphs in both density threshold and kNN methods are 

binary graphs. 
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In order to obtain a fair comparison, we built density threshold and kNN networks with the 

same number of edges, considering that the number of edges is the budget for graph 

construction. In other words, we assumed that the budget of the network to make connections 

(edges) was fixed and identical for both methods. The value of the threshold controls the 

number of connections in the density threshold graphs. The constant 𝑘 plays the same role for 

the kNN graphs. By increasing 𝑘, we let each node have more connections and the total number 

of edges in the graph will increase. We chose the range of 𝑘 and the density threshold, in a way 

that resulting graphs had the same number of edges. 

Increasing 𝑘 only by one drastically increases the number of edges in the graph, therefore we 

cannot fine-tune the number of edges in the kNN method. On the other hand, by slightly 

changing the threshold value of the density threshold graphs, we can obtain the desired number 

of edges. Therefore, we chose a fixed range for the parameter k of the kNN graphs. For each 

value of the parameter 𝑘 and the resulting kNN graph we computed the total number of edges 

that the graph uses. Then, we tuned the threshold such that density threshold graphs also had 

the same number of edges. As the number of nodes was fixed, the average degree of graphs 

was the same across the two methods.  

In order to thoroughly understand the behavior of graph constructions we checked a wide range 

of the parameter 𝑘 ∈ {6,7, … ,60} equivalent to density thresholds from 0.14 to 0.80. In this 

way, we investigate a range from very sparse to almost fully connected graphs. 

2.6. Graph Theory analysis  

Please note that both graph construction methods in section 2.5 produce binary (unweighted) 

graphs and the further analysis of small-world and scale-free property is defined only for binary 

graphs.  
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Graph density: Density of a graph with 𝑛 nodes and 𝐸 edges is defined as  

 
2𝐸

𝑛(𝑛 − 1)
 

Degree: Degree of a node is defined as the number of connected edges to the node.  

Clustering coefficient: Clustering coefficient of a node was first introduced by Watts and 

Strogatz (Watts and Strogatz 1998). The clustering coefficient of the node 𝑖 is defined as the 

number of triangles that it makes with its neighbors divided by the maximum possible triangles. 

If node 𝑖 has 𝑘 neighbors, then it can form at most 𝑘(𝑘 − 1)/2 triangles with its neighbors. Let 

𝛥(𝑖) denotes the number of triangles that node 𝑖 makes with its neighbors, then the following 

shows the formal definition of the clustering coefficient: 

𝐶(𝑖) =
2𝛥(𝑖)

𝑘(𝑘 − 1)
 

The average clustering coefficient of a graph is defined as the arithmetic mean of the clustering 

coefficients of nodes in the graph. 

Characteristic path length: If 𝑑(𝑖, 𝑗) denotes the length of the shortest path between nodes 𝑖 

and 𝑗, then the characteristic path length of a graph is defined as the average of distance between 

all pairs of nodes, formally: 

𝑆𝑃 =  
2 ∑ 𝑑(𝑖, 𝑗)1≤𝑖<𝑗≤𝑛

𝑛(𝑛 − 1)
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Where 𝑛 denotes the number of nodes in the graph. If two nodes are not connected, then we set 

their shortest path length to the maximum shortest path length between connected pairs of 

nodes in the graph. 

2.7 Small-world network evaluation 

The small-worldness of a graph is defined using the average clustering coefficient and the 

characteristic path length of the graph divided by the equivalent measures in a random graph 

of the same density. The comparison to the random graph is defined by the following two 

parameters: 

𝛾 =
𝐶𝐶

𝐶𝐶𝑟
   ,    𝜆 =

𝑆𝑃

𝑆𝑃𝑟
 

Where, 𝐶𝐶 and 𝑆𝑃 respectively denote the average clustering coefficient and the characteristic 

path length of the network and 𝐶𝐶𝑟 and 𝑆𝑃𝑟  are the same quantities for the random graph with 

the same density. The small-worldness is defined as the following ratio: 

𝜌 =
𝛾
𝜆

 

Initially, Watts and Strogatz proposed to use Erdős–Rényi random graphs as a base random 

model (Watts and Strogatz 1998). In the neuroscience literature, however, it is suggested to 

compare random graphs with the same degree distribution to have a fair definition of small-

worldness (Sporns and Zwi 2004; Maslov et al. 2002). Therefore, we constructed 10 random 

surrogate networks with the same degree distribution as the initial network. The parameters 

𝐶𝐶𝑟 and 𝑆𝑃𝑟 are the average over the set of 10 random graphs. Similar to other small-world 
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studies in neuroscience (Fornito, Zalesky, and Bullmore 2016; van den Heuvel et al. 2008; 

Eguíluz et al. 2005), each random surrogate network was built by the following procedure:  

We started with the initial network and performed a random rewiring step on edges which 

preserves the degree of nodes. Next, we chose a set of 4 nodes at random {𝑖, 𝑗, 𝑘, 𝑙}, such that 

the edges 𝑖 → 𝑗 and 𝑘 → 𝑙 exist but the edges 𝑖 → 𝑙 and 𝑘 → 𝑗 do not exist. Note that if the 

network is very sparse or densely connected, it is not possible to find a quadruple of nodes with 

the above property. Since we had networks out of these two extreme cases, we could always 

find a proper set of four nodes. Then we removed the two existing edges 𝑖 → 𝑗 and 𝑘 → 𝑙 and 

formed two new edges 𝑖 → 𝑙 and 𝑘 → 𝑗. In this way the connections are randomized but the 

degree of involved nodes is not changed. The rewiring was done 1000 times with random 

quadruple of nodes. Considering the number of nodes (90), this number of rewiring steps was 

enough to produce a random graph. 

2.8 Scale-free network evaluation 

If 𝑝(𝑑) represents the empirical probability of having a node with degree 𝑑, then the degree 

distribution of a scale free network should follow a power-law, meaning that 𝑝(𝑑) = 𝛽𝑑−𝛼. In 

this formulation, α is a constant parameter which we refer to as the exponent, and β is a constant 

to make sure the function represents a probability mass function. In scale-free networks the 

exponent range should be 2<α<3 (Girvan et al. 2007; Choromański, Matuszak, and Miȩkisz 

2013).  

The typical approach to investigate the presence of power-law degree distribution is through 

the log-log plot representation of the degree distribution. A linear log-log plot indicates a 

power-law distribution. The R-squared of the linear regression can represent how much of the 

variance can be expressed by a linear model. If the R-squared is close to one, we can conclude 
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a power-law degree distribution, and thus the presence of scale-free network. Moreover, the 

slope of the log-log plot represents the exponent parameter 𝛼, which needs to be in the desirable 

range (2<α<3) for scale-free networks. 

One can obtain the log-log degree distribution plot for each subject and calculate the R-squared 

value and the slope of the regression curve. However, we intended to also illustrate the average 

distributions over subjects. Therefore, we presented the results of the scale-free evaluation in 

two parts. First, we illustrated the average (over subjects) results, then we reported the 

estimated values of parameters for the whole sample. 

Here we explain the procedure to compute the average degree distribution over the subjects: 

Let assume we estimate the parameters α and β by a linear regressor, for each subject. We 

denote the estimation of parameters for the subject 𝑖 by 𝛼̂𝑖 and 𝛽̂𝑖, which are respectively the 

slope and the intercept of the estimated linear regressor for the log-log degree distribution plot 

of subject 𝑖. The two parameters can vary significantly among subjects. Some studies compute 

the average distribution over all subjects in order to estimate a final α (van den Heuvel, Stam, 

Boersma, & Hulshoff Pol, 2008). In an arithmetic mean over the degree distributions, the 

subjects who have higher β values have more contribution to the final mean. In this way the 

final estimation of α can be biased. Here we propose a slightly different approach to overcome 

this issue. We do not compute the average over distributions, but instead, we compute the 

average over logarithm value of distributions. Note that by taking the average over log 𝑝𝑖(𝑑) 

values, the final plot will represent: 
1

𝑛
∑ log 𝑝𝑖(𝑑)𝑛

𝑖=1 =
1

𝑛
∑ log 𝛽𝑖

𝑛
𝑖=1 +

1

𝑛
∑ 𝛼𝑖

𝑛
𝑖=1 log 𝑑. The 

slope of this plot is the average over the slope values of subjects, 𝛼̂ =  
1

𝑛
∑ 𝛼𝑖

𝑛
𝑖=1 . 

3. Results  
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In this section, we reported the results of two graph construction methods: density threshold 

and kNN. The comparison between the two construction methods was done based on two 

criteria. The first criterion was small-worldness, as efficient networks show small-world 

properties (Hilgetag and Goulas 2016; Bassett and Bullmore 2006). Secondly, we checked 

whether the two graph construction methods can produce scale-free networks which is related 

to resilience of the network (Cohen et al. 2000; Albert, Jeong, and Barabási 2000; Albert and 

Barabási 2002). 

 

3.1. Small-world comparison  

First, we reported the two parameters, clustering coefficient ratio γ and characteristic path 

length ratio λ (Fig 1) for both graph construction methods. The average value of the parameters 

was calculated over all subjects and the standard deviation was depicted by means of error bars. 

Note that in each vertical point of the plot the parameter 𝑘 and the density, chosen for the two 

methods, lead to graphs with the same number of edges, hence the comparison between the 

two graph construction methods can be considered fair. Moreover, γ and λ were calculated 

using random graph with the same density. 

The clustering coefficient ratio γ (Fig 1, left) was significantly higher than 1 for the kNN-built 

graphs (in blue) across all thresholds, meaning more clusters than those for random graphs, 

especially for 𝑘 values between 8 and 30. While the density threshold graphs presented 

clustering coefficient ratio close to 1 and below those for the kNN method. This suggests 

having more well-clustered graphs with the kNN method as compared to density threshold. 

The characteristic path length ratio λ (Fig 1, right) for the kNN-built graphs showed longer 

path lengths than random graphs for 𝑘 < 23, however it showed nearly equal characteristic 
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path lengths to the random graphs for 𝑘 > 23. Density graphs produced longer characteristic 

path length than kNN-built ones. Both parameters suggest that the kNN method will produce 

networks which have higher small-worldness. 

 

 

Fig. 1. Comparison of parameters (𝛾) and (𝜆) on the left and right respectively, for two graph 

construction methods: density threshold (Thr in red) and the kNN (in blue). The x-axis of the 

plots denotes the parameter 𝑘 and density for the kNN and density threshold methods 

respectively. The errorbars show the standard deviation over subjects. The clustering 

coefficient ratio (𝛾) is greater for the kNN graph, while the characteristic path ratio (𝜆) is 

smaller.  

 

As next step, we calculated the small-worldness (𝜌) (Fig 2). The kNN-built graphs showed on 

average higher small-worldness than density threshold ones, especially for 𝑘 < 30. The most 

efficient networks were constructed with 𝑘 ≈ 18, showing the highest 𝜌. Moreover, the error-
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bars indicate less variability in the kNN method, that is, a consistent behavior of the kNN 

method over the set of subjects. 

 

Fig. 2. The comparison of small-worldness (𝝆) for two graph construction methods, density 

threshold (in red) and the kNN (in blue). The parameters 𝒌 and density are shown in the x-axis 

of the plots. The error-bars denote the standard deviation of the small-worldness with different 

subjects. The kNN graphs showed significantly higher small-worldness, in particular for ≈ 𝟏𝟖, 

in comparison to density-thresholded graphs. 

3.2. Scale-free comparison 

We plotted the average (over subjects) logarithm of probability mass functions versus the 

logarithm of degree, for 𝑘 values by increasing in steps of 10 (Fig. 3). The top row shows log-

log plots of the kNN methods, while the bottom row depicts the same plots for the density 

threshold.  

In all log-log plots for the kNN method a linear fit was very close to the actual points. 

Moreover, the R-squared values (denoted at the top of each plot) were close to one. This result 

suggests that the degree distribution is a power-law 𝑝(𝑑) = 𝛽𝑑−𝛼 . In addition, except for very 
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sparse graphs (𝑘 = 6), the whole range of kNN graphs had estimated exponents in the range of 

2 < 𝛼 < 3 that characterizes scale-free networks. In comparison, the density threshold method 

did not show a linear behavior in the log-log plots (Fig. 3 - bottom row), particularly with 

increasing threshold values. Moreover, the estimated exponent 𝛼 failed to fall within the 

desirable range of scale-free networks. 

 

 

Fig. 3. The log-log plots of the average distributions over the subjects. The x-axis is the 

logarithm of the degree, while the y-axis is the logarithm of the empirical probability of having 

a node with this degree. The first row shows the results of kNN graph construction method, 

while the second row shows the results of density threshold graphs. The parameter 𝒌 and the 

density are denoted at the top of each plot. In each column, the graphs have the same number 

of edges. The R-squared value of the regression and the estimated slope 𝜶 is also shown at the 

top of each plot. The kNN graphs (top row) fit to a linear estimation, moreover, they have 

exponents (𝜶) in the range of scale-free networks. The density threshold graphs are not linear 

for most thresholds. 
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We also reported the summary statistics of the scale-free test for the whole sample. We 

computed the R-squared of the linear regression for each subject with the fixed graph 

construction parameters 𝑘 and density. Moreover, the exponent 𝛼 was estimated based on a 

linear regression. Fig. 4 (top row) shows the population of R-squared values for the kNN and 

density threshold methods. We showed see that the kNN method, especially in case of sparse 

graphs (𝑘 < 20) presented high R-squared values, which suggests a proper linear fit to the plot. 

Conversely, the R-squared values were mostly lower than 0.5 for the density threshold method, 

which means that a linear regressor cannot express the function depicted in the log-log plot. 

The bottom row of Fig. 4 depicts the population of exponent 𝛼 for the two methods. Again, for 

the kNN method most of the subjects had exponents in the desirable range while the density 

threshold method failed to do so. 
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Fig. 4. The box-plot of the regression output values, R-squared and exponent 𝜶. Each box 

represents the population of R-squared or the estimated parameter 𝜶 for the regression of log-

log plot. The central mark in the box is the median, the edges of the box are the 25th and 75th 

percentiles, while whiskers goes to the maximum and minimum values. Outliers are depicted 

as red plus signs. The R-squared values are significantly higher for the kNN graphs, suggesting 

a better linear fit. In addition, the exponent (𝜶) is in the range of scale-free network for kNN 

graphs, with 𝒌 > 𝟐𝟎, while this is never the case for density threshold method. 

 

3.3. Comparison of networks constructed using KNN and density  
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Here we present an illustration of the two graph construction methods by plotting the final brain 

network of a single subject when KNN is applied in contrast to density threshold method (Fig. 

5). The parameter k, was chosen to be 𝑘 = 16 for the KNN graph. The corresponding density 

threshold, for the density threshold graphs, was chosen such that both methods produced the 

same number of edges (same wiring budget). The choice of 𝑘 = 16 was based on the highest 

small-worldness (Fig. 2).  

 

 

Fig. 5. The KNN (left) and density threshold (right) graphs for a single subject.  

 

The main difference observed in the two network construction methods was related to the total 

interconnectivity of the brain areas (nodes). The graph built using the density threshold method 

(Fig. 5 - right) is not connected, thus nodes without any edge connection were observed. On 

the other hand, the KNN graph (Fig. 5 - left) is connected.   
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The same interconnectivity pattern were seen for other subjects and for the whole range of k 

parameter values. The reason for such pattern relies on the fact that the density threshold graph 

is intrinsically prone to produce unconnected components. In brief, the density threshold 

method uses a global threshold to make edges. In this way, if some of the nodes have 

systematically weaker connections they cannot form any edge. In other words, if the scale of 

connectivity values differs among the different regions of the brain (nodes), the density 

threshold method gives no opportunity to some areas of the brain that have weaker connection, 

to form an edge. A non-connected graph might not be a favorable structure for the human brain, 

as some areas of the brain would be isolated and therefore not taken part in the global 

information processing.  In contrast, the KNN method ensures that every node is connected to 

𝑘 neighbors. This condition leads to connected graphs for values of 𝑘 which are not extremely 

small. For a detailed discussion please see (Luxburg 2007). 

4. Discussion  

Our brain is a complex organ with different levels of interaction and connections, from local 

cellular action potentials to information travelling across the body in our nervous system. The 

brain network is formed by interconnected areas called nodes and their connections are known 

as links. Due to the nature of the interactions in the brain, the optimal network should be able 

to process locally specialized information as well as to connect localized information centers 

between one another, so that information can travel globally and fast in the brain. A network 

with such features is said to present small-world characteristics (Watts and Strogatz 1998). 

Small-world networks work with maximal efficiency and therewith low energetic cost (Bassett 

and Bullmore 2006). These optimal networks are reflected topologically by having high 

clustering and short paths connecting the clusters. Beside the efficient organization of networks 

based on small-world properties, the resilience of the brain network is also desirable. A resilient 
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network is less vulnerable to random perturbation or loss of connections. Such networks exhibit 

power-law degree distribution and are called scale-free networks. 

In practice, brain networks can be inferred using multiple neuroimaging measures such as 

fMRI, EEG, fiber tracts in DTI, etc. Here, we focus on rsfMRI. In rsfMRI we infer a functional 

brain network at rest, in which, nodes are voxels or anatomical brain areas and links are the 

connectivity between the nodes, resulting in a fully connected matrix. In network analysis, 

connectivity is interpreted as a distance function between nodes: higher connectivity represents 

short distances, that is, a closer relationship implies strong connectivity. Nevertheless, there is 

no consensus on how to treat these connectivity values: a fully connected graph may contain 

spurious connections, e.g. due to noise in data acquisition (Fornito, Zalesky, and Bullmore 

2016). However, which connections should be included? This question leads to a major 

problem in brain network analysis, the network construction.  

It is common practice in neuroscience to construct a network, by using global thresholds, such 

as absolute and density thresholds, the latter being the most popular. When applying a density 

threshold, the number of links (and consequently the density) is fixed and the stronger 

connections are kept until the desired density is achieved and the remaining links are set to 

zero. Considering groups of subjects, the number of connections is the same across subjects 

which is an advantage when comparing topological properties between groups, however, the 

final network after thresholding will depend on average strength, for example, subjects with 

lower average fully connected matrix will have low-weight connectivity links, whereas, for 

subjects with high average fully connected matrix, only high-weight links will be included. 

Therefore, when applying global thresholds where nodes are treated the same, as the case for 

the density threshold, if the connectivity values of specific brain areas are systematically 
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weaker than those for other areas, global thresholds give no opportunity to that particular nodes 

to make connections in the final graph.  

Thresholding in brain network construction is addressed in detail in (van Wijk, Stam, and 

Daffertshofer 2010). As a final consideration, there is no consensus on network construction 

methods as there is no unbiased thresholding. Therefore the thresholding method should be 

chosen carefully by the researcher and should reflect the network features one desires to stress 

(van Wijk, Stam, and Daffertshofer 2010). 

Here we proposed an alternative thresholding method, called kNN (Luxburg 2007; Daitch, 

Kelner, and Spielman 2009). kNN is used in machine learning, where the problem of graph 

construction also emerges. kNN connects items that belong to the same neighborhood by 

allowing the k nearest neighbors of each node. The remaining links, that are not neighbors, are 

set to 0. In neuroimaging, the connectivity strength can be also thought as the distance function 

between brain areas. In rsfMRI more specifically, it represents a functional distance and, 

therefore, is related to the exchange of information in the brain: regions exchanging 

information have high connectivity values. In turn, spurious connections would present lower 

connectivity since there is no real relationship between regions. Thus, brain areas can assume 

the role of the items that must be grouped based on proximity defined by exchange of 

information.  

In this paper, we applied kNN and density thresholding methods to functional connectivity 

matrices from rsfMRI of a big cohort of healthy subjects. We showed that networks built using 

kNN method presented small-world and scale-free properties, that is efficient and resilient 

networks. Our interpretation is that kNN method can preserve key connections and yet reduce 
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the average shortest path length. Shortest paths are essential to the efficient functionality of any 

network promoting fast communication among specialized centers of information processing.  

Regarding efficiency and resilience in the brain, it has been argued that it is plausible that the 

brain would evolve to minimize energetic costs of information processing (Hilgetag and Goulas 

2016; Bassett and Bullmore 2006). In addition, a brain working in small-world scale-free 

regime would have advantages as efficiency, rapid adaptive reconfiguration and resilience 

which are essential features for plasticity and cognition (Baronchelli et al. 2013) as well as 

neurological diseases as stroke and dementia. These advantages would be possible because a 

failure in a network with such an architecture would most likely affect a peripheral node rather 

than a hub, as a consequence neither the mean shortest path is strongly increased nor the 

clustering coefficient decreases. In short, in case of a random failure in the system, e.g. a 

removal of a node or a malfunctioning given an external or internal perturbation, the 

information can still reach its final destination in a fast way through other paths. A potential 

weakness of small-world scale-free networks is the sensitivity in case of targeted attacks, e.g. 

a hub in the network. 

5. Conclusion  

We proposed a new method to construct brain networks based on k-nearest neighbors (kNN). 

We showed that kNN-built networks presented small-world and scale-free properties, while 

the most frequently used method based on density thresholding, did not show them to a 

significant level: decreased small-worldness in all threshold range as compared to kNN and no 

scale-free. Considering the small-worldness and scale-free experiments in a large cohort with 

healthy subjects, 𝑘~18 is advisable to construct networks with maximal efficiency.  
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