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In search of the biological roots of typical and atypical human brain asymmetry. 

Comment on “Phenotypes in hemispheric functional segregation? Perspectives and challenges” by 
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In this comprehensive and insightful review, Vingerhoets [1] discusses the multi-dimensional nature 
of inter-individual variation in functional brain asymmetry, and its potential relevance to behavioural 
variation and psychopathology. Some key points that emerge are: a) most individuals show a 
stereotypical pattern of hemispheric functional segregation, but non-typical variants are also 
relatively common in the population, b) different functional asymmetries vary largely, but not 
wholly, independently of each other, c) complete left-right mirror reversals affecting many functions 
are found in a small minority of people, but more commonly only some of the functional 
asymmetries are altered, and by degree rather than fully reversed, and d) the literature suffers from 
many small-scale studies that have yielded statistically ambiguous results, including on behavioural 
associations with rearrangements of functional asymmetry. 

Here I would like briefly to stress three research goals, on which I expect Vingerhoets will agree. 
First, we need to identify the genetic-developmental mechanisms underlying typical functional 
asymmetry in the majority of people. Second, we need to anticipate the likely heterogeneity of 
developmental causes of atypical functional asymmetry, and start to identify some of them. Third, 
we need to find the optimum level of neurobiological description to capture the phenomenon of 
functional brain asymmetry. These three goals are intertwined. If achieved, then it will also become 
clearer why some forms of altered functional asymmetry are linked to behavioural and 
psychopathological consequences, and others not. 

The core developmental mechanisms for human brain asymmetry are unknown [2, 3]. However, 
such mechanisms have been described for asymmetrical patterning of the vertebrate visceral organs 
(heart, lungs, etc.) [4, 5], as well as for asymmetry of fish brains [6]. Various lines of evidence suggest 
that the specific mechanisms identified so far have limited relevance to human brain asymmetry [2, 
6-11], but nonetheless they have taught us some important principles. We have learned that innate 
chirality (handedness) of biomolecules can trigger the formation of a left-right axis in early 
embryonic development [12, 13]. Importantly, once the direction of the axis is established, complex 
developmental cascades then come into play, involving many different genes activated differently 
on the two sides in precise spatiotemporal patterns, that ultimately give rise to the adult 
asymmetrical form [6]. 



In contrast, for human brain asymmetry, the field is only just starting to identify some of the genes 
involved, thanks to a new generation of genetic association studies based on sample sizes of tens or 
hundreds of thousands of individuals [8, 14, 15]. Most of the earlier findings were based on poorly 
powered genetic association studies [2, 8], but the field is now positioned to move forward in a solid 
way. It is too early to tell whether the kinds of biological processes involved in, for example, 
patterning the brain for hand dominance are different to those for language dominance, although 
preliminary evidence suggests that this might be the case [3, 16]. Importantly, it is currently unclear 
whether any of the individual genes identified so far point to core developmental mechanisms for 
patterning the left-right brain axis, or whether they are peripheral modifiers of the eventual adult 
outcome.  

The intricacy of asymmetrical developmental processes means that they can be perturbed in a very 
large number of ways. For example, mutations in at least 50 different genes lead to altered visceral 
laterality in humans [17], which can be anything from complete mirror reversals of all visceral 
organs, to restricted disruptions of individual organs. By analogy, as Vingerhoets [1] and others [16] 
have argued, people who have full mirror reversals of multiple functional brain asymmetries may 
have undergone very early developmental rearrangements, that altered the initial direction setting 
of the brain’s left-right functional axis for many domains. Whereas partial rearrangements that 
affect a smaller number of specific functions, often involving reduced rather than reversed 
asymmetry, might arise from influences later in development, affecting a more restricted set of brain 
regions or networks. Yet other disruptions might lead to a loss of developmental canalization of 
asymmetry, such that variability increases, and the typical relations between different asymmetrical 
functions break down. 

As things stand, we barely understand the genetic, environmental, and chance mechanisms that 
cause atypical human brain asymmetrical development [2, 3, 18]. However, given the complexity of 
development, we can anticipate a high degree of causal heterogeneity leading to the range of 
different alterations of functional laterality in the population. Such causal heterogeneity may defy 
our best attempts to classify phenotypes of hemispheric functional segregation into a limited 
number of etiological types, although efforts to classify at the phenotypic level should certainly be 
pursued, and may help to pinpoint underlying causes. It would also then become clearer which 
causes have behavioral or psychopathological consequences, and whether asymmetry itself 
mediates these associations in some cases. 

Regarding the optimal neurobiological level of description, then the field is largely limited to non-
invasive, indirect measures of massively aggregated neuronal activity, such as provided by functional 
magnetic resonance imaging. This may not be sufficient to resolve whether, for example, within-
hemisphere functional crowding occurs, when one hemisphere becomes dominant for functions that 
are usually lateralized to opposite hemispheres. There needs to be a step change in our 
understanding of cell-circuit-network-function relations and dependencies, which will likely require 
both technical and computational advances, and invasive work with animal models. I agree with the 
insight by Vingerhoets [1] that some functions are likely to have ‘operational flowcharts’ that are 
alike, and could then be well supported by overlapping brain networks with particular information-
processing properties. One of the attractive features of research on brain asymmetry is that it 
involves a natural contrast between two closely alike hemispheres, where the key differences are 
likely to be in the fine-tuning of neuronal network properties [19]. If we can identify the genetic 



basis for this fine-tuning, and the expected myriad of heterogeneous genetic, and non-genetic, 
causes for its perturbation in some people, then we will be closer to understanding the phenotype 
and its associations. 
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