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Abstract
Background Aversive stimuli in the environment influence human actions. This includes valence-dependent influences on action
selection, e.g., increased avoidance but decreased approach behavior. However, it is yet unclear how aversive stimuli interact with
complex learning and decision-making in the reward and avoidance domain. Moreover, the underlying computational mecha-
nisms of these decision-making biases are unknown.
Methods To elucidate these mechanisms, 54 healthy young male subjects performed a two-step sequential decision-making task,
which allows to computationally model different aspects of learning, e.g., model-free, habitual, and model-based, goal-directed
learning. We used a within-subject design, crossing task valence (reward vs. punishment learning) with emotional context
(aversive vs. neutral background stimuli). We analyzed choice data, applied a computational model, and performed simulations.
Results Whereas model-based learning was not affected, aversive stimuli interacted with model-free learning in a way that
depended on task valence. Thus, aversive stimuli increased model-free avoidance learning but decreased model-free reward
learning. The computational model confirmed this effect: the parameter lambda that indicates the influence of reward prediction
errors on decision values was increased in the punishment condition but decreased in the reward condition when aversive stimuli
were present. Further, by using the inferred computational parameters to simulate choice data, our effects were captured.
Exploratory analyses revealed that the observed biases were associated with subclinical depressive symptoms.
Conclusion Our data show that aversive environmental stimuli affect complex learning and decision-making, which depends on
task valence. Further, we provide a model of the underlying computations of this affective modulation. Finally, our finding of
increased decision-making biases in subjects reporting subclinical depressive symptoms matches recent reports of amplified
Pavlovian influences on action selection in depression and suggests a potential vulnerability factor for mood disorders. We
discuss our findings in the light of the involvement of the neuromodulators serotonin and dopamine.
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Introduction

In animals and humans, the appearance of a predator or other
dangers typically promote withdrawal. These stimulus-
induced avoidance responses are hard-wired and can be very
beneficial in the presence of a mortal threat. Conceptually,
holding back from threat reflects a Pavlovian response be-
cause a stimulus automatically elicits an action that is inde-
pendent from the organism’s behavior. Pavlovian responses
are disentangled from operant responses, where actions are
elicited because they have repeatedly been paired with a spe-
cific consequence (reward or punishment).

Interestingly, interactions between Pavlovian avoidance re-
sponses and operant actions have been reported. Examples for
these interactions are evident in real-life situations, as negative
facial expressions reduce consumption behavior (Winkielman
et al. 2005) and bad weather on election days reduces voter
turnouts (Bassi 2013).

Experimentally, two types of such interactions have been
reported: first, a stimulus-induced avoidance response can ex-
aggerate another avoidance action. Consequently, negative
stimuli increase an acquired withdrawal behavior, a phenom-
enon entitled as aversive Pavlovian-to-instrumental transfer
(PIT) effect (Geurts et al. 2013b; Lewis et al. 2013; Nord
et al. 2018). Second, stimulus-induced avoidance responses
can interfere with approach behavior. Accordingly, negative
stimuli decrease appetitive responses (Lee et al. 2005; Nelson
and Sanjuan 2006), a phenomenon termed as conditioned
suppression. Both of these phenomena provide evidence that
negative valence can interact with actions. Further substanti-
ation for these interactions come from studies showing im-
paired go but facilitated no-go responses when subjects antic-
ipate punishment (Crockett et al. 2012a; Crockett et al. 2009;
Guitart-Masip et al. 2012; Guitart-Masip et al. 2011).

Much attention has been drawn to phenomena where aver-
sive stimuli interact with operant actions, mostly because such
interactions also play a role in psychopathologies (Dayan et al.
2006). In mood disorders, for instance, patients are biased
towards negative environmental stimuli and these biases am-
plify avoidance behavior (Eshel and Roiser 2010). Indeed, in
depressive patients, aversive cues exert increased control over
avoidance behavior (Nord et al. 2018).

So far, previous studies investigating valence-action
interactions have realized actions along an axis of acti-
vation, thus as approach/avoidance or go/no-go re-
sponses. No study has so far investigated how aversive
stimuli interacted with complex learning and decision-
making, where subjects have to choose between several
options in order to optimize their decisions. The analogy
between complex decision-making and activation is at
hand, as the former can also be mapped on a valence
axis, ranging from avoidance- (minimize punishment) to
reward- (maximize reward) based decision-making.

Importantly, recent computational accounts of complex
learning and decision-making have emphasized the existence
of two distinct control mechanisms, where actions can be
guided by either model-free or model-based computations
(Daw et al. 2011). Model-free controllers are reflexive and
habitual and involve the retrospective updating of action
values. Model-based controllers on the other side are adaptive
and goal-directed and choose actions based on an internal
model.

With regard to valence-action interactions, the concept of
model-free control is specifically interesting because it shares
many features of Pavlovian control including automaticity and
rigidity (Friedel et al. 2014; Gillan et al. 2015). Moreover,
model-free and Pavlovian control processes are assumed to
rely on very similar neurobiological and computational mech-
anisms (Dayan and Berridge 2014).

Interestingly, certain internalizing pathologies such as de-
pression have been associated with the dominance of the ha-
bitual system at the expense of the goal-directed system (Huys
et al. 2015a; Huys et al. 2015b). In line with this, negative
affective states such as acute stress shift decision-making
away from model-based control, especially in subjects with
depressive symptoms (Heller et al. 2018) or previous adverse
life experiences (Radenbach et al. 2015).

The overarching aim of the present study was to elucidate
the computational mechanisms of how aversive stimuli
interacted with learning and decision-making. Given previous
valence-action interactions (Guitart-Masip et al. 2014), we
expected opposing roles on reward and avoidance learning.
More precisely, we hypothesized impairments in reward learn-
ing, but enhancements in avoidance learning in the presence
of negative stimuli. With regard to the computational mecha-
nism of modulation, we asked whether model-free or model-
based controllers would be affected by aversive stimuli.

As previous research has shown increased modulation of
avoidance responses in the presence of aversive stimuli (Nord
et al. 2018) as well as stress-induced disruptions in model-
based control in depression (Heller et al. 2018), we further
asked whether interactions between aversive influences on
reward and avoidance learning were moderated by subclinical
depression scores.

Methods

Subjects

Subjects were n = 55 21-year-old males, who had previously
taken part in a larger study investigating learning in alcohol
dependence (Lead study, ClinicalTrials.gov identifier:
NCT01744834). All subjects were free from psychotropic
medication and had no axis-1 psychiatric disorder as indicated
by the Composite International Diagnostic Interview (CIDI,
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(Jacobi et al. 2013; Wittchen and Pfister 1997), see S1 for full
inclusion criteria). In the Lead study, the 2-step task in its
original form (no background stimuli, reward condition only)
had previously been administered twice (Nebe et al. 2018).
Therefore, subjects were familiar with the general task struc-
ture. Due to technical problems, the experiment was aborted in
one subject, leaving a final sample of n = 54. Subjects were
compensated for their participation with a fixed amount of 20
€ plus an additional sum contingent on task performance
(max. 15 €). Participants’ demographic and clinical character-
istics are outlined in Table S1.

Task

We used a two-stage Markov decision task with separate re-
ward and punishment conditions as previously described
(Worbe et al. 2016). Briefly, on each trial in the first stage,
subjects made a choice between two stimuli, which led to one
of two pairs of second-stage stimuli with fixed probabilities
(70 and 30% of choices). Each of the four second-stage stimuli
was associated with probabilistic 20 Euro Cent monetary re-
ward in the reward condition and loss in the punishment con-
dition or no monetary outcome (Fig.1a).

Model-free and model-based learningmake distinct predic-
tions about first-stage choice repetition probabilities (Fig. 1b).
A model-free strategy predicts a higher repetition probability
of first-stage choices that led to reward in the previous trial,

therefore predicting a main effect of outcome on first-stage
repetitions. However, a model-based strategy predicts the in-
corporation of the transition frequency of the previous trial
and therefore the interaction between outcome and transition
on first-stage repetitions. For instance, it predicts lower repe-
tition probabilities when the transition frequency of the previ-
ous trial was rare but rewarded, because the unchosen first-
stage stimulus has a higher probability in leading to the re-
warding second-stage stimulus pair. The same is true for the
other task valence when choices lead to no punishment.

Reward and punishment conditions were either deposited
with neutral or aversive background stimuli (Fig. 2), resulting
in a 2 (background) × 2 (task valence) within-subject design
(neutral reward, aversive reward, neutral punishment, aversive
punishment). Each background stimulus was shown four
times to fill the entire screen, as previously done in human
PIT paradigms (Garbusow et al. 2016; Garbusow et al. 2014).
The background stimulus appeared at the beginning of each
trial and stayed there during the complete two-step trial (first,
second stage, and outcome).

All four conditions of the task had the same transition prob-
abilities and dynamic range of the reward or punishment prob-
ability. The courses of these second-stage outcome probabilities
(random walks) were slightly different between all four condi-
tions but were randomly assigned to each condition. All condi-
tions had different color code and stimuli set on the first and
second task stages. The used sets were identical to Liu et al.
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Fig. 1 a Trial configuration: in each trial, subjects had to make two
consecutive choices. At a first stage, subjects chose one stimulus over
the other and then proceeded to a second stage where they chose between
two stimuli. Second-stage choices were probabilistically rewarded or
punished according to Gaussian random walks. Transition probabilities

between first and second stages varied for first-stage choices: whereas one
stimulus choice led commonly (70% of all trials) to one second-stage
stimulus pair and rarely (30% of all trials) to the second-stage stimulus
pair, the opposite was true for the other first-stage choice. b Expected stay
probabilities of pure model-free and pure model-based learning
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(2016). Participants completed 100 trials for each condition
divided into two sessions. The order of the reward and punish-
ment conditions as well as the order of the aversive or neutral
background conditions was counterbalanced across subjects.

Neutral and aversive background stimuli were drawn from
the international affective picture system (IAPS, Lang et al.
2005). Picture selection was based on the ratings of the male
college cohort as reported in Lang et al. (2008). To exclude
pictures in the aversive condition with potential disruptive or
harmful content, we limited our selection to pictures with rat-
ings of moderate arousal. Our final aversive image selection
included pictures with lowest ratings in valence and lower
arousal ratings than the mean + 0.2 standard deviations. Our
final neutral image selection included pictures with lowest
arousal ratings and valence ratings between mean valence of
the cohort and the mean + 0.2 standard deviations.

Based on visual inspection, we excluded pictures with
black borders, sexual content, and duplicates. Each con-
dition consisted of a final set of 50 pictures (see
Table S2). Each picture was shown twice, once in the
reward and once in the punishment condition. Examples
of stimuli in the neutral set are household articles such as
a tissue, a basket, or a lamp whereas the aversive set
includes images of contaminated toilets, sick or dead
animals, and violence. Post hoc comparisons of the
ratings by Lang et al. (2008) of our final stimulus set
(using Wilcoxon rank sum test) indicated that pictures
of the aversive condition were rated as more negative
(p < 0.0001) and more arousing (p < 0.0001) than neutral
pictures.

Before the experiment, all subjects underwent the self-
paced computer-based instructions explaining the structure

Fig. 2 a Schematic presentation of the task. Subjects performed 100 trials
within each condition (neutral reward, aversive reward, neutral
punishment, aversive punishment). Stimulus sets and courses of
second-stage reward probabilities (randomwalks) varied between all con-
ditions. First and second stages were presented consecutively and are

presented simultaneously here for illustrative purposes of the different
stimulus sets. b Overall performance: across all conditions, subjects
showed a mixture of model-free and model-based behavior (main effect
outcome and transition × outcome interaction)
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of the task and providing examples. Overall, the subjects were
instructed to win as much money as they could in the reward
condition and to avoid monetary loss in the punishment con-
dition of the task. Participants were told that they would be
paid for the experiment depending on their cumulative perfor-
mance in the reward and the punishment condition. After an
extensive training session, subjects were confronted with 3
multiple choice questions on the structure and the reward ver-
sus punishment condition of the task (adapted from Gillan
et al. (2016)). Subjects only advanced to the experiment if
they answered all questions correctly.

Questionnaire

In a separate session which was conducted prior to the exper-
imental session, subjects answered (among other question-
naires) the German version of the Hospital anxiety and depres-
sion scale (HADS, Herrmann-Lingen 2005; Zigmond and
Snaith 1983), which includes 14 items, of which 7 items are
related to anxiety symptoms and 7 items are related to depres-
sive symptoms. Subjects can respond to each item on a scale
between 0 (do not agree at all) and 3 (fully agree). Scores are
summed up and can vary between 0 and 21 for both subscales.
Previous studies have found that depressive symptoms in-
crease the impact of negative states on decision-making
(Heller et al. 2018). Moreover, negative Pavlovian stimuli
decreased approach but increased avoidance responses in de-
pressive patients, but not in matched healthy controls (Nord
et al. 2018). Based on these findings, we explored the associ-
ation between subclinical depressive symptoms and task be-
havior on an explorative basis.

Analyses

We performed two sets of analyses. The first was a mixed
effects logistic regression where first-stage choices
(stay/switch) were regressed on the previous trial outcome
(reward/no reward or no punishment/punishment), transition
frequency (common/rare), the background (aversive/neutral),
and task valence (reward/punishment). Within-subject factors
(intercept, main effect of outcome, main effect of transition,
main effect of background, task valence and their interaction)
were taken as random effects across participants. For visual
purposes, we extracted model-free and model-based scores as
previously described (Sebold et al. 2014). Briefly, model-free
scores reflected the individual main effect of outcome on first-
stage repetition probabilities (% reward/not punished common
+ % rewarded/not punished rare − % unrewarded/punished
common − % unrewarded/punished rare), whereas model-
based scores reflected the interaction between transition fre-
quency and outcome on first-stage repetition probabilities (%
reward/not punished common + % unrewarded/punished rare
− % rewarded rare/not punished − % unrewarded/punished

common). As we were specifically interested in how aversive
stimuli alter these scores depending on task valence, we cal-
culated these scores between aversive and neutral conditions
for the reward and the punishment condition respectively (sep-
arate for model-free and model-based control).

The second analysis was the fit of the original Daw et al.
(2011) reinforcement learning model (7-parameter hybrid
model, see S4) to the data. We also fitted two reduced models
for model comparison and selection (see S5). We used an
expectation maximization algorithm to find maximum a
posteriori estimates. We fitted the model simultaneously for
all four conditions and compared parameters of interest.
Practically, the model consists of two different sets of param-
eters: the reinforcement learning parameters that capture the
internal learning and evaluation processes and the response
(softmax) parameters that associate the result of the internal
valuations to choices. We hypothesized that background and
task valence would specifically influence learning parameters
but had no hypothesis on how it would affect softmax param-
eters. The learning parameters in the hybrid model included
two learning rate parameters (α1 and α2 for first and second
stages, respectively); the weighting parameter ω, which indi-
cates the balance between model-free and model-based con-
trol; and the eligibility trace parameter λ from the model-free
algorithm, which indicates how much second-stage outcomes
update first-stage action values.

These four reinforcement parameters (α1, α2, ω, λ; for
their distribution, see Table S3) were subjected to a multivar-
iate 2 × 2 ANOVA analysis with background and task valence
as within-subject effects and tested for interactions. Post hoc
tests included univariate 2 × 2 ANOVAs with background and
task valence as repeated measure factors for all four
parameters.

A key scientific question of reinforcement learning con-
cerns how accurate RL fits actually are. Indeed, using rath-
er complex algorithms can lead to ambiguous or false pa-
rameter identifications that mischaracterize participants ac-
tual learning strategies. One way to evaluate this is to gen-
erate simulation data from the computational model with
the parameters that have been estimated from the real data.
In an ideal world, the simulation data should faithfully
match the real data (Gureckis and Love 2009). Thus, we
ran additional simulation analyses, where individual first-
and second-stage actions were generated from the compu-
tational model with the previously estimated parameters.
For each subject, we computed 100 simulation data sets
for each condition (neutral reward, aversive reward, neutral
punishment, aversive punishment). Consequently, we com-
pared model-free (main effect outcome) and model-based
(interaction between outcome and transition) scores be-
tween the real data and the simulated data. Moreover, we
tested for interaction effects between task valence, out-
come, background, and transition in the simulated data.
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Regression analyses were conducted using generalized lin-
ear mixed-effects models implemented with the lme4 package
(Bates et al. 2015) in the R programming language, version
3.1.2 (cran.us.r-project.org). Computational modeling was
performed in Matlab 2014 (8.3., 2014a). MANOVA for
modeling parameters was computed using the RM
function from the MANOVA.RM package (Friedrich
et al. 2017) in R.

Results

Behavioral data

Subjects missed comparably few trials (mean = 6.5, sd = 7.4 tri-
als). Twenty-six subjects began with the punishment condition,
and 28 subjects began with the reward condition. Moreover, 20
subjects began with aversive and 34 began with the neutral back-
ground stimuli, suggesting that the randomization was effective.

The logistic regression indicated a main effect of outcome
(p < 0.0001), a main effect of transition frequency (p < 0.05),
and an interaction between outcome and transition frequency
(p < 0.0001). Thus, subjects showed a mixture between
model-free and model-based learning (Fig. 2b), as previously
shown in this cohort (Nebe et al. 2018).

Neither task valence (p = 0.1) nor background stimuli per
se (p = 0.2) influenced choice behavior. However, we found
an interaction between task valence and background (p =
0.011), suggesting that aversive stimuli influenced first-stage
repetition behavior depending on task valence (Fig. 3a, right
panel). Post hoc analyses indicated that aversive stimuli de-
creased repetition in the reward condition (p = 0.002), but not
in the punishment condition (p = 0.41).

Importantly, the interaction between background and
task valence was further modulated by outcome, as indi-
cated by the three-way interaction of outcome × task va-
lence × background (p = 0.041). This result indicates that
aversive stimuli affect model-free learning in a way that
depends on task valence, justifying further post hoc anal-
yses. These post hoc analyses indicated an interaction be-
tween outcome × task valence in the presence of aversive
background stimuli (p = 0.04), but not neutral background
stimuli (p = 0.44), indicating that aversive stimuli promot-
ed model-free learning in the punishment condition, but
decreased model-free learning in the reward condition
(Fig. 3a, left panel). The interaction between transition
frequency and outcome was not modulated by task va-
lence (p = 0.6), background (p = 0.9), or the interaction
between task valence and background (p = 0.9) indicating
that model-based performance was not modulated by ei-
ther of the two manipulations (Fig. 3a, middle panel).
Complete results of the regression analysis can be found
in Table 1 (real data).

Computational modeling

The MANOVA indicated a significant interaction between
background and task valence (ANOVA-type statistic (ATS)
= 2.78, p = 0.042). Post hoc univariate tests showed no differ-
ence for the balance of model-free and model-based control ω
(F(1,159) = 2.27, p = 0.14), for first-stage learning rates α1
(F(1,159) = 0.84, p = 0.36) nor for second-stage learning rates
α2 (F(1,159) = 0.03, p = 0.86), but significant differences in
stage-skipping update λ (F(1,159) = 4.73, p = 0.03, Fig. 3b).
The parameter λ signifies a stronger influence of reward pre-
diction errors at the second stage on first-stage decision values
and accounts for the main effect of outcome observed in first-
stage stay behavior. In line with raw data analysis, this speaks
for a subtle, albeit significant, elevation of model-free learning
in the presence of aversive stimuli in the punishment condi-
tion, but impairments in the reward condition. Explorative
comparison of parameters of the softmax decision model
(β1, β2, ρ) showed no significant modulation by task valence
or background (ANOVA-type statistic (ATS) = 1.39, p =
0.249, see Fig. S1).

Simulation analyses confirmed the observed effect, as,
overall, subjects showed decreased model-free learning in
the aversive environment in the reward condition, but in-
creased model-free learning in the aversive environment in
the punishment condition (Fig. 3C, left panel). Moreover,
in line with the real data, model-based learning was not
influenced by task valence and aversive environments
(Fig. 3c middle panel). Simulation analyses further dem-
onstrated that the aversive environment decreased the rep-
etition effect on first stages in the reward condition (Fig.
3c, right panel). Moreover, we found high correlations be-
tween model-free scores of the real data and model-free
scores of the simulated data (ρ = 0.71, p = < 0.0001) and
similarly high correlations between model-based scores of
the measured data and model-based scores of the simulated
data (ρ = 0.7, p = < 0.0001). When performing the linear
mixed effects logistic regression with the simulated data,
we again found a 2-way interaction between task valence
and background (p = 0.034) and a 3-way interaction be-
tween outcome, task valence, and background (p =
0.018), suggesting that our model parameters indeed cap-
tured the observed effects (Table 1, simulation data).

Association with subclinical depression scores

We further wanted to test the association between the ob-
served influence of aversive stimuli on model-free learning
in the punishment and reward condition and interindividual
variation in subclinical depression scores. In accordance with
the fact that none of the subjects met the criteria for major
depression, subjects scored very low on the HADS subscale.
Most subjects stated that they had no depressive symptoms at
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all (n = 19), whereas 16 subjects reported one depressive
symptom and 17 subjects reported two or more depressive
symptoms. For exploratory analyses, we tested whether the
extreme ends of this distribution (none vs. some depressive
symptoms) would differ in the observed effect. Therefore, we
performed the abovementioned regression analysis with
an additional between-subject factor, indicating the occur-
rence of depressive symptoms. Indeed, this regression
analysis revealed a 4-way interaction between the ob-
served effect and the presence of depressive symptoms
(task valence × outcome × background × group, p =

0.032, Fig. 4a). Post hoc analyses where interactions were
separately tested for both groups indicated that only subjects
with mild depressive scores showed valence-dependent influ-
ences of the background on model-free learning (task valence
× outcome × background, p = 0.002), whereas this effect was
absent in subjects with no depressive symptoms (task valence
× outcome × background, p = 0.772). There was no interaction
between group, task valence, and background (p = 0.938) in-
dicating that modulation of first-stage repetition by task va-
lence and background was not affected by depressive symp-
toms (Fig. 4b).

Fig. 3 Results of how aversive
stimuli interacted with model-free
and model-based reward and
punishment learning and first-
stage repetition, which indicates
stochasticity or exploration be-
havior, independent of learning.
Bar plots indicate means and
standard errors of means for the
difference scores between aver-
sive versus neutral background
condition a Left: aversive back-
ground enhanced model-free
learning in the punishment con-
dition, but reduced model-free
learning in the reward condition.
Middle: aversive background did
not influence model-based learn-
ing in the reward or punishment
condition. Right: aversive back-
ground selectively decreased first-
stage repetition behavior in the
reward condition. b The stage-
skipping update parameter λ was
differently influenced by aversive
background in the reward and
punishment condition. Other
learning parameters were not af-
fected by aversive background in
the reward or punishment condi-
tion. c Behavioral data simula-
tions from the extracted parame-
ters captured the observed
reinforcement-dependent effect of
aversive background on model-
free learning (left) and the repeti-
tion effect (right) and replicated
the null finding regarding model-
based learning (middle)
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Discussion

Here, we show that aversive context stimuli influence
complex learning and decision-making in a way that de-
pends on task valence. We found that aversive stimuli
increased model-free learning when subjects had to avoid
punishments but decreased model-free learning when sub-
jects had to approach rewards.

This result is in accordance with a number of studies dem-
onstrating valence-action interactions in the negative domain,
as facilitation of avoidance responses have been reported in
the presence of aversive stimuli (Campese et al. 2017;
Dickinson and Pearce 1977). Moreover, our finding matches
reports about aversive Pavlovian-to-instrumental transfer

(PIT) effects in humans (Geurts et al. 2013a; Lally et al.
2017; Nord et al. 2018; Rigoli et al. 2012), where conditioned
aversive stimuli decrease operant responses. The finding of
our study extends these previous reports and shows that aver-
sive stimuli do not only interact with rather simple approach/
avoidance responses but also with more complex learning and
decision-making processes. This is particularly important giv-
en the fact that humans are often required to make challenging
decisions in various emotional states or environments.

According to a recent computational account, complex
learning and decision-making can be dichotomized along
two control systems, a habitual model-free system and a
goal-directed model-based system (Daw et al. 2011). The here
applied two-step task enables to disentangle the relative

Table 1 Fixed effects results
from the mixed effects logistic
regression, where stay behavior
on first stages was regressed on
previous trial’s outcome ×
transition × task valence ×
background. Significant main
effects and interactions are
displayed in italics. Effects are
displayed for the measured data
(left column) and the simulated
data from the computational
modeling parameters (right
column). Effects of the simulated
data match observed effects from
the measured data

Real data Simulation data

Estimate p value Estimate p value

Intercept 1.191 < 0.0001 1.259 < 0.0001

Outcome 0.432 < 0.0001 0.547 < 0.0001

Transition 0.121 0.019 0.160 < 0.0001

Task valence 0.072 0.092 0.170 0.062

Background 0.087 0.152 0.131 0.061

Outcome × transition 1.403 < 0.0001 1.279 < 0.0001

Task valence × transition − 0.510 0.546 0.041 0.178

Outcome × task valence − 0.059 0.466 0.021 0.803

Transition × background − 0.002 0.983 − 0.008 0.689

Outcome × background 0.005 0.947 0.124 0.105

Task valence × background 0.329 0.011 0.379 0.034

Transition × outcome × task valence 0.014 0.595 0.205 0.170

Transition × outcome × background 0.013 0.947 0.086 0.459

Transition × task valence × background 0.011 0.942 − 0.036 0.437

Outcome × task valence × background 0.314 0.041 0.320 0.018

Transition × outcome × task valence × background − 0.047 0.898 0.020 0.928

Fig. 4 Exploratory analysis
comparing subjects at the two
ends of a depression score
showed that mainly subjects with
some depressive symptoms
showed aversive background
influences of aversive
background stimuli on model-free
learning depending on the task
valence
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contribution of these control systems. Interestingly, in our
study, only model-free, but not model-based learning, was
modulated in a valence-dependent way by aversive stimuli.

This finding is particularly interesting given the large de-
bate on whether valence-action interactions as seen in PIT
relate to model-free or model-based control mechanisms
(Dayan and Berridge 2014). One recent study showed that
aversive PIT in humans reflected habitual rather than goal-
directed behavior (Garofalo and Robbins 2017), which speaks
to an association between model-free mechanisms and PIT.
Although our procedure was fundamentally different from
the PIT procedure, it shares one feature, that is, Pavlovian
control over operant responding. Pavlovian and model-free
control mechanisms are assumed to be innately specified.
Interestingly, bodily freezing—a major innately specified de-
fensive responses to threat (Blanchard et al. 2001)—is associ-
ated with Pavlovian control over operant responding (Ly et al.
2014), which speaks to a subtle (although no direct) evidence
that Pavlovian control over operant behavior relates to the
model-free system. Although, in our study, aversive stimuli
did not impact model-based decision-making, some other
studies have shown that negative states, such as acute stress
(Heller et al. 2018; Otto et al. 2013), decrease model-based
control (but see Gillan et al. 2019). One possible explanation
for the discrepant results is the qualitative different manipula-
tion types (acute stress vs. aversive stimuli) which might tax
different control mechanisms.

A computational model substantiated our findings of a
valence-dependent effect of aversive stimuli on model-free
control. The computational parameter lambda, which codes
influences of second-stage reward prediction errors on first-
stage action values, was increased under aversive influences
in the punishment condition but decreased in the reward con-
dition. No other learning parameters were affected by task
valence and background.

Beyond learning, we found an interaction between task
valence and background on choice behavior which was inde-
pendent from learning. More precisely, in our study, aversive
environments increased switch behavior in the reward condi-
tion. Increased first-stage switch behavior could either reflect
exploration behavior, stochasticity, or noise, and unfortunate-
ly, the two-step task does not enable to disentangle these com-
ponents. However, two parameters from the softmax could
potentially have mirrored the effect: β1, indicating how first-
stage choices are guided by expected values and the repetition
parameter ρ, indicating general stickiness. None of these pa-
rameters was modulated by task valence and environment.We
believe that the failure of the computational model to capture
the effect from the regression analysis relates to a power prob-
lem as the large variance within the softmax parameters makes
it harder to detect between condition variations. However,
despite the failure of the computational model to replicate
the repetition effect, our simulation analyses demonstrated

the ability of the model to predict all raw data results, which
shows that the model could recover all behavioral effects.

Our computational model further provides a mechanistic
framework on how aversive stimuli affect reward and avoidance
learning. A famous biologically based computational model pro-
poses distinct dopaminergic cortico-striatal pathways for both
types of learning (Frank et al. 2004). According to this model,
dopamine bursts increase synaptic plasticity in the direct pathway
and thereby support reward learning whereas dopaminergic dips
reduce synaptic plasticity in the indirect pathway through which
avoidance learning is strengthened. Crucially, reductions in tonic
dopamine levels, as seen in Parkinson’s disease, lead to increased
avoidance learning but disrupted reward learning, a functional
status that is reversed through dopaminergic medication (Frank
2005; Frank et al. 2004). Interestingly, this finding is in line with
our data of increased model-free punishment learning but de-
creased model-free reward learning in the presence of aversive
stimuli. As it seems unlikely that aversive pictures change indi-
vidual’s tonic dopamine levels, one might speculate that aversive
stimuli alter phasic dopaminergic activity, e.g., increase dopami-
nergic dips induced by punishment (model-free negative
prediction errors) and decreased reward-related dopaminergic
bursts (model-free positive prediction errors). Future studies
should investigate this hypothesis in animals using microdialysis
or single cell recordings.

Interestingly, exploration behavior (which might be
reflected by the here observed effect of increased switching
during reward learning with aversive background) has also
been associated with tonic dopamine. L-DOPA selectively
increased first- (Wunderlich et al. 2012) and second-
(Kroemer et al. 2019) stage switch behavior in the reward
version of the two-step task and remediated task switching
problems in Parkinson patients (Cools et al. 2001). Studies
investigating the catechol-O-methyltransferase (COMT) gene
further support a model in which exploration has a dopami-
nergic basis (Frank et al. 2009; Kayser et al. 2015). Whereas
the mentioned studies suggest a positive association between
dopamine and exploration, one recent study suggested the
opposite direction of this association as dopaminergic block-
ade in rats led to increases of random exploration behavior
(Cinotti et al. 2019). Thus, future studies should further inves-
tigate the association between dopamine and the influence of
negative states on exploration behavior.

With regard to interindividual differences, our exploratory
analyses showed that valence-dependent effects of how aver-
sive stimuli affect model-free learning were only evident in
subjects reporting mild, subclinical symptoms of depression,
but not in subjects with no symptoms in depression. This
effect is in line with studies demonstrating increased aversive
PIT effects in depression (Nord et al. 2018) and matches a
recent study that reports increased influences of negative
states on complex decision-making in subjects with depres-
sive symptoms (Heller et al. 2018).
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The dysfunctional serotonergic system in depression
(Belmaker and Agam 2008; Graeff et al. 1996; Mann 1999)
might relate to these altered influences of aversive stimuli on
learning and decision-making. Evidence comes from studies
using tryptophan depletion to lower central 5-HT levels
(Crockett et al. 2012b). Some studies have shown that tryptophan
depletion lowers the impact of aversive stimuli (Crockett et al.
2012a) or expected punishments (Crockett et al. 2012a; Crockett
et al. 2009; den Ouden et al. 2015) on inhibition and decreases
aversive PIT effects (Geurts et al. 2013b), suggesting that low
serotonin reduces the influence of aversive stimuli on actions.
However, increases in the influence of aversive stimuli on re-
sponse inhibition have also been reported under tryptophan de-
pletion (Cools et al. 2008; Hebart andGlascher 2015).Moreover,
two studies have shown that tryptophan depletion impairsmodel-
based reward learning (Worbe et al. 2015) while it enhances
model-based avoidance learning (Worbe et al. 2016), suggesting
that low serotonin may have valence-dependent effects.
Moreover, in line with the assumption that low serotonin induces
negative biases, genetic studies show that subjects carrying the
less functional s allele in the promoter region of the serotonin
transporter gene (5-HTTLPR) show increased avoidance learn-
ing (Finger et al. 2007) and amplified neural responses to aver-
sive stimuli (Canli et al. 2005; Hariri et al. 2005; Heinz et al.
2005). In the current study, we did not assess central serotonin
levels or genetic variations of the serotonergic transporter gene
and future studies should further investigate the interactions be-
tween serotonin deficiency, depressive symptoms, and emotional
biases of decision-making to elucidate potential vulnerability
markers for depression.

Our study has several limitations: first, the statistical evi-
dence for our observed effects are tentative. The targeted inter-
action effects in this study are of higher order (4- and 5-fold
interactions), and large sample sizes are usually needed to de-
tect these kinds of effects. Additional analyses where we tested
the hypothesis that our observed effects were stronger for
model-free than for model-based control (see S3) failed to reach
statistical significance. Therefore, although we have direct evi-
dence that model-free control was affected by task valence and
background, we cannot conclude that our effects were statisti-
cally stronger for model-free compared with model-based con-
trol. As this might again be a power problem, our findings
ultimately need replication in bigger sample sizes.

Moreover, we used negative IAPS pictures that were rated as
more negative in valence, but also as more arousing compared
with neutral pictures. Therefore, we cannot rule out that the ob-
served effects were due to arousal instead of valence. The arousal
system has been closely linked to fight or flight reactions
(Roelofs 2017), and a recent study has shown that arousal but
not valence of stimuli affects approach behavior (Bouman et al.
2015). Moreover, arousal as indexed by pupil diameters is pos-
itively related to exploration (Jepma and Nieuwenhuis 2011),
which is in line with our observation on increased switching

behavior (potentially indexing exploration) in aversive compared
with neutral environments.

However, two findings speak against the arousal hypothesis.
First, a u-shaped relationship between arousal and reaction times
has been reported, where moderate and high arousal decreases
and increases RTs, respectively (Nishisato 1966; Welford 1971).
Second, an inverted u-shape association between arousal and
task performance has been reported (Broadhurst 1957; Neiss
1988), where moderate and high arousal increases and decreases
performance respectively. Model-based control is the more so-
phisticated control system in the two-step task and might be
related to task performance as it correlates with processing speed
and working memory capacity (Schad et al. 2014). As we used
moderately arousing pictures, we could have expected decreases
in first-stage RTs but increased model-based control. However,
aversive environments neither affected reaction times (see S2)
nor model-based control, which speaks against the arousal hy-
pothesis. The additional use of positive, highly arousing pictures
would allow ruling out the alternative arousal instead of valence
explanation. Due to time restriction, we could not implement this
additional manipulation in the current experiment.

One second limitation of the study is the extremely homog-
enous sample (male 21-year-old subjects), which limits the
generalizability of its findings. Also, because we only includ-
ed subjects with no current axis-1 psychiatric disorder, the
distribution of the depression score was heavily skewed with
a strong zero inflation. Beyond this, one further limitation was
that depressive symptoms were assessed in a separate session
prior to the assessment of the task. A recent study on almost
200 young adults (Jinnin et al. 2017) showed that mild depres-
sive symptoms remained stable over a 1-year follow-up peri-
od, which makes us believe that this could also hold for this
sample. However, further studies that aim at investigating de-
pression vulnerability should sample subjects from a high-risk
population, e.g., first-degree relatives of depressive patients.

Besides these limitations, our study is the first to provide a computa-
tional model of how negative environmental stimuli influence complex
decision-making. Thus, these results are of high interest for a better under-
standing of context-specific effects on learning mechanisms in everyday
life. Further, our study adds a mechanistic model of how alterations of
these effects can be understood as a potential vulnerability marker for
depression.
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