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ABSTRACT: We report a catalytic asymmetric Nazarov
cyclization of simple, acylic, alkyl-substituted divinyl
ketones using our recently disclosed strong and confined
imidodiphosphorimidate Brønsted acids. The correspond-
ing monocyclic cyclopentenones are formed in good
yields and excellent regio-, diastereo-, and enantioselectiv-
ities. Further, the chemical utility of the obtained
enantiopure cyclopentenones is demonstrated.

Enantiopure cyclopentenones are frequently used as key
building blocks toward, and are themselves present within,

a variety of bioactive and/or complex natural products.1

Chemists have consequently devoted considerable effort to the
development of enantioselective approaches to these important
compounds. Commonly used techniques today include
chemical or enzymatic resolutions,2,3 asymmetric functionali-
zations of existing cyclopentenone units,1c or derivatizations of
chiral-pool reagents.4 While effective, each of these strategies is
conceptually inferior to synthetic methods that introduce
chirality during the construction of the cyclic unit from simple
starting materials, such as asymmetric Pauson−Khand
reactions or Nazarov cyclizations.5,6 Unfortunately, the
relatively underdeveloped methodology of the latter techniques
has limited their application. In fact, despite being considered
one of the most direct and atom-economical transformations
for the synthesis of cyclopentenones, the asymmetric Nazarov
cyclization is arguably one of the least employed methods
toward chiral cyclopentenones.7 The limited application of this
strategy is likely an effect of systematic substrate specificity for
given variants and, therefore, a lack of generality.
Since the first catalytic asymmetric Nazarov cyclization

emerged from the Trauner group in 2003,7c this and
subsequent methods have largely depended on designed
substrates to overcome the relatively low reactivity of divinyl
ketones and/or to circumvent challenges in regio- and
stereoselectivity (Figure 1a). More specifically, these substrates
are usually activated by adjacent heteroatoms to stabilize the
oxyallyl cation, neighboring electron-withdrawing groups, and/
or β-aryl substituents to polarize the divinyl ketone.6b Notably,
in 2013, Rawal and co-workers disclosed two Nazarov
cyclizations of electronically unactivated divinyl ketones;
however, in each of these substrates, one of the olefins was
within a cyclohexane unit, compromising the overall generality
of the method.7j As such, we recognized that simple alkyl-
substituted, acyclic divinyl ketones still remain an extremely

challenging class of substrates for asymmetric Nazarov
cyclizations and thereby undermine its synthetic application.
Recently, our group disclosed a novel class of chiral, highly

acidic, and confined Brønsted acids, i.e., imidodiphosphor-
imidates (IDPis), and demonstrated their success in a variety
of asymmetric transformations.8 We envisioned that these
highly reactive catalysts might be uniquely suited for the
Nazarov cyclization of unbiased divinyl ketones, as the
confined chiral microenvironment not only induces asymmetry
but furthermore may enhance reactivity by increasing the
population of the reactive s-trans/s-trans conformer of the
divinyl ketone (Figure 1b). Here, we report the fruition of
these concepts with a unique catalytic asymmetric Nazarov
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Figure 1. (a) Previously reported systems for asymmetric Nazarov
cyclizations. (b) Highly acidic and confined acid enables catalytic
asymmetric Nazarov cyclization of simple divinyl ketones.
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cyclization of simple, acylic, and alkyl-substituted divinyl
ketones.
We initiated our studies by evaluating acyclic divinyl ketone

1a as a model substrate using a variety of chiral Brønsted acid
catalysts in toluene at 25 °C (Scheme 1). As we anticipated,

relatively weakly acidic and confined Brønsted acids, such as
imidodiphosphoric acid (IDP) 4a and iminoimidodiphosphate
(iIDP) 4b, did not provide any of the desired products (Table
1, entries 1 and 2). Interestingly, N-triflyl phosphoramide 4c,
which Rueping and co-workers have already shown to be an
efficient Brønsted acid of Nazarov cyclizations, resulted in poor
conversion and regioselectivity (2a/3a = 1.7:1) and an
enantiomeric ratio of 56:44 for 2a and 67:33 for 3a (entry 3).
Remarkably, even highly acidic IDPi catalyst 4d (where Ar =

Ph) proved to be inactive under the reaction conditions.
However, based on our hypothesis that the confinement of the
IDPi scaffold would be critical for the increased population of
the necessary s-trans/s-trans conformer, we tested IDPi
catalysts with sterically larger π-substituents in the 3,3′
positions. Indeed, upon testing IDPi catalysts 4e and 4f
(where Ar = 2-triphenylenyl), 2a was formed in good yields
with excellent diastereo- and regioselectivity (both >20:1) and
moderate enantioselectivity (entries 5 and 6). IDPi catalyst 4f

was found to be the best catalyst for this transformation in
terms of enantioselectivity and was therefore selected for
further optimizations. Gratifyingly, when the reaction was
performed at −20 °C, full conversion of substrate 1a to enone
2a was observed with excellent regio- (>20:1), diastereo-
(>20:1), and enantioselectivity (97:3).
With the optimized conditions in hand, we next explored the

scope of this reaction.9 Substituents at R2 with linear (1b),
branched (1c, 1d), and cyclic (1f−h) aliphatic groups were
well tolerated, providing the corresponding enones in good
yields with excellent regio- and enantioselectivities. Interest-
ingly, cyclopropyl-substituted substrate 1e resulted in two
regioisomers, 2e and 3e (rr = 1:1), under the reaction
conditions. We suspect that the poor regioselectivity is a result
of a relative increase in the thermodynamic stability of the
endocyclic isomer 3e by virtue of the unique π-character of the
cyclopropyl unit. The successful application of substrate 1j,
containing an alkyl chloride, potentially allows for subsequent

Scheme 1. Reaction Developmenta

aReactions were performed with substrate 1a (0.02 mmol), catalyst (5
mol %), 4 Å MS (10 mg) in toluene (0.4 mL); conversions (conv)
and regioisomeric ratios (rr of 2a:3a) were obtained by 1H NMR
analysis with Ph3CH as an internal standard; enantiomeric ratios (er)
were measured by GC, unless otherwise indicated; all diastereomeric
ratios (dr) of product 2a were >20:1. bReaction was run for 3.5 days.
NR = no reaction; ND = not determined.

Table 1. Scope of the Reactiona,b

aReactions were carried out with 0.2 mmol of substrates 1, catalyst 4f
(5 mol %), and 100 mg molecular sieves in 4 mL of toluene (0.05 M)
at −20 °C for the specified reaction time. Regioisomeric ratios (rr of
2/3) and diastereomeric ratios (dr) were detected by 1H NMR of the
crude reaction mixture. All diastereomeric ratios (dr) were >20:1. The
enantiomeric ratios (er) were determined by GC or HPLC analysis.
b7 mol % catalyst was used. cYields of the volatile products were
determined by 1H NMR analysis of the mixtures after column
chromatography to remove toluene.

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.8b13899
J. Am. Chem. Soc. 2019, 141, 3414−3418

3415

http://dx.doi.org/10.1021/jacs.8b13899


cyclization or functionalization. In the case of substrate 1k, a
Friedel−Crafts-type interrupted Nazarov cyclization was not
observed.10 We next turned our attention toward divinyl
ketones 1l and 1m with a methyl substituent at R1. The desired
enone 2l was obtained as a single regioisomer (rr > 20:1) and
with an excellent enantiomeric ratio of 95:5. As for the more
bulky substituted divinyl ketone 1m (R2 = t-Bu group), a
slightly higher catalyst loading (7 mol %) was required to give
cyclopentanone 2m in good yield (72%) and excellent
enantioselectivity (97:3). Notably, o-bromophenyl divinyl
ketone 1n, as a representative of an aryl-substituted substrate,
was converted with a reasonable er of 88:12. The absolute
configuration of the produced ketone 2n was determined to be
3S,4R following derivatization (see the SI). The relative
configuration of all other products was assigned by analogy.
Encouraged by the success of our reaction design, we were

eager to investigate the mechanism of this catalytic,
asymmetric Nazarov cyclization. We envisioned two plausible
scenarios, the first in which the free catalyst is the resting state
and the second involving a covalent intermediate formed in a
reaction between the oxyallyl cation and the anion of catalyst
4f, similar to that which was found in the imidodiphosphoric
acid (IDP) catalyzed carbonyl−ene cyclization previously
reported by our group.8i,11 In order to distinguish these two
possible mechanisms, a kinetic study was performed using 1H
NMR analysis. As shown in Figure 2a, the linear correlation

between reaction rate and concentration of starting material
suggests the reaction to be first order in substrate under the
steady state approximation. We therefore propose that the free
catalyst is the resting state in the catalytic cycle and
coordinates to the substrate to form the complex A (Figure
2b). Subsequently, a conrotatory 4π-electrocyclization occurs
to generate the oxyallyl ion pair B, followed by a kinetically
controlled deprotonation (path a), presumably by the
moderately basic O atoms of the sulfonyl group, which
regenerates the catalyst and releases the product.
We also explored the synthetic utility of our enone products

(Scheme 2). Indeed, unsaturated ketone 2a reacted as a

Michael acceptor in a cyclopropanation and in a Mukaiyama−
Michael addition. The resulting products, ketone 7 and
cyclopentanone 9, were obtained without deterioration of
enantioselectivity. The α-methylene unit of 2a could be
isomerized to the fully substituted, thermodynamically more
stable cyclopentenone 3a with an excess amount of
methanesulfonic acid, again retaining the excellent enantiose-
lectivity. Moreover, a Luche reduction of 2a furnished allylic
alcohol 10 in excellent diastereoselectivity (dr > 20:1), which
could then be utilized in a Mitsunobu reaction to install a
purine-derivative and afford compound 12 with excellent C1
enantiopurity.12

In conclusion, we have developed a powerful catalytic,
asymmetric Nazarov cyclization of simple, acyclic, aliphatic-
substituted divinyl ketones using a strong and confined
Brønsted acid. We propose that the confinement of the IDPi
scaffold induces the reactive s-trans/s-trans conformation of the
divinyl ketone substrate, thereby promoting the cyclization to
give a variety of versatile enones in good yields and excellent
enantio-, regio-, and diastereoselectivities. Our approach could
be useful in other conformation-dependent transformations,
and the developed Nazarov reaction may aid in the asymmetric
synthesis of several biologically active natural products.
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Figure 2. (a) Reaction profile for the reaction of substrate 1a with
catalyst 4f in the presence of 4 Å molecular sieves at −20 °C in
toluene-d8 and CH2Br2 as external standard. (b) Proposed
mechanism.

Scheme 2. Functionalization of Nazarov Cyclization
Product 2a
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