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We report results of numerical relativity simulations for 26 new nonspinning binary neutron star systems
with 6 grid resolutions using an adaptive mesh refinement numerical relativity code SACRA-MPI. The finest
grid spacing is ≈64–85 m, depending on the systems. First, we derive long-term high-precision inspiral
gravitational waveforms and show that the accumulated gravitational-wave phase error due to the finite grid
resolution is less than 0.5 rad during more than 200 rad phase evolution irrespective of the systems. We also
find that the gravitational-wave phase error for a binary system with a tabulated equation of state (EOS) is
comparable to that for a piecewise polytropic EOS. Then we validate the SACRA inspiral gravitational
waveform template, which will be used to extract tidal deformability from gravitational wave observation,
and find that accuracy of our waveform modeling is≲0.1 rad in the gravitational-wave phase and≲20% in
the gravitational-wave amplitude up to the gravitational-wave frequency 1000 Hz. Finally, we calibrate the
proposed universal relations between a postmerger gravitational wave signal and tidal deformability/
neutron star radius in the literature and show that they suffer from systematics and many relations proposed
as universal are not very universal. Improved fitting formulas are also proposed.
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I. INTRODUCTION

On August 17, 2017, advanced LIGO [1] and advanced
Virgo [2] detected gravitational waves from a binary
neutron star (BNS) merger, GW170817, for the first time
[3]. In this event, not only gravitational waves but also the
electromagnetic signals in the gamma-ray [4–6], ultra-
violet-optical-infrared [7–22], X-ray [23–25], and radio
bands [26–31] were detected. This monumental event
GW170817, GRB170817A, and AT2017gfo heralded the
opening of the multimessenger astrophysics. Furthermore,
advanced LIGO and advanced Virgo have started a new

observation run, O3, from April 2019, and a new BNS
merger event, GW190425, was reported [32] and 7 can-
didates of a BNS merger as of Feb. 17, 2020, have been
detected [33].
One noteworthy finding in GW170817 is that tidal

deformability of the neutron star (NS) was constrained
for the first time. Due to a tidal field generated by a
companion, NSs in a binary system could be deformed
significantly in the late inspiral stage [34]. The response to
the tidal field, the tidal deformability, is imprinted as a
phase shift in gravitational waves and its measurement
gives a constraint on the equation of state (EOS) of
NSs because the tidal deformability depends on EOSs.
GW170817 constrained the binary tidal deformability in
the range of 100≲ Λ̃≲ 800 with the binary total mass of
2.73þ0.04

−0.01 M⊙ [3,35–37] where the precise value depends
on the analysis methods.
To extract information of the tidal deformability from

observed gravitational wave data, a high precision template
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for gravitational waveforms plays an essential role.
Numerical relativity simulation is the unique tool to derive
high-precision gravitational waveforms in the late inspiral
stage during which the gravitational-wave phase shift due to
the tidal deformation becomes prominent. During this stage,
any analytic techniques break down. Dietrich and his
collaborators constructed a gravitational wave template for
the inspiral stage based on the numerical relativity simu-
lations in a series of papers [38–43] and their template was
used in gravitational wave data analysis by LIGO Scientific
andVirgoCollaborations to infer the tidal deformability from
GW170817 [35]. However, the residual phase error caused
mainly by the finite grid resolution in their simulations is
≈0.5–2.3 rad [43]. The phase error ofOð1Þ rad could be an
obstacle to construct a high-quality inspiral gravitational
waveform template (see also Refs. [44,45]).
In Ref. [46], we tackled this problem by using our

numerical relativity code SACRA-MPI and performed long-
term simulations with the highest grid resolution to date
(see also Refs. [47–50] for our effort in the early stage of
this project). In our numerical results, the gravitational-
wave phase error caused by the finite grid resolution is less
than 0.5 rad for 31–32 inspiral gravitational wave cycles.
On the basis of these high-precision gravitational wave-
forms, Ref. [51] presented a waveform template, the
SACRA inspiral gravitational waveform template, of
BNS mergers. Specifically, we multiply the tidal-part phase
of the 2.5 Post-Newtonian (PN) order derived in Ref. [52]
by a correction term composed of the PN parameter and the
binary tidal deformability. Then, we validated it by con-
firming that it reproduces the high-precision gravitational
waveforms derived in Ref. [46]. We also validated a
correction term in the tidal-part amplitude of the 1 PN
order derived in Refs. [52,53].
In Refs. [46,51], we performed simulations for a limited

class of BNS systems, i.e., two equal-mass and two
unequal-mass systems. Thus, the applicable range of the
SACRA inspiral gravitational waveform template has not
quantified precisely yet. In this paper, we derive a number
of gravitational waveforms from BNS mergers by perform-
ing numerical-relativity simulations in a wider parameter
space for EOSs, binary total mass, and mass ratio than that
in the previous papers [46,51]. For each binary parameter,
we perform an in-depth resolution study to assess the
accuracy of our waveforms. On the basis of newly derived
high-precision gravitational waveforms, we validate the
template.
In addition, we analyze postmerger gravitational wave

signals derived in this paper. The postmerger signal in
GW170817 has not been detected [54], but a postmerger
signal could be detected in near future for the nearby events
or in the third generation detectors such as Einstein
Telescope or Cosmic Explorer [55,56]. The signal could
bring us information of the EOS complementary to that
imprinted in the late inspiral signal. To extract such

information, we should explore a heuristic relation between
postmerger signals and the tidal deformability/NS radius in
numerical relativity simulations. In several previous papers,
such an attempt has been made [57–63]. However, sys-
tematics contained in these relations are unclear because of
the lack of resolution study, the approximate treatment of
relativistic gravity, the lack of the estimation for the
systematics with the uncertainty of the NS EOS, and the
narrow range of the BNS parameter space explored. In this
paper, we assess to what extent the proposed universal
relations between the postmerger gravitational wave signal
and tidal deformability/NS radius [57–63] hold.
To stimulate an independent attempt by other researchers

for constructing a gravitational waveform template based
on the numerical relativity simulations and/or to stimulate a
comparison to numerical relativity waveforms derived by
other groups, we release our simulation data on a website
SACRA Gravitational Waveform Data Bank [64].
This paper is organized as follows. Section II describes

our method, grid setup, and initial condition of the
simulations. Section III is devoted to describing the
accuracy of inspiral gravitational waveforms. Section IV
presents validation of the SACRA inspiral gravitational
waveform template. Section V describes the assessment of
the universal relations of the postmerger signals. This
section also presents the energy and angular momentum
carried by gravitational waves. We summarize this paper in
Sec. VI. Throughout this paper, we employ the geometrical
units of c ¼ G ¼ 1, where c and G are the speed of light
and the gravitational constant, respectively.

II. METHOD, GRID SETUP,
AND INITIAL MODELS

A. Method and grid setup

We use our numerical relativity code, SACRA-MPI [46,65],
to simulate a long-term inspiral stage of BNS up to
early postmerger. SACRA-MPI implements the Baumgarte-
Shapiro-Shibata-Nakamura-puncture formulation [66–69],
locally incorporating a Z4c-type constraint propagation
prescription [70], to solve Einstein’s equation.We discretize
the field equation with the 4th-order accuracy in both the
space and time. We also apply the 4th-order lopsided finite
difference scheme for the advection term [71].
In SACRA-MPI, a conservation form of general relativistic

hydrodynamics equations is employed and we implement a
high-resolution shock capturing scheme proposed by
Kurganov and Tadmor [72] together with the 3rd-order
accurate cell reconstruction [73].
We also implement the Berger-Oliger type adaptive mesh

refinement (AMR) algorithm [74] to enlarge a simulation
domain to a local wave zone of gravitational waves while
guaranteeing a high spatial grid resolution around NSs.
A simulation domain consists of two sets of the 4 Cartesian
AMR domains which follow the orbital motion of each of
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the NSs and the 6 Cartesian AMR domains whose centers
are fixed to the coordinate origin throughout all the
simulations. The grid spacing of a coarser refinement level
is twice as large as that of its finer refinement level. Thus,
the grid spacing of a refinement level l is given by Δxl ¼
L=ð2lNÞwith l ¼ 0; 1;…9. L denotes the distance from the
coordinate origin to the outer boundary along each coor-
dinates axis. N is an even number and each of the AMR
domains possesses the grid point ð2N þ 1; 2N þ 1; N þ 1Þ
in the ðx; y; zÞ directions where we assumed the orbital
plane symmetry.
In this work, we performed simulations with N ¼ 182,

150, 130, 110, 102, and 90 for all the systems to check the
convergence of gravitational waveforms with respect to the
grid resolution. The values of L and Δx9 are summarized in
Table I.

B. Binary system parameters and
gravitational wave extraction

Table I shows the list of the binary systems as well as the
grid setup for the simulations.

1. Equation of state

Following the previous papers [46,51], we employ a
parametrized piecewise polytropic EOS to describe the NS
matter [75]. Specifically, we assume that the pressure and
specific internal energy consist of two segments with
respect to the rest-mass density:

PcoldðρÞ ¼ κiρ
Γi ;

ϵcoldðρÞ ¼
κi

Γi − 1
ρΓi−1 þ Δϵiðρi ≤ ρ < ρiþ1Þ;

with i ¼ 0, 1, ρ0 ¼ 0 g cm−3, and ρ2 ¼ ∞. ρ1 is the rest-
mass densitywhich divides the pressure and specific internal
energy into the two segments. Given the adiabatic indices
Γ0, Γ1 and one of the polytropic constants κ0, the other
polytropic constant κ1 is calculated from the continuity
of the pressure at ρ ¼ ρ1 by κ0ρ

Γ0

1 ¼ κ1ρ
Γ1

1 . Δϵ1 is also
calculated from the continuity of the specific internal energy
at ρ ¼ ρ1 by κ0ρ

Γ0−1
1 =ðΓ0 − 1Þ ¼ κ1ρ

Γ1−1
1 =ðΓ1 − 1Þ þ Δϵ1.

Note that Δϵ0 ¼ 0. Following Ref. [75], we fix

TABLE I. List of the systems for which we performed new simulations. The names of the systems are given in the 1st column. The 2nd
and 3rd columns show gravitational mass of less massive NS, m1, and massive NS, m2, respectively. The 4th column shows EOS.
Dimensionless initial orbital angular velocity, m0Ω0, with the total gravitational mass of the binary systems, m0 ¼ m1 þm2, is given
in the 5th column. The 6th, 7th, and 8th columns show chirp mass, Mc ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5, symmetric mass ratio,
η ¼ m1m2ðm1 þm2Þ−2, and binary tidal deformability, Λ̃, respectively. Location of outer boundary in a computational domain, L, and
grid spacing of a finest AMR level, Δx9, are given in the 9th and 10th columns, respectively. The grid spacing with N ¼ 182, 150, 130,
110, 102, and 90 is shown in the parentheses in the 10th column. The final column shows the extraction radii of gravitational waves.

System m1½M⊙� m2½M⊙� EOS m0Ω0 Mc η Λ̃ L½km� Δx9½m� r0=m0

15H125-146 1.25 1.46 15H 0.0155 1.1752 0.2485 1200 7823 (84,102,117,138,149,169) (244,199,155)
125H125-146 1.25 1.46 125H 0.0155 1.1752 0.2485 858 7323 (78,95,110,129,140,158) (244,199,155)
H125-146 1.25 1.46 H 0.0155 1.1752 0.2485 605 6824 (73,89,102,121,130,147) (244,199,155)
HB125-146 1.25 1.46 HB 0.0155 1.1752 0.2485 423 6491 (69,84,97,115,124,140) (244,199,155)
B125-146 1.25 1.46 B 0.0155 1.1752 0.2485 290 5992 (64,78,90,106,114,129) (244,199,155)
15H118-155 1.18 1.55 15H 0.0155 1.1752 0.2455 1194 7889 (84,102,118,139,150,170) (242,198,154)
125H118-155 1.18 1.55 125H 0.0155 1.1752 0.2455 855 7390 (79,96,111,131,141,159) (242,198,154)
H118-155 1.18 1.55 H 0.0155 1.1752 0.2455 606 6990 (75,91,105,124,133,151) (242,198,154)
HB118-155 1.18 1.55 HB 0.0155 1.1752 0.2455 423 6491 (69,84,97,115,124,140) (242,198,154)
B118-155 1.18 1.55 B 0.0155 1.1752 0.2455 292 5992 (64,78,90,106,114,129) (242,198,154)
15H117-156 1.17 1.56 15H 0.0155 1.1752 0.2450 1170 7889 (84,102,118,139,150,170) (242,198,154)
125H117-156 1.17 1.56 125H 0.0155 1.1752 0.2450 837 7323 (78,95,110,129,140,158) (242,198,154)
H117-156 1.17 1.56 H 0.0155 1.1752 0.2450 592 6990 (75,91,105,124,133,151) (242,198,154)
HB117-156 1.17 1.56 HB 0.0155 1.1752 0.2450 414 6491 (69,84,97,115,124,141) (242,198,154)
B117-156 1.17 1.56 B 0.0155 1.1752 0.2450 285 6058 (65,79,91,107,115,131) (242,198,154)
15H112-140 1.12 1.40 15H 0.0150 1.0882 0.2470 1842 7989 (85,104,120,141,152,172) (262,214,167)
125H112-140 1.12 1.40 125H 0.0150 1.0882 0.2470 1332 7490 (80,97,112,132,143,162) (262,214,167)
H112-140 1.12 1.40 H 0.0150 1.0882 0.2470 955 6990 (75,91,105,124,133,151) (262,214,167)
HB112-140 1.12 1.40 HB 0.0150 1.0882 0.2470 677 6491 (69,84,97,115,124,140) (262,214,167)
B112-140 1.12 1.40 B 0.0150 1.0882 0.2470 475 6092 (65,79,91,108,116,131) (262,214,167)
15H107-146 1.07 1.46 15H 0.0150 1.0882 0.2440 1845 7989 (85,104,120,141,152,172) (261,213,166)
125H107-146 1.07 1.46 125H 0.0150 1.0882 0.2440 1335 7490 (80,97,112,132,143,162) (261,213,166)
H107-146 1.07 1.46 H 0.0150 1.0882 0.2440 957 6990 (75,91,105,124,133,151) (261,213,166)
HB107-146 1.07 1.46 HB 0.0150 1.0882 0.2440 684 6591 (71,86,99,117,126,142) (261,213,166)
B107-146 1.07 1.46 B 0.0150 1.0882 0.2440 481 6091 (65,79,91,108,116,131) (261,213,166)
SFHo135-135 1.35 1.35 SFHo 0.0155 1.1752 0.2500 460 6491 (69,84,97,115,124,140) (244,200,156)

SUB-RADIAN-ACCURACY …. II. SYSTEMATIC STUDY ON … PHYS. REV. D 101, 084006 (2020)

084006-3



Γ0 ¼ 1.3562395, Γ1 ¼ 3, and κ0 ¼ 3.594 × 1013 in cgs
units. By varying the remaining parameter ρ1 for a wide
range as shown in Table II, we can derive plausible NS
modelswith a variety of the radii and tidal deformability (see
Table III).
In addition to the piecewise polytropic EOS, we employ

one tabulated EOS, SFHo [76]. To model an EOS for cold
NS, we simply set T ¼ 0.1 MeV which is the minimum
temperature in the table of SFHo EOS. We also impose the
neutrinoless low-temperature β-equilibrium condition to set
the value of Ye. Then, the original tabulated EOS is reduced
to a one dimensional SFHo (tabulated) EOS, i.e., PcoldðρÞ
and ϵcoldðρÞ (see also Table III for the NS radius and tidal
deformability).
During simulations (in particular for the postmerger

stage), we employ a hybrid EOS to capture the shock
heating effect. Specifically, we assume that the pressure
consists of the cold and thermal parts:

P ¼ PcoldðρÞ þ ðΓth − 1Þρðϵ − ϵcoldðρÞÞ; ð2:1Þ

where ϵ is the specific internal energy and we assumed that
the thermal part is described by the Γ-law EOS with the
index Γth. Following Refs. [46,51], we fix Γth ¼ 1.8. We
note that gravitational waveforms for the postmerger stage

depend on the value of Γth [77], although inspiraling
waveforms do not. Since the major purpose of the present
paper is to derive the accurate inspiraling waveforms, the
choice of Γth does not have any essential importance. On
the other hand, it has been long known that the postmerger
waveform depends strongly on this value (see, e.g.,
Ref. [77]). Thus, we have to keep in mind that the
systematics exist due to the uncertainty of this value [78].

2. Binary systems

In this paper, we consider 6 irrotational binary systems
assuming that NSs have no spin before merger. We fix a
chirp mass, Mc, and symmetric mass ratio, η, to be
ðMc; ηÞ ¼ ð1.1752 M⊙; 0.2500Þ, ð1.1752 M⊙; 0.2485Þ,
ð1.1752 M⊙; 0.2455Þ, ð1.1752 M⊙; 0.2450Þ, ð1.0882 M⊙;
0.2470Þ, and ð1.0882 M⊙; 0.2440Þ. With this setting,
gravitational masses of a less massive and massive com-
ponents for the infinite orbital separation are ðm1; m2Þ ¼
ð1.35 M⊙; 1.35 M⊙Þ, ð1.25 M⊙; 1.46 M⊙Þ, ð1.18 M⊙;
1.55 M⊙Þ, ð1.17 M⊙; 1.56 M⊙Þ, ð1.12 M⊙; 1.40 M⊙Þ,
and ð1.07 M⊙; 1.46 M⊙Þ (see Table I). For the SFHo
(tabulated) EOS, we only consider the equal-mass binary
system with m1 ¼ 1.35 M⊙ and m2 ¼ 1.35 M⊙.
Table I also shows the binary tidal deformability for all

the binary systems [79,80]:

Λ̃ ¼ 8

13

h
ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ

i
; ð2:2Þ

where Λ1ðΛ2Þ is the tidal deformability of the less massive
(massive) component. The value of the tidal deformability
in this paper covers a wide range of ≈300–1800.

TABLE III. The radius, RM, and the dimensionless tidal deformability, ΛM, for spherical NSs with gravitational massM ¼ 1.07, 1.12,
1.17, 1.18, 1.25, 1.35, 1.40, 1.46, 1.55, and 1.56 M⊙ for the given EOS. RM is listed in units of km. For SFHo (tabulated) EOS, the
quantities for the spherical star with M ¼ 1.35 M⊙ are listed. The last column in the upper table shows the maximum mass of the
spherical NS in units of M⊙.

EOS R1.07 R1.12 R1.17 R1.18 R1.25 R1.35 R1.40 R1.46 R1.55 R1.56 Mmax

15H 13.54 13.58 13.61 13.62 13.65 13.69 13.71 13.72 13.74 13.74 2.53
125H 12.86 12.89 12.91 12.92 12.94 12.97 12.98 12.99 12.98 12.98 2.38
H 12.22 12.23 12.24 12.24 12.26 12.27 12.28 12.18 12.26 12.25 2.25
HB 11.60 11.59 11.60 11.60 11.61 11.61 11.60 11.59 11.55 11.55 2.12
B 10.97 10.97 10.98 10.98 10.98 10.96 10.95 10.92 10.87 10.86 2.00
SFHo � � � � � � � � � � � � � � � 11.91 � � � � � � � � � � � � 2.06

EOS Λ1.07 Λ1.12 Λ1.17 Λ1.18 Λ1.25 Λ1.35 Λ1.40 Λ1.46 Λ1.55 Λ1.56

15H 4361 3411 2692 2575 1871 1211 975 760 530 509
125H 3196 2490 1963 1875 1351 863 693 535 366 350
H 2329 1812 1415 1354 966 607 484 369 249 238
HB 1695 1304 1013 966 684 422 333 252 165 157
B 1216 933 719 681 477 289 225 168 107 101
SFHo � � � � � � � � � � � � � � � 460 � � � � � � � � � � � �

TABLE II. List of ρ1 in two-piecewise polytropic EOSs.

EOS ρ1½g cm−3�
15H 9.3108 × 1013

125H 1.0711 × 1014

H 1.2323 × 1014

HB 1.4177 × 1014

B 1.6309 × 1014
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Figure 1 plots the BNS systems simulated for long
durations by our group to date. For the SFHo (tabulated)
EOS case, an interpolation of the thermodynamic variables
is necessary in the simulations. Because we implement the
linear interpolation scheme for this purpose, the associated
truncation error can be a non-negligible error source for
generating high-precision gravitational waveforms. This
system is used to assess the error budget possibly caused by
employing tabulated EOS (see also Ref. [81] for the
gravitational-wave phase error stemming from different
analytical descriptions of the EOSs).
We name all the systems according to the EOS, the mass

of the less massive component, and that of the massive
component. For example, 15H125-146 refers to the system
with 15H EOS, m1 ¼ 1.25 M⊙, and m2 ¼ 1.46 M⊙. We
set the initial orbital angular velocity to be m0Ω0 ¼
0.0150–0.0155 with m0 ¼ m1 þm2. With this, the BNSs
experience 15–16 orbits before the onset of merger for all
the systems.
To generate a high-precision inspiral waveform from

BNS inspirals by a numerical relativity simulation, initial
data with low orbital eccentricity are necessary because the
orbital motion of a BNS in the late inspiral stage is
circularized due to the gravitational-wave emission. We
numerically obtain quasiequilibrium sequences of the
BNSs by a spectral-method library, LORENE [82,83].
Then, we reduce orbital eccentricity by using the prescrip-
tion in Ref. [84]. With this method, we confirm that the
initial orbital eccentricity is reduced typically to ≈10−3
which is low enough to generate a high-precision inspiral
waveform (see also Appendix in Refs. [46,51]).

C. Gravitational wave extraction

We calculate a complex Weyl scalar Ψ4 from simulation
data to derive gravitational waveforms [65]. Given an
extraction radius r0, the Weyl scalar Ψ4 is decomposed
into ðl; mÞ modes with the spin-weighted spherical har-
monics by

Ψ4ðtret; r0; θ;ϕÞ ¼
X
l;m

Ψl;m
4 ðtret; r0Þ−2Ylmðθ;ϕÞ; ð2:3Þ

where tret is a retarded time defined by

tret ≡ t −
�
Dþ 2m0 ln

�
D
2m0

− 1

��
; ð2:4Þ

with D ¼ ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
. A is a proper area of the extraction

sphere. We apply Nakano’s method [85] to extrapolateΨl;m
4

to infinity by

DΨl;m;∞
4 ðtretÞ≡Cðr0Þ

�
DΨl;m

4 ðtret;r0Þ

−
ðl−1Þðlþ2Þ

2

Z
tret
Ψl;m

4 ðt0;r0Þdt0
�
; ð2:5Þ

where Cðr0Þ is a function of r0. Following Ref. [46], we
choose D ≈ r0½1þm0=ð2r0Þ�2 and Cðr0Þ ¼ 1–2m0=D
because our coordinates are similar to isotropic coordinates
of nonrotating black holes in the wave zone.
Gravitational waves of each harmonic mode are calcu-

lated by integrating Ψl;m;∞
4 twice in time:

hl;m;∞ðtretÞ ¼ hl;m;∞
þ ðtretÞ − ihl;m;∞

× ðtretÞ

¼ −
Z

tret
dt0

Z
t0

Ψl;m;∞
4 ðt00Þdt00: ð2:6Þ

For the time integration, we employ the fixed frequency
method [86] by

hl;m;∞ðtretÞ¼
Z

df0
Ψ̃l;m;∞

4 ðf0Þ
ð2πmax½f0;fcut�Þ2

expð2πif0tretÞ; ð2:7Þ

where Ψ̃l;m;∞
4 ðfÞ is the Fourier component of Ψl;m;∞

4 ðtÞ and
fcut is set to be 0.8mΩ0=ð2πÞ.
To check the convergence with respect to the extraction

radius r0, we repeat this analysis for r0 ¼ 244m0, 199m0,
and 155m0 forMc ¼ 1.1752 M⊙ and r0 ¼ 262m0, 213m0,
and 156m0 for Mc ¼ 1.0882 M⊙ (see Table I).
In general, gravitational waves for each ðl; mÞ mode are

decomposed into the amplitude and phase as

hl;m;∞ðtretÞ ¼ Al;m;∞ðtretÞe−iΦl;mðtretÞ; ð2:8Þ

and instantaneous gravitational-wave frequency is defined
by dΦl;m=dtret. In Sec. III, we explore the accuracy of the
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FIG. 1. Symmetric mass ratio, η, and binary tidal deformability,
Λ̃, of all the models simulated for long durations by our group.
The circle and triangle symbols denote BNS systems withMc ¼
1.1752 M⊙ and with Mc ¼ 1.0882 M⊙, respectively. The open
symbols denote the systems reported in Refs. [46,51]. The filled
symbols are the systems newly simulated in this study. The
purple, green, cyan, orange, and red colors are for the systems
with EOS 15H, 125H, H, HB, and B, respectively. The blue cross
symbol is for SFHo135-135.
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gravitational-wave phase of the ðl; mÞ ¼ ð2; 2Þ mode, and
simply refer to Φ2;2 as the gravitational-wave phase. With
Eq. (2.8), the instantaneous frequency of the ðl; mÞ ¼ ð2; 2Þ
mode is calculated by

fGW ¼ 1

2π
Im

�
h�2;2;∞ _h2;2;∞

jh2;2;∞j2
�
; ð2:9Þ

where the asterisk symbol denotes the complex conjugate
of h2;2;∞.
We also calculate the energy and angular momentum

flux due to gravitational-wave emission by [87]

dEl;m
GW

dt
¼ lim

r→∞

r2

16π

����
Z

t
Ψl;m;∞

4 ðt0Þdt0
����2; ð2:10Þ

dJl;mGW
dt

¼ − lim
r→∞

r2

16π
Im

�
m

�Z
t
Ψl;m;∞

4 ðt0Þdt0
��

×
Z

t
dt0

Z
t0

dt00Ψl;m;∞
4 ðt00Þ

�
: ð2:11Þ

Thus, the energy and angular momentum carried by
gravitational waves are calculated by

El;m
GW ¼

Z
tsim dEl;m

GW

dt
dt; ð2:12Þ

Jl;mGW ¼
Z

tsim dJl;mGW
dt

dt; ð2:13Þ

where tsim denotes the time we terminate the simulations.

III. ACCURACY OF WAVEFORMS

To date, we have simulated for long durations
46 binary systems with 6 grid resolutions for each model.
26 binary systems are newly reported in this paper and 20
binary systems have been reported in Refs. [46,51]. Our
waveform data are publicly available on the website:
SACRA Gravitational Waveform Data Bank [64].
On the website, the waveform data are tabulated

according to the system name, dimensionless initial orbital
angular velocity, and grid resolution. For example,
15H_135_135_00155_182 refers to the employed EOS
as 15H, m1 ¼ 1.35 M⊙, m2 ¼ 1.35 M⊙, m0Ω0 ¼ 0.0155,
and N ¼ 182 (see also Table I). A user can download the
data for Ψ2;2

4 ðtret; r0Þ extracted at several values of r0 and
h2;2;∞þ;× ðtretÞ from the link on the system name.

A. Overview of physical and numerical phase shifts

First, we briefly illustrate that the waveforms depend on
EOSs and each mass of binary systems. The top panel of
Fig. 2 shows the dependence of the gravitational waveforms
on the EOSs for the binary systems with m1 ¼ 1.12 M⊙,

m2 ¼ 1.40 M⊙, and N ¼ 182. It shows that the systems
with the larger values of Λ̃merge earlier than those with the
smaller values of Λ̃ because the tidal force due to its
companion induces the quadrupole moment and the result-
ant attractive force accelerates the orbital shrinkage. The
bottom panel of Fig. 2 shows the dependence of the
gravitational waveforms on the symmetric mass ratio for
the binary systems with 15H125-125, 15H112-140, and
15H107-146 with N ¼ 182. It shows that the systems
with the larger values of η merge earlier than those
with the smaller values of η because the emissivity of
gravitational waves decreases as the symmetric mass ratio
decreases [88].
The top panel of Fig. 3 shows the dependence of the

gravitational waveforms on the grid resolutions for
15H112-140 with N ¼ 182, 110, and N ¼ 90. Errors in
the amplitude and phase caused by the finite grid resolution
become prominent for the late inspiral and postmerger
stages. The bottom panel of Fig. 3 plots the phase shift
among the systems of different EOSs for m1 ¼ 1.12 M⊙,
m2 ¼ 1.40 M⊙, andN ¼ 182. The phase shift is defined by
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FIG. 2. (Top) hþ for ðl; mÞ ¼ ð2; 2Þ mode of the gravitational
waveforms for binary systems with m1 ¼ 1.12 M⊙ and
m2 ¼ 1.40 M⊙. (Bottom) The same as the top panel, but for
15H125-125, 15H112-140, and 15H107-146. In both panels, the
grid resolution is N ¼ 182.
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δΦshiftðtret;EOS1;EOS2; NÞ
¼ Φ2;2ðtret;EOS1; NÞ −Φ2;2ðtret;EOS2; NÞ; ð3:1Þ

whereΦ2;2ðtret;EOS; NÞ is the gravitational-wave phase for
l ¼ jmj ¼ 2 mode derived from a simulation with employ-
ing EOS and the grid number N. Because we compare the
phase among models with common masses of components,
we omit the masses from the argument. The shaded region
shows the evolution of the phase error defined by

δΦerrorðtret;EOS; N1; N2Þ
¼ Φ2;2ðtret;EOS; N1Þ −Φ2;2ðtret;EOS; N2Þ; ð3:2Þ

where N1 and N2 denote the employed grid numbers. The
red shaded region shows δΦerrorðtret; 15H; 150; 182Þ and
the blue shaded region shows δΦerrorðtret; 15H; 90; 182Þ,
respectively, for 15H112-140. The overlapped region has a
purple color. The vertical dashed line denotes the peak time,
tpeak, at which the gravitational-wave amplitude becomes

maximal for 15H112-140 with N ¼ 182. Just after the
peak time, burst-type gravitational waves are emitted for a
short time as shown in the upper panel of Fig. 3, i.e., for
58 ms≲ tret ≲ 59 ms. These waves cause very rapid
increase in phase during this short-term interval and
consequently the phase shift shows very rapid increase.
This feature can be also seen in the phase error and the very
rapid increase appears later in δΦerrorðtret; 15H; 150; 182Þ
than in δΦerrorðtret; 15H; 90; 182Þ because the peak time
becomes later with improving the grid resolution.
The phase shift and the phase error up to the peak time

are comparable, in particular, for the case with the coarser
grid resolution. Therefore, unless a convergence study is
sufficiently carried out, a capability of inspiral waveform
models to measure the tidal deformability is unclear. This is
also the case for the postmerger stage. In particular, the
phase evolution loses the convergence as found in the
bottom panel of Fig. 3, i.e., δΦerrorðtret; 15H; 150; 182Þ (red
shaded region) is larger than δΦerrorðtret; 15H; 90; 182Þ
(blue shaded region). Therefore, time-domain postmerger
gravitational waves derived in numerical-relativity simu-
lations are not very reliable. Instead, we will discuss the
postmerger signal in terms of the energy and angular
momentum carried by gravitational waves and their spec-
trum amplitude. These quantities are calculated by a time
integration of the gravitational waveforms and the con-
vergence in the phase could be subdominant as discussed
in Sec. V.

B. Estimation of the residual phase error
in gravitational waves

Following Refs. [46,51], we estimate a residual gravi-
tational-wave phase error at the peak time in the simu-
lations. The left panel of Fig. 4 plots evolution of the phase
error, δΦerrorðtret;B; N; 182Þ, with N ¼ 150, 130, 110, 102,
and 90 for B107-146. The vertical dashed line denotes the
peak time for B107-146 with N ¼ 182. Although the phase
error is accumulated with time, its value at the peak time
decreases as improving the grid resolution. We estimate the
residual phase error by assuming that the gravitational-
wave phase at the peak time obeys the following functional
form:

Φ2;2ðtpeak;EOS; NÞ

¼ Φ2;2;∞
peak ðNmaxÞ − ΔΦ2;2

peakðNmaxÞ
�
Nmax

N

�
p
; ð3:3Þ

where Φ2;2;∞
peak ðNmaxÞ and p denote the gravitational-wave

phase at the peak time in the continuum limit of the finite
difference ðN → ∞Þ and an order of the convergence,
respectively. ΔΦ2;2

peakðNmaxÞ should be recognized as the
residual phase error for the simulation with N ¼ Nmax.
Nmax denotes a reference value of N to estimate
unknown quantities Φ2;2;∞

peak ðNmaxÞ, ΔΦ2;2
peakðNmaxÞ, and p.

FIG. 3. (Top) The same as Fig. 2, but for 15H112-140 with
N ¼ 182, 110, and 90. (Bottom) The gravitational-wave phase
shift, δΦshiftðtret;EOS;B; 182Þ, for the binary systems with m1 ¼
1.12 M⊙, �m2 ¼ 1.40 M⊙, and EOS ¼ 15H; 125H;H;HB. The
shaded region shows δΦerrorðtret; 15H; 150; 182Þ (red) and
δΦerrorðtret; 15H; 90; 182Þ (blue), respectively, for 15H112-140.
The overlapped region has a purple color. The vertical dashed line
denotes the peak time of the gravitational-wave amplitude for
15H112-140 with N ¼ 182 (see the text for details).
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For example, with Nmax ¼ 182, these unknowns are
obtained by fitting the simulation results of N ¼ 150,
130, 110, 102, and 90 with Eq. (3.3) given an EOS, a
chirp mass, and a symmetric mass ratio.
The right panel of Fig. 4 plots the gravitational-wave

phase error at the peak time, δΦerrorðtpeak;B; Nmax; NÞ, as a
function of 1=Np with a reference grid number Nmax and
N ¼ 90; 102;…; Nmax. Assuming Eq. (3.3), the phase error
at the peak time in a binary system is given as

δΦerrorðtpeak;EOS; Nmax; NÞ

¼ ΔΦ2;2
peakðNmaxÞ

��
Nmax

N

�
p
− 1

�
: ð3:4Þ

The values of ΔΦ2;2
peakðNmaxÞ and p are shown in the legend

of this plot. It is clear that the order of the convergence p is
improved and the residual gravitational-wave phase error is
reduced as increasing Nmax.
Table IV summarizes the residual phase error and the

order of the convergence of the gravitational-wave phase at
the peak time for all the systems. We estimate the residual
phase error with respect to three reference values of Nmax as
182,150, and 130. In some systems, the residual phase error
and the order of the convergence show an irregular
behavior. That is, the residual phase error (the order of
convergence) for Nmax ¼ 130 happens to be smaller
(higher) than that forNmax ¼ 150. Nonetheless, the residual
phase error (the order of convergence) for Nmax ¼ 182 is
smaller (higher) than that for Nmax ¼ 150 except for
125H125-146. Thus, we adopt the values for Nmax ¼
182 as the residual phase error in our waveforms and it
is in the range of ≈0.1–0.5 rad.
For the SFHo (tabulated) EOS, we find that the residual

phase error still remains within sub-radian accuracy.

Because SFHo135-135 and HB135-135 have nearly iden-
tical values of Λ̃ [46], The phase error due to the tabulated
EOS is estimated by comparing the results for them.
For HB135-135, the residual phase error and the order
of the convergence are ðΔΦ2;2

peakð182Þ; pÞ ¼ ð0.17 rad; 3.6Þ,
ðΔΦ2;2

peakð150Þ;pÞ¼ð0.48rad;3.2Þ, and ðΔΦ2;2
peakð130Þ; pÞ ¼

ð2.0 rad; 1.7Þ [46]. For SFHo135-135, the residual
phase error and the order of the convergence are
ðΔΦ2;2

peakð182Þ; pÞ ¼ ð0.43 rad; 2.3Þ, ðΔΦ2;2
peakð150Þ; pÞ ¼

ð0.76 rad; 2.2Þ, and ðΔΦ2;2
peakð130Þ; pÞ ¼ ð0.33 rad; 4.2Þ,

respectively. Thus, the system with the SFHo (tabulated)
EOS has slightly larger residual phase error than with the
piecewise polytropic EOS. This indicates that the linear
interpolation of the thermodynamic quantities could cause
a phase error of ≈0.2–0.3 rad. Nonetheless, it is encour-
aging that our waveforms have the sub-radian accuracy
even for the SFHo (tabulated) EOS. For a more detailed
estimate of the error budget due to tabulated EOSs, we need
to perform BNS simulations with a wide class of tabulated
EOSs. In particular, we speculate that the phase error when
using a tabulated EOS with a phase transition could be even
larger.

IV. INSPIRAL GRAVITATIONAL
WAVEFORM MODELING

A. SACRA inspiral gravitational waveform template

In the previous paper [51], we developed a frequency-
domain gravitational waveform model for inspiraling BNSs
(with l ¼ jmj ¼ 2) based on high-precision numerical-
relativity data. In this section, we extend the examination
of the inspiral waveform model to a parameter space wider
than the previous papers [46,51] by employing new wave-
forms obtained in this paper.
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FIG. 4. (Left) Gravitational-wave phase error, δΦerrorðtret;B; N; 182Þ, with N ¼ 150, 130, 110, 102, and 90 for B107-146. The vertical
dashed line denotes the peak time of the gravitational-wave amplitude for N ¼ 182. (Right) Gravitational-wave phase error at the peak
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Before moving on to the comparison, we briefly review
our inspiral waveform model. First we calculate the Fourier
component for the quadrupole mode of gravitational waves
for all the systems by

h̃þ;×ðfÞ ¼
Z

tf

ti

h2;2;∞þ;× ðtÞe−2πiftdt; ð4:1Þ

where ti and tf are the initial and final time of the waveform
data, respectively. Then, we decompose h̃þðfÞ in Eq. (4.1)
into the frequency-domain amplitude, AðfÞ, and phase,
ΨðfÞ, (with an ambiguity in the origin of the phase) by

h̃þðfÞ ¼ AðfÞe−iΨðfÞ: ð4:2Þ

We only use h2;2;∞þ for modeling the inspiral gravitational
waveforms because the difference between h2;2;∞þ and
h2;2;∞× is approximately only the phase difference of π=2.
We define the corrections due to the NS tidal deformation
to the gravitational-wave amplitude and phase by

AtidalðfÞ ¼ AðfÞ − ABBHðfÞ ð4:3Þ

and

ΨtidalðfÞ ¼ ΨðfÞ −ΨBBHðfÞ; ð4:4Þ

respectively. Here, ABBHðfÞ and ΨBBHðfÞ are the gravita-
tional-wave amplitude and phase of a binary black hole
(BBH) with the same mass as the BNS, respectively (here-
after referred to as the point-particle parts: see Ref. [51] for
details).
Our numerical-relativity waveforms only contain the

waveforms for the frequency higher than ≈400 Hz.
Thus, we employ the effective-one-body waveforms of
Refs. [89–92] (SEOBNRv2T) to model the low-frequency
part waveforms, in which the effect of dynamical tides is
taken into account, and construct hybrid waveforms com-
bining them with the numerical-relativity waveforms.
The hybridization of the waveforms is performed in the
time-domain by the procedure described in Refs. [50,51]
and we set the matching region to be from tret ≈ 7.38 ms
to 14.78 ms. After the hybridization, the waveforms are
transformed into the frequency domain employing
Eq. (4.1), and the tidal-part amplitude and phase are
extracted by Eqs. (4.3) and (4.4).
For modeling the tidal-part phase and amplitude, we

employ the following functional forms motivated by the
2.5 PN order formula [52]:

TABLE IV. Residual phase error (rad) and order of the convergence of the gravitational-wave phase at the peak
time calculated by Eq. (3.3) for Nmax ¼ 182, 150, and 130.

System ðΔΦ2;2
peakð182Þ; pÞ ðΔΦ2;2

peakð150Þ; pÞ ðΔΦ2;2
peakð130Þ; pÞ

15H125-146 (0.11, 4.1) (0.58, 2.7) (5.44, 0.7)
125H125-146 (0.31, 2.6) (0.15, 4.5) (0.45, 3.6)
H125-146 (0.17, 3.4) (0.78, 2.2) (0.73, 2.8)
HB125-146 (0.13, 3.7) (1.10, 1.7) (1.00, 2.2)
B125-146 (0.12, 3.8) (0.28, 3.7) (0.45, 3.8)
15H118-155 (0.22, 3.1) (0.75, 2.2) (0.47, 3.5)
125H118-155 (0.26, 2.9) (0.83, 2.1) (1.44, 1.7)
H118-155 (0.23, 3.1) (0.48, 3.0) (0.56, 3.4)
HB118-155 (0.44, 2.3) (1.21, 1.6) (0.79, 2.5)
B118-155 (0.29, 2.7) (0.69, 2.2) (0.47, 3.3)
15H117-156 (0.26, 2.9) (0.36, 3.2) (0.39, 4.0)
125H117-156 (0.28, 2.8) (0.38, 2.8) (0.92, 2.4)
H117-156 (0.24, 3.0) (0.31, 3.5) (0.74, 2.9)
HB117-156 (0.22, 3.0) (0.84, 2.0) (1.42, 1.7)
B117-156 (0.42, 2.3) (0.43, 2.8) (0.23, 4.8)
15H112-140 (0.19, 3.4) (0.70, 2.5) (0.66, 3.2)
125H112-140 (0.21, 3.4) (0.53, 3.0) (0.66, 3.3)
H112-140 (0.17, 3.5) (0.92, 2.1) (1.00, 2.4)
HB112-140 (0.42, 2.5) (0.48, 3.0) (0.21, 5.5)
B112-140 (0.19, 3.6) (0.34, 3.7) (39.59, 0.13)
15H107-146 (0.38, 2.6) (0.86, 2.2) (0.43, 3.9)
125H107-146 (0.54, 2.2) (2.93, 1.0) (0.61, 3.2)
H107-146 (0.41, 2.4) (0.60, 2.5) (1.03, 2.3)
HB107-146 (0.35, 2.8) (0.44, 3.3) (0.43, 4.2)
B107-146 (0.33, 2.8) (0.73, 2.4) (1.05, 2.4)
SFHo135-135 (0.43, 2.3) (0.76, 2.2) (0.33, 4.2)
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Ψtidal
model¼

3

128η

�
−
39

2
Λ̃ð1þaΛ̃2=3xpÞ

�
x5=2

×

�
1þ3115

1248
x−πx3=2þ28024205

3302208
x2−

4283

1092
πx5=2

�
ð4:5Þ

for the phase correction and

Atidal
model¼

ffiffiffiffiffiffiffiffi
5πη

24

r
m2

0

Deff
Λ̃x−7=4

�
−
27

16
x5−

449

64
x6−bxq

�
ð4:6Þ

for the amplitude correction where Deff is the effective
distance to the binary [50] and x≡ ðπm0fÞ2=3. a, p, b, and
q are the free parameters of the models. To focus on the
inspiral waveform and to avoid the contamination from the
postmerger waveforms of high frequency, which would
have large uncertainties, we restrict the gravitational-wave
frequency range in 10–1000 Hz. The fitting parameters
were determined by employing the hybrid waveforms of
15H125-125, which has the largest value of binary tidal
deformability in the systems studied in the previous study
[51]. By performing the least square fit with respect to the
phase shift and relative difference of the amplitude, we
obtained a ¼ 12.55, p ¼ 4.240, b ¼ 4251, and q ¼ 7.890.
In Ref. [51], the validity of the inspiral waveform model

was examined employing hybrid waveforms which were not
used for the parameter determination.We should stress again
that the parameters a,p, b, and q in Eqs. (4.5) and (4.6) were
determined by the particular system 15H125-125. We found
that the tidal-part waveform model always reproduced the
tidal-part phase and amplitude of the hybrid waveforms
within ∼0.1 rad and 15%, respectively, for the equal-mass
and unequal-mass cases with Mchirp ¼ 1.1752 M⊙ and the
equal-mass cases with Mchirp ¼ 1.0882 M⊙, covering the
parameter space of 0.244 ≤ η ≤ 0.250 and 300≲ Λ̃≲ 1800.

B. Validation of SACRA inspiral gravitational
waveform template

While the validity of our inspiral waveform model was
already examined in the most interesting part of the
parameter space of BNSs [51], there still remain some
important cases which were not examined in the previous
study [51]. First, the dependence of the error of the tidal
correction on the mass ratio has to be checked for less
massive BNSs. While unequal-mass cases with total mass
of ≈2.7 M⊙ were checked in the previous study [51], it is
important to check whether our inspiral waveform models
are also applicable to unequal-mass cases with smaller total
mass, for which the tidal effect is enhanced due to the
increase of tidal deformability. Second, the systematics due
to simplification on the high-density part of the EOS should
be checked. For the inspiral waveforms, we expect that the
high-density part of the EOS has a minor effect, and, thus,
we employ simplified two-piecewise polytropic EOS mod-
els. However, we should confirm that this assumption is
indeed valid.
To check the points listed above, we compare our inspiral

waveform model with hybrid waveforms employing the
numerical-relativity waveforms obtained in this paper.
Hybrid waveforms are constructed in the same manner
as in the previous study [51] employing the SEOBNRv2T
waveforms as the low-frequency part waveforms. In par-
ticular, we focus on the validity of the tidal correction
model to the waveform, comparing it with the tidal-part
phase and amplitude of the hybrid waveforms computed
based on Eqs. (4.3) and (4.4) using the SEOBNRv2
waveforms with no-tides as the point-particle parts.
Figures 5 and 6 show the difference of the tidal-part

phase and amplitude between our inspiral waveform model
(4.5) and (4.6) and the hybrid waveforms for the models
with Mc ¼ 1.1752 M⊙ and Mc ¼ 1.0882 M⊙. Here, the
phase difference between the tidal-part phase of hybrid
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FIG. 5. (Left) Difference in the tidal-part phase between the hybrid waveforms and the model given by Eq. (4.7) for the binary systems
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waveforms, Ψtidal
Hybrid, and that of our inspiral waveform

model, Ψtidal
model, is computed by

ΔΨðfÞ ¼ Ψtidal
HybridðfÞ −Ψtidal

modelðfÞ − 2πft0 þ ϕ0; ð4:7Þ

where t0 and ϕ0 are the free parameters which correspond
to the degrees of freedom in choosing the origins of time
and phase, respectively, and are determined by minimizingR jΔΨðfÞj2df integrated in the range of f ¼ 10–1000 Hz.
For the comparison of the tidal-part amplitude, relative
difference of the amplitude,

ΔAðfÞ=AðfÞ ¼ ðAtidal
HybridðfÞ − Atidal

modelðfÞÞ=AmodelðfÞ; ð4:8Þ

is computed, where Atidal
Hybrid and Amodel ¼ Atidal

model þ ABBH are
the tidal-part amplitude of hybrid waveforms and the
amplitude of the model waveforms including the point-
particle part, respectively. Again, we employ the amplitude
of the SEOBNRv2 waveforms with no-tides for ABBH.
The systems of mass 1.25M⊙−1.46M⊙, 1;18M⊙ −

1.55M⊙, and 1.17 M⊙ − 1.56 M⊙ are within the parameter
space which we studied in the previous study [51], and,
thus, we expect that those waveforms are well reproduced
by our inspiral waveform model. Indeed Fig. 5 shows that
differences in both phase and amplitude are within the error
which we observed in the previous study [51]. Figure 5 also
shows that tidal-part phase and amplitude for system
SFHo135-135 are well reproduced by our inspiral wave-
form model. This confirms that, at least for the frequency
range and m0 we focus on, employing an EOS whose high-
density part is simplified has only a minor effect on the
systematics of the model. Figure 6 shows the results in the
unequal-mass cases with Mc ¼ 1.0882 M⊙. The differ-
ence in the tidal-part phase is larger than the cases with
Mc ¼ 1.1752 M⊙. This is reasonable because we found
that the error of tidal-part model becomes relatively large
for a small mass ratio or a large value of tidal deformability
in the previous study [51]. Nevertheless, the phase error is
always smaller than ≈0.1 rad, which is smaller than the

systematics in the waveforms stemming from the finite
difference as shown in the previous section. The deviation
for the amplitude model is also the same level as for the
models with Mc ¼ 1.1752 M⊙.
To quantify the deviation of our inspiral waveform

model from the new sets of hybrid waveforms, we calculate
the mismatch between those waveforms, F̄, defined by

F̄ ¼ 1 −max
ϕ0;t0

ðh̃1∣h̃2e2πift0þiϕ0Þ
kh̃1kkh̃2k

; ð4:9Þ

where ð·j·Þ and k·k are defined by

ðh̃1∣h̃2Þ ¼ 4Re

�Z
fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df

�
; ð4:10Þ

where fmin ¼ 10 Hz and fmax ¼ 1000 Hz and

kh̃k ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðh̃∣h̃Þ

q
: ð4:11Þ

Here, h1 and h2 denote the hybrid waveforms and our
inspiral waveform models, respectively. The inspiral wave-
form model employs Eqs. (4.5) and (4.6) as the tidal part
and the SEOBNRv2 waveforms with no-tides as the point-
particle baseline. Sn denotes the one-sided noise spectrum
density of the detector, and we employ the noise spectrum
density of the ZERO_DETUNED_HIGH_POWER configu-
ration of advanced LIGO [93] for it.
We summarize the values of mismatch between our

inspiral waveform model and hybrid waveforms in Table V.
For all the cases, the value of mismatch is smaller than
≈2 × 10−5. According to our previous results [51], these
results indicate that the signal to noise ratio of the differ-
ence between our inspiral waveform model and hybrid
waveforms are as small as 1 even for the case in which the
total signal to noise ratio is as large as 200.
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V. ASSESSMENT OF UNIVERSAL RELATION
FOR LATE INSPIRAL AND POSTMERGER

GRAVITATIONAL WAVES

A. Frequency and amplitude

Instantaneous gravitational-wave frequency defined by
Eq. (2.9) at some characteristic time in the late inspiral or

postmerger stage is reported to be correlated with the tidal
deformability or the tidal coupling constant [57,58,60,61].
In addition, characteristic peak frequencies imprinted in the
spectrum amplitude of postmerger gravitational waves are
reported to be correlated with the tidal coupling constant or
NS radius [47,58,63,94]. We assess these proposed uni-
versal relations using our waveform data, for which the
systematic study has been conducted in a wide range of the
binary parameters with a wide range of the grid resolution
of the simulations. We also propose new relations in terms
of the binary tidal deformability.

1. Peak frequency and binary tidal deformability relation

Reference [57] reported that the instantaneous gravita-
tional-wave frequency (of l ¼ jmj ¼ 2 mode) at the peak
time ðtpeakÞ, fpeak, has a tight correlation with the binary
tidal deformability Λ̃ (see also Refs. [58,60,61] for the
relation with the tidal coupling constant: In Ref. [58], they
referred to it as fmax.). Figure 7 plots the dependence of
fpeak on the grid resolution where fpeak;ave is the average of
fpeak over the results with different grid resolutions. fpeak
does not converge perfectly with respect to the grid
resolution, but the fluctuation around the averaged value
is less than 2% for a wide range of the grid resolution. This
is also the case for all the binary systems. Thus, we estimate
a relative error due to the finite grid resolution in fpeak to be
2% and tabulate the values of fpeak in Table VI.
The right panel of Fig. 7 plots m0fpeak as a function of

Λ̃1=5. The error bar shows the systematics associated with
the finite grid resolution in fpeak. We also plot the universal
relations reported in Refs. [57] (black dashed line) and [58]
(black dotted line). We find that the universal relation in
Ref. [58] holds only for the symmetric binary systems with
Mc ¼ 1.1752 M⊙ and Mc ¼ 1.0882 M⊙ (see also
Table VI). Given an EOS and a chirp mass, fpeak shifts

TABLE V. Mismatch between the inspiral waveform model and
hybrid waveforms.

System F̄ð×10−5Þ
15H125-146 0.83
125H125-146 0.36
H125-146 0.29
HB125-146 0.28
B125-146 0.22
15H118-155 0.82
125H118-155 0.26
H118-155 0.30
HB118-155 0.32
B118-155 0.31
15H117-156 0.97
125H117-156 0.31
H117-156 0.25
HB117-156 0.30
B117-156 0.17

15H112-140 0.88
125H112-140 0.24
H112-140 0.37
HB112-140 0.71
B112-140 0.91
15H107-146 1.82
125H107-146 0.45
H107-146 0.30
HB107-146 0.79
B107-146 1.12

SFHo135-135 0.45
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FIG. 7. (Left) A deviation of instantaneous gravitational-wave frequency at the peak time fpeak relative to fpeak;ave as a function of 1=N
for the binary systems with m1 ¼ 1.17 M⊙ and m2 ¼ 1.56 M⊙. fpeak;ave is an average of fpeak over the results with different grid
resolutions. (Right) m0fpeak as a function of Λ̃1=5. Meaning of the color and symbols is the same as that in Fig. 1. The error bar of �2%

comes from the systematics associated with the finite grid resolution in fpeak. The proposed universal relations in Refs. [57,58] are shown.
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TABLE VI. Binary tidal deformability Λ̃, fpeak, hpeak, f2, E2;2
GW;i, E

2;2
GW;p, J

2;2
GW;p, Jrem, andm0 −MADM;0.MADM;0 is the Arnowitt-Deser-

Misner mass of the initial condition of the simulations. We adopt 2% relative error for fpeak and hpeak and 5% relative error for f2,
respectively, as a typical value. For f2, we exclude binary systems which collapse to a black hole within a few ms after the merger. For
E2;2
GW;i and Jrem, we adopt 2% and 1% relative error, respectively. EGW and m0 −MADM;0 are given in units of M⊙. JGW and Jrem are in

units of M2
⊙.

System Λ̃1=5 fpeak [Hz] Dhpeak=m0 f2½Hz� E2;2
GW;i E2;2

GW;p J2;2GW;p Jrem m0 −MADM;0

15H135-135 4.14 1503�30 0.226�0.005 2321�116 ð7.90�0.16Þ×10−3 1.35×10−2 0.40 6.64�0.07 1.65×10−2

125H135-135 3.87 1652�33 0.236�0.005 2517�126 ð9.04�0.18Þ×10−3 1.76×10−2 0.48 6.54�0.07 1.64×10−2

H135-135 3.60 1820�36 0.249�0.005 2790�139 ð1.03�0.02Þ×10−2 2.32×10−2 0.56 6.46�0.06 1.63×10−2

HB135-135 3.35 1986�40 0.261�0.005 3243�162 ð1.17�0.02Þ×10−2 2.89×10−2 0.59 6.39�0.06 1.64×10−2

B135-135 3.11 2133�43 0.274�0.005 � � � ð1.30�0.03Þ×10−2 7.39×10−3 0.13 6.33�0.06 1.65×10−2

15H121-151 4.13 1356�27 0.212�0.004 2261�163 ð7.47�0.15Þ×10−3 5.47×10−3 0.17 6.66�0.07 1.66×10−2

125H121-151 3.86 1490�30 0.224�0.004 2379�119 ð8.53�0.17Þ×10−3 8.24×10−3 0.23 6.57�0.07 1.66×10−2

H121-151 3.60 1637�33 0.236�0.005 2749�137 ð9.70�0.19Þ×10−3 1.05×10−2 0.26 6.49�0.06 1.66×10−2

HB121-151 3.35 1809�36 0.249�0.005 3268�161 ð1.10�0.02Þ×10−2 2.26×10−2 0.48 6.41�0.06 1.66×10−2

B121-151 3.11 1994�40 0.263�0.005 � � � ð1.23�0.02Þ×10−2 6.85×10−3 0.13 6.35�0.06 1.66×10−2

15H125-125 4.51 1450�29 0.211�0.004 2159�108 ð6.26�0.13Þ×10−3 7.98×10−3 0.25 5.95�0.06 1.53×10−2

125H125-125 4.23 1568�31 0.222�0.004 2350�118 ð7.19�0.14Þ×10−3 9.29×10−3 0.27 5.87�0.06 1.53×10−2

H125-125 3.95 1710�34 0.234�0.005 2749�137 ð8.15�0.16Þ×10−3 1.67×10−2 0.42 5.80�0.06 1.52×10−2

HB125-125 3.69 1900�38 0.245�0.005 2873�144 ð9.35�0.19Þ×10−3 1.66×10−2 0.39 5.74�0.06 1.53×10−2

B125-125 3.43 2099�42 0.257�0.005 3353�168 ð1.06�0.02Þ×10−2 2.19×10−2 0.44 5.69�0.06 1.53×10−2

15H116-158 4.12 1273�26 0.205�0.004 2148�107 ð7.19�0.14Þ×10−3 4.63×10−3 0.15 6.84�0.07 1.65×10−2

125H116-158 3.85 1406�28 0.214�0.004 2276�124 ð8.20�0.16Þ×10−3 1.01×10−2 0.28 6.76�0.07 1.65×10−2

H116-158 3.60 1540�31 0.227�0.005 2767�138 ð9.30�0.19Þ×10−3 1.23×10−2 0.31 6.69�0.07 1.66×10−2

HB116-158 3.35 1709�34 0.240�0.005 3242�162 ð1.05�0.02Þ×10−2 1.40×10−2 0.30 6.63�0.06 1.65×10−2

B116-158 3.11 1885�37 0.254�0.005 � � � ð1.18�0.02Þ×10−2 4.64×10−3 0.10 6.58�0.07 1.65×10−2

15H125-146 4.13 1401�28 0.214�0.004 2336�117 ð7.62�0.02Þ×10−3 1.01×10−2 0.30 6.81�0.07 1.66×10−2

125H125-146 3.86 1560�31 0.226�0.005 2576�129 ð8.77�0.18Þ×10−3 1.26×10−2 0.34 6.73�0.07 1.66×10−2

H125-146 3.60 1691�34 0.238�0.003 2827�141 ð9.91�0.20Þ×10−3 1.89×10−2 0.45 6.66�0.07 1.66×10−2

HB125-146 3.35 1856�37 0.252�0.005 3251�163 ð1.12�0.20Þ×10−2 2.50×10−2 0.52 6.60�0.07 1.66×10−2

B125-146 3.11 2039�41 0.265�0.005 � � � ð1.26�0.25Þ×10−2 7.99×10−3 0.14 6.56�0.06 1.66×10−2

15H118-155 4.12 1308�26 0.206�0.004 2161�108 ð7.31�0.15Þ×10−3 5.72×10−3 0.18 6.83�0.07 1.66×10−2

125H118-155 3.86 1441�29 0.218�0.004 2358�118 ð8.35�0.17Þ×10−3 7.12×10−3 0.21 6.75�0.07 1.67×10−2

H118-155 3.60 1590�32 0.230�0.005 2782�139 ð9.49�0.19Þ×10−3 1.59×10−2 0.39 6.68�0.07 1.66×10−2

HB118-155 3.35 1759�35 0.243�0.005 3259�163 ð1.08�0.02Þ×10−2 2.03×10−2 0.43 6.62�0.07 1.66×10−2

B118-155 3.11 1942�39 0.257�0.005 � � � ð1.20�0.02Þ×10−2 5.54×10−3 0.11 6.66�0.07 1.66×10−2

15H117-156 4.11 1293�26 0.204�0.004 2161�108 ð7.26�0.15Þ×10−3 5.09×10−3 0.17 6.83�0.07 1.66×10−2

125H117-156 3.84 1425�29 0.216�0.004 2416�121 ð8.30�0.17Þ×10−3 8.09×10−3 0.23 6.76�0.07 1.66×10−2

H117-156 3.58 1574�32 0.229�0.005 2775�139 ð9.43�0.19Þ×10−3 1.39×10−2 0.34 6.69�0.07 1.66×10−2

HB117-156 3.34 1724�35 0.242�0.005 3201�160 ð1.06�0.02Þ×10−2 1.61×10−2 0.35 6.62�0.07 1.66×10−2

B117-156 3.10 1933�38 0.256�0.005 � � � ð1.20�0.02Þ×10−2 5.26×10−3 0.11 6.58�0.06 1.64×10−2

15H112-140 4.50 1281�26 0.197�0.004 2188�109 ð5.91�0.12Þ×10−3 5.37×10−3 0.17 5.97�0.06 1.49×10−2

125H112-140 4.21 1412�28 0.208�0.004 2269�113 ð6.80�0.14Þ×10−3 4.80×10−3 0.15 5.89�0.06 1.49×10−2

H112-140 3.94 1558�31 0.220�0.004 2470�123 ð7.78�0.16Þ×10−3 6.18×10−3 0.17 5.82�0.06 1.50×10−2

HB112-140 3.68 1717�34 0.231�0.005 2791�140 ð8.84�0.18Þ×10−3 9.52×10−3 0.23 5.76�0.06 1.50×10−2

B112-140 3.43 1890�38 0.244�0.005 3271�164 ð9.98�0.20Þ×10−3 1.59×10−2 0.33 5.71�0.06 1.52×10−2

15H107-146 4.50 1203�24 0.189�0.004 2054�103 ð5.70�0.11Þ×10−3 3.63×10−3 0.13 5.99�0.06 1.51×10−2

125H107-146 4.22 1328�27 0.200�0.004 2291�115 ð6.57�0.13Þ×10−3 4.56×10−3 0.14 5.91�0.06 1.50×10−2

H107-146 3.94 1475�30 0.212�0.004 2546�127 ð7.49�0.15Þ×10−3 7.82×10−3 0.21 5.84�0.06 1.49×10−2

HB107-146 3.69 1620�32 0.224�0.004 2870�143 ð8.51�0.17Þ×10−3 1.02×10−2 0.25 5.78�0.06 1.50×10−2

B107-146 3.44 1786�36 0.237�0.005 3298�165 ð9.60�0.19Þ×10−3 1.29×10−2 0.27 5.73�0.06 1.51×10−2

SFHo135-135 3.41 1987�40 0.261�0.005 3250�163 ð1.17�0.02Þ×10−2 2.91×10−3 0.61 6.60�0.07 1.68×10−2
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to a lower value as the symmetric mass ratio decreases. This
is attributed to the following three facts. First, given the
total mass m0 and fGW, dfGW=dt decreases as the sym-
metric mass ratio decreases because the gravitational-wave
luminosity is proportional to η2 [88]. Second, the time at
which the two NSs come into contact becomes earlier as the
symmetric mass ratio decreases because the less massive
companion is more subject to the tidal elongation, and the
resultant mass accretion on the massive component starts
earlier than for the symmetric binary. Third, the difference
between the peak time and the contact time becomes small
as the symmetric mass ratio decreases because the peak
time corresponds to the moment when a dumbbell-like
density structure with double dense cores formed after the
contact disappears as discussed in Ref. [46], and the
dumbbell-like density structure becomes less prominent
in the asymmetric binary systems. Due to these effects,
fpeak becomes lower as the symmetric mass ratio decreases.
In a short summary, the m0fpeak − Λ̃1=5 relation depends

strongly on the symmetric mass ratio, and the universal
relations reported in Refs. [57,58] suffer from this system-
atic (see also Ref. [46]). This finding is consistent with a
discussion in Ref. [58]. They mentioned that the mass
asymmetry could break the universality in the m0fpeak −
Λ̃1=5 relation for a possibly unrealistic mass ratio. We find
that the realistic value of the mass ratio breaks the
universality as the symmetric mass ratio adopted in this
paper is consistent with that in GW170817 [3]. The scatter
from the proposed universal relation in Ref. [58] is as large
as ≈18 − 19% at the maximum for 0.244 ≤ η ≤ 0.250.
We propose an improved fitting formula:

log10

��
fpeak
Hz

��
m0

M⊙

��
¼ a0ðηÞ þ a1ðηÞΛ̃1=5;

a0ðηÞ ¼ 4.536 − 1.230η;

a1ðηÞ ¼ −0.929þ 3.120η: ð5:1Þ
With η ¼ 0.2500, a0ðηÞ and a1ðηÞ approximately reduce to
be a0 and a1 [95] reported in Ref. [58]. Figure 8 plots the
improved relation with the simulation data, and we confirm
that the relative error between the data and the fitting
formula (5.1) is smaller than 3%.
We should keep in mind that this relation could still

suffer from systematics associated with physical effects that
are not taken into the simulation. Because of the spin-orbit
coupling, high NS spin could change the fpeak compared to
the nonspinning case. NS magnetic fields also could
produce systematics in Eq. (5.1) because at the contact
of the two NSs, which occurs before the peak time, the
magnetic field could be exponentially amplified by the
Kelvin-Helmholtz instability within a very short timescale
≪1 ms [96,97] and the magnetic pressure could reach near
the equipartition of the pressure locally, affecting the value
of fpeak. These points should be explored in future work.

2. Peak amplitude and binary tidal
deformability relation

References [46,57] reported that the gravitational-wave
amplitude at the peak time, hpeak, correlates with fpeak, i.e.,
with Λ̃1=5. Because we do not find a perfectly convergent
result for hpeak with respect to the grid resolution, first, we
assess the deviation of hpeak relative to the averaged value
of hpeak (average of the results with different grid reso-
lutions) in the left panel of Fig. 9 for the binary systems
with m1 ¼ 1.07 M⊙ and m2 ¼ 1.46 M⊙. It is found that
the fluctuation around the averaged value is ≈1–2%. This is
also the case for all the binary systems. Thus, we adopt 2%
as the systematics associated with the finite grid resolution
in hpeak and summarize the values of hpeak in Table VI.
The right panel of Fig. 9 plotsDhpeak=m0 as a function of

Λ̃1=5. The error bar shows the systematics associated with
the finite grid resolution in hpeak. This figure shows that the
relation depends strongly on the symmetric mass ratio. That
is, the relation proposed in Refs. [46,57] is not in general
satisfied.
We propose a fitting formula for Dhpeak=m0:

Dhpeak
m0

¼ b0ðηÞ þ b1ðηÞΛ̃1=5;

b0ðηÞ ¼ −0.0583þ 1.896η;

b1ðηÞ ¼ −0.1602þ 0.454η: ð5:2Þ
Figure 10 plots the improved relation with the simulation
data. We find that the relative error between the data and the
fitting formula (5.2) is within 4%. Again note that this
relation is calibrated in a limited class of the binary
systems, i.e., nonmagnetized nonspinning binary systems.
We should keep this point in mind in using this relation to
infer the tidal deformability from observational data.

3. f 1, f 2 and binary tidal deformability relation

Reference [58] reported that several gravitational-wave
frequencies associated with the main peaks in the spectrum
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amplitude for postmerger gravitational waves correlate with
the tidal coupling constant. Figures 11–13 show the
spectrum amplitudes for the quadrupole mode of gravita-
tional waves for all the systems defined by

heffðfÞ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃þðfÞj2 þ jh̃×ðfÞj2

2

s
; ð5:3Þ

with h̃þðfÞ and h̃×ðfÞ in Eq. (4.1). In Figs. 11–13, the
vertical dashed lines indicate the so-called f1 frequency for
the fitting formula in Ref. [58]. This peak is a side-band
peak of the main peak of f ¼ f2, and it is naturally
understood as a result of the modulation of the main peak.
According to Ref. [98], the remnant might be represented
by a mechanical toy model composed of a rotating disk
with two spheres. In this model, the two spheres, which
mimic the double dense cores appearing after the merger,
are connected with a spring and oscillate freely (see their

Fig. 17). The f1 frequency corresponds to the spin
frequency when the separation between the two spheres
becomes largest if we assume the angular momentum
conservation. They claimed this scenario for the interpre-
tation of the f1 frequency.
In Ref. [58], the f1 frequency is determined by identify-

ing one of the main peaks in the spectrum amplitude and
the spectrogram of postmerger gravitational waves. For the
symmetric binary systems,the f1 peak could be identified
in our numerical results using the same methods. However,
the structure of the spectrum amplitude around f ¼ f1
depends highly on the grid resolution (see 125H135-135
and H135-135 systems, for example). For a sequence
with the fixed EOS and chirp mass, e.g., 15H135-135,
15H125-146, 15H121-151, 15H118-155, 15H117-156,
and 15H116-158, we find it more difficult to identify
the f1 peak as the symmetric mass ratio decreases. This was
also pointed out in Ref. [99] although their grid resolution
was much lower than those in our present study, and the
resolution study on the spectrum amplitude of gravitational
waves is not performed (see their Fig. 13). As demonstrated
in Fig. 11, the f1 peak cannot be clearly identified for the
asymmetric binary systems. Figure 12 shows that this is
also the case for binary systems of relatively small mass
∼2.5 M⊙ as discussed in Refs. [58,100,101].
We also analyze the spectrogram of postmerger gravi-

tational waves and confirm that there is no prominent peak
around fGW ¼ f1 for the asymmetric binary systems.
Therefore, we conclude that the universal relation for f1
could be only applicable to nearly symmetric binary
systems: essentially no universal relation is present. We
speculate that for the asymmetric binary systems, the
mechanical toy model proposed in Ref. [98] could not
describe the merger remnant because the less massive NS is
tidally disrupted before the merger and there are no
prominent double dense cores. We also note that the

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

[
D

 h
pe

ak
 / 

m
0 

- 
b 0

(
) 

] 
/ b

1(
)

~1/5

243 356 454 605 792 1024 1307 1649 2060

~

An improved relation

FIG. 10. An improved Dhpeak=m0 − Λ̃1=5 relation with b0ðηÞ
and b1ðηÞ in Eq. (5.2).

-2

-1

 0

 1

 2

1.0 1.2 1.4 1.6 1.8 2.0

h p
ea

k 
/ h

pe
ak

, a
ve

 -
 1

 [
%

]

(182 / N)

15H
125H

H
HB

B

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

D
 h

pe
ak

 / 
m

0

~1/5

243 356 454 605 792 1024 1307 1649 2060

~

FIG. 9. (Left) A deviation of the gravitational-wave amplitude at the peak time, hpeak, relative to hpeak;ave as a function of 1=N for the
binary systems with m1 ¼ 1.07 M⊙ and m2 ¼ 1.46 M⊙. hpeak;ave is an average of hpeak over the results with different grid resolutions.
(Right) Dhpeak=m0 as a function of Λ̃1=5. Meaning of the color and symbols is the same as Fig. 1. The error bar of �2% comes from the
uncertainty associated with the finite grid resolution in hpeak.

SUB-RADIAN-ACCURACY …. II. SYSTEMATIC STUDY ON … PHYS. REV. D 101, 084006 (2020)

084006-15



method for constraining the EOS proposed in Ref. [102]
could not be applied unless the symmetric mass ratio is
measured precisely to be 0.25 because this method relies on
the f1 universal relation.
In Ref. [58], the peak frequency, f2, in the spectrum

amplitude [103] is reported to have a correlation with the
tidal coupling constant. This peak frequency approximately
corresponds to the f-mode oscillation of the remnant
massive NS (see also Refs. [47,63,77,94]). The left panel
of Fig. 14 plots fluctuation around the averaged value
of f2 (average of the results with different grid resolutions)
for the binary systems with m1 ¼ 1.12 M⊙ and m2 ¼
1.40 M⊙. We measure f2 in the spectrum amplitude as a
prominent peak for f ≥ 2 kHz. The fluctuation is within
≈4–5% and we find that this is also the case for all the

binary systems. Thus, we adopt 5% as a relative error of f2
(see also Table VI). The right panel of Fig. 14 shows f2 as a
function of Λ̃1=5. We exclude the systems which collapse to
a black hole within a few ms after the merger because the
peak associated with f2 is not prominent or absent in the
spectrum amplitude. We also overplot the fitting formula
proposed in Ref. [58]. It is found that with this fitting
formula, the scatter is ≈14% at the maximum. Thus, we
propose an improved fitting formula for m0f2:

log10

��
f2
Hz

��
m0

M⊙

��
¼ c0ðηÞ þ c1ðηÞΛ̃1=5;

c0ðηÞ ¼ 11.363 − 27.418η;

c1ðηÞ ¼ −2.158þ 7.941η: ð5:4Þ
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Even with this formula, the relative error is as large as 9%
(see also Fig. 15). This implies that even if the value of f2 is
determined precisely in the data analysis of gravitational
waves, Λ̃1=5 will be constrained with the error of ≈� 0.1.

4. f 2 and NS radius with 1.6 M⊙ relation

References [62,63] reported that f2 frequency has a tight
correlation with the NS radius of 1.6 M⊙ (see Eq. (3) in
Ref. [62]). In Ref. [94], we assessed their relation by using
our numerical-relativity results and found that the scatter in
the relation is larger than that reported in Ref. [62]. We
revisit this assessment because the initial orbital eccentric-
ity reduction was not implemented in Ref. [94]. In addition,
the grid resolution in Ref. [94] is much lower than that in
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FIG. 12. The same as Fig. 11, but for the binary systems with Mc ¼ 1.0882 M⊙.
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this paper. These ingredients could modify the postmerger
dynamics and the resulting gravitational waveforms.
Because the relation in Ref. [62] holds only for sym-

metric binary systems of m0 ¼ 2.7 M⊙, we first assess this
relation by employing binary systems of ðm1; m2Þ ¼
ð1.35 M⊙; 1.35 M⊙Þ and found that the error is ≈6%
[104]. Second, we assess the relation by employing binary
systems of ðm1; m2Þ ¼ ð1.25 M⊙; 1.46 M⊙Þ, ð1.21 M⊙;
1.51 M⊙Þ, ð1.18 M⊙; 1.55 M⊙Þ, ð1.17 M⊙; 1.56 M⊙Þ,
and ð1.16 M⊙; 1.58 M⊙Þ. We found that the scatter from
their fitting formula is ≈10%. Therefore, the scatter larger
than that reported in Ref. [62] stems from the mass
asymmetry of the binary. Our numerical results suggest
that the fitting formula in Ref. [62] could infer the radius of
the 1.6 M⊙ NS within the 1 km accuracy only if the
symmetric mass ratio is well constrained to be 0.25.
Otherwise, we constrain the radius of the 1.6 M⊙ NS with
the accuracy of ≈� 1 km if the value of f2 is determined
precisely,
In Table VII, we summarize to what extent the so-called

universal relations hold.

B. Energy and angular momentum

Using Eqs. (2.10)–(2.13), we calculate the energy and
angular momentum carried by gravitational waves. We
define Etot

GW;i and EGW;pðJGW;pÞ as the energy (angular

momentum) emitted in the inspiral stage and in the
postmerger stage, respectively. The subscripts i and p in
these quantities denote the inspiral and the postmerger
stage, respectively. The peak time introduced in Sec. III A
defines the boundary between the inspiral and postmerger
stages. In the following we summarize the energy and
angular momentum emitted in each stage for all the
systems. Their values are presented in Table VI.

1. Inspiral stage

Table VI and Fig. 16 show the energy, E2;2
GW;i, carried by

gravitational waves with the ðl; mÞ ¼ ð2; 2Þ mode during
the inspiral stage. We measure the relative error with
respect to the averaged value in the left panel of Fig. 16
and find that the error relative to its averaged value of E2;2

GW;i

(average of the results with different grid resolutions) never
exceeds 2% for a wide range of the grid resolution. This is
also the case for all the binary systems. Thus, we adopt this
fluctuation as an error in E2;2

GW;i. Note that the other modes
such as ðl; mÞ ¼ ð2; 1Þ and (3,3) are ≲0.1% and ≲0.5%,
respectively, of E2.2

GW;i.
The right panel of Fig. 16 plotsEtot

GW;i=ðm0ηÞ as a function
of Λ̃1=5.We include the contribution due to the gravitational-
wave emission during evolution from infinite separation to
the initial orbital separation of the simulation,m0 −MADM;0

in Table VI, by Etot
GW;i≈2E2;2

GW;iþm0−MADM;0. MADM;0 is
the Arnowitt-Deser-Misner mass of the initial condition of
the simulations. As proposed in Ref. [59], this quantity
correlates with the tidal coupling constant. We explicitly
derive a fitting formulawith the binary tidal deformability as

log10

�
Etot
GW;i

m0η

�
¼ −0.869 − 0.111Λ̃1=5: ð5:5Þ

It is reasonable that Etot
GW;i decreases as Λ̃ increases because

the binary systemswith larger values of Λ̃merge earlier than
those with smaller values of Λ̃. This fitting formula
reproduces the simulation data of Etot

GW;i within an error of
≈4%. In the limit to a binary black hole merger ðΛ̃ → 0Þ, the
fitting formula predicts Etot

GW;i ≈ 0.034m0 for η ¼ 0.250 and
Etot
GW;i ≈ 0.033m0 for η ¼ 0.244, respectively. On the other
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TABLE VII. Summary of the assessment of the universal relations for the nonspinning and nonmagnetized binary systems. Neutrino
radiation is not taken into account. We show the maximum relative errors produced by the original relation (upper row) and by the
improved relation derived in this paper (lower row). For f1, the error is unable to be estimated because of the absence of f1 peak in the
asymmetric binary systems. Therefore, we conclude there is no universal relation between f1 and Λ̃. For f2 − R1.6 relation, we do not
propose an improved relation and sym. (asym.) in the parenthesis means the symmetric (asymmetric) binary. For E2;2

GW;p and J
2;2
GW;p, we do

not propose an improved relation because uncertainties of the lifetime of the merger remnant NSs are large.

m0fpeak − Λ̃1=5 Dhpeak=m0 − Λ̃1=5 f1 − Λ̃1=5 m0f2 − Λ̃1=5 f2 − R1.6 Etot
GW;i=ðm0ηÞ − Λ̃1=5 Jrem=ðm2

0ηÞ − Λ̃1=5

≈17% N=A � � � ≈14% ≈6%ðsymÞ and ≈10%ðasymÞ N=A N=A
≈3% ≈4% � � � ≈9% � � � ≈4% ≈3%
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hand, high-precision binary black hole merger simulations
for a nonspinning system suggest Etot

GW;i ≈ 0.03m0 for
0.247 ≤ η ≤ 0.250 [105,106]. We conclude that the fitting
formula Eq. (5.5) reproduces the BBH result with
≈10% error.

2. Postmerger stage

We estimate angular momentum of the remnant, Jrem at
the peak time of the gravitational-wave amplitude in the
retarded time (2.4) by performing a surface integral on the
sphere of r ¼ r0:

Jrem ¼ 1

8π
ϵzjk

I
r¼r0

xjðKl
k − KδlkÞdSl: ð5:6Þ

Kij,K, δij, and dSl are the extrinsic curvature, its trace part,
the Kronecker delta, and an element of the surface integral,
respectively. We typically integrate it on the sphere of
r0 ¼ 200m0 and 214m0 for the binary systems with Mc ¼
1.1752 M⊙ and 1.0882 M⊙, respectively. Table VI and

Fig. 17 show the result. In the left panel of Fig. 17, we
estimate the residual error in Jrem for HB118–155. We
again assume that the numerical result obeys the following
form:

JremðNÞ ¼ J∞remðNmaxÞ − ΔJremðNmaxÞ
�
Nmax

N

�
p
; ð5:7Þ

where J∞remðNmaxÞ is the angular momentum of the remnant
in the continuum limit of the finite difference. We estimate
three unknowns, J∞remðNmaxÞ, ΔJremðNmaxÞ, and p by
fitting the numerical data with N ¼ 90; 102;…, and
Nmax with Eq. (5.7). By comparing Nmax ¼ 150 and 182
cases, we confirm that adding a result of the higher
resolution simulation reduces the residual error [see the
legend of Fig. 17 for p and ΔJremðNmaxÞ]. We find that
ΔJremðNmaxÞ is ≲1% of the continuum limit, J∞remðNmaxÞ,
for Nmax ¼ 182. This is also the case for all the binary
systems. Thus, we adopt 1% as a systematics associated
with the finite grid resolution in Jrem.

-3

-2

-1

 0

 1

 2

 3

1.0 1.2 1.4 1.6 1.8 2.0

E
G

W
,i2,

2  / 
E

G
W

,i,
 a

ve
2,

2  -
 1

 [
%

]

(182 / N)

15H
125H

H
HB

B

-1.38

-1.36

-1.34

-1.32

-1.30

-1.28

-1.26

-1.24

-1.22

-1.20

-1.18

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

lo
g 1

0[
E

to
t G

W
,i 

/ (
m

0
) 

]

~1/5

243 356 454 605 792 1024 1307 1649 2060

~

-0.869-0.111Λ1/5

FIG. 16. (Left) A deviation of E2;2
GW;i relative to E2;2

GW;i;ave as a function of 1=N for binary systems with m1 ¼ 1.25 M⊙ and
m2 ¼ 1.46 M⊙. E

2;2
GW;i;ave is an average of E

2;2
GW;i over the results with different grid resolutions. (Right) E

tot
GW;i=ðm0ηÞ − Λ̃1=5 relation with

a fitting formula (5.5). In the right panel, the error bar of �2% comes from the systematics associated with the finite grid resolution
in E2;2

GW;i.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

 0  1  2  3  4  5  6  7

J r
em

(N
m

ax
) 

- 
J r

em
(N

) 
[M

su
n2 ]

(Nmax / N)p

p = 3.30, Jrem(Nmax) = -0.00560, Nmax = 182
p = 1.87, Jrem(Nmax) = -0.0266, Nmax = 150

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

( 
lo

g 1
0[

J r
em

 / 
(m

02
)]

 -
 d

0 
(

) 
) 

/ d
1(

)

~1/5

243 356 454 605 792 1024 1307 1649 2060

~

fitting formulas

FIG. 17. (Left) Convergence of Jrem with respect to the grid resolution for HB118–155. (Right) Jrem=ðm2
0ηÞ − Λ̃1=5 relation with d0ðηÞ

and d1ðηÞ in Eq. (5.8). The error bar of �1% comes from the systematics associated with the finite grid resolution in Jrem.
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Because Jrem could correlate with Λ̃1=5, we propose a
fitting formula of Jrem=ðm2

0ηÞ:

log10

�
Jrem
m2

0η

�
¼ d0ðηÞ þ d1ðηÞΛ̃1=5;

d0ðηÞ ¼ 1.552 − 4.275η;

d1ðηÞ ¼ −0.141þ 0.642η: ð5:8Þ

The right panel of Fig. 17 plots this relation and we confirm
that it is accurate within 3% error.
Figures 18 and 19 plot E2;2

GW;p and J2;2GW;p emitted in the
postmerger stage. It is worth noting that energy and angular
momentum radiated by gravitational waves in ðl; mÞ ¼
ð2; 1Þ and (3,3) modes are ≲2.5% of E2;2

GW;p and ≲2.4% of

J2;2GW;p, respectively, even for the highly asymmetric binary
systems, e.g., 15H107-146 (see also the upper panel of
Fig. 23). The left panels in these figures show that it is hard

to achieve a perfect convergence, and the scatter is rather
large compared to E2;2

GW;i, although the scatter never exceeds

50% in E2;2
GW;p and J2;2GW;p. This is also the case for all the

binary systems. The right panels in Figs. 18 and 19 show
E2;2
GW;p=ðm0ηÞ and J2;2GW;p=ðm2

0ηÞ as a function of Λ̃1=5. As
discussed in Ref. [59], the energy and angular momentum
radiated in the postmerger stage peak around Λ̃ ≈ 400

because the binary systems with Λ̃≲ 350 collapse to a
black hole within a few ms after the peak time. However, Λ̃
at the peak in E2;2

GW;p and J2;2GW;p could decrease for general
EOSs because, as discussed in Ref. [107], the remnant
would survive for more than 20 ms after the peak time even
for the binary systems with Λ̃≲ 300. For Λ̃≳ 400, corre-
lation between E2;2

GW;p and the binary tidal deformability is

not as tight as that in Etot
GW;i=ðm0ηÞ − Λ̃1=5. For J2;2GW;p, the

correlation with the binary tidal deformability is also not
very tight.
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Note that E2;2
GW;p and J

2;2
GW;p could increase from the values

listed in Table VI because we artificially terminated the
simulations at 10–15 ms after the peak time. At that
moment, the gravitational-wave amplitude is still compa-
rable to that in the late inspiral stage except for the systems
which collapse to a black hole within a few ms after the
peak time.
We also should keep in mind that we might miss relevant

physics such as effective turbulent viscosity generated by
the magneto-hydrodynamical instabilities during the
merger [46,96,97] and/or the neutrino cooling [100,108]
for modeling the postmerger signal. Reference [109] sug-
gests that the postmerger signal could be significantly
suppressed in the presence of efficient angular momentum
transport by the viscous effect inside the remnant NS.

As already mentioned, the postmerger gravitational wave
signal is dominated by the f-mode oscillation with ðl; mÞ ¼
ð2; 2Þ of the remnant massive NS [63,94]. Thus, it is natural
to expect that a relation holds between the energy emission
rate and angular momentum emission rate (2.10)–(2.11)
with instantaneous gravitational-wave frequency (2.9):

dEpost
GW

dt
≈ πfGW

dJpostGW

dt
; ð5:9Þ

where dEpost
GW=dt ¼

P
l;m dEl;m

GW=dt and dJpostGW=dt ¼P
l;m dJl;mGW=dt for t ≥ tpeak in Eqs. (2.10) and (2.11). To

investigate to what extent this relation is satisfied, we
generate Figs. 20–22. In these figures, the solid curve is the
left hand side of Eq. (5.9) and the dashed curve is the right
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FIG. 20. Energy (solid) and angular momentum (dashed) emission rate by gravitational waves (5.9) for the binary systems with
Mc ¼ 1.1752 M⊙. The time axis is set to be zero at the peak time of the gravitational-wave amplitude. For completeness, we also show
the systems reported in Refs. [46,51].
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hand side of Eq. (5.9). We find that they agree with each
other with a relative error ≲8% for any time. Because the
emissivity reduces quickly to zero at tret − tpeak ≈ 0.5 ms
as shown in Figs. 20–22, we estimate the error for
tret − tpeak ≳ 1 ms. We also find that the time integrated
values of Eq. (5.9) agree with each other with a relative
error ≲1%. This is also the case for the relation of
EGW;p ≈ πf2JGW;p.
We also confirm that a contribution from the one-arm

spiral instability in the postmerger stage [110,111] is
negligible because the energy flux form the ðl; mÞ ¼
ð2; 1Þ mode is ≲0.5% of that for the ðl; mÞ ¼ ð2; 2Þ mode
even for the symmetric binary systems as shown in the
bottom panel of Fig. 23. Thus, we conclude that Eq. (5.9) is
well satisfied and confirm that the main gravitational-wave
emission mechanism during the postmerger stage is the
f-mode oscillation of the remnant massive NS, i.e.,
fGW ≈ f2 (see also Figs. 11–13). These findings encourage
us to build a model for the postmerger gravitational-wave
emission (see Ref. [112]).

In Table VII, we summarize to what extent Etot
GW;i=

ðm0ηÞ − Λ̃1=5 and Jrem=ðm2
0ηÞ − Λ̃1=5 relations of Eqs. (5.5)

and (5.6) hold.

0.0e+00

2.0e-06

4.0e-06

6.0e-06

8.0e-06

1.0e-05

1.2e-05

1.4e-05
dE

G
W

,
f G

W
dJ

G
W

15H
dEGW/dt
dJGW/dt

125H
dEGW/dt
dJGW/dt

H
dEGW/dt
dJGW/dt

HB
dEGW/dt
dJGW/dt

0.
25

00

B
dEGW/dt
dJGW/dt

0.0e+00

2.0e-06

4.0e-06

6.0e-06

8.0e-06

1.0e-05

dE
G

W
,

f G
W

dJ
G

W dEGW/dt
dJGW/dt

dEGW/dt
dJGW/dt

dEGW/dt
dJGW/dt

dEGW/dt
dJGW/dt

0.
24

70

dEGW/dt
dJGW/dt

0.0e+00
1.0e-06
2.0e-06
3.0e-06
4.0e-06
5.0e-06
6.0e-06
7.0e-06
8.0e-06

-2  0  2  4  6  8  10  12 14

dE
G

W
,

f G
W

dJ
G

W

tret - tpeak [ms]

dEGW/dt
dJGW/dt

-2  0  2  4  6  8  10  12  14
tret - tpeak [ms]

dEGW/dt
dJGW/dt

-2  0  2  4  6  8  10  12  14
tret - tpeak [ms]

dEGW/dt
dJGW/dt

-2  0  2  4  6  8  10  12  14
tret - tpeak [ms]

dEGW/dt
dJGW/dt

-2  0  2  4  6  8  10  12  14

0.
24

40

tret - tpeak [ms]

dEGW/dt
dJGW/dt

FIG. 21. The same as Fig. 20, but for Mc ¼ 1.0882 M⊙.
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FIG. 22. The same as Fig. 20, but for the SFHo (tabulated) EOS
case.
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VI. SUMMARY

We performed long-term simulations for 26 new systems
of the nonspinning BNS mergers in numerical relativity. To
derive high-precision gravitational waveforms in a large
parameter space, we systematically vary the EOSs of NS,
the chirp mass, and the mass ratio. To assess gravitational-
wave phase error stemming from a finite grid resolution, we
change the grid spacing by a factor of two for simulating
each binary system.
First, we found that the residual gravitational-wave

phase error at the peak time of gravitational-wave ampli-
tude is ≲0.5 rad irrespective of the binary mass and NS
EOS. By comparing the results for the piecewise polytropic
and SFHo (tabulated) EOS systems, we also found that the
interpolation of the thermodynamic quantities during the
simulations could generate the phase error of ≈0.2–0.3 rad.
However the gravitational-wave phase error for the SFHo
(tabulated) EOS system still remains within the sub-radian-
accuracy level.
Second, we validated our SACRA inspiral gravitational

waveform template [51] by comparing with the high-
precision gravitational waveforms derived in this paper.
We found that for a variety of BNS the error in our inspiral
waveform model is less than 0.1 rad in the gravitational-
wave phase and less than 20% in the amplitude up to
fGW ¼ 1000 Hz. This template can be used for a new
gravitational wave data analysis for extracting tidal deform-
ability from GW170817 [113] and for future event of BNS
merger.
Third, we assessed the universal relations between the

gravitational-wave related quantities and the binary tidal
deformability/NS radius proposed in the literature [57–63].
We found that the gravitational-wave frequency at the peak
time fpeak, the gravitational-wave amplitude at the peak
time hpeak, and the peak frequency f2 associated with
the f-mode oscillation of the remnant massive NS in the
spectrum amplitude of postmerger gravitational waves
depend strongly on the symmetric mass ratio and/or the
grid resolution. This clearly illustrates that the universal
relations proposed in the literature [57–63] are not as
universal as proposed.
We proposed improved fitting formulas (5.1) for

m0fpeak − Λ̃1=5, (5.2) for Dhpeak=m0 − Λ̃1=5, and (5.4)
and for m0f2 − Λ̃1=5. However these fitting formulas
may still suffer from systematics such as NS spin, NS

magnetic fields, and the neutrino radiation, which are not
taken into account in our simulations. In addition, the EOS
of NS, in particular, for a high-density part of the NS, is
still uncertain, and, hence, the systematics due to this
uncertainty should be kept in mind. We also note that we
assessed the errors of these formulas only with our
simulation data. A close comparison among the results
of the independent BNS simulations with the existing
numerical relativity codes is necessary to better understand
the systematic error in these formulas. This should be done
as a future project. We also found that the f1 frequency in
the spectrum amplitude could be extracted only for the
nearly symmetric binary systems. Unless we can determine
the symmetric mass ratio accurately, using the universal
relation for f1 could lead to a misleading result in the
gravitational-wave data analysis.
Finally, we assessed the energy, EGW, and angular

momentum, JGW, carried by gravitational waves in the
inspiral and postmerger stages. As proposed in Ref. [59],
the correlation between Etot

GW;i and the binary tidal deform-
ability is tight and it does not depend significantly on the
symmetric mass ratio. We found that the relation EGW ≈
πf2JGW is well satisfied in the postmerger gravitational
wave signal irrespective of the binary mass and NS EOS
because the signal from the remnant NSs is approximately
monochromatically emitted by the f-mode oscillation. The
angular momentum of the remnant massive NS, Jrem,
correlates with the binary tidal deformability. This quantity
is relevant to build a model of postmerger evolution of
merger remnants [112].
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