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Cyclotomic analogues of

finite multiple zeta values

Henrik Bachmann, Yoshihiro Takeyama and Koji Tasaka

Abstract

We study the values of finite multiple harmonic q-series at a primitive root of unity

and show that these specialize to the finite multiple zeta value (FMZV) and the

symmetric multiple zeta value (SMZV) through an algebraic and analytic operation,

respectively. Further, we prove the duality formula for these values, as an example

of linear relations, which induce those among FMZVs and SMZVs simultaneously.

This gives evidence towards a conjecture of Kaneko and Zagier relating FMZVs and

SMZVs. Motivated by the above results, we define cyclotomic analogues of FMZVs,

which conjecturally generate a vector space of the same dimension as that spanned

by the finite multiple harmonic q-series at a primitive root of unity of sufficiently

large degree.

1. Introduction

The purpose of this paper is to describe a connection between finite and symmetric multiple

zeta (star) values. We explicate this connection in terms of a class of q-series evaluated at

primitive roots of unity. This construction provides new evidence and a re-interpretation of a

conjecture due to Kaneko and Zagier, thus relating finite and symmetric multiple zeta (star)

values in an explicit and surprising way.

For an index k = (k1, . . . , kr) ∈ (Z>1)
r with k1 > 2 the multiple zeta value and the multiple

zeta star value are defined by

ζ(k) = ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

,

ζ⋆(k) = ζ⋆(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

.

We denote by Z the Q-vector space spanned by all multiple zeta values. The space Z forms a

subalgebra of R over Q and is the same space with that spanned by multiple zeta star values.

In [9], Kaneko and Zagier introduce two objects: the finite multiple zeta values ζA(k) as

elements in the Q-algebra A = (
∏

p Fp)
/
(
⊕

p Fp), where p runs over all primes (see Definition
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2.4), and the symmetric multiple zeta values ζS(k) as elements in the quotient algebra Z/ζ(2)Z

(see Definition 2.5). They conjecture that the finite multiple zeta values satisfy the same Q-

linear relation as the symmetric multiple zeta values and vice versa (see Conjecture 3.10). A

few families of Q-linear relations which are satisfied by the finite and the symmetric multiple

zeta values simultaneously are obtained by the works of Murahara, Saito and Wakabayashi in

[11, 15], where the star versions ζ⋆A(k) and ζ⋆S(k) are also considered.

In the present paper, we examine for n ∈ Z>1 the values zn(k; ζn) and z⋆n(k; ζn) of finite

multiple harmonic q-series zn(k; q) and z⋆n(k; q) evaluated at a primitive n-th root of unity ζn
(see Definition 2.1). These objects lie in the cyclotomic field Q(ζn). One of the main results on

these values in this paper are the following relations with the finite and symmetric multiple

zeta (star) values.

Theorem 1.1. For any index k ∈ (Z>1)
r, we have

(zp(k; ζp) mod pp)p = ζA(k), (z⋆p(k; ζp) mod pp)p = ζ⋆A(k) ,

where pp = (1− ζp) is the prime ideal of Z[ζp] generated by 1− ζp.

Theorem 1.2. For any index k ∈ (Z>1)
r, the limits

ξ(k) = lim
n→∞

zn(k; e
2πi/n), ξ⋆(k) = lim

n→∞
z⋆n(k; e

2πi/n)

exist in C and it holds that

Re ξ(k) ≡ ζS(k), Re ξ⋆(k) ≡ ζ⋆S(k)

modulo ζ(2)Z.

Theorems 1.1 and 1.2 can be applied to the study of Q-linear relations among finite and

symmetric multiple zeta (star) values. In fact we prove a sort of duality formula for the values

z⋆n(k; ζn) (Theorem 1.3 below) and give a new proof of the duality formulas for ζ⋆A(k) and ζ⋆S(k)

via Theorems 1.1 and 1.2, which were obtained by Hoffman [5] and Jarossay [8] respectively

(see Section 2.4.3).

Theorem 1.3. For any index k and any n-th primitive root of unity ζn, we have

z⋆n(k; ζn) = (−1)wt(k)+1z⋆n(k
∨; ζn),

where k∨ is the reverse of the Hoffman dual k∨ (see Section 2.4).

We shall discuss the dimension of the Q-vector space spanned by the values zn(k; ζn)

of fixed weight, which is a subspace of the finite dimensional vector space Q(ζn). Here the

weight of zn(k1, . . . , kr; ζn) is k1 + · · · + kr. By numerical computations one can observe that

the number of linearly independent relations over Q among zp(k; ζp)’s of weight k is stable

for sufficiently large prime p.

Motivated by this observation, we introduce the cyclotomic analogue of finite multiple

zeta value Z(k) and its star version Z⋆(k) in the cyclotomic analogue Acyc of the ring A (see

Definition 3.1). The duality formula also holds for Z⋆(k) (see Theorem 3.7). After developing
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algebraic structures of the spaces spanned by all Z(k) and by all Z⋆(k), we count the number

of linearly independent Q-linear relations, which are consequences of the duality formula (see

Theorem 3.8 and Remark 3.9).

There is a natural projection that sends Z(k) to ζA(k) and we also expect, that there is a

projection which sends Z(k) to ζS(k) modulo ζ(2)Z (see Conjecture 3.11). The conjectured

equality of the kernels of these two projections gives a reinterpretation of the Kaneko–Zagier

conjecture from the cyclotomic analogue point of view. We believe that the cyclotomic ana-

logue may give a new perspective of and become a tool for analyzing the Kaneko–Zagier

conjecture.

The contents of this paper are as follows. In Section 2, after developing basic properties

on the values zn(k; ζn) and z⋆n(k; ζn), we first give the connection to the finite multiple zeta

(star) value (Theorem 1.1). After this we discuss the limit n → ∞ and show the connection

to the symmetric multiple zeta (star) value (Theorem 1.2). We also prove our duality formula

(Theorem 1.3) in Section 2.4. In the last section the cyclotomic analogue of finite multiple

zeta (star) values is discussed.
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2. Finite multiple harmonic q-series at a root of unity

2.1 Definitions

In this subsection, we define the finite multiple harmonic q-series and give some examples of

the value of depth one at a primitive root of unity.

We call a tuple of positive integers k = (k1, . . . , kr) an index. An index k = (k1, . . . , kr) is

said to be admissible if k1 > 2 or if it is the empty set ∅.

For shorter notation we will write a subsequence k, k, . . . , k of length a in an index as {k}a.

When a = 0 we ignore it. For example ({1}0, 3, {1}2, 2, {1}0, 4) = (3, 1, 1, 2, 4).

We define the weight wt(k) and the depth dep(k) of an index k = (k1, . . . , kr) by

wt(k) = k1 + · · ·+ kr, dep(k) = r.

With this notation we can define the following q-series which will be one of the main

objects in this work.

Definition 2.1. Let n > 1 be a natural number and q a complex number satisfying qm 6= 1

3
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for n > m > 0 (to ensure the well-definedness). For an index k = (k1, . . . , kr) we define

zn(k; q) = zn(k1, . . . , kr; q) =
∑

n>m1>···>mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q . . . [mr]

kr
q

and

z⋆n(k; q) = z⋆n(k1, . . . , kr; q) =
∑

n>m1>···>mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q . . . [mr]

kr
q

,

where [m]q is the q-integer

[m]q =
1− qm

1− q
.

By agreement we set zn(k; q) = 0 if dep(k) > n and zn(∅; q) = z⋆n(∅; q) = 1.

The above q-series zn(k; q) was also studied by Bradley [2, Definition 4] (see also [21]).

When k is admissible, the limit lim
n→∞

zn(k; q) converges for |q| < 1 and it is called a q-analogue

of multiple zeta values, since it can be shown that lim
q→1

lim
n→∞

zn(k; q) = ζ(k). Their algebraic

structure as well as the Q-linear relation were studied by many authors [1, 6, 12, 13, 14,

16, 17, 18, 20]. There are various different q-analogue models in the literature and the one

corresponding to our Definition 2.1 is often called the Bradley-Zhao model.

Remark 2.2. Using the standard decomposition

q(k1−1)m

[m]k1q

q(k2−1)m

[m]k2q
=

q(k1+k2−1)m

[m]k1+k2
q

+ (1− q)
q(k1+k2−2)m

[m]k1+k2−1
q

(m,k1, k2 > 1), (2.1)

we see that zn(k; q) and z⋆n(k; q) are related to each other in the following way:

z⋆n(k; q) =
∑

a

zn(a; q) +
∑

k′

wt(k′)<wt(k)

ck,k′(1− q)wt(k)−wt(k′)zn(k
′; q), (2.2)

zn(k; q) =
∑

a

(−1)dep(k)−dep(a)z⋆n(a; q) +
∑

k′

wt(k′)<wt(k)

c̃k,k′(1− q)wt(k)−wt(k′)z⋆n(k
′; q), (2.3)

where the sum
∑

a
is over all indices of the form (k1�k2� · · ·�kr) in which each � is ‘+’

(plus) or ‘,’ (comma) and ck,k′ and c̃k,k′ are integers independent on n. For example, it holds

that

z⋆n(3, 2, 1; q) = zn(3, 2, 1; q) + zn(5, 1; q) + zn(3, 3; q) + zn(6; q)

+ (1− q) (zn(4, 1; q) + zn(3, 2; q) + 2zn(5; q)) + (1− q)2zn(4; q).

Moreover, using (2.1), we can write the product zn(k; q)zn(k
′; q) as a Q-linear combination of

(1− q)wt(k)+wt(k′)−wt(k′′)z(k′′; q) with indices k′′ satisfying 0 6 wt(k′′) 6 wt(k) + wt(k′). For

example, we see that

zn(1; q)zn(2; q) =

( ∑

n>m>l>0

+
∑

n>l>m>0

+
∑

n>m=l>0

)
1

[m]

ql

[l]2
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= zn(1, 2; q) + zn(2, 1; q) + zn(3; q) + (1− q)zn(2; q).

We mainly consider the values zn(k; q) and z⋆n(k; q) where q is equal to a primitive n-th

root of unity ζn. They are well-defined as the elements in the cyclotomic field Q(ζn). For

example, the first few values zn(k; ζn) of depth one are given by

zn(1; ζn) =
n− 1

2
(1 − ζn) , zn(2; ζn) = −

n2 − 1

12
(1− ζn)

2 ,

zn(3; ζn) =
n2 − 1

24
(1− ζn)

3 , zn(4; ζn) =
(n2 − 1)(n2 − 19)

720
(1− ζn)

4.

(2.4)

These can be deduced in general from the following formula for the generating function

∑

k>0

zn(k; ζn)

(
x

1− ζn

)k

=
nx

1− (1 + x)n
+ 1, (2.5)

which can be shown by using the basic properties of the n-th root of unity ζn. In particular

this shows that zn(k; ζn) ∈ (1− ζn)
k ·Q.

Remark 2.3. The formula (2.5) implies that for k > 1

zn(k; ζn)

(n(1− ζn))k
= −

βk(n
−1)

k!
, (2.6)

where βk(x) ∈ Q[x] is the degenerate Bernoulli number defined by Carlitz in [3]. Since the

limit of βk(n
−1) as n → ∞ is equal to the k-th Bernoulli number Bk, the formula (2.6) can

be viewed as a finite analogue of Euler’s formula given by ζ(k)/(−2πi)k = −Bk/2k! for even

k.

2.2 Connection with finite multiple zeta values

In this subsection, we give a proof of Theorem 1.1.

2.2.1 Definition of finite multiple zeta values The finite multiple zeta values will be ele-

ments in the ring

A =


 ∏

p:prime

Fp


/


 ⊕

p:prime

Fp


 .

Its elements are of the form (ap)p, where p runs over all primes and ap ∈ Fp. Two elements (ap)p
and (bp)p are identified if and only if ap = bp for all but finitely many primes p. The ring A,

which was introduced by Kontsevich [10, §2.2], carries a Q-algebra structure by sending a ∈ Q

to (a mod p)p ∈ A diagonally except for finitely many primes which divide the denominator

of a.

Definition 2.4. For an index k = (k1, . . . , kr), we define the finite multiple zeta value

ζA(k) = ζA(k1, . . . , kr) =


 ∑

p>m1>···>mr>0

1

mk1
1 · · ·mkr

r

mod p




p

∈ A

5
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and its star version

ζ⋆A(k) = ζ⋆A(k1, . . . , kr) =


 ∑

p>m1>···>mr>0

1

mk1
1 · · ·mkr

r

mod p




p

∈ A.

2.2.2 Proof of Theorem 1.1 Now we prove Theorem 1.1, which is immediate from the

standard facts on the algebraic number theory (see, e.g., [19]).

Proof of Theorem 1.1. For p prime and any p-th primitive root of unity ζp, the ring Z[ζp] is the

ring of algebraic integers in the cyclotomic field Q(ζp). Since the value [m]ζp = (1−ζmp )/(1−ζp)

is a cyclotomic unit, zn(k; ζp) and z⋆n(k; ζp) belong to Z[ζp].

Let pp = (1 − ζp) be the prime ideal of Z[ζp] generated by 1 − ζp. Since the norm of pp
is equal to p, we have Z[ζp]/pp = Fp. Now Theorem 1.1 follows from [m]ζp ≡ m mod pp for

p > m > 0.

2.3 Connection with symmetric multiple zeta values

In this subsection, we prove Theorem 1.2.

2.3.1 Definition of symmetric multiple zeta values To define the symmetric multiple zeta

values, we recall Hoffman’s algebraic setup [4] with a slightly different convention.

Let H1 = Q〈e1, e2, . . . 〉 be the noncommutative polynomial algebra of indeterminates ej
with j > 1 and set for an index k = (k1, . . . , kr)

ek := ek1 · · · ekr .

For the empty index ∅ we set e∅ = 1. The monomials {ek} associated to all indices k form a

basis of H1 over Q.

The stuffle product is the Q-bilinear map ∗ : H1 ×H1 → H1 characterized by the following

properties:

1 ∗ w = w ∗ 1 = w (w ∈ H1),

ekw ∗ ek′w
′ = ek(w ∗ ek′w

′) + ek′(ekw ∗ w′) + ek+k′(w ∗ w′) (k, k′ > 1, w,w′ ∈ H1).
(2.7)

We denote by H1
∗ the commutative Q-algebra H1 equipped with the multiplication ∗.

As stated in [7, Proposition 1], there exists a unique Q-algebra homomorphism R : H1
∗ →

R[T ] satisfying R(1) = 1, R(e1) = T and R(ek) = ζ(k) for any admissible index k 1. For an

index k we define the stuffle regularized multiple zeta value Rk(T ) by

Rk(T ) := R(ek) ∈ R[T ].

Note that R∅(T ) = 1 and Rk(T ) = ζ(k) if k is admissible.

1The map R is denoted by Z∗ in [7].
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Definition 2.5. For an index k = (k1, . . . , kr) ∈ (Z>1)
r we define the symmetric multiple

zeta value

ζS(k) = ζS(k1, . . . , kr) =
r∑

a=0

(−1)k1+···+kaRka,,ka−1,...,k1(T )Rka+1,ka+2,...,kr(T ).

and its star version

ζ⋆S(k) = ζ⋆S(k1, . . . , kr) =
∑

� is ‘,’ or ‘+’

ζS(k1� · · ·�kr).

Kaneko and Zagier [9] showed that the symmetric multiple zeta value does not depend on

T , i.e. we have

ζS(k1, . . . , kr) =

r∑

a=0

(−1)k1+···+kaRka,...,k1(0)Rka+1,...,kr(0) ∈ R. (2.8)

This can be checked from the following lemma, which will be also used to compute the limit

of zn(k; e
2πi/n) as n → ∞ in Theorem 2.10.

Lemma 2.6. For any index k = (k1, . . . , kr), the polynomial

r∑

a=0

(−1)k1+···+kaRka,ka−1,...,k1(T +X)Rka+1,ka+2,...,kr(T −X) (2.9)

does not depend on T . Hence it is equal to

r∑

a=0

(−1)k1+···+kaRka,ka−1,...,k1(X)Rka+1,ka+2,...,kr(−X).

Proof. From the definition, we see that the polynomial (2.9) is a sum of polynomials of the

form

±
s∑

a=0

(−1)aR{1}a,k(T +X)R{1}s−a,k′(T −X) (2.10)

with some admissible indices k and k′. For any index k = (k1, . . . , kr) and s > 0, it holds that

e1 ∗ (e
s
1ek) = (s+ 1)es+1

1 ek +

r∑

a=1

(es1ek′(a) + es1ek′′(a)) +

s∑

b=1

eb−1
1 e2e

s−b
1 ek, (2.11)

where

k′(a) = (k1, . . . , ka + 1, . . . , kr), k′′(a) = (k1, . . . , ka, 1, ka+1, . . . , kr) . (2.12)

Using this one can show by induction on s that

R{1}s,k(T ) =

s∑

j=0

R{1}s−j ,k(0)
T j

j!
. (2.13)

7
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From this formula we see that the sum (2.10) without sign is equal to

s∑

a=0

a∑

j=0

s−a∑

l=0

(−1)aR{1}a−j ,k(0)R{1}s−a−l ,k′(0)
(T +X)j

j!

(T −X)l

l!

=
∑

j,l>0
j+l6s

s−l∑

a=j

(−1)aR{1}a−j ,k(0)R{1}s−a−l ,k′(0)
(T +X)j

j!

(T −X)l

l!

=

s∑

m=0

s−m∑

a=0

(−1)aR{1}a,k(0)R{1}s−m−a ,k′(0)
∑

j+l=m
j,l>0

(−1)j
(T +X)j

j!

(T −X)l

l!

=
s∑

m=0

(−2X)m

m!

s−m∑

a=0

(−1)aR{1}a,k(0)R{1}s−m−a ,k′(0),

which shows that the polynomial (2.10) does not depend on T , neither does (2.9).

2.3.2 Evaluation of the limit In order to evaluate the limit of zn(k; e
2πi/n) as n → ∞, we

first rewrite the value zn(k; e
2πi/n). Let n be a positive integer. When q = e2πi/n we see that

1− q

1− qm
= e−

πi
n
(m−1) sin π

n

sin mπ
n

(n > m > 0).

Therefore it holds that

zn(k; e
2πi
n ) =

(
e

πi
n
n

π
sin

π

n

)wt(k) ∑

n>m1>···>mr>0

r∏

j=1

e
πi
n
(kj−2)mj

(
n
π sin

mjπ
n

)kj

for any non-empty index k = (k1, . . . , kr). Decompose the set {(m1, . . . ,mr) ∈ Zr |n > m1 >

· · · > mr > 0} into the disjoint union

r⊔

a=0

{(m1, . . . ,mr) ∈ Zr |n > m1 > · · · > ma >
n

2
> ma+1 > · · · > mr > 0}

and change the summation variables mj to nj = n−ma+1−j (1 6 j 6 a) and lj = ma+j (1 6

j 6 r − a). Then we find that

zn(k; e
2πi
n ) =

(
e

πi
n
n

π
sin

π

n

)wt(k)

×
r∑

a=0

(−1)
∑a

j=1
kj

∑

n/2>n1>···>na>0

a∏

j=1

e−
πi
n
(ka+1−j−2)nj

(
n
π sin

njπ
n

)ka+1−j

∑

n/2>l1>···>lr−a>0

r−a∏

j=1

e
πi
n
(ka+j−2)lj

(
n
π sin

ljπ
n

)ka+j
.

Motivated by the above expression we introduce the following numbers. For an index

k = (k1, . . . , kr) and a positive integer n, we define

A−
n (k) =

∑

n/2>m1>···>mr>0

r∏

j=1

e−
πi
n
(kj−2)mj

(
n
π sin

mjπ
n

)kj ,

8
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A+
n (k) =

∑

n/2>m1>···>mr>0

r∏

j=1

e
πi
n
(kj−2)mj

(
n
π sin

mjπ
n

)kj .

Then we see that

zn(k; e
2πi
n ) =

(
e

πi
n
n

π
sin

π

n

)wt(k)

×
r∑

a=0

(−1)
∑a

j=1
kjA−

n (ka, ka−1, . . . , k1)A
+
n (ka+1, ka+2, . . . , kr).

(2.14)

In order to evaluate zn(k; e
2πi
n ) as n → ∞, we now give an asymptotic formula for A+

n (k).

From this the asymptotic formula for A−
n (k) is obtained, because it is easily seen that

A−
n (k1, . . . , kr) =





A+
n (k1, . . . , kr) (n: odd),

A+
n (k1, . . . , kr) + (−πi

n )
k1 A+

n (k2, . . . , kr) (n: even),
(2.15)

where the bar on the right-hand side denotes complex conjugation. We begin by giving a

formula for A+
n (k) in the case of an admissible index k.

Lemma 2.7. Let k be an admissible index. Then it holds that

A+
n (k) = ζ(k) +O

(
(log n)J1(k)

n

)
(n → +∞),

where J1(k) is a positive integer which depends on k.

Proof. Set k = (k1, . . . , kr) and define for k > 1 the function

gk(x) = e(k−2)ix
( x

sinx

)k
.

Then it holds that |A+
n (k) − ζ(k)| 6 I1 + I2, where

I1 =
∑

n/2>m1>···>mr>0

r∏

j=1

1

m
kj
j

∣∣∣∣∣∣

r∏

j=1

gkj

(mjπ

n

)
− 1

∣∣∣∣∣∣
,

I2 =
∑

m>n/2

1

mk1


 ∑

m>m2>···>mr>0

r∏

j=2

1

m
kj
j


 .

Since gk(x) = 1+ (k− 2)ix+ o(x) (x → +0), there exists a positive constant C depending on

k such that |gk(mπ/n) − 1| 6 Cm/n for all integers m and n satisfying n/2 > m > 0. Using

the identity



r∏

j=1

xj


− 1 =

r∑

a=1

(

a−1∏

j=1

xj) (xa − 1)

9
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and the inequality 0 < (sinx)−1 6 π/2x on the interval (0, π2 ], we see that

I1 6
C1

n

r∑

a=1

∑

n/2>m1>···>mr>0

1

mk1
1 · · ·mka−1

a · · ·mkr
r

6
C1

n

r∑

a=1

∑

n/2>m1>···>mr>0

1

mk1−1
1 mk2

2 · · ·mkr
r

=
C1r

n

∑

n/2>m>0

1

mk1−1


 ∑

m>m2>···>mr>0

r∏

j=2

1

m
kj
j




for some positive constant C1 which depends on k. Using the estimation

∑

m>m2>···>mr>0

r∏

j=2

1

m
kj
j

6

(
m−1∑

s=1

1

s

)r−1

6 (2 logm)r−1,

we get

I1 + I2 6 C2


 1

n

∑

n/2>m>0

(logm)r−1

mk1−1
+
∑

m>n/2

(logm)r−1

mk1




for some positive constant C2 which depends on k. Since k1 > 2 it holds that

∑

n/2>m>0

(logm)r−1

mk1−1
= O((log n)r),

∑

m>n/2

(logm)r−1

mk1
= O

(
(log n)r−1

n

)

as n → +∞. This completes the proof.

To compute the asymptotic formula for A+
n (k) in the case of a non-admissible index k, we

need the following lemma.

Lemma 2.8. We have

A+
n (1) = log

(n
π

)
+ γ −

πi

2
+O

(
1

n

)
(n → +∞) ,

where γ is Euler’s constant.

Proof. From the definition of A+
n (1) we see that

A+
n (1) =

π

n

∑

n/2>m>0

(
cos mπ

n

sin mπ
n

− i

)
=

π

n

∑

n/2>m>0

cos mπ
n

sin mπ
n

−
πi

2
+O

(
1

n

)

as n → +∞. Hence it suffices to show that

π

n

∑

n/2>m>0

cos mπ
n

sin mπ
n

= log
(n
π

)
+ γ +O

(
1

n

)
(n → +∞). (2.16)

Since the function f(x) = x−1 − (tanx)−1 is positive and increasing on the interval (0, π),

10
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we see that
∫ n−1

2

0
f
(πx
n

)
dx 6

∑

n/2>m>0

(
n

π

1

m
−

cos mπ
n

sin mπ
n

)
6

∫ n
2
+1

1
f
(πx
n

)
dx.

Set g(x) = log (1 + x)− log (cos πx
2 ). By direct calculation we have

∫ n−1

2

0
f
(πx
n

)
dx =

n

π

(
g
(
−

1

n

)
+ log

(π
2

))
,

∫ n
2
+1

1
f
(πx
n

)
dx =

n

π

(
g
( 2
n

)
+ log

(n
π
sin

π

n

)
+ log

(π
2

))
.

Since g(x) = x + o(x) (x → 0) and log (x−1 sinx) = o(x) (x → +0), there exist positive

constants c1 and c2 such that
∫ n−1

2

0
f
(πx
n

)
dx > −c1 +

n

π
log
(π
2

)
,

∫ n
2
+1

1
f
(πx
n

)
dx 6 c2 +

n

π
log
(π
2

)

for n ≫ 0. Therefore we find that

π

n

∑

n/2>m>0

cos mπ
n

sin mπ
n

=
∑

n/2>m>0

1

m
− log

(π
2

)
+O

( 1
n

)
(n → +∞).

Using the asymptotic expansion

∑

n/2>m>0

1

m
= log

(n
2

)
+ γ +O

( 1
n

)
(n → +∞),

we get the formula (2.16).

We can now compute the asymptotic formula for A±
n (k) for any index.

Proposition 2.9. For any index k it holds that

A±
n (k) = Rk

(
log
(n
π

)
+ γ ∓

πi

2

)
+O

(
(log n)J(k)

n

)
(n → +∞), (2.17)

where γ is Euler’s constant and J(k) is a positive integer which depends on k.

Proof. Let k be an admissible index and s a non-negative integer. We prove the formula (2.17)

for A+
n ({1}

s,k) by induction on s. The case s = 0 holds because of Lemma 2.7. Assume that

the formula for A+
n ({1}

s,k) holds for s > 0. Now use the identity

e−
πi
n
m

n
π sin mπ

n

e
πi
n
(k−2)m

(
n
π sin mπ

n

)k =
e

πi
n
(k−1)m

(
n
π sin mπ

n

)k+1
−

2πi

n

e
πi
n
(k−2)m

(
n
π sin mπ

n

)k ,

for k > 1 and n/2 > m > 0 to obtain

A+
n (1)A

+
n ({1}

s,k) = (s+ 1)A+
n ({1}

s+1,k)

+
r∑

a=1

(
A+

n ({1}
s,k′(a)) +A+

n ({1}
s,k′′(a))−

2πi

n
A+

n ({1}
s,k)

)

11
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+
s∑

b=1

(
A+

n ({1}
b−1, 2, {1}s−b,k)−

2πi

n
A+

n ({1}
s,k)

)
,

where k′(a) and k′′(a) are the indices defined by (2.12). With this the desired formula (2.17)

can be verified by (2.11) and Lemma 2.8. Note that the formula for A−
n (k) is then immediate

from (2.15).

The evaluation of zn(k; e
2πi
n ) for n → ∞ is now given as follows.

Theorem 2.10. For any non-empty index k = (k1, . . . , kr) it holds that

lim
n→∞

zn(k; e
2πi
n ) =

r∑

a=0

(−1)k1+···+kaRka,ka−1,...,k1

(πi
2

)
Rka+1,ka+2,...,kr

(
−

πi

2

)
.

Proof. This follows from Lemma 2.6, Proposition 2.9 and (2.14).

Remark 2.11. As mentioned earlier, there are several different q-analogue models of multiple

zeta values in the literature and our definition of zn(k; q) corresponds to the Bradley-Zhao

model. For other models an analogue of Theorem 2.10 does not necessarily exist, since for

example one can prove the formula

∑

n>m1>m2>0

qm1

[m1]q[m2]q

∣∣∣
q=e

2πi
n

= 2ζ(2) + 2πi
(
log
( n

2π

)
+ γ
)
+O

(
log n

n

)
(n → +∞) ,

which would correspond to the Ohno-Okuda-Zudilin model ([13]) for the index k = (1, 1).

2.3.3 Proof of Theorem 1.2 For the later purpose we introduce the following complex

numbers.

Definition 2.12. For a non-empty index k we define

ξ(k) = lim
n→∞

zn(k; e
2πi
n ) and ξ⋆(k) = lim

n→∞
z⋆n(k; e

2πi
n )

and set ξ(∅) = ξ⋆(∅) = 1.

Theorem 2.10 implies that

ξ(k1, . . . , kr) =

r∑

a=0

(−1)k1+···+kaRka,ka−1,...,k1

(πi
2

)
Rka+1,ka+2,...,kr

(
−

πi

2

)
, (2.18)

and

ξ⋆(k1, . . . , kr) =
∑

� is ‘,’ or ‘+’

ξ(k1� · · ·�kr), (2.19)

which follows from (2.2) and (1 − e2πi/n)kzn(k; e
2πi/n) → 0 (n → +∞) for k > 0. If k =

(k1, . . . , kr) is an index with kj > 2 for all 1 6 j 6 r, we have the equalities ξ(k) = ζS(k) and

ξ⋆(k) = ζ⋆S(k) from Definition 2.5, and hence ξ(k), ξ⋆(k) ∈ R.

12
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Example 2.13. Using (2.18) one can write down the value ξ(k) of depth one:

ξ(k) =





−πi (k = 1)

2ζ(k) (k > 2, k is even)

0 (k > 3, k is odd)

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. The convergence is already proved. From (2.13) we see that the coeffi-

cient of T a in the polynomial Rk(T ) lies in Z for any a > 0. Hence the formulas (2.8) and (2.18)

imply that Re(ξ(k)) − ζS(k) is a polynomial of π2 whose coefficients belong to Z. Therefore

Re(ξ(k)) ≡ ζS(k) modulo ζ(2)Z. The star version is then immediate from (2.19).

2.4 Duality formula

In this subsection, we prove Theorem 1.3 and use it to give new proofs of the duality formulas

for the finite and the symmetric multiple zeta star values.

2.4.1 Notation For an index k = (k1, . . . , kr) we define its reverse k by

k = (kr, kr−1, . . . , k1).

Let τ be the automorphism on H given by τ(e1) = e0 and τ(e0) = e1. Every word w ∈ H1

can be written as w = w′e1 with w′ ∈ H. Then we set w∨ = τ(w′)e1 ∈ H1 and call it the

Hoffman dual of w. We also define the Hoffman dual k∨ of an index k by

ek∨ = (ek)
∨.

For example, the Hoffman dual of the word e3e2 is given by

(e3e2)
∨ = (e0e0e1e0e1)

∨ = τ(e0e0e1e0)e1 = e1e1e0e1e1 = e1e1e2e1 .

Hence (3, 2)∨ = (1, 1, 2, 1). Note that wt(k∨) = wt(k) for any index k.

2.4.2 Proof of Theorem 1.3 We will use the following fact.

Lemma 2.14. Suppose that n > 1 and ζn is a primitive n-th root of unity. Then it holds that

(−1)nζ
n(n+1)/2
n = −1.

Proof of Theorem 1.3. Note that any index is uniquely written in the form

({1}a1−1, b1 + 1, . . . , {1}ar−1−1, br−1 + 1, {1}ar−1, br), (2.20)

where r and ai, bi (1 6 i 6 r) are positive integers 2. Denote it by [a1, . . . , ar; b1, . . . , br]. Then

we see that

[a1, . . . , ar; b1, . . . , br]∨ = [br, . . . , b1; ar, . . . , a1].

2If r = 1, (2.20) should read as ({1}a1−1, b1).

13
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Now we fix a positive integer r and introduce the generating function

K(x1, . . . , xr; y1, . . . , yr) =
∑ z⋆n([a1, . . . , ar; b1, . . . , br]; ζn)

(1− ζn)a1+···+ar+b1+···+br−1

r∏

i=1

(xai−1
i ybi−1

i ),

where the sum is taken over all positive integers ai, bi (1 6 i 6 r). Then Theorem 1.3 follows

from the equality

K(x1, . . . , xr; y1, . . . , yr) = K(−yr, . . . ,−y1;−xr, . . . ,−x1). (2.21)

Let us prove (2.21). It holds that

1 +

∞∑

a=2

∑

B>m1>···>ma−1>A

xa−1

∏a−1
i=1 (1− ζmi

n )
=

B∏

i=A

1− ζ in
1− x− ζ in

for n > B > A > 0, and that

∞∑

b=1

ζbmn
(1− ζmn )b+1

yb−1 =
1

1− ζmn

ζmn
1− ζmn (1 + y)

for n > m > 0. Using the above formulas we have

K(x1, . . . , xr; y1, . . . , yr) =
∑

n>l1>···>lr>0

n−1∏

i=lr

(1− ζ in)

×
r−1∏

j=1


 ζ

lj
n

1− ζ
lj
n (1 + yj)

lj−1∏

i=lj

1

1− xj − ζ in


 1

1− ζ lrn (1 + yr)

lr−1∏

i=lr

1

1− xr − ζ in
,

where l0 = n− 1. Rewrite the right-hand side above by using the partial fraction expansion

B∏

i=A

1

X − ζ in
=

B∑

i=A

1

X − ζ in

i−1∏

j=A

1

ζ in − ζjn

B∏

j=i+1

1

ζ in − ζjn

=

B∑

t=A

1

X − ζtn

(−1)B−tζ
−(B+1

2 )+At−(t2)
n∏t−A

i=1 (1− ζ−i
n )
∏B−t

i=1 (1− ζ−i
n )

for n > B > A > 0. Then we find that

K(x1, . . . , xr; y1, . . . , yr)

=
∑

n>t1>l1>···>tr>lr>0

n−1∏

i=lr

(1− ζ in)(−1)
∑r

j=1(lj−1−tj)ζ
∑r

j=1
(−(lj−1+1

2
)+ljtj−(tj

2
))

n

×
r∏

j=1




tj−lj∏

i=1

1

1− ζ−i
n

lj−1−tj∏

i=1

1

1− ζ−i
n




×
r−1∏

j=1

(
ζ
lj
n

1− ζ
lj
n (1 + yj)

1

1− xj − ζ
tj
n

)
1

1− ζ lrn (1 + yr)

1

1− xr − ζtrn
.

14
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Now change the summation variable tj and lj to n − lr+1−j and n − tr+1−j, respectively

(1 6 j 6 r). As a result we get the desired equality (2.21) using Lemma 2.14.

2.4.3 Duality formula for the finite and symmetric multiple zeta star values In [5, Theo-

rem 4.5] the reversal relations of the finite multiple zeta (star) values are shown:

ζA(k) = (−1)wt(k)ζA(k), ζ⋆A(k) = (−1)wt(k)ζ⋆A(k), (2.22)

which are almost immediate from the definition. We now give a new proof of the duality

formula for the finite multiple zeta star value using our results.

Theorem 2.15. (Hoffman [5, Theorems 4.5]) For any index k, we have

ζ⋆A(k) = −ζ⋆A(k
∨).

Proof. This is a consequence of Theorem 1.3 and 1.1 and (2.22).

We will show the duality formula for the symmetric multiple zeta star value. To see this,

we first note that the values ξ(k) and ξ⋆(k) have the following properties.

Theorem 2.16. For any index k, the following relations hold.

i) ξ(k) = (−1)wt(k) ξ(k), ξ⋆(k) = (−1)wt(k) ξ⋆(k)

ii) ξ⋆(k∨) = − ξ⋆(k)

Here the bar on the right-hand sides denotes complex conjugation.

Proof. i) Changing the summation variable mj to n−mr+1−j (1 6 j 6 r), we see that

zn(k; e
2πi/n) = (−e2πi/n)wt(k) zn(k; e2πi/n).

Taking the limit as n → +∞, we obtain ξ(k) = (−1)wt(k) ξ(k). The same calculation works

also for z⋆n(k; e
2πi/n).

ii) From Theorem 1.3 we see that ξ⋆(k) = (−1)wt(k)+1ξ⋆(k∨). Combining it with the

equality proved in i), we get the desired equality.

We now prove the duality formula for symmetric multiple zeta values, which was also

shown in [8, Corollaire 1.12].

Corollary 2.17. For any index k, we have

ζ⋆S(k) ≡ −ζ⋆S(k
∨) and ζ⋆S(k) ≡ (−1)wt(k)ζ⋆S(k) mod ζ(2)Z.

Proof. This follows directly from Theorems 1.2 and 2.16.

2.5 Example of relations of z⋆n(k; ζn)

In this subsection, using the results obtained in the previous subsections we give an example

of relations among z⋆n(k; ζn) and of Q-linear relations among finite and symmetric multiple

zeta star values via Theorems 1.1 and 1.2, accordingly.

15
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Applying Theorem 1.3 to the product z⋆n(k; ζn)z
⋆
n(k

′; ζn), one has

z⋆n(k; ζn)z
⋆
n(k

′; ζn) = (−1)wt(k)+wt(k′)z⋆n(k
∨; ζn)z

⋆
n(k

′∨; ζn).

Since each product can be written asQ-linear combinations of (1−ζn)
wt(k)+wt(k′)−wt(k′′)z⋆n(k

′′; ζn)

(see Remark 2.2), we can obtain a relation among z⋆n(k; ζn) over Q[1− ζn]. As a consequence

of the above relations, one can prove for instance the identity

2z⋆n(4, 1; ζn) + z⋆n(3, 2; ζn) =
(n4 − 1)(n + 5)

1440
(1− ζn)

5 +
n+ 2

3
(1− ζn)

2z⋆p(2, 1; ζn) (2.23)

for any n > 1 and any n-th primitive root of unity ζn. The identity (2.23) together with

Theorem 1.1 shows

2ζ⋆A(4, 1) + ζ⋆A(3, 2) = 0,

which was obtained by Hoffman [5, Theorem 7.1]. On the other hand, using 1 − e2πi/n =

−2πi/n + o(1/n) as n → +∞ and Theorem 1.2, we find

2ζ⋆S(4, 1) + ζ⋆S(3, 2) ≡ 0 mod ζ(2)Z .

3. Cyclotomic analogue of finite multiple zeta values

3.1 Definitions

In this subsection we define the cyclotomic analogue of the finite multiple zeta (star) values

Z(k) and present its duality formula. We also compute the value Z(k) of depth one as an

example.

As an cyclotomic analogue of the ring A we define

Acyc =


 ∏

p:prime

Z[ζp]/(p)



/
 ⊕

p:prime

Z[ζp]/(p)


 .

Similar to A (see Section 2.2) the ring Acyc is a Q-algebra.

Definition 3.1. For an index k we define the cyclotomic analogue of finite multiple zeta

value

Z(k) =
(
zp(k; ζp) mod (p)

)
p
∈ Acyc,

and its star version

Z⋆(k) =
(
z⋆p(k; ζp) mod (p)

)
p
∈ Acyc.

Recall that pp = (1 − ζp) is a prime ideal in Z[ζp] and that (p) = p
p−1
p . This yields a

surjective map

Z[ζp]/(p) → Z[ζp]/pp ≃ Fp

16
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for all prime p. Let ϕ be the induced Q-algebra homomorphism

ϕ : Acyc −→ A,

(ap mod (p))p 7−→ (ap mod pp)p .
(3.1)

The map ϕ satisfies ϕ(Z(k)) = ζA(k) and ϕ(Z⋆(k)) = ζ⋆A(k).

Let us write down the formula for Z(k) of depth one. We write

̟ = (1− ζp)p ∈ Acyc. (3.2)

For k > 0 define the numbers Gk by
∑

k>0

Gkz
k =

z

log(1 + z)
,

which are called Gregory coefficients. It is known that Gk 6= 0 for any k > 0 (see [22]).

Proposition 3.2. For any k > 1, we have Z(k) = −Gk̟
k ∈ ̟kQ×.

Proof. The generating function (2.5) can be written as

∞∑

k=1

zn(k; ζn)

(
x

1− ζn

)k

= −
∞∑

l=1


−

∞∑

j=1

hj(n)x
j




l

, (3.3)

where we let

hj(x) =
1

(j + 1)!

j∏

a=1

(x− a) (j > 1).

Hence, for each k > 1, there exists a unique polynomial Dk(x) ∈ Q[x] of degree at most k

such that zn(k; ζn) = Dk(n)(1 − ζn)
k for all n > 1. Then

zp(k; ζp) ≡ Dk(0)(1 − ζp)
k mod (p)

for sufficiently large prime p. Therefore Z(k) = Dk(0)̟
k for k > 1.

On the other hand, from (3.3) we see that

∞∑

k=1

Dk(0)z
k = −

∞∑

l=1


−

∞∑

j=1

hj(0)x
j




l

= 1−
z

log (1 + z)
.

Hence Dk(0) = −Gk for k > 1, which completes the proof.

The first few values are given by

Z(1) = −
1

2
̟, Z(2) =

1

12
̟2, Z(3) = −

1

24
̟3, Z(4) =

19

720
̟4,

which are also obtained from (2.4).
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3.2 Algebraic structure

In this subsection, we examine the algebraic structure of the space spanned by Z(k)’s and

Z⋆(k)’s. Recall that H1 is the noncommutative polynomial algebra over Q of indeterminates

ej with j > 1 and for an index k = (k1, . . . , kr) we write ek := ek1 · · · ekr . For simplicity,

we introduce the following notation. Let γ be a function defined on the set of indices taking

values in a Q-vector space M . Then, by abuse of notation, we denote by the same letter γ the

Q-linear map H1 → M which sends ek to γ(k).

As a variant of the product ∗ given in (2.7), we define the product ⋆ on H1 inductively by

1 ⋆ w = w ⋆ 1 = w (w ∈ H1),

ekw ⋆ ek′w
′ = ek(w ⋆ ek′w

′) + ek′(ekw ⋆ w′)− ek+k′(w ⋆ w′) (k, k′ > 1, w,w′ ∈ H1).

Viewing ζ and ζ⋆ as a map from the set of indices to R, we have for admissible v,w ∈ H1

ζ(v ∗ w) = ζ(v)ζ(w) , ζ⋆(v ⋆ w) = ζ⋆(v)ζ⋆(w) .

To describe the algebraic structure of the space spanned by Z(k)’s and Z⋆(k)’s we consider

the C-module Ĥ1 = C ⊗Q H1, where C = Q[~] denotes the polynomial ring of one variable ~.

On Ĥ1 we define the C-bilinear maps ∗q, ⋆q : Ĥ
1 × Ĥ1 → Ĥ1 by

1 ∗q w = w ∗q 1 = w, 1 ⋆q w = w ⋆q 1 = w,

ek1v ∗q ek2w = ek1(v ∗q ek2w) + ek2(ek1v ∗q w) + (ek1+k2 + ~ ek1+k2−1)(v ∗q w),

ek1v ⋆q ek2w = ek1(v ⋆q ek2w) + ek2(ek1v ⋆q w)− (ek1+k2 + ~ ek1+k2−1)(v ⋆q w)

for v,w ∈ Ĥ1 and k1, k2 > 1. Similarly as before, for a function Γ taking values in a C-

module M̂ , we denote the induced C-linear map Ĥ1 → M̂ by the same letter Γ. For example,

Γ(e2 ∗q e1) = Γ(2, 1) + Γ(1, 2) + Γ(3) + ~Γ(2).

We define the Q-linear action of C on Acyc by ~z = ̟z (z ∈ Acyc), where ̟ is given by

(3.2). Then the C-linear maps Z, Z⋆ : Ĥ1 → Acyc are defined by the properties Z(ek) = Z(k)

and Z⋆(ek) = Z⋆(k) for any index k. It follows that they satisfy

Z(v ∗q w) = Z(v)Z(w), Z⋆(v ⋆q w) = Z⋆(v)Z⋆(w) (3.4)

for any v,w ∈ Ĥ1 (see [1, §2]). Due to (3.4) the product of two Z(k) (resp Z⋆(k)) can be

written as a Q[̟]-linear combination of Z(k) (resp. Z⋆(k)). In fact, the next lemma shows

that these can be written as a Q-linear combination of Z(k) (resp. Z⋆(k)).

Lemma 3.3. For any index k, we have

̟Z(k) = −
2

2 dep(k) + 1
Z(e1 ∗ ek),

̟ Z⋆(k) =
2

2dep(k) − 1
Z⋆(e1 ⋆ ek).

Proof. It holds that

e1 ∗q ek = e1 ∗ ek + ~dep(k)ek, e1 ⋆q ek = e1 ⋆ ek − ~dep(k)ek
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for any index k. Now the desired formula follows from (3.4) and Z(1) = −̟/2.

Motivated by Lemma 3.3 we define the Q-linear maps L,L⋆ : H1 → H1 by

L(ek) = −
2

2 dep(k) + 1
e1 ∗ ek, L⋆(ek) =

2

2dep(k)− 1
e1 ⋆ ek

for any index k. Note that if wt(k) = k then L(ek) and L⋆(ek) are written as a Q-linear

combination of monomials of weight k+1. Using these maps we introduce the Q-linear maps

ρ, ρ⋆ : Ĥ1 → H1 defined by

ρ(~kw) = Lk(w), ρ⋆(~kw) = (L⋆)k(w) (k > 0, w ∈ H1) ,

with L0(w) = (L⋆)0(w) = w. Note that ρ(v) = v for v ∈ H1 and by Lemma 3.3 we get

Z(ρ(w)) = Z(w), Z⋆(ρ⋆(w)) = Z⋆(w) (w ∈ Ĥ1). (3.5)

Now define the Q-bilinear maps ∗̃, ⋆̃ : H1 × H1 → H1 by

v ∗̃w = ρ(v ∗q w), v ⋆̃ w = ρ⋆(v ⋆q w) (v,w ∈ H1)

and define for d > 0 the space

H1
d =

⊕

k

wt(k)=d

Q ek ,

which is a Q-linear subspace of H1.

Proposition 3.4. (i) It holds that H1
d1

∗̃H1
d2

⊂ H1
d1+d2

and H1
d1
⋆̃H1

d2
⊂ H1

d1+d2
for d1, d2 > 0.

(ii) For v,w ∈ H1, it holds that Z(v ∗̃w) = Z(v)Z(w) and Z⋆(v ⋆̃ w) = Z⋆(v)Z⋆(w).

Proof. (i) Note that, if we define the weight of ~ to be one, then the C-bilinear maps ∗q and

⋆q preserve the total weight. Hence the statement follows from the property L(H1
d) ⊂ H1

d+1

and L⋆(H1
d) ⊂ H1

d+1.

(ii) This follows from (3.4) and (3.5).

Corollary 3.5. For positive integers k, k′, let k and k′ be indices of weight k and k′. Then

the product Z(k)Z(k′) (resp. Z⋆(k)Z⋆(k′)) can be written as Q-linear combinations of Z(a)’s

(resp. Z⋆(a)’s) of weight k + k′.

3.3 Dimension of the space of Z(k)

In this subsection we discuss the dimension of the Q-vector space spanned by Z(k)’s and

Z⋆(k)’s. First we note the following fact.

Proposition 3.6. For any k > 0, it holds that Z(H1
k) = Z⋆(H1

k) as a Q-linear subspace of

Acyc.

Proof. From (2.2) we see that Z⋆(k) is represented as

Z⋆(k) =
∑

k
′

wt(k′)6wt(k)

ck,k′̟wt(k)−wt(k′)Z(k′),
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where ck,k′ ∈ Q. Lemma 3.3 implies that ̟wt(k)−wt(k′)Z(k′) = Z(Lwt(k)−wt(k′)(ek′)), and

the weight of Lwt(k)−wt(k′)(ek′) is equal to wt(k). Hence Z⋆(k) ∈ Z(H1
k) for any index k of

weight k. In the same way we see that Z(k) ∈ Z⋆(H1
k) if wt(k) = k from (2.3) and therefore

Z(H1
k) = Z⋆(H1

k).

Theorem 3.7. For any index k we have

Z⋆(k) = (−1)wt(k)+1Z⋆(k∨). (3.6)

Proof. The formula is immediate from Theorem 1.3 and Definition 3.1.

Combining Theorem 3.6 with Proposition 3.4 (ii), we obtain a variant of the double shuffle

relation [7] among Z⋆(k)’s. To describe it, we denote by δ the Q-linear map δ : H1 → H1

sending ek to (−1)wt(k)+1e
k∨ for any index k. Note that the map δ is an involution on H1 and

with this (3.6) can be stated as Z⋆(ek) = Z⋆(δ(ek)).

Theorem 3.8. For any indices k and k′, we have

Z⋆
(
ek ⋆̃ ek′ − δ

(
(δ(ek) ⋆̃ δ(ek′)

))
= 0.

Proof. This follows from Proposition 3.4 (ii) and Theorem 3.7 because

Z⋆
(
δ
(
δ(ek) ⋆̃ δ(ek′)

))
= Z⋆

(
δ(ek) ⋆̃ δ(ek′)

)
= Z⋆

(
δ(ek)

)
Z⋆
(
δ(ek′)

)
= Z⋆(ek)Z

⋆(ek′),

which is equal to Z⋆(ek ⋆̃ ek′).

Remark 3.9. For k > 0 we define the Q-linear subspace Zcyc
k of Acyc by

Zcyc
k = Z⋆(H1

k) = Z(H1
k).

Using Theorem 3.7 and 3.8, we have the following upper bounds for the dimension of Zcyc
k :

k 0 1 2 3 4 5 6 7 8 9 10 11 12

dimQZcyc
k 6 1 1 1 2 2 4 5 8 12 17 27 38 57

For prime p > 2 and k > 0, we denote by Z
(p)
k the Q-vector space spanned by zp(k; e

2πi/p)

with wt(k) = k. Notice that dimQZ
(p)
k 6 p − 1 = [Q(ζp) : Q]. Denote by dk the numbers

in the second column of the above table. By numerical experiments, we observed that for

1 6 k 6 12 we have dimQZ
(p)
k > dk for primes p > dk up to p = 113. Thus, we might expect

that Theorem 3.7 and 3.8 give all Q-linear relations among the Z⋆(k)’s.

3.4 Kaneko–Zagier conjecture revisited

In this subsection we will give a new interpretation of the Kaneko–Zagier conjecture in terms

of the cyclotomic analogue of finite multiple zeta values Z(k). Let us first recall the statement

of their conjecture. Let ZA be the Q-vector space of finite multiple zeta values. It forms a

Q-algebra.
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Conjecture 3.10. (Kaneko–Zagier [9]) There exists a Q-algebra isomorphism

ϕKZ : ZA −→ Z/ζ(2)Z,

ζA(k) 7−→ ζS(k) mod ζ(2)Z.

To give a new interpretation of this conjecture, we consider the Q-vector space spanned

by all Z(k)

Zcyc = Z⋆(H1) = Z(H1).

By Corollary 3.5 this is a Q-subalgebra of Acyc. The restriction of the map ϕ : Acyc → A

defined in (3.1) to Zcyc gives the surjective Q-algebra homomorphism to the Q-algebra ZA of

finite multiple zeta values denoted by

ϕA : Zcyc −→ ZA .

For any index k we have ϕA(Z(k)) = ζA(k). On the other hand the relationship of the Z(k)

to the symmetric multiple zeta values is not understood yet, but we expect the following.

Conjecture 3.11. i) There exists a Q-algebra homomorphism

ϕS : Zcyc −→ Z/ζ(2)Z ,

Z(k) 7−→ ζS(k) mod ζ(2)Z .

ii) The equality kerϕS = kerϕA holds.

This conjecture is a re-interpretation of the conjecture by Kaneko and Zagier.

Theorem 3.12. Conjecture 3.11 implies Conjecture 3.10.

We end this paper by giving some observation on the elements of the ideal kerϕA in Zcyc.

As an easy consequence of the definition of ϕA we obtain the following.

Proposition 3.13. We have kerϕA = Zcyc ∩̟Acyc, where ̟Acyc denotes the ideal of Acyc

generated by ̟.

Proof. This is immediate from kerϕ = ̟Acyc.

Lemma 3.3 implies that ̟Zcyc ⊂ Zcyc. Hence ̟Zcyc ⊂ kerϕA. However, we expect

̟Zcyc 6= kerϕA. For example, by [5, Theorem 7.1] we have

ζA(4, 1) − 2 ζA(3, 1, 1) = 0. (3.7)

Therefore Z(4, 1)−2Z(3, 1, 1) ∈ kerϕA, but it can be shown that Z(4, 1)−2Z(3, 1, 1) /∈ ̟Zcyc.

So far it is not known how to describe the elements in (kerϕA)\̟Zcyc in general.
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