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COMPUTING THE KREISS CONSTANT OF A MATRIX\ast 
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Abstract. We establish the first globally convergent algorithms for computing the Kreiss con-
stant of a matrix to arbitrary accuracy. We propose three different iterations for continuous-time
Kreiss constants and analogues for discrete-time Kreiss constants. With standard eigensolvers, the
methods do \scrO (n6) work, but we show how this theoretical work complexity can be lowered to \scrO (n4)
on average and \scrO (n5) in the worst case via divide-and-conquer variants. Finally, locally optimal
Kreiss constant approximations can be efficiently obtained for large-scale matrices via optimization.

Key words. discontinuity of Kreiss constants, inverses of Kronecker sums, distance to uncon-
trollability algorithms, transient growth, pseudospectra

AMS subject classifications. 15A16, 37C75, 39A22, 39A30, 65F30, 65F60

DOI. 10.1137/19M1275127

Notation. \| \cdot \| denotes the spectral norm, \sigma min(\cdot ) the smallest singular value,
and \Lambda (\cdot ) the spectrum. A matrix A \in \BbbC 2n\times 2n is Hamiltonian if (JA)\ast = JA
and symplectic if A\ast JA = J , where J =

\bigl[ 
0 I
 - I 0

\bigr] 
. A matrix pencil A  - \lambda B, where

A,B \in \BbbC 2n\times 2n, is symplectic if A\ast JA = B\ast JB. Euler's number, 2.71828 . . . , is
denoted by e. In is the n\times n identity, though we will often omit the subscript when
the dimension is clear.

1. Introduction. Given a matrix A \in \BbbC n\times n, the ordinary difference equation

(1.1) xk+1 = Axk

is asymptotically stable if A is Schur stable, i.e., if \rho (A) < 1, where \rho denotes the
spectral radius. While \rho (A) tells one about the asymptotic behavior of (1.1), it does
not convey information about its transient behavior. For that, we can look at the
Kreiss Matrix Theorem, which says for any matrix A \in \BbbC n\times n [30, eq. 18.2]

(1.2) \scrK (A) \leq sup
k\geq 0
\| Ak\| \leq en\scrK (A),

where the Kreiss constant \scrK (A) is given by [30, p. 143]

(1.3) \scrK (A) = sup
z\in \BbbC ,| z| >1

(| z|  - 1)\| (zI  - A) - 1\| .

As also noted in [30, p. 143], \scrK (A) has an equivalent formulation of

(1.4) \scrK (A) = sup
\varepsilon >0

\rho \varepsilon (A) - 1

\varepsilon 
,

where the \varepsilon -pseudospectral radius \rho \varepsilon is defined by

\rho \varepsilon (A) = max\{ | z| : z \in \Lambda (A+\Delta ), \| \Delta \| \leq \varepsilon \} (1.5a)

= max\{ | z| : z \in \BbbC , \| (zI  - A) - 1\| \geq \varepsilon  - 1\} .(1.5b)
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1945

For any matrix A \in \BbbC n\times n, \scrK (A) \geq 1, and \scrK (A) may be arbitrarily large. As is well
known, a matrix A is power-bounded, i.e., \scrK (A) <\infty , if and only if \rho (A) \leq 1 and all
eigenvalues of A with modulus 1 are nondefective. If A is normal and \rho (A) \leq 1, then
\scrK (A) = 1.

As discussed in [30, p. 177], the original statement by Kreiss in 1962 [19] actually
had a far looser upper bound than (1.2): approximately cn

n\scrK (A). The reduction of
the constant factor to its current form in fact occurred over nearly 30 years in at
least nine separate steps, with Spijker proving the conjecture of [24, p. 590] to finally
obtain the (in a certain sense) tight factor of en in 1991 [29].

The Kreiss Matrix Theorem also comes in a continuous-time variant for an ordi-
nary differential equation

(1.6) \.x = Ax,

which is asymptotically stable if A is Hurwitz stable, i.e., if \alpha (A) < 0, where \alpha denotes
the spectral abscissa. In this case, the Kreiss Matrix Theorem states that [30, eq. 18.8]

(1.7) \scrK (A) \leq sup
t\geq 0
\| etA\| \leq en\scrK (A),

where, by [30, eq. 14.7], \scrK (A) is now equivalently given by either

(1.8) \scrK (A) = sup
z\in \BbbC ,Re z>0

(Re z)\| (zI  - A) - 1\| 

or

(1.9) \scrK (A) = sup
\varepsilon >0

\alpha \varepsilon (A)

\varepsilon 
,

and where the \varepsilon -pseudospectral abscissa \alpha \varepsilon is defined by

\alpha \varepsilon (A) = max\{ Re z : z \in \Lambda (A+\Delta ), \| \Delta \| \leq \varepsilon \} (1.10a)

= max\{ Re z : z \in \BbbC , \| (zI  - A) - 1\| \geq \varepsilon  - 1\} .(1.10b)

Like the discrete-time case, \scrK (A) \geq 1 and can be arbitrary large. If A is normal and
\alpha (A) \leq 0, then \scrK (A) = 1.

Despite the wealth of work done over decades towards making the upper bound of
the Kreiss Matrix Theorem now tight, there has been no algorithm given to actually
compute \scrK (A) with guarantees. In the literature, \scrK (A) is often just approximated by
plotting (1.4) or (1.9); e.g., see [13] and [25, Chapter 3.4.1].

In this paper, we propose the first globally convergent algorithms to compute both
continuous- and discrete-time Kreiss constants to arbitrary accuracy. We assume that
A is nonnormal, as otherwise computing its Kreiss constant just involves checking if A
is unstable. Furthermore, we assume that \alpha (A) < 0 or \rho (A) < 1 holds, respectively, in
the continuous- or discrete-time case. With standard eigensolvers, the three different
methods we propose all have \scrO (n6) work complexities,1 but by also developing so-
called divide-and-conquer variants, we show how this theoretical work complexity
reduces to \scrO (n4) on average and \scrO (n5) in the worst case. Our work also shows that

1We use the standard convention of treating dense computations of singular values, eigenvalues,
solutions of Sylvester equations, etc., as atomic operations with cubic costs in the dimensions of
the associated matrices. We additionally assume these costs become linear in the dimension of the
matrices when corresponding sparse methods are available.
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1946 TIM MITCHELL

locally optimal approximations to \scrK (A) can be efficiently and reliably obtained for
large-scale matrices via standard optimization techniques. Furthermore, we establish
some variational properties of Kreiss constants, including that the Kreiss constant of
a matrix A is not a continuous function with respect to the entries of A. Finally, as
a side effect of our work, we also propose an important modification to the distance-
to-uncontrollability algorithms of [14, 9, 15] to greatly improve their reliability in
practice.

The contributions of the paper are structured as follows. In section 2, we in-
troduce the so-called distance to uncontrollability and present a theorem of Gu [14,
Theorem 3.1] and distance-to-uncontrollability algorithms that are based upon it. In
section 3, we establish variational properties of Kreiss constants that we will need and
show that there is a potentially exploitable similarity to computing the distance to
uncontrollability. Then, in section 4, we develop theorems for continuous-time \scrK (A)
that are analogues of the aforementioned theorem of Gu, but nevertheless show that,
due to key structural differences, existing distance-to-uncontrollability algorithms will
not directly extend to Kreiss constants. By developing a so-called globality certificate
in section 5, we present our first algorithm for computing continuous-time Kreiss con-
stants, which is an optimization-with-restarts method using backtracking, and then
establish an asymptotically faster divide-and-conquer variant that is inspired by [15].
We then modify the premise of our globality certificate in a crucial way in section 6
to develop a second certificate with significant structural differences and properties;
this alternative certificate enables two other algorithms for continuous-time \scrK (A),
an optimization-with-restarts method without backtracking and a trisection iteration,
which can be considered closer analogues of the distance-to-uncontrollability algo-
rithms of [9]. Faster divide-and-conquer versions of these two methods are also devel-
oped. In section 7, we consider the case of discrete-time \scrK (A) and present discrete-
time analogues of all of our continuous-time algorithms and associated theoretical
results; to the best of our knowledge, this is also the first extension of the 2D level-set
ideas of [14] to a discrete-time setting, and it turns out to have surprising differences.
Numerical examples are presented in section 8, with concluding remarks made in
section 9.

For this paper, the following general definition and two theorems will be needed.
The theorems can be found in several places in various forms, such as [21, 28] and
[23, Theorem 13.16], respectively.

Definition 1.1. Given a domain \Omega \subseteq \BbbR , a function f : \Omega \rightarrow \BbbR has a global
Lipschitz constant (GLC) of c \geq 0 if | f(x) - f(y)| \leq c| x - y| for all x, y \in \Omega .

Theorem 1.2. For x, y \in \BbbR , let A(x, y) be a twice-differentiable n\times n Hermitian
matrix family, and for a point (\^x, \^y), let \lambda 1 \geq \cdot \cdot \cdot \geq \lambda n be the eigenvalues of A(\^x, \^y)
with associated unit-norm eigenvectors q1, . . . , qn. Then, assuming \lambda j is unique,

\partial 2

\partial x\partial y\lambda j

\bigm| \bigm| \bigm| \bigm| 
x=\^x,y=\^y

= q\ast j
\partial 2A(\^x,\^y)
\partial x\partial y qj + 2

\sum 
k \not =j

q\ast j
\partial A(\^x,\^y)

\partial x qk \cdot q\ast j
\partial A(\^x,\^y)

\partial y qk

\lambda j  - \lambda k
.

Theorem 1.3. Let A \in \BbbC n\times n with \lambda j \in \Lambda (A) for j = 1, . . . , n and B \in \BbbC m\times m

with \mu k \in \Lambda (B) for k = 1, . . . ,m. Then the Kronecker sum A\oplus B = Im\otimes A+B\otimes In
has eigenvalues \lambda j + \mu k for all pairs of j and k.
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1947

2. Computing the distance to uncontrollability. Given A \in \BbbC n\times n and
B \in \BbbC n\times m, consider the linear control system

(2.1) \.x = Ax+Bu,

where the state x \in \BbbC n and u \in \BbbC m, the control input, are both dependent on
time. The system (2.1) is controllable if given respective initial and final states x(0)
and x(T ) with T > 0, there exists a control u(\cdot ) that realizes some trajectory x(\cdot )
with endpoints x(0) and x(T ). The distance to uncontrollability, which we denote as
\tau (A,B), can be computed via solving the nonconvex optimization problem [12]

(2.2) \tau (A,B) = min
z\in \BbbC 

\sigma min

\bigl( \bigl[ 
A - zI B

\bigr] \bigr) 
= min

x,y\in \BbbR 
f(x, y),

where f(x, y) = \sigma min(F (x, y)) and F (x, y) =
\bigl[ 
A - (x+ iy)I B

\bigr] 
. The first practical

algorithm to address computing \tau (A,B) is due to Gu [14], based on the following
result [14, Theorem 3.1].

Theorem 2.1. Let \gamma , \eta \geq 0 be given. If \tau (A,B) \leq \gamma and \eta \in [0, 2(\gamma  - \tau (A,B))],
then there exists a pair x, y \in \BbbR such that

(2.3) f(x, y) = f(x+ \eta , y) = \gamma .

Corollary 2.2. Let \gamma , \eta \geq 0 be given. If there do not exist any pairs x, y \in \BbbR 
such that (2.3) holds, then

(2.4) \tau (A,B) > \gamma  - \eta 
2 .

The proof of Theorem 2.1 relies on the fact that f(x, y) has a GLC of 1 with
respect to either x or y.

What [14, section 3.2] additionally devised was a sequence of computations to
verify whether either (2.3) or (2.4) holds for a given choice of \gamma and \eta . This verification
procedure, when using exact arithmetic, is able to detect and find any points (x, y)
such that (2.3) is satisfied. If so, the test returns these points and \tau (A,B) \leq \gamma is
verified. Otherwise, the test asserts that no pairs satisfy (2.3) and so (2.4) instead
must hold. Using this procedure, Gu proposed a bisection-like scheme to estimate
\tau (A,B) to within a factor of two. For initialization, \gamma := f(0, 0) and \eta := \gamma . If the
test verifies that \tau (A,B) \leq \gamma , then \gamma and \eta are both halved (so \eta = \gamma still holds),
and the test is done with these smaller values. Otherwise, (2.4) holds, and so \gamma and
\tau (A,B) are within a factor of two and Gu's method terminates.

As noted in [9, p. 358], it is tempting to try to obtain \tau (A,B) to higher precision
via a true bisection method, i.e., one that would update both upper and lower bounds,
unlike Gu's method, which only updates an upper bound. The problem with this
approach is that in order to ascertain whether the current estimate \gamma is essentially a
lower bound to \tau (A,B) via (2.4), one would have to perform the verification procedure
for \eta \approx 0. Unfortunately, this is not tenable in the presence of rounding errors, as
Gu's procedure becomes more and more numerically unreliable as \eta \rightarrow 0; i.e., points
satisfying (2.3) may not be detected. Consequently, in practice, the lower bound
will generally be erroneously updated at some point, thus preventing convergence to
\tau (A,B).2

2In Key Remark 6.3, we discuss the unreliability of Gu's procedure in more detail and explain
how our new tests avoid key numerical pitfalls. Besides being useful for our \scrK (A) algorithms, our
modifications can also improve the reliability of the \tau (A,B) methods of [14, 9, 15].
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1948 TIM MITCHELL

Using Gu's verification procedure (as Gu specified it, i.e., without modifications),
Burke, Lewis, and Overton instead proposed a trisection algorithm [9, Algorithm 5.2]
that balances how much the lower bound is updated with how quickly the value of \eta 
is decreased, precisely to postpone the numerical unreliability of Gu's procedure as
long as possible. Trisection works as follows. Let L := 0 and U := f(0, 0) be initial
lower and upper bounds, respectively. Then on the kth iteration, \eta k := 2

3 (U  - L) and
\gamma k := L+\eta k are set as the current values of \eta and \gamma for the verification test. If the test
finds points satisfying (2.3), then the upper bound is updated to U := \gamma k. Otherwise,
(2.4) holds, so we know that \tau (A,B) \geq \gamma k - \eta k

2 = L+ \eta k

2 , and so now the lower bound
can be updated to L := L + \eta k

2 . Thus, the new interval has length 2
3 (U  - L). As

the trisection algorithm is linearly convergent, Gu's verification procedure will have
to be invoked many times, which already is \scrO (n6) work by itself using standard dense
eigensolvers. Thus, the trisection algorithm also has a large constant factor term
hidden away in its asymptotic work complexity. Also, trisection is not a panacea for
the numerical issues of Gu's procedure; although \eta k \rightarrow 0 only in the limit, if \tau (A,B)
is small, then \eta k must become commensurately small in order for trisection to attain
any digits of accuracy; see Lemma B.1 and Corollary B.2 in Appendix B.

In the same paper, Burke, Lewis, and Overton also proposed a second algorithm
for \tau (A,B) [9, Algorithm 5.3] and advocated it as preferable to trisection. This
optimization-with-restarts method also relies on Gu's verification procedure, now as
a globality certificate, and additionally on the fact that f(x, y) is semialgebraic and
so f(x, y) only has a finite number of locally minimal values; see [9, p. 359]. This
second method thus works by using optimization techniques to find a minimizer of
(2.2) with function value fk and then uses Gu's verification procedure with carefully
chosen values of \gamma and \eta so that the test checks if fk is sufficiently close to \tau (A,B);
for some relative tolerance tol > 0, the specific values are \gamma := fk \cdot (1  - 0.5 \cdot tol)
and \eta := fk \cdot tol.3 Otherwise, if fk \not \approx \tau (A,B) to tolerance, the certificate provides
one or more new starting points from which optimization can be restarted with the
guarantee that a better (lower) minimum of (2.2) will be found; hence optimization
is restarted in a loop until the certificate indeed asserts that the desired accuracy
has been attained. By construction, fk is monotonically decreasing and optimization-
with-restarts must terminate with fk \approx \tau (A,B) to tolerance in a finite number of
restarts. Although it is not clear exactly how many restarts will occur, only a handful
are typically needed in practice, if any. Furthermore, the optimization phases are
relatively cheap, requiring \scrO (n3) work with a relatively low constant factor, since
minimizers of f(x, y) can generally be found with superlinear or even quadratic con-
vergence. As a result, optimization-with-restarts is almost always many times faster
than trisection. However, optimization-with-restarts can still be susceptible to the
numerical difficulties of Gu's verification procedure, since \eta itself may still become
very small, e.g., if either high accuracy is desired or \tau (A,B) is small.

Finally, to address the high cost of Gu's verification procedure, though not nec-
essarily its numerical issues, [15] proposed a divide-and-conquer strategy that lowers
the asymptotic work complexity of Gu's procedure to \scrO (n4) on average and \scrO (n5) in
the worst case. This benefits all of the aforementioned algorithms.

3. Variational properties and the inverse of the Kreiss constant. We
now establish some variational properties of Kreiss constants, which in turn show that
locally optimal approximations to \scrK (A) can be efficiently computed via optimization,

3Note that [9] writes these in an equivalent but different form using \delta 1 = \gamma and \delta 2 = \gamma  - \eta 
2
.
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1949

even if A is large. We also show how the problem of computing \scrK (A) shares some
similarity with computing \tau (A,B). We begin with the following result.

Lemma 3.1. The Kreiss constant \scrK is not always continuous at A, as it may
instantaneously jump to/from \infty . However, \scrK is continuous at A if \alpha (A) < 0 holds
(continuous-time case) or \rho (A) < 1 holds (discrete-time case).

Proof. We begin with the second part. If \alpha (A) < 0, then zI  - A is invertible for
all z such that Re z > 0. By continuity of singular values, \| (zI  - A) - 1\| in (1.8) is
continuous at A, and thus so is \scrK (A). Via an analogous argument with (1.3), the
continuity claim also holds for the discrete-time case.

We prove the first part by example. Let A(\delta ) :=
\bigl[  - 0.5 0

0 \delta 

\bigr] 
for real scalar \delta \geq 0. As

A(\delta ) is always normal and \alpha (A(0)) = 0, \scrK (A(0)) = 1 holds. However, as \alpha (A(\delta )) > 0
for any \delta > 0, \scrK (A(\delta )) = \infty for any \delta > 0. Using the same example with \delta \geq 1 for
the discrete-time case, we have that \scrK (A(1)) = 1 and \scrK (A(\delta )) =\infty for all \delta > 1.

3.1. The continuous-time case. Identifying \BbbC with \BbbR 2, consider the inverse
of the continuous-time Kreiss constant (1.8), i.e.,

(3.1) \scrK (A) - 1 = inf
x>0,y\in \BbbR 

\sigma min

\biggl( 
(x+ iy)I  - A

x

\biggr) 
= inf

x>0,y\in \BbbR 
g(x, y),

where

(3.2) g(x, y) = \sigma min(G(x, y)) and G(x, y) =
(x+ iy)I  - A

x
.

Like f(x, y), g(x, y) is semialgebraic, and so in the open right half-plane, g(x, y)
must have only a finite number of locally minimal function values. We now derive
the gradient and Hessian of g(x, y) which will be useful for finding minimizers via
quasi-Newton or Newton methods. Although singular values can vary nonsmoothly
with respect to matrix entries, they are nevertheless locally Lipschitz, and so this
nonsmoothness is confined to a set of measure zero. We first need the first partial
derivatives of G(x, y) for x \not = 0:

(3.3)
\partial G(x, y)

\partial x
=
xI  - ((x+ iy)I  - A)

x2
=
A - iyI

x2
and

\partial G(x, y)

\partial y
=

iI

x
.

Let (\^x, \^y) be such that g(\^x, \^y) \not = 0 is a simple singular value of G(x, y) with associated
left and right singular vectors u and v. Then, by standard perturbation theory for
singular values, it follows that

(3.4) \nabla g(\^x, \^y) = Re

\left[  u\ast \partial G(x,y)
\partial x v

u\ast \partial G(x,y)
\partial y v

\right]  .
Now since g(x, y) = \sigma min(G(x, y)) is also the nth eigenvalue (in descending order) of
the 2n\times 2n Hermitian matrix

(3.5)

\biggl[ 
0 G(x, y)

G(x, y)\ast 0

\biggr] 
,

\nabla 2g(\^x, \^y) can be computed by applying Theorem 1.2 to (3.5). Computationally, the
necessary first and second partial derivatives of (3.5) can be obtained via the first
partials given in (3.3) and the following second partial derivatives:

(3.6)
\partial 2G(x, y)

\partial x2
=
 - 2(A - iyI)

x3
,

\partial 2G(x, y)

\partial y2
= 0, and

\partial 2G(x, y)

\partial x\partial y
=
 - iI
x2

.
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Although the full eigendecomposition of (3.5) is needed, it can actually be constructed
more or less for free given the full SVD of G(\^x, \^y); see [4, section 2.2] for details. If
(\^x, \^y) is additionally a distinct (up to conjugacy) global minimizer of g(x, y), then
the gradient and Hessian of \scrK (A) - 1 with respect to A are equivalent to the gradient
and Hessian of g(\^x, \^y) with respect to A. The gradient and Hessian of \scrK (A) are then
simply obtained by applying the chain rule for the inverse.

The cost of obtaining g(\^x, \^y), its gradient, and its Hessian is \scrO (n3), as they can all
be computed given the full SVD of G(\^x, \^y). Although (3.1) is technically a constrained
optimization problem, g(x, y) \rightarrow \infty as x approaches zero from the right, assuming
that iy is not an eigenvalue of A. Thus, just returning \infty as the value of g(x, y)
whenever x \leq 0 suffices for using unconstrained optimization solvers to find feasible
local/global minimizers of (3.1). Provided g(x, y) is sufficiently smooth about its
stationary points, one can expect local quadratic convergence when using a Newton-
based optimization method and superlinear convergence with a quasi-Newton method
(forgoing the use of the Hessian). Note that scalable methods for computing smallest
singular values, e.g., PROPACK [22], can also be used to compute g(\^x, \^y) and its
associated pair of left and right singular vectors in order to obtain \nabla g(\^x, \^y). Thus,
by combining such a sparse solver with a quasi-Newton method, one can efficiently
obtain locally optimal approximations to Kreiss constants of large-scale matrices.

Remark 3.2. One could also consider using optimization to find maximizers of
(1.9), which has the benefit of working with only one optimization variable instead of
two. However, computing \alpha \varepsilon (A) is substantially more expensive than the minimum
singular value of a matrix; the quadratically convergent criss-cross algorithm of [8] to
compute \alpha \varepsilon (A) as well as the faster method of [4] require computing all eigenvalues of
2n\times 2n matrices, often several times. Moreover, we have just shown how the explicit
Hessian of g(x, y) can easily be computed in order to obtain faster convergence of
the iterates produced by optimization methods. Finally, for large-scale A matrices,
sparse methods for \sigma min(A) are generally much faster and more reliable than those
for approximating \alpha \varepsilon (A) [16, 20].

That g(x, y) is not so dissimilar to f(x, y) for \tau (A,B) indicates that it might
be possible to adapt Gu's verification procedure to develop globality certificates for
g(x, y). Combined with the optimization techniques discussed here, this would enable
a globally convergent optimization-with-restarts method for Kreiss constants that
terminates within a finite number of restarts.

3.2. The discrete-time case. Again identifying \BbbC with \BbbR 2, but now using
polar coordinates, consider the inverse of the discrete-time Kreiss constant (1.3), i.e.,

(3.7) \scrK (A) - 1 = inf
r>1,\theta \in [0,2\pi )

\sigma min

\biggl( 
re\bfi \theta I  - A
r  - 1

\biggr) 
= inf

r>1,\theta \in [0,2\pi )
h(r, \theta ),

where

(3.8) h(r, \theta ) = \sigma min(H(r, \theta )) and H(r, \theta ) =
re\bfi \theta I  - A
r  - 1

.

Naturally h(r, \theta ) has the same key properties as g(x, y), i.e., it too is semialgebraic
and locally Lipschitz. Thus, h(r, \theta ) has a finite number of locally minimal function
values, and we can consider using optimization to find minimizers of h(r, \theta ). We will
need the analogous gradients and Hessian of h(r, \theta ); for brevity, we just provide the
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1951

first and second partial derivatives of H(r, \theta ) for r \not = 1 here, which are, respectively,

(3.9)
\partial H(r, \theta )

\partial r
=

(r  - 1)e\bfi \theta I  - (re\bfi \theta I  - A)
(r  - 1)2

=
A - e\bfi \theta I

(r  - 1)2
and

\partial H(r, \theta )

\partial \theta 
=

ire\bfi \theta I

r  - 1
,

and

(3.10)
\partial 2H(r, \theta )

\partial r2
=
 - 2(A - e\bfi \theta I)

(r  - 1)3
,
\partial 2H(r, \theta )

\partial \theta 2
=
 - re\bfi \theta I
r  - 1

, and
\partial 2H(r, \theta )

\partial r\partial \theta 
=
 - ie\bfi \theta I
(r  - 1)2

.

The costs to compute h(r, \theta ) along with its gradient and Hessian also remain as
described in subsection 3.1 for g(x, y), and the variational results above similarly allow
the gradient and Hessian of \scrK (A) - 1 or \scrK (A) to be computed in the discrete-time case.
To ensure that optimization returns a feasible minimizer to (3.7), it suffices to return
\infty for the value of h(r, \theta ) whenever r \leq 1; this is because for e\bfi \theta not an eigenvalue of A,
limr\rightarrow 1+ h(r, \theta ) \rightarrow \infty . Thus, locally optimal approximations to discrete-time Kreiss
constants can be computed efficiently for small- or large-scale matrices. To develop
a globally convergent algorithm, we will need to develop a discrete-time globality
certificate.

4. Continuous-time Kreiss constant analogues of Gu's theorem and
their consequences. Before we present our globally convergent iterations for com-
puting Kreiss constants, we first develop analogues of Theorem 2.1 and Corollary 2.2.
For the time being, we consider continuous-time \scrK (A) and begin by considering verti-
cally oriented pairs of points on the \gamma -level set of g(x, y). For \tau (A,B), Gu considered
pairs of level-set points oriented horizontally, but this choice was rather arbitrary.
However, as we will soon see, for Kreiss constants the choice of orientation does have
important consequences, both theoretically and for our new algorithms.

Theorem 4.1. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If \scrK (A) - 1 \leq \gamma and \eta \in [0, 2x \star (\gamma  - \scrK (A) - 1)], then
there exists a pair x, y \in \BbbR with x > 0 such that

(4.1) g(x, y) = g(x, y + \eta ) = \gamma .

Corollary 4.2. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If there do not exist any pairs x, y \in \BbbR with x > 0
such that (4.1) holds, then

(4.2) \scrK (A) - 1 > \gamma  - \eta 
2x \star 

.

To prove Theorem 4.1, we will use the following topology definition and result.

Definition 4.3. Let \scrA \subset \BbbC be a bounded open (path) connected set, and let \scrA C be
its complement. Furthermore, let \scrB = \{ z \in \BbbC : z is in a bounded component of \scrA C\} .
Then \scrA \cup \scrB is the simply connected hull of \scrA , which we denote \scrA H.

Lemma 4.4. Let \scrA ,\scrB \subset \BbbC both be bounded open (path) connected sets. If there
exist points bin, bout \in bd\scrB H such that bin \in \scrA and bout \in \scrA C, then bd\scrA \cap bd\scrB \not = \varnothing .

Proof. Since bd\scrB H \subset bd\scrB , we can assume that bout is in the interior of \scrA C, as
otherwise the proof is done. As \scrB H is a bounded open simply connected set, bd\scrB H
must be connected; see, e.g., [7, p. 345]. By way of contradiction, suppose that
bd\scrA \cap bd\scrB = \varnothing . Then bd\scrB H \subset bd\scrB \subset \scrA \cup int(\scrA C). However, since bin \in \scrA ,
bout \in int(\scrA C), and \scrA and int(\scrA C) are both open and nonempty disjoint sets, it
follows by definition of connected that bd\scrB H is in fact disconnected, a contradiction.
Thus, bd\scrA \cap bd\scrB \not = \varnothing holds.
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1952 TIM MITCHELL

Proof of Theorem 4.1. If \gamma = \scrK (A) - 1, the proof is trivially satisfied with \eta = 0,
so assume that \gamma \in (\scrK (A) - 1, 1). Since \alpha (A) < 0, it follows that limx\rightarrow 0+ g(x, y) =\infty 
for any y \in \BbbR , and so g(x \star , y \star ) = \scrK (A) - 1 with x \star > 0. Now consider the strict lower
level set \scrL \gamma := \{ (x, y) : g(x, y) < \gamma , x > 0\} , which is clearly open and also bounded;
see [27, Theorem 2.3]. Let \scrL be the (open) connected component of \scrL \gamma such that
(x \star , y \star ) \in \scrL , and let \scrG := \scrL H, i.e., the simply connected hull of \scrL .

Now, following the proof of [14, Theorem 3.1] a bit more closely, by continuity of
g(x, y) and the fact that \scrG is bounded, there must exist points b1, b2 \in bd\scrG ,

b1 = (x \star , y \star  - \eta 1) and b2 = (x \star , y \star + \eta 2),

such that

(4.3) g(x \star , y \star  - \eta 1) = g(x \star , y \star + \eta 2) = \gamma ,

where \eta 1, \eta 2 > 0. Furthermore, we can assume that \eta 1 and \eta 2 are the smallest positive
values such that (4.3) holds with b1, b2 \in bd\scrG . Noting that

(4.4) g(x, y) =
\sigma min ((x+ iy)I  - A)

x
=
f(x, y)

x
,

whose numerator has a GLC of 1, it follows for any y1, y2 \in \BbbR that

| g(x \star , y1) - g(x \star , y2)| \leq 1
x \star 
| y1  - y2| ;

i.e., g(x \star , y) with respect to y has a GLC of 1
x \star 
. By applying this GLC to (4.3), it

follows that

(4.5) \eta 1 \geq x \star (\gamma  - \scrK (A) - 1) and \eta 2 \geq x \star (\gamma  - \scrK (A) - 1),

and so \eta 1 + \eta 2 \geq 2x \star (\gamma  - \scrK (A) - 1).
Now suppose that \eta \in (0, 2x \star (\gamma  - \scrK (A) - 1)] so \eta \leq \eta 1 + \eta 2. Obviously (4.1) is

satisfied if \eta = \eta 1 + \eta 2, so assume that \eta < \eta 1 + \eta 2. Let

\scrG \eta := \{ (x, y  - \eta ) : (x, y) \in \scrG \} ,

i.e., \scrG shifted downward by the amount \eta , and consider the line segment joining b1
and b2 and the point bin = (x \star , y \star + \eta 2  - \eta ). As bin must be on this line segment, but
not at its endpoints, bin \in \scrG and bin \in bd\scrG \eta , since b2 \in bd\scrG . Let bout \in bd\scrG \eta be a
lowermost point of bd\scrG \eta . Then, as \eta > 0, bout \in \scrG C, the complement of G. Since \scrG 
and \scrG \eta are both bounded open connected sets in the plane and \scrG \eta = \scrG H\eta , Lemma 4.4
applies, and so bd\scrG \cap bd\scrG \eta \not = \varnothing . Letting (\~x, \~y) be any such point in bd\scrG \cap bd\scrG \eta , it
follows that (\~x, \~y + \eta ) \in bd\scrG ; hence (\~x, \~y) satisfies (4.1).

We now consider horizontally oriented pairs of points on the \gamma -level set of g(x, y),
similar to Theorem 2.1 for f(x, y). As the horizontal orientation is actually more
complicated for \scrK (A), we first establish the following intermediate general result.

Lemma 4.5. Let f : (0,\infty ) \rightarrow [0,\infty ) be continuous with a GLC of c \geq 0, and

consider the function q(x) := f(x)
x on the same domain. For a, b > 0 with b - a = \eta > 0,

if q(a) = q(b) = \gamma and x \star = argminx\in [a,b] q(x) with \gamma  \star = q(x \star ), then

\gamma  \star \geq \gamma  - \eta (c+\gamma )
2x \star 

.
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1953

Proof. We assume that \gamma  \star < \gamma , as otherwise the inequality clearly holds. Since
f(x) has a GLC of c, it follows that

f(a) - f(x \star ) + f(b) - f(x \star ) \leq c(x \star  - a) + c(b - x \star ) = c(b - a) = c\eta .

Meanwhile

f(a) - f(x \star )+f(b) - f(x \star ) = a\gamma +b\gamma  - 2x \star \gamma  \star \geq (a+2x \star  - b)\gamma  - 2x \star \gamma  \star = 2x \star (\gamma  - \gamma  \star ) - \eta \gamma .

Combining the two yields 2x \star (\gamma  - \gamma  \star ) - \eta \gamma \leq c\eta , thus completing the proof.

Theorem 4.6. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If \scrK (A) - 1 \leq \gamma and \eta \in 

\bigl[ 
0, 2x \star 

1+\gamma (\gamma  - \scrK (A)
 - 1)

\bigr] 
, then

there exists a pair x, y \in \BbbR with x > 0 such that

(4.6) g(x, y) = g(x+ \eta , y) = \gamma .

Corollary 4.7. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If there do not exist any pairs x, y \in \BbbR with x > 0
such that (4.6) holds, then

(4.7) \scrK (A) - 1 > \gamma  - \eta (1+\gamma )
2x \star 

.

Proof of Theorem 4.6. The beginning of the proof is the same as the first para-
graph of the proof of Theorem 4.1. Again consider the simply connected set \scrG defined
there that contains (x \star , y \star ), a global minimizer. By continuity of g(x, y) and the fact
that \scrG is bounded, there must exist points b1, b2 \in bd\scrG ,

b1 = (x \star  - \eta 1, y \star ) and b2 = (x \star + \eta 2, y \star ),

such that

(4.8) g(x \star  - \eta 1, y \star ) = g(x \star + \eta 2, y \star ) = \gamma ,

where \eta 1, \eta 2 > 0. We again assume that \eta 1 and \eta 2 are the smallest positive values such

that (4.8) holds with b1, b2 \in bd\scrG . Applying Lemma 4.5 to q(x) := g(x, y \star ) =
f(x,y \star )

x
with a = x \star  - \eta 1 and b = x \star + \eta 2, we have that

\eta 1 + \eta 2 \geq 2x \star 

1+\gamma (\gamma  - \scrK (A)
 - 1),

as the numerator of g(x, y) as rewritten in (4.4) has a GLC of 1.
Now suppose that \eta \in 

\bigl( 
0, 2x \star 

1+\gamma (\gamma  - \scrK (A)
 - 1)

\bigr] 
so \eta \leq \eta 1 + \eta 2. If \eta = \eta 1 + \eta 2,

(4.6) is clearly satisfied, so instead assume that \eta < \eta 1 + \eta 2. Considering the set\widehat \scrG := \{ (x  - \eta , y) : (x, y) \in \scrG \} , i.e., \scrG shifted to the left by the amount \eta , the rest of
the proof follows analogously to the end of the proof of Theorem 4.1.

Although we have derived Kreiss constant analogues of Theorem 2.1 and Corol-
lary 2.2, Corollaries 4.2 and 4.7 in fact assert that the \tau (A,B) algorithms of [14, 9, 15]
will not directly extend to Kreiss constants. The crux of the problem is that these
\tau (A,B) methods all rely on the fact that (2.4) holds when there are no points satis-
fying (2.3), which, recall, provided a way of computing \tau (A,B) via Gu's verification
procedure to verify an upper or lower bound for \tau (A,B). However, in the Kreiss
constant setting, our lower bounds given in (4.2) and (4.7) are not as concrete, as
they depend on x \star , which is unknown. For a given \gamma and \eta , we do not even know if
the lower bounds provided in (4.2) and (4.7) would be meaningful, as they might not
even be positively valued. Thus, to develop algorithms for \scrK (A), crucial departures
must be made. We will do this via two different strategies.
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Algorithm 5.1. Optimization-with-restarts using backtracking.

Input: A nonnormal matrix A \in \BbbC n\times n with \alpha (A) < 0, x0 > 0, and y0 \in \BbbR such that
g(x0, y0) < 1, and a tolerance \eta tol > 0.

Output: \gamma  - 1 \approx \scrK (A) (continuous-time).

1: while true do
2: (\^x, \^y)\leftarrow computed local/global minimizer of (3.1) initialized from (x0, y0)
3: \gamma \leftarrow g(\^x, \^y)
4: \eta \leftarrow some positive value \gg \eta tol
5: while true do
6: Perform the 2D level-set test of subsection 5.2 with current \gamma and \eta 
7: if test finds any level-set points then
8: (x0, y0)\leftarrow one of these points
9: break // Goto line 2 to restart optimization.

10: else if \eta \leq \eta tol then
11: return // Found a global minimizer to tolerance.
12: else
13: \eta \leftarrow c\eta for some constant c \in (0, 1)
14: end if
15: end while
16: end while

Note: For simplicity of the pseudocodes, we assume here and in Algorithm 6.1 that (a) optimization
always converges to local or global minimizers exactly, i.e., not approximately or to other stationary
points, and (b) points found by the certificate test (if any) are never exactly stationary.

5. A continuous-time \bfscrK (\bfitA ) algorithm based on fixed-distance pairs.
Let (\^x, \^y) be a local (but not global) minimizer of g(x, y), and set \gamma := g(\^x, \^y). As
(\^x, \^y) is a local minimizer, we do not need to verify that \gamma \geq \scrK (A) - 1, as this is
obviously true. To obtain an optimization-with-restarts algorithm, we do not neces-
sarily need to verify a lower bound either. Instead, we can just aim to detect other
(non-stationary) points on the \gamma -level set of g(x, y). Using such level-set points to
restart optimization, a better (lower) minimizer of g(x, y) is guaranteed to be found.
Assuming \gamma \in [\scrK (A) - 1, 1), Theorems 4.1 and 4.6 assert that if \eta > 0 is chosen suf-
ficiently small, there must exist points satisfying either (4.1) or (4.6). Of course,
we do not know a priori how small to choose \eta , so we propose using backtracking;
i.e., we can start with \eta initially set to some large value and simply decrease it in a
loop until level-set points for restarting optimization are found. As long as (\^x, \^y) is
not a global minimizer, this backtracking procedure must succeed in finding level-set
points for restarting optimization. Meanwhile, when (\^x, \^y) is a global minimizer, and
so \scrK (A) has been computed, the backtracking procedure can simply be terminated
once \eta falls below a tolerance. A high-level pseudocode using this backtracking-based
globality certificate is given in Algorithm 5.1. To complete this algorithm, we now
must develop a corresponding 2D level-set test for continuous-time Kreiss constants.
We will do this by looking for points satisfying (4.1) or (4.6), i.e., level-set points that
are a fixed distance \eta apart, and develop a procedure inspired by Gu's 2D level-set
test for \tau (A,B).

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING THE KREISS CONSTANT OF A MATRIX 1955

5.1. A 1D vertical level-set test. Before we develop our 2D level-set test for
g(x, y), we will need the following theorem, which will allow us to obtain all the points
on the \gamma -level set of g(x, y) along a chosen vertical line.

Theorem 5.1. Given \gamma , x, y \in \BbbR , with \gamma \geq 0 and x \not = 0, \gamma is a singular value of
G(x, y) defined in (3.2) if and only if iy is an eigenvalue of the Hamiltonian matrix

(5.1)

\biggl[ 
A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] 
.

Proof. It is clear that the matrix is Hamiltonian. Suppose \gamma is a singular value
G(x, y) with left and right singular vectors u and v, and so

\gamma 

\biggl[ 
u
v

\biggr] 
=

\biggl[ 
G(x, y) 0

0 G(x, y)\ast 

\biggr] \biggl[ 
v
u

\biggr] 
\leftrightarrow \gamma x

\biggl[ 
u
v

\biggr] 
=

\biggl[ 
(x+ iy)I  - A 0

0 (x - iy)I  - A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
.

Rearranging terms and multiplying the bottom block row by  - 1, this is equivalent to

\gamma x

\biggl[ 
u
 - v

\biggr] 
+

\biggl[ 
A - xI 0

0 xI  - A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
= iy

\biggl[ 
v
u

\biggr] 
\leftrightarrow 

\biggl[ 
A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
= iy

\biggl[ 
v
u

\biggr] 
.

In fact, for a given \gamma \geq \scrK (A) - 1 and x := \^x \not = 0, computing the imaginary
eigenvalues of (5.1) may provide more than the \gamma -level set points of g(x, y) along
the vertical line x = \^x. This is because if i\^y is an eigenvalue of (5.1), Theorem 5.1
asserts that \gamma is a singular value of F (\^x, \^y), but not necessarily the minimum one; if
this happens, (\^x, \^y) would be on a level set of g(x, y) lower than the \gamma -level set and
thus be an even better point for restarting optimization. Finally, note that structure-
preserving eigensolvers [2, 3] can be used for more reliable detection of imaginary
eigenvalues of Hamiltonian matrices like (5.1).

5.2. A 2D level-set test for fixed-distance pairs. We now derive a new 2D
level-set test for g(x, y). Per Theorems 4.1 and 4.6, the choice of orientation for pairs
of points on the \gamma -level set of g(x, y) has consequences; hence we will develop our
new continuous-time Kreiss constant procedure for arbitrary orientation. Specifically,
given \eta > 0 and angle \theta \in ( - \pi 

2 ,
\pi 
2 ], we will look for points a fixed distance \eta apart

of the form (\^x, \^y) and (\^x + \eta cos \theta , \^y + \eta sin \theta ) such that g(x, y) = \gamma holds at both of
them and \^x > 0.

Suppose that \gamma is a singular value of both G(x, y) and G(x+ \eta cos \theta , y + \eta sin \theta ),
with respective left and right singular vectors pairs u,v and \^u,\^v. By Theorem 5.1 for
G(x, y) and following a similar argument as in its proof for G(x+ \eta cos \theta , y + \eta sin \theta ),
the following two Hamiltonian matrices must share an imaginary eigenvalue iy:\biggl[ 

A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
= iy

\biggl[ 
v
u

\biggr] 
,(5.2a) \biggl[ 

A - (x+ \eta e\bfi \theta )I \gamma (x+ \eta cos \theta )I
 - \gamma (x+ \eta cos \theta )I (x+ \eta e - \bfi \theta )I  - A\ast 

\biggr] \biggl[ 
\^v
\^u

\biggr] 
= iy

\biggl[ 
\^v
\^u

\biggr] 
.(5.2b)

Let A1 and A2 respectively denote the square matrices in (5.2a) and (5.2b), and let
W = [ vu ][ \^v\ast \^u\ast ] \not = 0 so that we have A1W = iyW and A2W

\ast = iyW \ast . To eliminate y,
we take the conjugate transpose of the second and then add the two together to obtain
the Sylvester equation:

(5.3)

\biggl[ 
A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] 
W +W

\biggl[ 
A\ast  - (x+ \eta e - \bfi \theta )I  - \gamma (x+ \eta cos \theta )I
\gamma (x+ \eta cos \theta )I (x+ \eta e\bfi \theta )I  - A

\biggr] 
= 0.
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Thus, if (5.3) also has a nonzero solution W \in \BbbC 2n\times 2n, A1 and  - A\ast 
2 must share an

eigenvalue. As A1 and A2 are Hamiltonian matrices, their spectra have imaginary-
axis symmetry, and so A1 and A2 must also have an eigenvalue in common. Now,
separating out all terms involving x, we get

(5.4)

\biggl( \biggl[ 
A 0
0  - A\ast 

\biggr] 
W +W

\biggl[ 
A\ast  - \eta e - \bfi \theta I  - \gamma \eta cos \theta I
\gamma \eta cos \theta I \eta e\bfi \theta I  - A

\biggr] \biggr) 
 - x

\biggl( \biggl[ 
I  - \gamma I
\gamma I  - I

\biggr] 
W +W

\biggl[ 
I \gamma I
 - \gamma I  - I

\biggr] \biggr) 
= 0.

Rewriting both Sylvester forms using the vectorize operator, and letting w = vec(W ),
results in the generalized eigenvalue problem

\scrA 1w = x\scrA 2w, where(5.5)

\scrA 1 = I2n \otimes 
\biggl[ 
A 0
0  - A\ast 

\biggr] 
+

\biggl[ 
A - \eta e - \bfi \theta I \gamma \eta cos \theta I
 - \gamma \eta cos \theta I \eta e\bfi \theta I  - A\sansT 

\biggr] 
\otimes I2n,

\scrA 2 = I2n \otimes 
\biggl[ 
I  - \gamma I
\gamma I  - I

\biggr] 
+

\biggl[ 
I  - \gamma I
\gamma I  - I

\biggr] 
\otimes I2n.

Our 2D level-set test for fixed-distance pairs works as follows. Given estimate
\gamma \in [\scrK (A) - 1, 1), \eta \geq 0, and \theta \in ( - \pi 

2 ,
\pi 
2 ], we first compute all the eigenvalues of (5.5).

If there are no (finite) positive real eigenvalues of (5.5), then the test is finished and
returns no level-set points. Otherwise, additional calculations are done to ascertain
whether or not any level-set points have been detected. For each eigenvalue \^x > 0 of
(5.5), we have that the vertical line specified by \^x, and, if | \theta | < \pi 

2 , the vertical line
\^x + \eta cos \theta , may contain points on the \gamma -level set of g(x, y). To determine this, for
each of these vertical lines, say, x := \^x, we then apply Theorem 5.1 and compute all
the eigenvalues of the corresponding Hamiltonian matrix (5.1). If this matrix has no
imaginary eigenvalues, then no level-set points have been detected on this vertical line.
Otherwise, all the points (\^x, \^y) such that i\^y is an imaginary eigenvalue of this matrix
are added to the list of detected level-set points of g(x, y) to return. Optionally, for
each of these points, one could additionally check whether or not \gamma is the minimum
singular value of G(\^x, \^y), but this is not strictly necessary; as discussed previously,
(\^x, \^y) must be on the \gamma -level set of g(x, y) or a lower one, either of which suffices for
restarting optimization to obtain a better (lower) minimizer of g(x, y). If no level-
set points are detected, for any of the vertical lines, then the test returns no points.
Otherwise, all the detected level-set points are returned.

Our new 2D level-set test differs from the procedure in [14] (and [15]) in a signifi-
cant way; in Key Remark 6.3, we explain how our modifications here greatly improve
the reliability of these 2D level-set tests.

In terms of cost, in extreme situations there may be up to \scrO (n2) potential vertical
lines detected, which means that\scrO (n2) Hamiltonian eigenvalue problems of dimension
2n\times 2n must be solved. However, when using standard dense eigensolvers, the overall
work complexity of our procedure is actually \scrO (n6), as we must first compute the
eigenvalues of (5.5), which is a matrix pencil with square matrices of dimension 4n2.
In terms of constant factors, if A is real, \scrA 1 is real if and only if \theta = 0.

5.3. Properties of the eigensystem \bfscrA \bfone \bfitw = \bfitx \bfscrA \bftwo \bfitw and its solution. Un-
like the 4n2\times 4n2 generalized eigenvalue problem (5.5), Gu derived a smaller 2n2\times 2n2
generalized eigenvalue problem for \tau (A,B) [14, eq. (3.13)]. In [15, section 3.1], this
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was then simplified further to a computationally easier 2n2\times 2n2 standard eigenvalue
problem [15, eq. (3.7)]. Via the following result, we show that the rank of \scrA 2 is 2n2,
i.e., half its dimension.

Lemma 5.2. Let C :=
\bigl[ 
aI  - bI
bI  - aI

\bigr] 
\in \BbbC 2n\times 2n with a, b \in \BbbC and b \not = 0. For k \in \BbbN , the

Kronecker sum I2k \otimes C + C \otimes I2k = \scrU k\scrV k \in \BbbC 4kn\times 4kn and \scrV k\scrU k = 2Ik \otimes C, where

\scrU k :=

\Biggl[ 
Ik \otimes 

\bigl[ 
2aI  - bI
bI 0

\bigr] 
bI2kn

\Biggr] 
\in \BbbC 4kn\times 2kn,(5.6a)

\scrV k :=
\Bigl[ 
I2kn Ik \otimes 

\Bigl[ 
0  - I
I  - 2ab - 1I

\Bigr] \Bigr] 
\in \BbbC 2kn\times 4kn.(5.6b)

Proof. The factorization follows from the following if-and-only-if equivalences:

\scrU k\scrV k =

\Biggl[ 
Ik \otimes 

\bigl[ 
2aI  - bI
bI 0

\bigr] 
 - bI2kn

bI2kn Ik \otimes 
\bigl[ 

0  - bI
bI  - 2aI

\bigr] \Biggr] 
(5.7)

=

\Biggl[ 
Ik \otimes 

\bigl[ 
aI  - bI
bI  - aI

\bigr] 
0

0 Ik \otimes 
\bigl[ 
aI  - bI
bI  - aI

\bigr] \Biggr] 
+

\biggl[ 
aI2kn  - bI2kn
bI2kn  - aI2kn

\biggr] 
= I2k \otimes 

\bigl[ 
aI  - bI
bI  - aI

\bigr] 
+
\bigl[ 
aI  - bI
bI  - aI

\bigr] 
\otimes I2k,

while \scrV k\scrU k = Ik \otimes 
\bigl[ 
2aI  - bI
bI 0

\bigr] 
+ bIk \otimes 

\Bigl[ 
0  - I
I  - 2ab - 1I

\Bigr] 
= 2Ik \otimes C.

Applying Lemma 5.2 to \scrA 2 with a := 1, b := \gamma \not = 0, and k := n, \scrV k gives the
reduced row echelon form of \scrA 2, and so the rank of \scrA 2 is 2n2. Thus, is it natural
to ask if (5.5) can also be reduced to a 2n2 \times 2n2 generalized eigenvalue problem,
and perhaps even a standard one. Unfortunately, the presence of nonzero off-diagonal
blocks \pm \gamma I in

\bigl[ I  - \gamma I
\gamma I  - I

\bigr] 
from \scrA 2 appears to prevent this. If one attempts to follow

[14, 15] and similarly partition W into four n \times n blocks, multiplying out (5.4) for
each block of W results in four equations that all involve x. In contrast, in [14, 15],
eigenvalue x (\alpha in their notation) only appears in the two corresponding equations for
the diagonal blocks of W (X in their notation); for the off-diagonal blocks, eigenvalue
x (again \alpha in their notation) does not appear in these other two equations, since, as
seen in [15, eq. (3.5)], it ends up being multiplied by zero. Consequently, the reduction
techniques of [14, 15] do not seem to be applicable to (5.5).

However, since \scrA 2 is singular, \scrA 1 - \lambda \scrA 2 can at least be numerically deflated into
a smaller pencil \widetilde \scrA 1  - \lambda \widetilde \scrA 2 whose spectrum is the set of finite eigenvalues of (5.5);
see the deflation routines of [6, section 4.3] and [18, Algorithm 3, Chapter 3.1], the
former of which is implemented in the ml ct dss adtf routine from MORLAB [5].
Although this iterative deflation technique is cubic work, and so also \scrO (n6) work for
(5.5), deflating matrix pencils this way can be faster than computing their eigenvalues
with the QZ algorithm. Furthermore, for (5.5), deflation results in a matrix pencil
of half the order, since it removes 2n2 infinite eigenvalues. As a result, deflating
and then computing the eigenvalues of the resulting pencil may be even faster than
computing the eigenvalues of (5.5) directly. That matrix \widetilde \scrA 2 in the reduced pencil is
nonsingular also provides a second important benefit. Although we must compute the
real eigenvalues of (5.5), we cannot expect its real eigenvalues to be exactly real in the
presence of rounding errors. The key question then is how far away from the real axis
can a computed eigenvalue be allowed to be while still being deemed a real eigenvalue
of (5.5)? For the reduced pencil, a reliable tolerance is tol \cdot \epsilon mach \cdot \| \widetilde \scrA  - 1

2
\widetilde \scrA 1\| \infty , where
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1958 TIM MITCHELL

tol > 1 is provided by the user and \epsilon mach is the machine precision. Note that we
still recommend computing the eigenvalues of \widetilde \scrA 1  - \lambda \widetilde \scrA 2 as a generalized eigenvalue
problem, instead of using the matrix \widetilde \scrA  - 1

2
\widetilde \scrA 1, as we have observed that the condition

number of \widetilde \scrA 2 is generally very large in practice.

5.4. Faster computation of the real eigenvalues of \bfscrA \bfone \bfitw = \bfitx \bfscrA \bftwo \bfitw . We
now show how the \scrO (n6) theoretical work complexity of Algorithm 5.1 can be reduced.
To do this, we will work with the matrices in (5.5) and adapt the divide-and-conquer
approach proposed in [15, section 3.3.2] for faster computation of \tau (A,B). At a high
level, this efficiency improvement relies on two principles. First, although the matrices
in (5.5) are 4n2\times 4n2 in size, they arose from vectorizing the two corresponding 2n\times 2n
Sylvester forms in (5.4). As such, applying \scrA 1 and \scrA 2 or their inverses to a vector
can actually be done with just \scrO (n3) work. In turn, this means that for any shift
s \in \BbbC , (\scrA 1  - s\scrA 2)

 - 1 can be applied to a vector with \scrO (n3) work (we will clarify
how these computations are done in a moment). Consequently, a shift-and-invert
eigenvalue solver, e.g., eigs in MATLAB, can be employed to find the eigenvalues
of (5.5) that are closest to a shift s with only \scrO (n3) work. Second, given a matrix
\scrX \in \BbbC q\times q, suppose one only wants its eigenvalues that are along a line segment,
say, an interval [0, D] on the real axis for some D > 0. Then the recursive iteration
given by [15, Algorithm 4], which uses a shift-and-invert eigensolver, can locate all
eigenvalues of \scrX in [0, D] with at most 2q+1 shifts in the worst case and \scrO (\surd q) shifts
if the eigenvalues of \scrX are distributed uniformly. For brevity, we forgo the details of
describing [15, Algorithm 4] but note that the cost of choosing D unnecessarily large
only results in about four extra shifts [15, p. 490]. Thus, the theory says that by
adapting this divide-and-conquer technique to compute the positive real eigenvalues
of (5.5), the overall work complexity of Algorithm 5.1 will be reduced to \scrO (n4) work
on average and \scrO (n5) in the worst case.

We now explain how \scrA 1, \scrA 2, and (\scrA 1  - s\scrA 2)
 - 1 can all be applied to a vector

w \in \BbbC 4n2

with at most \scrO (n3) work. As \scrA 2 has only 10n2 nonzero entries, it suffices to
store it in a sparse matrix format. Computing\scrA 1w can be done efficiently via vectoriz-

ing the first Sylvester form in (5.4), i.e., vec
\Bigl( \bigl[ 

A 0
0  - A\ast 

\bigr] 
W +W

\Bigl[ 
A\ast  - \eta e - \bfi \theta I  - \gamma \eta cos \theta I

\gamma \eta cos \theta I \eta e\bfi \theta I - A

\Bigr] \Bigr) 
,

where W \in \BbbC 2n\times 2n and w = vec(W ). The dominant cost in obtaining \scrA 1w is the two

matrix multiplications withW ; hence it too can be done in \scrO (n3) work. For y \in \BbbC 4n2

,
we can efficiently obtain w = (\scrA 1  - s\scrA 2)

 - 1y by considering (\scrA 1  - s\scrA 2)w = y. This
``unvectorizes"" into (5.3), provided that x is replaced with s and the zero in its right-
hand side is replaced by Y , where y = vec(Y ). By solving the resulting Sylvester
equation and vectorizing its solution W , w = (\scrA 1  - s\scrA 2)

 - 1y is computed in \scrO (n3)
work.

6. Continuous-time \bfscrK (\bfitA ) algorithms based on variable-distance pairs.
Having developed the first globally convergent iteration for continuous-time Kreiss
constants, we now develop two more, namely Algorithms 6.1 and 6.2, which can be
considered closer analogues of the two \tau (A,B) methods of [9] described in section 2.
As previously discussed at the end of section 4, the lower bounds provided by Corol-
laries 4.2 and 4.7, due to their dependence on the unknown x \star , prevent creating direct
\scrK (A) analogues of the trisection and optimization-with-restarts of [9]. However, these
lower bounds are the result of the assumption of looking for pairs of level-set points
that are a fixed distance \eta apart, as Gu originally used for Theorem 2.1. As we are
about to show, if we change this assumption, then we can obtain different lower bound
results than those given in (4.2) and (4.7).
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Algorithm 6.1. Optimization-with-restarts (no backtracking).

Input: A nonnormal matrix A \in \BbbC n\times n with \alpha (A) < 0, x0 > 0, and y0 \in \BbbR such that
g(x0, y0) < 1, and a tolerance \gamma tol > 0.

Output: g - 1
k \approx \scrK (A) (continuous-time).

1: while true do
2: (\^x, \^y)\leftarrow computed local/global minimizer of (3.1) initialized from (x0, y0)
3: gk \leftarrow g(\^x, \^y)
4: \gamma \leftarrow gk(1 - 0.5 \cdot \gamma tol)
5: \eta \leftarrow gk \cdot \gamma tol
6: Perform the 2D level-set test of subsection 6.1 with current \gamma and \eta 
7: if test finds any level-set points then
8: (x0, y0)\leftarrow one of these points // Goto line 2 to restart optimization.
9: else

10: return // \scrK (A) - 1 > gk \cdot (1 - \gamma tol) holds.
11: end if
12: end while

Theorem 6.1. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If \scrK (A) - 1 \leq \gamma and \eta \in [0, 2(\gamma  - \scrK (A) - 1)], then there
exists a pair x, y \in \BbbR with x > 0 such that

(6.1) g(x, y) = g(x, y + x\eta ) = \gamma .

Corollary 6.2. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If there do not exist any pairs x, y \in \BbbR with x > 0
such that (6.1) holds, then

(6.2) \scrK (A) - 1 > \gamma  - \eta 
2x \star 

.

Proof of Theorem 6.1. The proof follows similarly to the proof of Theorem 4.1
with the following modification. By using the variable distance x\eta , for \gamma \in [\scrK (A) - 1, 1)
we instead obtain that \eta \in [0, 2(\gamma  - \scrK (A) - 1)] is a sufficient condition for (6.1) to hold;
this is because this choice cancels out the x \star in the proof, as | y1  - y2| = x \star \eta .

Thus, by looking for vertical pairs of points that are this particular variable dis-
tance apart, i.e., x\eta , a corresponding certificate procedure would assert either that
\gamma \geq \scrK (A) - 1 holds or that (6.2) does. Such a certificate would avoid the need for the
backtracking procedure that was necessary for Algorithm 5.1. While this might seem
to be obviously preferable to Algorithm 5.1, as a bit of foreshadowing, we note that
the large eigenvalue problem that results for this variable-distance certificate is quite
different from (5.5) and has its own downsides. We now describe this certificate to
complete Algorithms 6.1 and 6.2.

6.1. A 2D level-set test for variable-distance pairs. Suppose \gamma is both a
singular value of G(x, y) and G(x, y + x\eta ), with respective left and right singular
vectors pairs u,v and \^u,\^v. Via Theorem 5.1 for G(x, y) and a similar argument as its
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Algorithm 6.2. Trisection.

Input: A nonnormal matrix A \in \BbbC n\times n with \alpha (A) < 0 and a tolerance \gamma tol > 0.
Output: ub - 1 \approx \scrK (A) (continuous-time).

1: lb\leftarrow 0
2: ub\leftarrow g(x0, y0) for some x0 > 0 and y0 \in \BbbR 
3: while (ub - lb) > ub \cdot \gamma tol do
4: diff\leftarrow ub - lb

5: \eta \leftarrow 2
3 \cdot diff

6: \gamma \leftarrow lb+ \eta 
7: Perform the 2D level-set test of subsection 6.1 with current \gamma and \eta 
8: if test finds any level-set points then
9: ub = \gamma 

10: else
11: lb = lb+ 1

3 \cdot diff
12: end if
13: end while

Note: While [9, p. 358] states that their trisection-based \tau (A,B) algorithm converges ``to any
prescribed absolute accuracy,"" any desired relative accuracy can be obtained by simply choosing a
stopping condition like the one we have used here in line 3.

proof for G(x, y + x\eta ), we have the following two Hamiltonian eigenvalue problems:\biggl[ 
A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
= iy

\biggl[ 
v
u

\biggr] 
,(6.3a) \biggl[ 

A - x(1 + i\eta )I \gamma xI
 - \gamma xI x(1 - i\eta )I  - A\ast 

\biggr] \biggl[ 
\^v
\^u

\biggr] 
= iy

\biggl[ 
\^v
\^u

\biggr] 
.(6.3b)

These two Hamiltonian matrices have an eigenvalue in common if

(6.4)

\biggl[ 
A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] 
W +W

\biggl[ 
A\ast  - x(1 - i\eta )I  - \gamma xI

\gamma xI x(1 + i\eta )I  - A

\biggr] 
= 0

has a nonzero solution W \in \BbbC 2n\times 2n. Separating out the terms involving x, we have

(6.5)

\biggl( \biggl[ 
A 0
0  - A\ast 

\biggr] 
W +W

\biggl[ 
A\ast 0
0  - A

\biggr] \biggr) 
 - x

\biggl( \biggl[ 
I  - \gamma I
\gamma I  - I

\biggr] 
W +W

\biggl[ 
(1 - i\eta )I \gamma I
 - \gamma I  - (1 + i\eta )I

\biggr] \biggr) 
= 0.

Rewriting both Sylvester forms using the vectorize operator, and letting w = vec(W ),
we have the following generalized eigenvalue problem:

\scrB 1w = x\scrB 2w, where(6.6)

\scrB 1 = I2n \otimes 
\biggl[ 
A 0
0  - A\ast 

\biggr] 
+

\biggl[ 
A 0
0  - A\sansT 

\biggr] 
\otimes I2n,

\scrB 2 = I2n \otimes 
\biggl[ 
I  - \gamma I
\gamma I  - I

\biggr] 
+

\biggl[ 
(1 - i\eta )I  - \gamma I

\gamma I  - (1 + i\eta )I

\biggr] 
\otimes I2n.
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To check if (6.2) holds with this variable-distance certificate, we proceed similarly
to our fixed-distance certificate from subsection 5.2. Thus, after initially computing
all the positive real eigenvalues of (6.6), we then apply Theorem 5.1 to each of these
candidate vertical lines to see if we detect any points on a \gamma -level set (or lower) of
g(x, y).

Key Remark 6.3. We now explain how the designs of our 2D level-set tests inten-
tionally deviate from the \tau (A,B) procedure Gu proposed in [14, pp. 995--997] and how
this results in much better reliability. If one were to more closely follow Gu's proce-
dure as it is written, for each positive real eigenvalue \^x > 0 of (6.6), one would instead
compute the eigenvalues of the two matrices in (6.3) and then check whether these two
spectra have any imaginary eigenvalues in common. If a shared imaginary eigenvalue
is detected, then a pair of level-set points a distance x\eta apart has been detected4 and
\gamma \geq \scrK (A) - 1 must hold. Otherwise, if none of the pairs of eigenvalue problems from
(6.3) share imaginary eigenvalues, then following Gu would mean asserting that lower
bound (6.2) must hold. While Gu's procedure is sound in exact arithmetic, trying to
assert whether two matrices share an (imaginary) eigenvalue is exceptionally difficult
to do reliably in the presence of rounding errors. Furthermore, this matching also
assumes that the real eigenvalues \^x have been computed accurately enough such that
the matrices (6.3) would indeed share an eigenvalue i\^y, assuming (\^x, \^y) satisfies (6.1),
which is another source of numerical uncertainty; see [15, section 5]. Suppose that
there are indeed points a distance x\eta apart vertically on the \gamma -level set of g(x, y), but
rounding errors prevent their detection. In this case, asserting that (6.2) holds may
be erroneous. This can be a critical failure because the lower bound is only true if
no such pair of level-set points exists, not if the procedure fails to detect them due
to numerical problems! This is a major reason why Gu's procedure can have such
numerical difficulties, particularly when \eta is small. Though [15] improves Gu's proce-
dure to make it faster, it too follows the same the idea of checking whether or not two
matrices share imaginary eigenvalues and thus also inherits these numerical problems.
However, in the course of our work here, we have realized that Gu's \tau (A,B) proce-
dure ironically follows Theorem 2.1 and Corollary 2.2 too closely, because, as it turns
outs, checking whether or not level-set points are a distance x\eta (or \eta ) apart is entirely
unnecessary. While indeed (6.2) must hold if no points satisfy (6.1), another sufficient
condition for (6.2) to hold is that the procedure itself does not generate any level-set
points whatsoever, on the \gamma -level set or lower and/or as pairs or single points. If any
level-set points are detected, clearly \gamma \geq \scrK (A) - 1 holds, while none being generated
implies (6.1) cannot hold, which in turn asserts that (6.2) must hold. Note that our
new way of performing these 2D level-set tests is not only a theoretical improvement;
we initially designed our tests to check for common imaginary eigenvalues, like Gu's
procedure, but discovered that the aforementioned numerical issues were impeding
the reliability of the codes. Applying our modifications to the \tau (A,B) algorithms of
[14, 9, 15] should improve their reliability as well.

6.2. Properties of the eigensystem \bfscrB \bfone \bfitw = \bfitx \bfscrB \bftwo \bfitw and its solution. Unlike
(5.5), which can at least be numerically deflated to an order 2n2 generalized eigenvalue
problem, we now show that (6.6) cannot be similarly reduced, as \scrB 2 is generally
nonsingular. In fact, \scrB 2 has an explicit inverse.

4Note that while the bottom of [14, p. 996] says that detected points would be on the \gamma -level set,
technically that only holds if \gamma is also the minimum singular value at both of these points, which
may or may not be true.
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Theorem 6.4. Let C :=
\bigl[ 
aI  - bI
bI  - aI

\bigr] 
\in \BbbC 2n\times 2n with a, b \in \BbbC and b \not = 0, and let

\scrM := I2k \otimes C + C \otimes I2k. For k \in \BbbN and s \in \BbbC , define matrix \scrD := sI4kn +\scrM and
scalar \beta := s2 + 4(b2  - a2). Then \scrD is invertible with inverse

(6.7) \scrD  - 1 = s - 1I4kn  - \beta  - 1\scrU k
\bigl( 
I2kn  - 2s - 1Ik \otimes C

\bigr) 
\scrV k

if and only if s and \beta are both nonzero, where \scrU k and \scrV k are defined as in (5.6).
Moreover, if k = n, then the following simpler formula holds:

(6.8) \scrD  - 1 = s - 1I4n2  - \beta  - 1\scrM + (s\beta ) - 1\scrM 2.

Proof. Via Lemma 5.2 applied to \scrM , we have that \scrD = sI4kn + \scrU k\scrV k. As the
eigenvalues of C are\pm 

\surd 
a2  - b2, by Theorem 1.3, the eigenvalues of\scrM are\pm 2

\surd 
a2  - b2

and zero. Thus, \scrD is invertible if and only if  - s is not equal to any of these eigenvalues,
which is equivalent to s \not = 0 and \beta \not = 0. For (6.7), we apply the Sherman--Morrison--
Woodbury formula to (sI4kn + \scrU k\scrV k) - 1 and use \scrV k\scrU k = 2Ik \otimes C from Lemma 5.2,
yielding

\scrD  - 1 = s - 1I4kn  - s - 1\scrU k
\bigl( 
I2kn + s - 1\scrV k\scrU k

\bigr)  - 1
s - 1\scrV k

= s - 1I4kn  - s - 1\scrU k (sI2kn + 2Ik \otimes C) - 1 \scrV k
= s - 1I4kn  - s - 1\scrU k (Ik \otimes (sI2n + 2C))

 - 1 \scrV k
= s - 1I4kn  - s - 1\scrU k

\bigl( 
Ik \otimes (sI2n + 2C) - 1

\bigr) 
\scrV k

= s - 1I4kn  - s - 1\scrU k
\Bigl( 
Ik \otimes 1

s2+4(b2 - a2)

\Bigl[ 
(s - 2a)I 2bI
 - 2bI (s+2a)I

\Bigr] \Bigr) 
\scrV k

= s - 1I4kn  - s - 1\beta  - 1\scrU k (sI2kn  - 2Ik \otimes C)\scrV k.

For (6.8), now with k = n, first note that C2 = \phi I2n with \phi = (a2  - b2), while

\scrM 2 =
\bigl( 
I2n \otimes C2 + C2 \otimes I2n

\bigr) 
+ (C \otimes C + C \otimes C) = 2 (\phi I4n2 + C \otimes C) ,

\scrM 3 = 2 (\phi I4n2 + C \otimes C)\scrM = 2\phi \scrM + 2
\bigl( 
C \otimes C2 + C2 \otimes C

\bigr) 
= 4\phi \scrM ,

where we have used the mixed-product property of \otimes . Then by multiplying (6.8) with
sI4n2 +\scrM and noting that \beta  - s2 + 4\phi = 0, it follows that

I4n2 + s - 1\scrM  - s\beta  - 1\scrM + (s\beta )
 - 1\scrM 3 = I4n2 +

\Bigl( 
s - 1  - s\beta  - 1 + 4\phi (s\beta )

 - 1
\Bigr) 
\scrM 

= I4n2 + (s\beta )
 - 1 \bigl( 

\beta  - s2 + 4\phi 
\bigr) 
\scrM = I4n2 .

Applying Theorem 6.4 to \scrB 2, with a := 1, b := \gamma \not = 0, s :=  - i\eta \not = 0, we see that
\beta \not = 0 holds if \eta \not = \pm 2

\sqrt{} 
\gamma 2  - 1 ( \not \in \BbbR if | \gamma | < 1); hence \scrB 2 is generically invertible with

(6.9) \scrB  - 1
2 =  - (i\eta ) - 1I4n2  - \beta  - 1\scrB 2  - (i\eta \beta ) - 1\scrB 2,

where \beta = 4(\gamma 2 - 1) - \eta 2. On the upside, one could thus perform our variable-distance
certificate by computing the eigenvalues of \scrB  - 1

2 \scrB 1, while our fixed-distance certificate
requires solving the general eigenvalue problem (5.5). However, using \scrB  - 1

2 \scrB 1 can
introduce numerical issues, and the order of this eigenvalue problem is 4n2, whereas
for the fixed-distance case, we could instead solve the numerically deflated order
2n2 problem discussed in subsection 5.3. Furthermore, from (6.9), it is clear that
\| \scrB  - 1

2 \| \rightarrow \infty as \eta \rightarrow 0; in the presence of rounding errors, this may make it quite
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1963

difficult to reliably ascertain which eigenvalues of \scrB  - 1
2 \scrB 1 should be considered real-

valued.
At this point, one might ask if it would have been better to consider a variable-

distance certificate using a horizontal orientation instead of a vertical one. We consider
this in Appendix A and note here that it results in the matrix pencil \scrB 1 - \lambda \widetilde \scrB 2, where,
like \scrB 2, the matrix \widetilde \scrB 2 is nonsingular but becomes singular as \eta \rightarrow 0.

6.3. Adapting divide-and-conquer for \bfscrB \bfone \bfitw = \bfitx \bfscrB \bftwo \bfitw . We now describe
the computations needed for a divide-and-conquer version of our variable-distance
certificate. Note that the numerical reliability of this approach might be different
than our fixed-distance certificate, as (6.6) only has finite eigenvalues, while (5.5) has

finite and infinite eigenvalues. For w \in \BbbC 4n2

, \scrB 2w can be efficiently obtained by storing
\scrB 2 in a sparse format. Computing \scrB 1w is \scrO (n3) work, which is done by vectorizing
the first matrix in (6.5), i.e., vec

\bigl( \bigl[ 
A 0
0  - A\ast 

\bigr] 
W +W

\bigl[ 
A\ast 0
0  - A

\bigr] \bigr) 
, where W \in \BbbC 2n\times 2n and

w = vec(W ). To obtain w = (\scrB 1  - s\scrB 2) - 1y for y \in \BbbC 4n2

, consider (\scrB 1  - s\scrB 2)w = y.
This ``unvectorizes"" into (6.4) provided that x is replaced by s and the zero on its
right-hand side is replaced by Y , where y = vec(Y ). Vectorizing the solution of the
resulting Sylvester equation yields w = (\scrB 1  - s\scrB 2) - 1y in \scrO (n3) work.

7. Algorithms for discrete-time \bfscrK (\bfitA ). To adapt Algorithms 5.1, 6.1, and 6.2
to compute discrete-time Kreiss constants, we need to develop discrete-time versions
of the 2D level-set tests from subsection 5.2 and subsection 6.1; the other neces-
sary components for the two optimization-with-restarts algorithms have already been
discussed in subsection 3.2. We begin by developing discrete-time analogues of The-
orem 4.1 and Corollary 4.2. For the discrete-time case, we now additionally assume
that 0 \not \in \Lambda (A).

Theorem 7.1. For A \in \BbbC n\times n with \rho (A) < 1, let \gamma \in [0, 1), \eta \geq 0, and (r \star , \theta  \star ) be

a global minimizer of (3.7). If \scrK (A) - 1 \leq \gamma and \eta \in 
\bigl( 
0, 2(r \star  - 1)

1+\gamma (\gamma  - \scrK (A) - 1)
\bigr] 
, then

there exist an r > 1 and \theta \in [0, 2\pi ) such that

(7.1) h(r, \theta ) = h(r + \eta , \theta ) = \gamma .

Corollary 7.2. For A \in \BbbC n\times n with \rho (A) < 1, let \gamma \in [0, 1), \eta \geq 0, and (r \star , \theta  \star )
be a global minimizer of (3.7). If there do not exist any pairs r, \theta \in \BbbR with r > 1 such
that (7.1) holds, then

(7.2) \scrK (A) - 1 > \gamma  - \eta (1+\gamma )
2(r \star  - 1) .

Proof of Theorem 7.1. If \gamma = \scrK (A) - 1, the proof is trivially satisfied with \eta = 0,
so assume that \gamma \in (\scrK (A) - 1, 1). Since \rho (A) < 1, it follows that limr\rightarrow 1+ h(r, \theta ) =\infty 
for any \theta \in \BbbR , and so h(r \star , \theta  \star ) = \scrK (A) - 1 with r \star > 1. Now consider the strict lower
level set \scrL \gamma := \{ (r, \theta ) : h(r, \theta ) < \gamma , r > 1\} , which is clearly open and also bounded;
see [27, Theorem 3.2]. Let \scrL be the (open) connected component of \scrL \gamma such that
(r \star , \theta  \star ) \in \scrL , and let \scrG := \scrL H, i.e., the simply connected hull of \scrL .

By continuity of h(r, \theta ) and the boundedness of \scrG , there must exist b1, b2 \in bd\scrG ,

b1 = (r \star  - \eta 1, \theta  \star ) and b2 = (r \star + \eta 2, \theta  \star ),

such that

(7.3) h(r \star  - \eta 1, \theta  \star ) = h(r \star + \eta 2, \theta  \star ) = \gamma ,
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where \eta 1, \eta 2 > 0. Furthermore, we can assume that \eta 1 and \eta 2 are the smallest positive
values such that (7.3) holds with b1, b2 \in bd\scrG . Defining

(7.4) \~h(r) := h(r + 1, \theta ) =
\sigma min

\bigl( 
(r + 1)e\bfi \theta I  - A

\bigr) 
r

,

\~h(r) has a global minimizer r \star  - 1 on domain (0,\infty ) and its numerator has a GLC of 1.
Applying Lemma 4.5 to q(r) := \~h(r) with a = r \star  - \eta 1  - 1 and b = r \star + \eta 2  - 1 yields

\eta 1 + \eta 2 \geq 2(r \star  - 1)
1+\gamma (\gamma  - \scrK (A) - 1).

Now suppose that \eta \in 
\bigl( 
0, 2(r \star  - 1)

1+\gamma (\gamma  - \scrK (A) - 1)
\bigr] 
so \eta \leq \eta 1 + \eta 2. If \eta = \eta 1 + \eta 2,

(7.1) is clearly satisfied, so instead assume that \eta < \eta 1 + \eta 2. Considering the set\widehat \scrG := \{ (r  - \eta , \theta ) : (r, \theta ) \in \scrG \} , without loss of generality, we can assume \theta  \star = 0, and

so \widehat \scrG is simply \scrG shifted left by the amount \eta . Thus, as in the end of the proof of
Theorem 4.6, the rest of the argument follows analogously to the last paragraph of
the proof of Theorem 4.1.

7.1. A 1D circular level-set test. For all of our discrete-time\scrK (A) algorithms,
we will also need the following theorem.

Theorem 7.3. Given \gamma , r, \theta \in \BbbR , with \gamma \geq 0 and r \not = 1, \gamma is a singular value of
H(r, \theta ) defined as in (3.8) if and only if e\bfi \theta is an eigenvalue of the symplectic matrix
pencil

(7.5)

\biggl[ 
A \gamma (r  - 1)I
0 rI

\biggr] 
 - \lambda 

\biggl[ 
rI 0

\gamma (r  - 1)I A\ast 

\biggr] 
.

Furthermore, if A is invertible and r \not = 0, zero is not an eigenvalue of (7.5), and the
matrix pencil is regular.

Proof. It is easy to verify that (7.5) is symplectic, and, under the additional
assumptions, also regular and that zero cannot be an eigenvalue. Now suppose \gamma is a
singular value H(r, \theta ) with left and right singular vectors u and v, and so

\gamma 

\biggl[ 
u
v

\biggr] 
=

\biggl[ 
H(r, \theta ) 0

0 H(r, \theta )\ast 

\biggr] \biggl[ 
v
u

\biggr] 
\leftrightarrow \gamma (r - 1)

\biggl[ 
u
 - e\bfi \theta v

\biggr] 
=

\biggl[ 
re\bfi \theta I  - A 0

0 e\bfi \theta A\ast  - rI

\biggr] \biggl[ 
v
u

\biggr] 
.

Rearranging terms, this is equivalent to

\gamma (r  - 1)

\biggl[ 
u
0

\biggr] 
+

\biggl[ 
A 0
0 rI

\biggr] \biggl[ 
v
u

\biggr] 
= e\bfi \theta \gamma (r  - 1)

\biggl[ 
0
v

\biggr] 
+ e\bfi \theta 

\biggl[ 
rI 0
0 A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
.

Similar to Theorem 5.1, note that the unimodular eigenvalues of (7.5) correspond
to points that are either on the \gamma -level set of h(r, \theta ) or on lower level sets. The
structure-preserving eigensolvers of [2, 3] can also be used for more reliable detection
of unimodular eigenvalues of symplectic pencils like (7.5).

7.2. Adapting Algorithm 5.1 for discrete-time \bfscrK (\bfitA ). To create our first
discrete-time 2D level-set test, we will again look for pairs of points a fixed distance
\eta \geq 0 apart, but now we will do this along rays from the origin; i.e., for \^\theta \in [0, 2\pi ),

we check if h(\^r, \^\theta ) = h(\^r + \eta , \^\theta ) = \gamma holds for some \^r > 1. Suppose \gamma is a singular
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value of both H(r, \theta ) and H(r + \eta , \theta ) with respective left and right singular vector
pairs u, v and \^u, \^v. Then, by Theorem 7.3, we have that\biggl[ 

A \gamma (r  - 1)I
0 rI

\biggr] \biggl[ 
v
u

\biggr] 
= e\bfi \theta 

\biggl[ 
rI 0

\gamma (r  - 1)I A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
,(7.6a) \biggl[ 

A \gamma (r + \eta  - 1)I
0 (r + \eta )I

\biggr] \biggl[ 
\^v
\^u

\biggr] 
= e\bfi \theta 

\biggl[ 
(r + \eta )I 0

\gamma (r + \eta  - 1)I A\ast 

\biggr] \biggl[ 
\^v
\^u

\biggr] 
,(7.6b)

which we denote M  - \lambda N and \widetilde M  - \lambda \widetilde N , respectively. Now define W = [ vu ][ \^v\ast \^u\ast ] \not = 0.

Multiplying the two equations above from the right side, respectively, by [ \^v\ast \^u\ast ]\widetilde M\ast 

and [ v\ast u\ast ]N\ast , yields

MW\widetilde M\ast = e\bfi \theta NW\widetilde M\ast ,(7.7a) \widetilde MW \ast N\ast = e\bfi \theta \widetilde NW \ast N\ast .(7.7b)

If we take the conjugate transpose of (7.7b) and then multiply it by e\bfi \theta , we obtain

(7.8) NW \widetilde N\ast = e\bfi \theta NW\widetilde M\ast .

Subtracting (7.8) from (7.7a) yields

(7.9) MW\widetilde M\ast  - NW \widetilde N\ast = 0,

so since M  - \lambda N and \widetilde N\ast  - \lambda \widetilde M\ast are both regular, [10, Theorem 1] states that these
two pencils must share an eigenvalue if W \not = 0 solves the equation above. Moreover,
if this shared eigenvalue is e\bfi \theta , then e - \bfi \theta is an eigenvalue of \widetilde N  - \lambda \widetilde M , which in turn
implies that e\bfi \theta is an eigenvalue of \widetilde M  - \lambda \widetilde N . Thus, (7.9) having a nonzero solution W
is a necessary condition for the two pencils in (7.6) to have eigenvalue e\bfi \theta in common.

We now want to separate out the r terms ofMW\widetilde M\ast and NW \widetilde N\ast . First, we have

(7.10) \widetilde M\ast =

\biggl[ 
A\ast 0

\gamma (r + \eta  - 1)I (r + \eta )I

\biggr] 
and \widetilde N\ast =

\biggl[ 
(r + \eta )I \gamma (r + \eta  - 1)I

0 A

\biggr] 
.

Then MW\widetilde M\ast is

(7.11)

\biggl( \biggl[ 
A  - \gamma I
0 0

\biggr] 
+ r

\biggl[ 
0 \gamma I
0 I

\biggr] \biggr) 
W

\biggl( \biggl[ 
A\ast 0

\gamma (\eta  - 1)I \eta I

\biggr] 
+ r

\biggl[ 
0 0
\gamma I I

\biggr] \biggr) 
,

which is equal to

(7.12)
\bigl[ 
A  - \gamma I
0 0

\bigr] 
W

\Bigl[ 
A\ast 0

\gamma (\eta  - 1)I \eta I

\Bigr] 
+ r

\Bigl( \bigl[ 
A  - \gamma I
0 0

\bigr] 
W

\bigl[ 
0 0
\gamma I I

\bigr] 
+
\bigl[ 
0 \gamma I
0 I

\bigr] 
W

\Bigl[ 
A\ast 0

\gamma (\eta  - 1)I \eta I

\Bigr] \Bigr) 
+ r2

\bigl[ 
0 \gamma I
0 I

\bigr] 
W

\bigl[ 
0 0
\gamma I I

\bigr] 
.

Vectorizing the above equation, with w = vec(W ), yields

(7.13)
\Bigl[ 
A \gamma (\eta  - 1)I
0 \eta I

\Bigr] 
\otimes 
\bigl[ 
A  - \gamma I
0 0

\bigr] 
w

+ r
\Bigl( \bigl[ 

0 \gamma I
0 I

\bigr] 
\otimes 
\bigl[ 
A  - \gamma I
0 0

\bigr] 
+
\Bigl[ 
A \gamma (\eta  - 1)I
0 \eta I

\Bigr] 
\otimes 

\bigl[ 
0 \gamma I
0 I

\bigr] \Bigr) 
w + r2

\bigl[ 
0 \gamma I
0 I

\bigr] 
\otimes 

\bigl[ 
0 \gamma I
0 I

\bigr] 
w,
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which we will abbreviate as

(7.14) \scrM 0w + r\scrM 1w + r2\scrM 2w.

Likewise, NW \widetilde N\ast is

(7.15)

\biggl( \biggl[ 
0 0
 - \gamma I A\ast 

\biggr] 
+ r

\biggl[ 
I 0
\gamma I 0

\biggr] \biggr) 
W

\biggl( \biggl[ 
\eta I \gamma (\eta  - 1)I
0 A

\biggr] 
+ r

\biggl[ 
I \gamma I
0 0

\biggr] \biggr) 
,

which is equal to

(7.16)
\bigl[ 

0 0
 - \gamma I A\ast 

\bigr] 
W

\bigl[ 
\eta I \gamma (\eta  - 1)I
0 A

\bigr] 
+ r

\bigl( \bigl[ 
0 0

 - \gamma I A\ast 
\bigr] 
W

\bigl[ 
I \gamma I
0 0

\bigr] 
+
\bigl[ 

I 0
\gamma I 0

\bigr] 
W

\bigl[ 
\eta I \gamma (\eta  - 1)I
0 A

\bigr] \bigr) 
+ r2

\bigl[ 
I 0
\gamma I 0

\bigr] 
W

\bigl[ 
I \gamma I
0 0

\bigr] 
.

Similarly vectorizing this gives

(7.17)
\Bigl[ 

\eta I 0

\gamma (\eta  - 1)I A\sansT 

\Bigr] 
\otimes 
\bigl[ 

0 0
 - \gamma I A\ast 

\bigr] 
w

+ r
\Bigl( \bigl[ 

I 0
\gamma I 0

\bigr] 
\otimes 
\bigl[ 

0 0
 - \gamma I A\ast 

\bigr] 
+
\Bigl[ 

\eta I 0

\gamma (\eta  - 1)I A\sansT 

\Bigr] 
\otimes 
\bigl[ 

I 0
\gamma I 0

\bigr] \Bigr) 
w + r2

\bigl[ 
I 0
\gamma I 0

\bigr] 
\otimes 

\bigl[ 
I 0
\gamma I 0

\bigr] 
w,

which we will abbreviate as

(7.18) \scrN 0w + r\scrN 1w + r2\scrN 2w.

Therefore, we finally have the following quadratic eigenvalue problem:

(7.19) (\scrM 0  - \scrN 0)w + r (\scrM 1  - \scrN 1)w + r2 (\scrM 2  - \scrN 2)w = 0,

which we will abbreviate as

(7.20) \scrQ 0w + r\scrQ 1w + r2\scrQ 2w = 0.

Thus, to perform our fixed-distance discrete-time \scrK (A) certificate for adapting
Algorithm 5.1, we first compute all the real eigenvalues r > 1 of (7.20), which specify
a set of concentric circles centered at the origin on which we may find level set points.
Then, for each of these candidate radii, we apply Theorem 7.3 to see if we indeed
detect any points on a \gamma -level set (or lower) of h(r, \theta ). Like our continuous-time
algorithms, this procedure is also \scrO (n6) work (albeit with a larger constant term)
when using dense (quadratic) eigensolvers.

Note that for a generic quadratic eigenvalue problem of the form (7.20), if either
\scrQ 0 or \scrQ 2 is nonsingular, then the problem is well posed; i.e., it has at least one
solution and not infinitely many; see [1, p. 283]. While for our quadratic eigenvalue
problem \scrQ 2 is singular (see Lemma B.4 in Appendix B), we now show that \scrQ 0 is
generically nonsingular, and thus (7.20) is guaranteed to be well posed.

Theorem 7.4. Let \gamma , \eta \in \BbbR both be positive. Then \scrQ 0 from (7.20) is nonsingular
if and only if A is nonsingular and \gamma is not a singular value of A.

Proof. For any vector w \in \BbbC 4n2

, suppose \scrQ 0w = 0, i.e.,\biggl( \biggl[ 
A \gamma (\eta  - 1)I
0 \eta I

\biggr] 
\otimes 
\biggl[ 
A  - \gamma I
0 0

\biggr] \biggr) 
w  - 

\biggl( \biggl[ 
\eta I 0

\gamma (\eta  - 1)I A\sansT 

\biggr] 
\otimes 
\biggl[ 

0 0
 - \gamma I A\ast 

\biggr] \biggr) 
w = 0,
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1967

which holds if and only if

(7.21)

\biggl[ 
A  - \gamma I
0 0

\biggr] 
W

\biggl[ 
A\ast 0

\gamma (\eta  - 1)I \eta I

\biggr] 
 - 
\biggl[ 

0 0
 - \gamma I A\ast 

\biggr] 
W

\biggl[ 
\eta I \gamma (\eta  - 1)I
0 A

\biggr] 
= 0,

where w = vec(W ). By [10, Theorem 1], the generalized Sylvester equation above has
a unique solution if and only if the two matrix pencils\biggl[ 

A  - \gamma I
0 0

\biggr] 
 - \lambda 

\biggl[ 
0 0
 - \gamma I A\ast 

\biggr] 
and

\biggl[ 
\eta I \gamma (\eta  - 1)I
0 A

\biggr] 
 - \lambda 

\biggl[ 
A\ast 0

\gamma (\eta  - 1)I \eta I

\biggr] 
are both regular and have no eigenvalues in common. Clearly W = 0 satisfies (7.21),
so as long as zero is the only solution, \scrQ 0 is nonsingular for the assumptions. To
prove the forward direction, we thus show that these three conditions hold.

We begin with the first pencil, which is regular if, for at least one value of \lambda ,
the resulting matrix is nonsingular. Using \lambda =  - 1 results in

\bigl[ A  - \gamma I
 - \gamma I A\ast 

\bigr] 
. Since A is

invertible, this matrix is invertible if and only if its Schur complement with respect
to A is, i.e.,

0 \not = det
\bigl( 
A\ast  - \gamma 2A - 1

\bigr) 
= det

\bigl( 
AA\ast  - \gamma 2I

\bigr) 
/det(A),

which by definition of singular values, holds if and only if \gamma is not a singular value
of A. Thus, the first pencil is regular. For the second pencil, choosing \lambda = 0 results
in matrix

\bigl[ 
\eta I \gamma (\eta  - 1)I
0 A

\bigr] 
, which is invertible since \eta \not = 0 and A is invertible. Thus the

second pencil is also regular. Furthermore, this argument also establishes that zero
cannot be an eigenvalue of the second pencil.

We now show that the two pencils do not have any eigenvalues in common. We
begin by noting that some of the eigenvalues of the first pencil are infinity, while all
the eigenvalues of the second pencil are finite. Let \lambda \not = 0 be a finite eigenvalue of the
first pencil with eigenvector [ vu ] \not = 0; hence

(7.22)

\biggl[ 
A  - \gamma I
\lambda \gamma I  - \lambda A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
= 0 \Leftarrow \Rightarrow 

Av = \gamma u

A\ast u = \gamma v.

Since \gamma \not = 0 and A is invertible, u = 0 if and only if v = 0; hence neither is zero. This
means they can be rescaled to each have unit norm, and so \gamma is a singular value of
A, a contradiction; hence \lambda = 0 must hold. As zero cannot be an eigenvalue of the
second pencil, this part of the proof is complete.

For the reverse direction, first suppose that A is singular. Then zero must be an
eigenvalue of the second pencil; hence the two pencils share zero as an eigenvalue and
so \scrQ 0 is singular. Now suppose that \gamma is a singular value of A with left and right
singular vectors \~u and \~v, and again consider (7.22). Since [ vu ] := [ \~v\~u ] \not = 0 is in the
nullspace of the matrix given in (7.22) for any \lambda \in \BbbC , the first pencil matrix is not
regular, and so \scrQ 0 is singular.

Remark 7.5. It is also possible to derive a globality certificate based on arcs in-
stead of radial segments, where for \^r > 1, angle(s) \^\theta satisfying h(\^r, \^\theta ) = h(\^r, \^\theta +\eta ) = \gamma 
are sought. We also considered this, but it resulted in a quadratic eigenvalue problem
where both of the corresponding \scrQ 0 and \scrQ 2 matrices were singular, and so it was
unclear if this alternative quadratic eigenvalue problem was well posed or not.

7.3. Adapting Algorithms 6.1 and 6.2 for discrete-time \bfscrK (\bfitA ). Now, fol-
lowing the variable-distance certificate idea from section 6, we derive a new discrete-
time version to extend Algorithms 6.1 and 6.2 so that they can compute discrete-time
Kreiss constants.
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1968 TIM MITCHELL

Theorem 7.6. For A \in \BbbC n\times n with \rho (A) < 1, let \gamma \in [0, 1), \eta \geq 0, and (r \star , \theta  \star )
be a global minimizer of (3.7). If \scrK (A) - 1 \leq \gamma and \eta \in [0, 2(\gamma  - \scrK (A) - 1)], then there
exist an r > 1 and \theta \in [0, 2\pi ) such that

(7.23) h(r, \theta ) = h(\beta r + \delta , \theta ) = \gamma ,

where \beta := 1 - \delta and \delta :=  - \eta 
1+\gamma .

Corollary 7.7. For A \in \BbbC n\times n with \rho (A) < 1, let \gamma \in [0, 1), \eta \geq 0, and (r \star , \theta  \star )
be a global minimizer of (3.7). If there do not exist any pairs r, \theta \in \BbbR with r > 1 such
that (7.23) holds, then

(7.24) \scrK (A) - 1 > \gamma  - \eta 
2x \star 

.

Proof of Theorem 7.6. The proof follows similarly to the proof of Theorem 7.1,

except that (7.23) corresponds to a distance of \~\eta := (\beta r + \delta )  - r = \eta (r - 1)
1+\gamma between

the two level-set points, which leads to cancellation, and so \eta \in [0, 2(\gamma  - \scrK (A) - 1)].

For brevity, we skip showing the lengthy derivation of the resulting discrete-time
variable-distance certificate (it follows similarly to subsection 7.2) and instead just
give the key parts necessary to perform the computation. Suppose \gamma is a singular
value of both H(r, \theta ) and H(\beta r + \delta , y) with respective left and right singular vectors
pairs u,v and \^u,\^v. Applying Theorem 7.3 to H(r, \theta ) and H(\beta r + \delta , \theta ) yields (7.6a)
and (7.6b) but now with r replaced by \beta r + \delta . For this modified pair of symplectic
eigenvalue problems, the certificate derivation results in the large quadratic eigenvalue
problem \widetilde \scrQ 0w + r \widetilde \scrQ 1w + r2 \widetilde \scrQ 2w = 0, where(7.25) \widetilde \scrQ 0 = \scrQ 0 given in (7.20) but with \eta replaced by \delta ,\widetilde \scrQ 1 = \beta 

\bigl( \bigl[ 
0 \gamma I
0 I

\bigr] 
\otimes 
\bigl[ 
A  - \gamma I
0 0

\bigr] 
 - 
\bigl[ 

I 0
\gamma I 0

\bigr] 
\otimes 

\bigl[ 
0 0

 - \gamma I A\ast 
\bigr] \bigr) 

+
\Bigl( \Bigl[ 

A \gamma (\delta  - 1)I
0 \delta I

\Bigr] 
\otimes 

\bigl[ 
0 \gamma I
0 I

\bigr] 
 - 

\Bigl[ 
\delta I 0

\gamma (\delta  - 1)I A\sansT 

\Bigr] 
\otimes 

\bigl[ 
I 0
\gamma I 0

\bigr] \Bigr) 
,\widetilde \scrQ 2 = \beta \scrQ 2 given in (7.20).

Although \widetilde \scrQ 2 is singular, \widetilde \scrQ 0 is nonsingular for the assumptions of Theorem 7.4, since
\eta := \delta \not = 0. Thus, (7.25) is well posed under the same assumptions.

7.4. Adapting divide-and-conquer for discrete-time \bfscrK (\bfitA ). We now show
how the real eigenvalues of (7.20) and (7.25) may be computed using divide-and-
conquer. We begin with (7.20) and form its (companion) linearization

(7.26)

\biggl[ 
\scrQ 1 \scrQ 0

 - I 0

\biggr] 
z = r

\biggl[ 
 - \scrQ 2 0
0  - I

\biggr] 
z,

where z = [ rww ]. Assuming an a priori upper bound D > 0 is known for all real
eigenvalues of (7.20), divide-and-conquer will sweep the interval [1, D] to find all the
real-valued eigenvalues in this range. We now detail how the necessary operations
with the matrices in (7.26) can all be done in at most \scrO (n3) work.

Consider doing matrix-vector products with either matrix in (7.26) and a vector

w = [w1
w2

], where w1, w2 \in \BbbC 2n2

. The nontrivial parts of these products are

\scrQ 0w2 =\scrM 0w2  - \scrN 0w2,(7.27a)

\scrQ 1w1 =\scrM 1w1  - \scrN 1w1,(7.27b)

\scrQ 2w1 =\scrM 2w1  - \scrN 2w1,(7.27c)
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COMPUTING THE KREISS CONSTANT OF A MATRIX 1969

which are equal to the following respective vectorizations:

\scrQ 0w2 = vec
\Bigl( \bigl[ 

A  - \gamma I
0 0

\bigr] 
W2

\Bigl[ 
A\ast 0

\gamma (\eta  - 1)I \eta I

\Bigr] 
 - 
\bigl[ 

0 0
 - \gamma I A\ast 

\bigr] 
W2

\bigl[ 
\eta I \gamma (\eta  - 1)I
0 A

\bigr] \Bigr) 
,(7.28a)

\scrQ 1w1 = vec
\Bigl( \bigl[ 

A  - \gamma I
0 0

\bigr] 
W1

\bigl[ 
0 0
\gamma I I

\bigr] 
+

\bigl[ 
0 \gamma I
0 I

\bigr] 
W1

\Bigl[ 
A\ast 0

\gamma (\eta  - 1)I \eta I

\Bigr] 
 - 
\bigl[ 

0 0
 - \gamma I A\ast 

\bigr] 
W1

\bigl[ 
I \gamma I
0 0

\bigr] 
 - 

\bigl[ 
I 0
\gamma I 0

\bigr] 
W1

\bigl[ 
\eta I \gamma (\eta  - 1)I
0 A

\bigr] \Bigr) 
,

(7.28b)

\scrQ 2w1 = vec
\bigl( \bigl[ 

0 I
0 \gamma I

\bigr] 
W1

\bigl[ 
0 0
I \gamma I

\bigr] 
 - 
\bigl[ 
\gamma I 0
I 0

\bigr] 
W1

\bigl[ 
\gamma I I
0 0

\bigr] \bigr) 
,(7.28c)

where w1 = vec(W1) and w2 = vec(W2). The first two of these can be obtained in
\scrO (n3) work since they only involve matrix-matrix products with 2n \times 2n matrices.
The third can be obtained in \scrO (n2) work as the number of nonzero entries in \scrQ 2 is
simply 8n2; hence one should just store \scrQ 2 in a sparse format. This is also fortunate
as when applying shift-and-invert to a generalized eigenvalue problem Ax = \lambda Bx,
solvers such as eigs in MATLAB require that B is provided explicitly, even when the
operator (A - sB) - 1 is given implicitly as a function handle.

Given a shift s \in \BbbC and a vector y = [ y1
y2 ], where y1, y2 \in \BbbC 2n2

, we now focus on

(7.29) w =

\biggl( \biggl[ 
\scrQ 1 \scrQ 0

 - I 0

\biggr] 
 - s

\biggl[ 
 - \scrQ 2 0
0  - I

\biggr] \biggr)  - 1

y,

which is equivalent to

(7.30)

\biggl( \biggl[ 
\scrQ 1 \scrQ 0

 - I 0

\biggr] 
 - s

\biggl[ 
 - \scrQ 2 0
0  - I

\biggr] \biggr) \biggl[ 
w1

w2

\biggr] 
=

\biggl[ 
\scrQ 1 + s\scrQ 2 \scrQ 0

 - I sI

\biggr] \biggl[ 
w1

w2

\biggr] 
=

\biggl[ 
y1
y2

\biggr] 
.

The bottom block row provides

(7.31) sw2 = y2 + w1.

Multiplying the top block row of (7.30) by s and then substituting in (7.31), we get

(7.32) \scrQ 0w1 + s\scrQ 1w1 + s2\scrQ 2w1 = sy1  - \scrQ 0y2 =: \^y.

Using (7.28) to obtain the four matrix-vector products above, we can then solve for
w1 via solving the following generalized continuous-time algebraic Sylvester equation:

(7.33) MW1
\widetilde M\ast  - NW1

\widetilde N\ast = \widehat Y ,
where w1 = vec(W1), \^y = vec(\widehat Y ), and the matrix pairs M,N and \widetilde M\ast , \widetilde N\ast are respec-
tively given in (7.6a) and (7.10), all with r replaced with s. Per [17], solving (7.33)
can be done in \scrO (n3) work. Finally, w2 is obtained via (7.31).

For (7.25), only a few minor modifications to the divide-and-conquer variant we

have just explained for (7.20) are necessary. As \widetilde \scrQ 0 is equal to \scrQ 0 with \eta := \delta and\widetilde \scrQ 2 = \beta \scrQ 2, the first and third equations in (7.28) can be used to do the corresponding

matrix-vector products. For w1 \in \BbbC 2n2

, we have

\widetilde \scrQ 1w1 = vec
\Bigl( 
\beta 
\Bigl( \bigl[ 

A  - \gamma I
0 0

\bigr] 
W1

\bigl[ 
0 0
\gamma I I

\bigr] 
 - 

\bigl[ 
0 0

 - \gamma I A\ast 
\bigr] 
W1

\bigl[ 
I \gamma I
0 0

\bigr] \Bigr) 
+
\Bigl( \bigl[ 

0 \gamma I
0 I

\bigr] 
W1

\Bigl[ 
A\ast 0

\gamma (\delta  - 1)I \delta I

\Bigr] 
 - 

\bigl[ 
I 0
\gamma I 0

\bigr] 
W1

\bigl[ 
\eta I \gamma (\delta  - 1)
0 A

\bigr] \Bigr) \Bigr) 
.

(7.34)

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1970 TIM MITCHELL

-7 -6 -5 -4 -3

0

2

4

6

8

10

12

14
10

4

-2 -1 0 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1. The solid curves plot
\alpha \varepsilon (A)

\varepsilon 
(left) and

\rho \varepsilon (A) - 1
\varepsilon 

(right) as they vary with \varepsilon for our
continuous- and discrete-time examples, respectively. The dashed lines depict the values of \scrK (A)
computed by our new methods, verifying their global convergence. The plots were produced using
Chebfun [11] and the methods of [4].

8. Numerical experiments. To validate our methods for computing Kreiss
constants, we implemented proof-of-concepts in MATLAB. The supplementary mate-
rial includes the code, test examples, and a detailed description of the setup in order
to reproduce the experiments in this paper. We plan to add ``production-ready""
implementations of our methods to a future release of ROSTAPACK [26].

We considered two 10\times 10 stable matrices based on demos in EigTool [31], one for
continuous-time \scrK (A) and a second for discrete-time \scrK (A). For the former, we used
A = B  - \kappa I, where B = companion demo(10) and \kappa = 1.001\alpha (B); this matrix has a
large Kreiss constant, and as shown in Figure 1, (1.9) has two local maximizers for this
example. For the latter, we chose A = 1

13B + 11
10I, where B = convdiff demo(11);

while this matrix has a small Kreiss constant, it is interesting for testing, as, for this
example, h(r, \theta ) has several local minimizers (see the supplementary material) and,
per Figure 1, (1.4) appears to be nonsmooth (though not at the maximizer). To
verify restarting, we intentionally chose starting points such that global minimizers of
g(x, y) and h(r, \theta ) would not be found in the first round of optimization. In Table 1,
we provide detailed metrics on our three algorithms and see in practice that the
optimization-based Algorithms 5.1 and 6.1 are much faster and more accurate than
the trisection-based Algorithm 6.2. The much higher numerical accuracy of our two
optimization methods is also verified by comparing to Chebfun, with Chebfun being
much slower, even though it was given a small interval containing a global maximizer
attaining \scrK (A). In fact, Chebfun is also much slower than Algorithm 6.2, which is
the slowest of our three new methods, due to the linear convergence of trisection.
As can be seen, Algorithm 6.1 appears to be the best of the algorithms. See the
supplementary material for additional figures showing how Algorithms 5.1 and 6.1
progress from one minimizer to the next to converge to \scrK (A).

We also evaluated our theoretically faster divide-and-conquer approaches. The
supplementary material includes a demo for reproducing one key experiment of the
many we performed. This demo uses the computations described in subsection 5.4
and subsection 6.3 to respectively compute eigenvalues of (5.5) and (6.6) closest to
a given shift, where \gamma and \eta were set to the values used in the first 2D level-set test
computed by Algorithm 5.1 when computing \scrK (A) of our continuous-time example.
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Table 1
The upper half of the table shows data for our continuous-time example, while the lower half is

for the discrete-time example. A dash indicates that the column is not relevant for the given method.
Chebfun is simply taking the max of the chebfuns produced to make Figure 1, where Chebfun was
supplied a reasonably small interval already known to contain the maximizer attaining \scrK (A).

\scrK (A) z0 Level-set tests Restarts Seconds

Chebfun 1.29186707005845\times 105 --- --- --- 97.28
Algorithm 5.1 1.29186707011257\times 105 6 + 6i 14 2 1.95
Algorithm 6.1 1.29186707015035\times 105 6 + 6i 2 2 0.76
Algorithm 6.2 1.29181067678395\times 105 1 89 --- 21.48

Chebfun 1.89501339090609 --- --- --- 74.04
Algorithm 5.1 1.89501339090580  - 1 + 1i 15 3 7.18
Algorithm 6.1 1.89501339090580  - 1 + 1i 3 3 1.62
Algorithm 6.2 1.89501305930067 2 81 --- 41.04

However, we observed that these shift-and-invert closest eigenvalue computations were
somewhat unreliable when compared to using eig in MATLAB on (5.5) and (6.6)
directly. For space reasons, we forgo many of the details and instead make a few
key observations. First, sometimes the eigenvalues computed by the shift-and-invert
approach did not have even a single digit of agreement to those computed by eig,
but as these eigenvalues were often very close to the origin, this is not so surprising.
Second, we also observed that eigs in MATLAB would sometimes fail to return one
of the closest eigenvalues to a given shift; interestingly, this phenomenon can even be
observed in the paper where divide-and-conquer for \tau (A,B) was proposed [15, top
left plot of Figure 3.1]. Third, we also observed that the large eigenvalue problems
sometimes have very close conjugate pair eigenvalues, which may explain some of the
aforementioned difficulties with extracting eigenvalues on the real axis accurately. As
divide-and-conquer is built on the assumption that shift-and-invert eigensolvers are
reliable, addressing the numerical issues above may just be a matter of picking the
right sparse eigensolver. That being said, our initial testing of divide-and-conquer
and its numerical reliability is merely a starting point for future work.

9. Concluding remarks. We have presented the first globally convergent algo-
rithms for computing continuous- and discrete-time Kreiss constants to arbitrary ac-
curacy. Algorithm 6.1, which uses our variable-distance 2D level-set tests, appears to
be the fastest of the three different iterations proposed here, since it requires perform-
ing the least number of these tests. However, for continuous-time Kreiss constants,
upcoming fast deflation methods [18, Chapter 3.1] may enable our fixed-distance 2D
level-set test of subsection 5.2 to be computed with significantly less work, which could
make Algorithm 5.1 more competitive and perhaps even faster than Algorithm 6.1.
While we have outlined the key theoretical differences between the various large eigen-
value problems underlying our fixed- and variable-distance certificates, a systematic
numerical evaluation could help illuminate whether there are any notable differences
in terms of numerical reliability when using dense eigensolvers. Similarly, further in-
vestigation into the numerics of our asymptotically faster divide-and-conquer variants
using sparse shift-and-invert eigensolvers could prove useful.

Appendix A. A 2D level-set test for variable-distance pairs with hori-
zontal orientation. If we modify Theorem 4.6 to consider horizontal pairs of points
a variable distance x\eta 

1+\gamma apart (instead of a fixed distance \eta apart), to induce cancel-
lation in the proof, we obtain the following results.
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Theorem A.1. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If \scrK (A) - 1 \leq \gamma and \eta \in [0, 2(\gamma  - \scrK (A) - 1)], then there
exists a pair x, y \in \BbbR with x > 0 such that

(A.1) g(x, y) = g(\beta x, y) = \gamma ,

where \beta := 1 + \eta 
1+\gamma .

Corollary A.2. For A \in \BbbC n\times n with \alpha (A) < 0, let \gamma \in [0, 1), \eta \geq 0, and (x \star , y \star )
be a global minimizer of (3.1). If there do not exist any pairs x, y \in \BbbR with x > 0
such that (A.1) holds, then

(A.2) \scrK (A) - 1 > \gamma  - \eta 
2x \star 

.

Proof of Theorem A.1. The proof follows similarly to the proof of Theorem 4.6,
except that (A.1) corresponds to a distance of \~\eta := \beta x  - x = \eta x

1+\gamma between the two

level-set points, which leads to cancellation, and so \eta \in [0, 2(\gamma  - \scrK (A) - 1)].

The derivation of the corresponding verification procedure, to enable versions of
Algorithms 6.1 and 6.2 using (A.1), is as follows. Suppose \gamma is a singular value of both
G(x, y) and G(\beta x, y) with respective left and right singular vectors pairs u,v and \^u,\^v.
Applying Theorem 5.1 to G(x, y) and G(\beta x, y) yields the following two Hamiltonian
standard eigenvalue problems:

(A.3)

\biggl[ 
A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] \biggl[ 
v
u

\biggr] 
= iy

\biggl[ 
v
u

\biggr] 
and

\biggl[ 
A - \beta xI \gamma \beta xI
 - \gamma \beta xI \beta xI  - A\ast 

\biggr] \biggl[ 
\^v
\^u

\biggr] 
= iy

\biggl[ 
\^v
\^u

\biggr] 
,

which have a common eigenvalue if

(A.4)

\biggl[ 
A - xI \gamma xI
 - \gamma xI xI  - A\ast 

\biggr] 
W +W

\biggl[ 
A\ast  - \beta xI  - \gamma \beta xI
\gamma \beta xI \beta xI  - A

\biggr] 
= 0

has a nonzero solution W \in \BbbC 2n\times 2n. Separating this into two Sylvester forms to
isolate x and then vectorizing yields the generalized eigenvalue problem

(A.5) \scrB 1w = x \widetilde \scrB 2w, where \widetilde \scrB 2 = I2n \otimes 
\biggl[ 
I  - \gamma I
\gamma I  - I

\biggr] 
+ \beta 

\biggl[ 
I  - \gamma I
\gamma I  - I

\biggr] 
\otimes I2n,

\scrB 1 is defined in (6.6), and w = vec(W ). Applying Theorem 1.3 to \widetilde \scrB 2, we see that its

eigenvalues are the pairwise sums of \pm 
\sqrt{} 
1 - \gamma 2 and \pm \beta 

\sqrt{} 
1 - \gamma 2; hence it is nonsin-

gular if and only if \beta \not = \pm 1 and \gamma \not = \pm 1. Furthermore, via Lemma B.3,

(A.6) \widetilde \scrB  - 1
2 = 2\omega \phi \widetilde \scrB 2  - \omega \widetilde \scrB 32,

where \phi := (1+\beta 2)(1 - \gamma 2) and \omega := (1 - \beta 2) - 2(1 - \gamma 2) - 2. However, as \eta \rightarrow 0, \beta \rightarrow 1,

and so \widetilde \scrB 2 will become closer and closer to being singular as the algorithms progress.
This suggests that it would be better numerically to solve (A.5) as a generalized

eigenvalue problem, rather than solving the standard eigenvalue problem \widetilde \scrB  - 1
2 \scrB 1. In

terms of the number of arithmetic operations, if A is real, using divide-and-conquer
to compute the positive real eigenvalues of (A.5) only involves matrix problems with
real coefficients. The two eigenvalue problems in (A.3) also have real coefficients

when A is real. Given s \in \BbbR , y = (\scrB 1  - s \widetilde \scrB 2) - 1w can be computed by solving the
Sylvester equation (A.4) with x replaced by s and its zero right-hand side replaced
by Y , where w = vec(W ) and y = vec(Y ). In contrast, the computations for the
divide-and-conquer variant from subsection 6.3 require complex arithmetic.
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Appendix B. Some technical results.

Lemma B.1. Let \{ \gamma j\} be the iterates produced by trisection with \{ \gamma j\} \rightarrow \gamma  \star , and
suppose that trisection terminates at the kth iterate with | \gamma  \star  - \gamma k| \leq \psi \gamma  \star holding for
some given relative error tolerance \psi > 0. Then \eta k \leq (1 + \psi )\gamma  \star .

Proof. By construction, \gamma k = L+ \eta k and L \geq 0, and so \eta k \leq \gamma k always holds. If
\gamma k \geq \gamma  \star , then \psi \gamma  \star \geq | \gamma  \star  - \gamma k| = \gamma k  - \gamma  \star , which implies \eta k \leq (1 + \psi )\gamma  \star . Otherwise,
\gamma k < \gamma  \star must hold, and so it follows that \psi \gamma  \star \geq | \gamma  \star  - \gamma k| = \gamma  \star  - \gamma k > \gamma k  - \gamma  \star .

Corollary B.2. Given a fixed \psi > 0, if \eta k > (1 + \psi )\gamma  \star , then the relative error
of trisection at the kth iterate is bounded below by \psi , specifically | \gamma  \star  - \gamma k| > \psi \gamma  \star .

Lemma B.3. Let C :=
\bigl[ 
aI  - bI
bI  - aI

\bigr] 
\in \BbbC 2n\times 2n with a, b \in \BbbC , and let \beta \in \BbbC . Then the

matrix \scrD := I2n\otimes C + \beta C \otimes I2n is invertible if and only if a2 \not = b2 and \beta 2 \not = 1, where

(B.1) \scrD  - 1 = 2\omega \phi D  - \omega \scrD 3,

\phi := (1 + \beta 2)(a2  - b2), and \omega := (1 - \beta 2) - 2(a2  - b2) - 2.

Proof. First note that C2 = (a2 - b2)I2n, while using the mixed-product property
of \otimes yields

\scrD 2 = (I2n \otimes C2 + \beta 2C2 \otimes I2n) + \beta (C \otimes C + C \otimes C)
= (1 + \beta 2)(a2  - b2)I4n2 + 2\beta C \otimes C = \phi I4n2 + 2\beta C \otimes C.

Using this equivalence for \scrD 2, the formula for \scrD  - 1 is verified via

\scrD  - 1\scrD = \omega (2\phi I4n2  - \scrD 2)\scrD 2 = \omega (2\phi I4n2  - (\phi I4n2 + 2\beta C \otimes C))(\phi I4n2 + 2\beta C \otimes C)
= \omega (\phi I4n2  - 2\beta C \otimes C)(\phi I4n2 + 2\beta C \otimes C)
= \omega (\phi 2I4n2  - 4\beta 2C2 \otimes C2)

= \omega (\phi 2  - 4\beta 2(a2  - b2)2)I4n2 ,

which, by noting \phi 2  - 4\beta 2(a2  - b2)2 = \omega  - 1, is equivalent to I4n2 .

Lemma B.4. Matrix \scrQ 2 from (7.20) is singular.

Proof. Suppose that \scrQ 2w = 0 if and only if w = 0, and so\bigl[ 
0 \gamma I
0 I

\bigr] 
\otimes 
\bigl[ 
0 \gamma I
0 I

\bigr] 
w  - 

\bigl[ 
I 0
\gamma I 0

\bigr] 
\otimes 
\bigl[ 

I 0
\gamma I 0

\bigr] 
w = 0 \leftrightarrow 

\bigl[ 
0 \gamma I
0 I

\bigr] 
W

\bigl[ 
0 0
\gamma I I

\bigr] 
 - 
\bigl[ 

I 0
\gamma I 0

\bigr] 
W

\bigl[ 
I \gamma I
0 0

\bigr] 
= 0,

where the equivalence holds by unvectorizing the first equation and w = vec(W ). This
generalized Sylvester equation has a unique solution if and only if\bigl[ 

0 \gamma I
0 I

\bigr] 
 - \lambda 

\bigl[ 
I 0
\gamma I 0

\bigr] 
and

\bigl[ 
I \gamma I
0 0

\bigr] 
 - \lambda 

\bigl[ 
0 0
\gamma I I

\bigr] 
are both regular matrix pencils and have no eigenvalues in common. However, as\bigl[ 
0 \gamma I
0 I

\bigr] 
and

\bigl[ 
I \gamma I
0 0

\bigr] 
are both singular, the two pencils share zero as an eigenvalue.
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