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ALEXANDER ALLDRIDGE, JOACHIM HILGERT, AND TILMANN WURZBACHER

ABSTRACT. We study actions of Lie supergroups, in particular, the hitherto
elusive notion of orbits through odd (or more general) points. Following cat-
egorical principles, we derive a conceptual framework for their treatment and
therein prove general existence theorems for the isotropy (or stabiliser) su-
pergroups and orbits through general points. In this setting, we show that
the coadjoint orbits always admit a (relative) supersymplectic structure of
Kirillov—Kostant—Souriau type. Applying a family version of Kirillov’s orbit
method, we decompose the regular representation of an odd Abelian super-
group into an odd direct integral of characters and construct universal families
of representations, parametrised by a supermanifold, for two different super
variants of the Heisenberg group.

1. INTRODUCTION

The present formulation of the theory of actions and representations of Lie su-
pergroups does not appropriately address all relevant phenomena: Consider the
basic example of the additive Lie supergroup G of an odd-super vector space g.
The coadjoint action is trivial, so the orbit through the unique point 0 € g* is
again a point. Similarly, G has only the trivial irreducible unitary representation.
Although this confirms the idea of the orbit method in a narrow sense, there is
no hope of decomposing the regular representation of G on Og = A g* by these
means, nor can one reasonably expect thereby to construct representations of G in
any generality.

This suggests that it is crucial to broaden the notion of points. Following
A. Grothendieck, a T-valued point of a space X is a map x : T' — X. This
idea is based on considering an ordinary point as a map * — X where * is a
singleton, allowing the parameter space to acquire additional degrees of freedom.
The G-isotropy (or stabiliser) through x should then be a ‘group bundle’ G, — T,
and the orbit a ‘bundle’ G - x — T with a fibrewise G-action.

For any Lie supergroup G with Lie superalgebra g acting on a supermanifold X
and any = : T — X, we obtain the following.

Superorbit Theorem. The isotropy supergroup G, exists as a Lie supergroup over
T if and only if the orbit morphism is of locally constant rank, which is the case
if and only if the Or-module x*(Aq) is a locally direct summand of *(Tx). Here,
Ag is the fundamental distribution generated by the fundamental vector fields.

Moreover, in this case, the orbit G-x — T'x X through x ezists as an equivariant
local embedding of supermanifolds over T .
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For the special case of orbits through ordinary points, the Superorbit Theorem
was first proved by B. Kostant [31] in the setting of Lie-Hopf algebras, by C.P. Boyer
and O.A. Sdnchez-Valenzuela [12] for differentiable Lie supergroups, and by L. Bal-
duzzi, C. Carmeli, and G. Cassinelli [10] using a functorial framework and super
Harish-Chandra pairs. We recover the case of usual orbits through ordinary points
as a special case.

In the case of the coadjoint action of G on g* and of a T-valued point f of g*,
we prove the following result.

Supersymplectic Orbit Form Theorem. If G exists as a Lie supergroup, then
the coadjoint orbit G - f admits a canonical supersymplectic structure over T .

We stress that our point of view allows us to stay within the realm of even
supersymplectic forms, whereas in previous work [39,40], it was necessary to work
with inhomogeneous symplectic forms.

Furthermore, we introduce a general framework of supergroup representations
over T to extend Kirillov’s method [30] to orbits through T-valued points. As a
proof of concept, we apply this to derive a Plancherel formula for the odd Abelian
supergroup g, presenting its regular representation as an ‘odd direct integral’ of
‘unitary’ characters. In a similar vein, we construct representations for two super
versions of the three-dimensional Heisenberg group which arise by assigning suitable
parities to the generators in the commutation relation [z,y] = z. In this case, we
find ‘universal’ parameter spaces T and ‘universal’ representations over T. Not
surprisingly, these bear a striking similarity to the Schrodinger representation.

The idea that irreducible representations should be constructed from orbits on some
universal G-space is suggested by the general philosophy of geometric quantisation.
The case where this works best is that of nilpotent Lie groups, where it was estab-
lished by A.A. Kirillov in the form of his orbit method.

The goal of extending this method to Lie supergroups was first addressed by
B. Kostant, in his seminal paper [31]. In fact, as he remarks in his note [32]: Lie
supergroups are “likely to be [...] useful [objects] only insofar as one can develop
a corresponding theory of harmonic analysis”. Similarly, V. Kac [29, 5.5.4] poses
the problem of constructing Lie supergroup representations via the orbit method,
in particular infinite-dimensional ones. For nilpotent Lie supergroups through or-
dinary points, it was shown by H. Salmasian [38] (and further investigated by
Neeb—Salmasian [37]) that indeed, there is a one-to-one correspondence of coad-
joint orbits through ordinary points, i.e. through elements of gj, with irreducible
unitary representations in the sense of Varadarajan et al. [13,14].

As remarked at the beginning of this introduction, this does not yet attain the
goal of a theory of harmonic analysis for Lie supergroups, even in the Abelian case.
These limitations are overcome by considering orbits through 7T-valued points.

A framework for the study of orbits through T-valued points was formulated in
the category of schemes by D. Mumford in his influential monograph [36], based on
foundational work by A. Grothendieck and P. Gabriel. Although these ideas remain
fruitful, the algebraic theory cannot be simply transferred to the differentiable
category, and indeed the technical obstructions are formidable. At the same time,
the differentiable setting is necessary for the envisaged applications: While all Lie
groups are real analytic, any non-analytic (complete) vector field gives rise to an
action which is not analytic (much less algebraic). Such situations are ubiquitous,
particularly in the context of solvable Lie groups and their super generalisations.

A careful study of coadjoint orbits (through regular semi-simple elements) of the
orthosymplectic and special linear supergroups in the algebraic category was con-
ducted by R. Fioresi and M.A. Lledé in Ref. [21]. The first one to consider coadjoint
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orbits through non-even functionals was G. Tuynman [39,40] in the form of a case
study. His considerations are geared toward a specific example and formulated for
DeWitt type supermanifolds. It is not clear whether this can be built into a general
procedure and translated to Berezin—Kostant—Leites supermanifolds. Moreover, in
his approach, he has to consider inhomogeneous “symplectic” forms.

We conclude the introduction by summarising the paper’s contents. We present
general categorical notions for the study of actions in Section 2. We emphasize the
technique of base change known from algebraic geometry. This allows, among other
things, to give a general definition of isotropy (or stabiliser) groups at T-valued
points. In Section 3, we review categorical quotients in the setting of differentiable
and analytic superspaces and suggest a weak notion of geometric quotients. In
order to treat quotients by group actions and equivalence relations on an equal
footing, and with a view toward future applications, we introduce and employ the
language of groupoids and their quotients. In Section 4, we specialise the discussion
to supermanifolds. We prepare our discussion of isotropy supergroups at T-valued
points by generalising the notion of morphisms of constant rank to relative super-
manifolds (over a possibly singular base). We prove a rank theorem in this context
(Proposition 4.14); this is based on a family version of the inverse function theo-
rem presented in Appendix A (Theorem A.1), also valid over a singular base. We
investigate when the orbit morphism through a general point has constant rank
(Theorem 4.16) and, as an application, show the representability of isotropy super-
groups under general conditions (Theorem 4.20). This gives the existence of orbits
under the same assumptions (Theorem 4.25) and also implies that the isotropy
supergroups exist only if the orbit morphism has constant rank. This relies on a
family version of the closed subgroup theorem that we prove in Appendix B (Theo-
rem B.1). In Section 5, we construct the relative Kirillov—-Kostant—Souriau form
for coadjoint orbits through general points (Theorem 5.4). Finally, in Section 6, we
define the concept of representations over 1. We then decompose the left-regular
representation A" as a direct integral of characters and construct representations
over appropriate parameter superspaces 1  for super variants of the Heisenberg

group.
Acknowledgements. We gratefully acknowledge the hospitality of the Max-Planck
Institute for Mathematics in Bonn, where much of the work on this article was done.
We wish to thank Torsten Wedhorn for helpful discussions on module sheaves.

2. A CATEGORICAL FRAMEWORK FOR GROUP ACTIONS

2.1. Categorical groups and actions. Groups and actions can be defined quite
generally for categories with finite products. In this subsection, we recall the rel-
evant notions and give a number of examples from differents contexts, which will
serve to illustrate our further elaborations.

In what follows, let C be a category with a terminal object . For any S,T €
ObC, let C% be the category of objects in C, which are under S and over T'. That
is, objects and morphisms are given by the commutative diagrams depicted below:

S S=—=S5
| l l
X X ——Y
| l |
T T——T.

Similarly, we define the categories Cr of objects over T' and C¥ of objects under

S.
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We recall the definition of group objects and actions. These concepts are well-
known, see e.g. Ref. [34]. If X, S € ObC, then we write z €5 X for the statement
‘z : § — X is a morphism in C’. We also say ‘z is an S-valued point of X’
and denote the set of all these by X (S). This defines the object map of the point
functor X(—) of X. For a morphism f: X — Y in C and z €g X, we define
f(x) == fox. Applying this procedure to S-valued points of X for various S defines
the point functor on morphisms.

Definition 2.1 (Groups and actions). A C-group is the data of G € Ob C, such
that all non-empty finite products G x - - - x G exist in C, together with morphisms

l1=1g:x—G, i:G—G, m:GxG—G

called, respectively, the unit, the inverse, and the multiplication of G, which are
assumed to satisfy, for any S € ObC and any r,s,t €s G, the group laws

, orr i =1=r"1r (rs)t =r(st),

lr=rl=r ,

where we denote st := m(s,t) and s~! = i(s). In particular, * is in a unique
fashion a C-group, called the trivial C-group. Given a C-group G with structural
morphisms 1, i, and m, we define the opposite C-group G° to G, together with the
morphisms 1 and i, and the multiplication m°® : G x G — G, where the latter is
defined by m°(s,t) := mf(t,s) for all T € ObC and s,t €7 G.

Let X € Ob C and assume that the non-empty finite products Y7 x - - - X Y,, exist
in C, where Y; = G or Y; = X for any j. A (left) action of a C-group G in C,
interchangeably called a (left) G-space, consists of the data of X and a morphism

a:Gx X — X,
written g - © = a(g, x), for which we have

lx=z, (rs)-z=r-(s-x)

for any S € ObC, ¢ €5 X, and r,s €g G. Slightly abusing terminology, it is
sometimes the morphism a that is called an action and the space X that is called
a G-space. A G°-space is called a right G-space. An action of G° is called a right
action of G.

Remark 2.2. The data in the definition of a C-group are not independent. Given m
and 1 satisfying all above equations not involving 4, there is at most one morphism
i with the above conditions verified. Similarly, 1 is determined uniquely by m.

Since the Yoneda embedding preserves limits, a C-group is the same thing as an
object G of C whose point-functor G(—) = Homc(—, G) is group-valued. Actions
can be characterised similarly.

Ezxample 2.3. Group objects and their actions are ubiquitous in mathematics. Since
our main interest lies in supergeometry, we begin with two examples from this realm.

(i) The general linear supergroup GL(m|n) is a complex Lie supergroup (i.e. a
group object in the category of complex-analytic supermanifolds). Its functor of
points is given on objects T' by

— A B Ae GL(?’I’L, O (T)),B c Oi(T)an
GL(mn)(T) = {<C D) ‘ Ce Oi(T)nxen’D c GL(n, (’)O(T))}'

Here, we let Oy (T) = I'(Ory), k = 0,1, T’ denoting global sections and O the
structure sheaf of T', with graded parts Opg and Op 1. The group structure is
defined by the matrix unit, matrix inversion and multiplication at the level of the
point functor.
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For X = A" we have

- {()

Hence, an action of GL(m|n) on X is given at the level of the functor of points by
the multiplication of matrices with column vectors.

As another example, consider X = Grpjg m|n, the super-Grassmannian of p|g-
planes in m|n-space (where p < m and ¢ < n). For affine T', the point functor takes
on the form

a € O()(T)W”d,b S Ol(T)nX1}.

X(T)=1{Z | Z rank p|q direct summand of O(T)m‘”}.

Again, GL(m|n) acts by left multiplication of matrices on column vectors. For
general T (which need not be affine), the functor of points can be computed in
terms of locally direct subsheaves, compare Ref. [35].

(ii) In the category C of (K, k)-supermanifolds [6], where k C K and both are
R or C, consider the affine superspace G := A% with the odd coordinate 7. Then
G(T) = O1(T), and the addition of odd superfunctions gives G the structure of a
supergroup.

Let X be a manifold. The total space IIT X of the parity reversed tangent bundle
of X has the underlying manifold X and the structure sheaf Onrx = %, the sheaf
of K-valued differential forms, with the Z/27Z grading induced by the Z-grading.

The supermanifold II7°X has the point functor

T X (T) = Home (T x A%, X).

We denote elements on the left-hand side by f and the corresponding elements on
the right-hand side by f.

We may let  €r G act on f € IIT'X by defining x - f via
(z-f) T x A — X i (t,y) €p (T x A%) — f(t,y + (1)) €r X.

If X has local coordinates (z), then IIT'X has local coordinates (z%,dz?®). If
f €r IITX, then in terms of the point functor above, we have

i) = (@), fdat) = 5 (5 ).
Here, j : T — T x A% is the unique morphism over T' defined by j*(7) == 0, 7

denoting the standard odd coordinate function on A°!1,
From this description, we find that the action of G on IIT'X is the morphism

a:GxNITX —TX, d*(w)=w+ rdw.

Expanding on this example a little, one may consider the action a of (Al +)
on A’ given by dilation, i.e. of(7) = efr. This defines a semi-direct product
supergroup G’ == A! x A°', and the action a considered above may be extended
to G’ by dilating and translating in the A% argument.

In terms of local coordinates, the thus extended action is given by
a*(w) = e"(w + Tdw),

for w of degree n, compare [28, Lemma 3.4, Proposition 3.9].

(iii) Let G := A°' with its standard additive structure and X := A'l'. Then G
acts on X via a : G x X — X, defined by

a(y, (y,m) = (y +ym,m)

for all R and v € G, (y,n) €r X. In terms of the standard coordinates v on G
and (y,n) on X, we have

a'(y) =y -+, d(n)=n.
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Ezxample 2.4. Complementing our examples from supergeometry, we give a list of
examples for categorical groups and actions from different contexts.

(i) Let G be a C-group. Any X € Ob C can be endowed with a natural G-action,
given by taking a : G x X — X to be the second projection. That is, g -z ==z
forallT € ObC, g €r G, and = €r X. This action is called trivial.

(ii) Any C-group G is both a left and a right G-space, by the assignments

g-r:=gr or z-g:=2zxg,

respectively, for all T € ObC, g €7 G, and x €7 X.

(iii) Topological groups and Lie groups, and their actions on topological spaces
and smooth manifolds, respectively, are examples of categorical groups and actions.

(iv) Group schemes and their actions on schemes are examples of categorical
groups and actions as well, see [19, Chapitre II, §1.1; 36, Definitions 0.2-3].

(v) A pointed (compactly generated) topological space (W, wy) is called an H -
group, if it is equipped with based continuous maps pp: WxW — W, e : W — W
with e(W) = wyg, and j : W — W such that the following holds:

JIRe] (e,idw) >~ Uo (idw,e) ~ idw,
pro(pxidw) =~ po (idw x p), po(idw,j) =~ po (j,idw) ~e,

where ~ denotes based homotopy equivalence, cf. [1, Section 2.7]. Given a pointed,
compactly generated topological space (X, zg), its based loop space QX is a prime
example of an H-group.

In the category C of pointed, compactly generated topological spaces with based
homotopy classes of continuous maps as morphisms, an H-group together with the
homotopy classes of e, j, and u is simply a C-group. The basic theorem that the
set [X, W], = Home (X, W) of based homotopy classes has a group structure that
is natural in the variable X if and only if W is an H-group [1, Theorem 2.7.6] is
an instance of Remark 2.2.

If now (G, 1g) = (W, wyp) is an H-group and (X, zg) a pointed topological space,
then a pointed continuous map a : G x X — X is a group action in C if and only
if a(1g, ) is pointed homotopy equivalent to idx and the diagram

idg X a
>

GxGxX Gx X
uxidxl la
GxX = X

commutes up to a pointed homotopy.

(vi) In the theory of integrable systems one encounters the following situation:
(M,w) is a symplectic manifold of dimension 2n and p : M — B is a fibration
whose fibres are compact, connected Lagrangian submanifolds. Then there is a
smooth fibrewise action of T*B on M. In the above language, T*B — B is a
group in the category of smooth manifolds over B, and it acts on X = (M — B).

To see this latter fact, let m € M, b = p(m), and M, := p~1(b). The dual of
the differential of p is an injective linear map (Ty,p)* : T, B — T, M whose image
is the annihilator of T,(Mp). Since M, is Lagrangian, the musical isomorphism
W, T M — T,, M identifies this annihilator space with T, (M;). We thus have
canonical linear isomorphisms T} B — T}, (M}) depending smoothly on m. Given
v € Ty B, we obtain a smooth vector field 0 on Mj,.

It is easy to see that these vector fields extend to a commuting family of Hamil-
tonian vector fields on M, and that a linearly independent set of elements of T B
yields vector fields on the fibre M, that are everywhere independent. Since M, is
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compact, we obtain an action of the additive group of T;"B whose isotropy is a
cocompact lattice A, [26, Theorem 44.1].

2.2. Isotropies at generalised points. For many applications of group actions,
the notion of isotropy (or stabiliser) groups is essential. In the categorical frame-
work, we can consider isotropy groups through 7T-valued points, by following the
general philosophy of base change and specialisation: As we shall see, this allows
us to consider T-valued points as ordinary points in the category of objects over T',
leading to a general definition of isotropy groups.

Construction 2.5 (Base change of groups and actions). Let G be a C-group, X
a G-space and T' € ObC. We assume that the finite products T'x Y3 x --- x Y,
exist in C for any choice of Y; = X or V; = G.

Consider the category Cp. The morphism idy : " — T is a terminal object in
Cr. Non-empty finite products in Cr, provided they exist, are fibre products X
over T in C. Thus, if we denote

Gr=TxG, Xr=TxX,
then
Y)rxp-xp(Yo)r =T xYi x---xY,=Y1 x--xY,)r
exist as finite products in Cp. So it makes sense to define on Gy and Xp the
structure of a Cp-group and a Gp-space, respectively. The Cr-group structure
1=1g,:T — Gr, i=ig;:Gr — Gr, m=mgqg,:Gr xr Gr — Gr
on G is defined by the equations

1t) = (t,1), (t,g) " =1(tg™"), (t,9)(t,h) = (t gh)
for all g,h €gr G and t €g T, where we have written all morphisms in C and used

the notational conventions from Definition 2.1.
Similarly, Xt is a Gp-space via

Gr xp Xp — Xr: (t,9) (t,x) = (t,g - x)
foralger G,z ep G,and t er T.

As we have seen, groups and actions are easily defined in the full generality of
categories with terminal objects. Possibly after base change and specialisation, it
will be sufficient to consider isotropy groups only through ordinary points. Their
definition at the level of functors presents no difficulty.

We will define isotropy groups at ordinary points, passing to the general case of
T-valued points only after base change. This definition will be equivalent to the
one given in Ref. [36, Definition 0.4] in the case of schemes over some base scheme.

Definition 2.6 (Isotropy group). Let G be a C-group and X a G-space. We write
Xo = X(x) and call the elements of this set the ordinary points of X. Let x € Xj.
The isotropy at x (a.k.a. the stabiliser at x) is the functor G, : C — Sets whose
object map is defined by

Gz(R)={9€erG|yg-z=ux},

for any R € Ob C. In other words, G is the fibre product defined by the following
diagram in the category of set-valued functors on C:

Gy —— G

G

xT
* —— X.
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Here, a, : G — X is the orbit morphism defined by
(21) az(g) =gz

for all R€ ObC and g €r G.
The functor G, is group-valued. Indeed, let R € ObC. By construction, an
R-valued point g € G, (R) is just g €g G such that g-z = x. If g,h € G, (R), then

(gh) -z =g-(h-2)=g -z =z,
so gh € G, (R). Taking this as the definition of the group law on G, we see that
the canonical morphism G, — G preserves this operation. Since G(R) is a group,

so is G, (R), and this proves the assertion. In particular, if G, is representable and
the finite direct products G, X --- x G, exist, then G, is a C-group.

Although the above definition defines the isotropy group only for ordinary points,
we may use the procedure of base change from Construction 2.5 to give a satisfactory
definition of the isotropy of an action at a T-valued point, as we now proceed to
explain in detail.

Construction 2.7 (T-valued points as ordinary points). Recall the natural bijec-
tion

(2.2) Home (A4, B) — Home,. (A, Br) : f — (pa, f),

valid for any (pa : A — T) € ObCr and any B € ObC. This allows us to
consider any morphism in C from an object over T" as a morphism over 7.
Applying this to A =T = xp, we obtain in the notation of Definition 2.6

(XT)Q = Hoch (*T, XT) = HomC(T, X) = X(T)

Thus, we may consider any T -valued point x of X as an ordinary point of the base
change X7 € ObCr of X. This is one of the main distinguishing traits of our
general point of view.

Let now G be a C-group, X a G-space, and x €7 X. By Construction 2.5, G
is a Cp-group and X is a Gp-space. In particular, we obtain an orbit morphism
az : Gr — Xp in Crp, from Equation (2.1). It is the composite

idT7 .L) X idc
—_—

T><G(

idpy X (a0 o)
_—

TxXxG Tx X,
denoting the action of G on X by a, and by o the exchange of factors, i.e.
(2.3) az(t,g) = (t,g-z(t)), VterT,g€rG.

The objects T' = x7, G, and X7 in the category Cr are promoted to contravari-
ant functors on Crp. Similarly, x and a, : Gy — X7 are promoted to morphisms
of functors. We now pose the following definition.

Definition 2.8 (Isotropy functor). The isotropy functor (a.k.a. stabiliser functor)
G, = (Gr), : Cr — Sets is the fibre product defined by the diagram

G, Gr

[k

T:*T4z>XT

in the category of (contravariant) set-valued functors on Cr.

Remark 2.9. This coincides with Mumford’s definition [36, Definition 0.4] in the
case of C = Schg.

Consider now the following diagram in the category C:
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TxG

YD p X

Its limit in the functor category is the fibre product functor given on R € Ob C by

t1 =to
(T xrsx (T x G))(R) = {(thtw) Er(TXTXC)| )=y w<t2>}
= {(t.9) €r (T x G) | g-2(t) = 2(1)}.

If R comes with morphisms R — T and R — T x G in C completing the
fibre product diagram above, then we may consider R € Ob Cr via either of the
T-projections thus obtained. The above computation then gives

GI(R) = (T XTxX (T X G))(R)

Hence, the representability of the functor G, = (Gr), in Cr is equivalent to the
existence of this fibre product in C.

Ezample 2.10. Recall the notation from Example 2.3 (iii). We will investigate the
representability of the isotropy functor for different choices of points. To that end,
recall the category SSp%g = SSpg. ’ﬂifg of locally finitely generated superspaces from
Section 3 below and/or Ref. [6]. This category is finitely complete and contains
SMang = SMang i as a full subcategory. Finite limits in SMang, when they
exist, are finite limits in SSpLE.

Any point p € Xo = X(*) gives rise to pg € X(R) and we obviously have
v-pr = pgr for all v €gp G and all R € ObSSpiig. Thus, we find G, = G as
functors, so Gy, is represented by the Lie supergroup G.

By contrast, take 7' = A" with the odd coordinate 6 and define z €7 X by

2 (y) =0, z*(n) =0.
where we might as well take any other number for zf(y). That is, for any R €
SSpiig, we have
x(0) =(0,0), VOerT.
In this case, the isotropy functor G, evaluates on any R € SSpquﬂg as
Go(R) = {(0.7) € (T x G) |10 =0},

Therefore, G, is represented by the superspace

SpecKI0,9]/(67) = (+ KI[0,71/(67)),
where 6,7y are odd indeterminates. It lies over T via the morphism
p:G. — T, pB)=0.
The group multiplication works out to be
m: Gy X1 Go — Gy, mb(y) =71 + 72,
#

where 7, = p;(v). Thus, G, is a group object in SSpljig but not given by a Lie
supergroup over 7.

Definition 2.11 (Specialisation of a point). Let C be a category, T1,T2, X be
objects in C. Given two points 1 €, X and z2 €1, X, we say that x2 is a
specialisation of x if for some morphism ¢ : To, — T3 in C, the following diagram
commutes:
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T, i Ty

SN A

X.

Proposition 2.12. Let G be a C-group and X o G-space. Let x1 €, X and
o €1, X such that x4 is a specialisation of x1. Then there is a natural isomorphism

T2 XTl le = GIQ

of Sets-valued contravariant functors on Cr,.
In particular, if Gy, is representable in Cr,, then G, is representable in Cr, if
and only if the fibre product Ty X1, G, exists in C.

Proof. By assumption, we have x5 = x1 o ¢ for some morphism ¢ : 7o — T} in C.
We compute for each R € ObC and (t,g) €r Gr, that

g-22(t) = g-z1(p(1)),
so that the map (¢, g) — (¢, ¢(t), g) on R-valued points defines a natural bijection
GQCQ (R) — (TQ X1y Gml)(R)

This proves the assertion. (I

Definition 2.13 (Free G-spaces). Let G be a C-group and X a G-space. Given
a T-valued point z €7 X, the G-space X is called free at  if (Gr), is the trivial
group in the category of Sets-valued contravariant functors on Cp. It is simply
called free if it is free at any €7 X, for any T' € Ob C.

As the following corollary to Proposition 2.12 shows, it is equivalent to require
that X be free at the generic point x = idx €x X.

Corollary 2.14. Let G be a C-group and X a G-space. Assume that X is free at
the generic point x = idx €x X. Then X is free.

2.3. Quotients and orbits. In this subsection, we introduce basic facts and ter-
minology relating to quotients and orbits. Although we are mainly interested in
quotients by group actions, we shall need a general statement on quotients by equiv-
alence relations for our applications (see Proposition 4.22, which is applied in the
proof of Proposition 4.23).

In order to be able to treat quotients by group actions and equivalence rela-
tions on the same footing, the language of groupoids, introduced to this context by
P. Gabriel [23, § 1], has proved to be convenient. Moreover, applications in forth-
coming work actually rely on this generality. We briefly recall the main definitions
and give a number of motivating examples before going into the applications. In
what follows, we let C be a category with all finite products.

Definition 2.15 (Groupoids). Let X € ObC. A C-groupoid on X isa ' € ObC,
together with morphisms s, : I' — X—called source and target—such that all
finite fibre products

MW =T xxDxx - xxT=TxoxsT Xoxi XextT
exist, and morphisms
1: X —7T, i:I'—T, m:T® _—>r

—where the first and third are over X x X (where we counsider X as lying over
X x X via Ax and T as lying over X x X wvia (¢, s)) and the second is over the flip
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0:X x X — X x X—such that the following diagrams commute:

[(3) mxx idr(z) I(l ot) xx i‘f(z) r s X r (id, 4) @
id x x ml lm idxx (10 S)l \ lm (4, id)l l1 t lm
re—-rw re—-rw re——r X —— T

A morphism ¢ : X — Y in C that coequalises s and t, i.e.
pos=wot:I' —Y

will be called I'-invariant.
A subgroupoid of T is a monomorphism j : IV — T with the induced source and
target morphisms, such that 1, i 0 j, and mo (j X x j) factor through j.

Ezxample 2.16. We will need the following three simple examples of groupoids.

(i) Let G be a C-group and X be a G-space with action morphism a. Then
I' = G x X is a C-groupoid over X, called the action groupoid of a. Its structural
morphisms are

s=py:I'—X, ti=a:T—X, 1:=(g,idx): X —T,
as well as the inversion 7 and multiplication m defined by
’L(g,l‘) = (g_lag . ZC), m(glvxng) = (91927x)7 vgvaQ Sl va €T X7

respectively. Here, we identify I'® = G x X x G wvia the morphism induced by
dr xp:I'xI' -G x X xG.

(ii) Let X € ObC. Then I' := X x X is a C-groupoid over X, called the pair
groupoid of X. Its structural morphisms are

s=p,t=p:I'— X, 1=Ax:X—T,
as well the inversion ¢ and multiplication m defined by
z(x,y) = (yaw)a m(x,y,z) = (.Z‘,Z), Vr,y,z €r X,
respectively. Here, we identify I'® = X x X x X via the morphism induced by
dpr Xpg :I'xT'— X x X x X,
(iii) Let X € Ob C. By definition, an equivalence relation on X is a subgroupoid
R of the pair groupoid of X. This definition, in the categorical context, seems to

be due to P. Gabriel [23, §3 ¢)]. Almorox [9, Definition 2.1] was the first to adapt
this definition to the case of supermanifolds.

We now recall the notion of categorical quotients [36, Definition 0.5]. Although
Mumford does not use the language of groupoids introduced above, the definition
immediately extends to this case.

Definition 2.17 (Categorical quotients). Let X € ObC and I" be a C-groupoid
on X. A morphism 7 : X — @ is called a categorical quotient of X by I' if it is
universal among I'-invariant morphisms. That is, the morphism 7 is I'-invariant,
and for any I'-invariant morphism f : X — Y, where Y € Ob C, there is a unique
morphism f : Q — Y such that the following diagram commutes:

X —"->Q

N

Y.

By abuse of notation, we also say that @ is a categorical quotient (of X by T').
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We say that 7 : X — @ is a universal categorical quotient if for all morphisms
Q' — Q, the fibre products X' := Q' xg X and I'" := (Q' x Q') xgxq I exist, and
7' =Q xgm: X — Q' is a categorical quotient of X’ by I".

We use the notation X/T' for categorical quotients. In case I' is the action
groupoid for the left (respectively, right) action of a C-group G, we write G\X
(respectively, X/G) for the categorical quotient (if it exists).

We now apply these notions to pointed spaces, to arrive at a definition of orbits.
At this point, we have to depart from Mumford’s definitions [36, Definition 0.4],
since the notion of scheme-theoretic image does not apply to the setting of C*°
differentiable supermanifolds that we are primarily interested in.

For any category C with a terminal object *, we define the category C* of pointed
spaces to be the category of objects and morphisms under *. We denote the objects
* — X in this category by (X, x).

Definition 2.18 (Categorical orbits). Let G be a C-group and X be a G-space.
Let x €7 X, where T' € Ob C is arbitrary. Assume that G, is representable in Cr.
Being a group object in that category, it is naturally pointed by the unit. Since
the unit acts trivially, we have a right G -action on Gr in (Cr)*. If it exists, the
categorical quotient 7, : Gp — Gr/G, in (Cr)* is called the categorical orbit
of G through z, and denoted by 7, : G — G - z. If the quotient is universal
categorical, then we say that the orbit is universal categorical.
The space Xt is pointed by

xr = (idp,z) : T — X,

and by definition, G, acts trivially on xr, so if the categorical orbit exists, there
is a unique pointed morphism a, : G - * — X7 over T such that a, o 7, = a,. In
order to avoid cluttering our terminology, we also refer to a, as the orbit morphism
of x. Also, by definition, the categorical orbit G - x is pointed in Crp, so that it
comes with a section T — G - x whose composite with a, is . We call this section
canonical and will usually also denote it by z.

We now spell out in detail what the definition given above of an orbit through a
T-valued point is. Let G be a C-group, X a G-spacein C, T € ObC, and x €7 X.
Assume that G, is representable in Cr. As we have seen above, this means that
the fibre product

Gz =T x7xx (T x Q)

exists in C. So we have in C a fibre product diagram

G, —— T xG

l (idp, z) J

T ——TxX.

Recall that we are working under assumption that finite products exist in C.
Then G - z, provided it exists in (Cr)*, is characterised as follows: For every G-
invariant morphism f, which fits into a commutative diagram as depicted on the
left-hand side of the display below, there is a unique morphism f completing the
right-hand diagram commutatively:

(idT"l)/T\yA /T\?ﬁ
rxa L sy .. 2 sy

| |
\TA/ \TA’
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In other words, for any such 7', the set of pointed morphisms G-z — Y in
Cr is in natural bijection to the set of morphisms f : Gy — Y, which satisfy the

conditions:
f(t,1) = y(t),
pY(f(ta g)) t,
h-x(t) = z(t) = f(t,gh)= f(t,g)

for all R € ObC, g,h €gr G, and t €g T. Here, we recall that the equation
h - z(t) = x(t) characterises the R-valued points (¢, h) of G,.

Universal categorical orbits carry a natural action.

Proposition 2.19. Let G be a C-group, and (X, x) a pointed G-space in C. If the
G-orbit G - x exists and is universal categorical, then the morphism

mom:GXxG—G-x

induces an action of G on G - x. It is the unique action of G on G - x for which
7wy : G — G - x is G-equivariant. Moreover, the canonical point x© : * — G - x of
G - x is invariant under the action of G.

Proof. By assumption, G - = is universal categorical, so the base change
idxm, :GxG— Gx(G-x)

along the projection G X G - x — G - z is a categorical quotient in C, for the
groupoid

I'=GxTI'=GxGxGy
derived from I' = G x G,. In particular, id x 7 is an epimorphism. Applying the
base change for a further copy of G, we see that so is id x id x 7.

Consider the multiplication m of G. We have
T2 (m(g1, 92h)) = T2 (g192h) = 74 (9192) = Ta(m(g1, g2))
forall R€ ObC, g1,92 €r G, and h €r G,. It follows that
(p1, 7o om):Gx G — Gx (G-x)

is IV-invariant, and hence, there is a unique morphism

aGg:Gx(G-2) — G-z

such that ag.; o (id X 7;) = 7, o m. In particular, 7, will be G-equivariant and
ag. uniquely determined by this requirement as soon as we have established that
it indeed is an action. To do so, we compute

ag.z © (id X ag.,;) o (id x id X 7,,) = ag., o (id X (7, om))

=m, omo (id X m)

=m, omo (m x id)

=ag.g 0 (m X my)

=ag.y o (m xid)o (id x id X ),
which shows that

ag.. o (id X ag.) = ag.z o (m x id),
since id X id X 7, is an epimorphism. Similarly, one has
ag.z o (1 xid) = idg.4-

Hence, ag., is an action for which 7, is G-equivariant. We will denote it by -, as
for any action.
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Finally, we verify the claim that = is G,-fixed. By construction, 7, is pointed,
so that 7, (1) = z. For h €r G, we compute, by use of the left G-equivariance and
right G -invariance of 7., that

h-z=h-m;(1) =my(h-1) =7m,(h) = 7,(1) = 2.
This completes the proof of the proposition. O

Ezample 2.20 (Examples of orbits). Returning to the groups and actions from
Example 2.4, we explain the notion of isotropy groups and orbits in these cases. In
items (i) and (ii) below, let C denote a category such that all finite products exist.

(i) Let G be a C-group acting trivially on X € ObC. Then for all  : T —
X and R € ObC, we have G,(R) = Gr(R). Thus, the isotropy functor G,
is represented by G = T x G. Here, the morphism nm, = p; : Gr — T is a
universal categorical orbit, as can be seen as follows: 7, is invariant with respect
to the action groupoid I' coming from the right Gr-action on Gr. Given any I'-
invariant morphism f : Gp — Y with Y over T, it uniquely factors over m, to

f = fo (ldT X 1g)

Furthermore, given ) — T, the fibre product Q@ xr G = G exists. Moreover,
Q X7 my =idg x p1: Gg =+ Q = @ x7 T is a categorical quotient by the above,
since (@ X Q) xrxr I is the action groupoid for the right Gg-action on Gg.

(ii) Assume given a C-group G, viewed as a left G-space via left multiplication.
For T € ObC and z €7 G, we have

Ge(R) ={(t,9) €r Gr | g-z(t) =a(t)} = {(t,1c(t)) | t er T} = T(R).
Thus, G is represented by T'. Defining 7, by idg, : Gr — @ = G, we obtain
for any Y and any Grp-invariant f : Gr — Y a unique factorisation f’ := f. Thus,
mr : Gp — @ is the categorical quotient of Gp with respect to the G -action. In
other words, it is the categorical orbit of G through .

Furthermore, given Q' € ObC and Q' — @, we have Q' xg Gr = @’ and
Q' xoT' = Q' xg Gr = Q. The projections id'Q x @ s and idb X @t are the identity
of Q', so that Q' x¢ m; = idg- is the categorical quotient of Q' (the space) by Q’
(the groupoid). It follows that 7, : G — Gr is a universal categorical orbit.

(iii) Let a continuous or smooth action a : G x X — X respectively, of a
topological group or Lie group on a topological space or a smooth manifold be
given. The isotropies at x € Xy = X (x) = X are represented by the obvious set-
theoretic isotropy groups, endowed with the subspace topology coming from the
inclusion into G. Since these isotropies are closed, they are notably Lie subgroups
in the smooth case.

Both in the topological and the smooth case, a categorical orbit through such
an x is represented by the set of right cosets with respect to the isotropy group G,
with its canonical structure of topological space or smooth manifold, respectively.
For the rest of this example, let us focus on the topological case.

Then we can consider arbitrary continuous maps x : T' — X, defined on some
topological space T and observe that

Ge={(t,9) €Gr | g € Gugry}

with the subspace topology from T' x G. We may define an equivalence relation ~
on Gt by
(t,g)~(t.g) = t=t,g-a(t) =g -2()
The quotient space @ := X/ ~ with the canonical map 7, : Gp — @ satisfies the
universal property of the categorical orbit of G through z.
If 7, is an open map, then it is already an universal categorical orbit. Indeed,
in this case, for any Q' — @Q, the projection p1 : Q' xg Gr — Q' is open and
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in particular a quotient map. The map 7, is open in case T = %, which is the
situation studied classically. In general, however, this fails to be true, as one may
see in the following example: Let G = (R,+), T := R, and X = R?. Define the
action by
g-(t,s) = (t,tg +s)

and set ¢ : T — X, z(t) = (£,0). Then G; = (0 xR)U(R* x0) and the projection
Gr — Gr /G, is not open, as the saturation of an open set U C G containing
(0,0) is (R x 0) UU, which is open only if R x 0 is already contained in U.

The smooth case is more subtle, since in general, the isotropy G, might not
exist as a smooth manifold over T'. In Section 4, we study these questions for the
category of supermanifolds. A fortiori, these apply to ordinary manifolds.

(iv) The existence question for isotropies and orbits in the homotopy category
of pointed topological spaces leads immediately to subtle questions concerning ho-
motopy pullbacks and homotopy orbits. We do not dwell on these matters here.

(v) From the description of the action of T*B on M in Example 2.4 (vi), it
follows immediately that for any b € B, the action of 7B on the fibre M, is
transitive and the orbits are n-dimensional real tori. Furthermore, the isotropy is a
cocompact lattice Ay, in Ty B, depending smoothly on b, ¢f. [26, Theorem 44.1]. The
union of the Ay is the total space a smooth Z™-principal subbundle A of T*B — B.

The traditional description underlines the ensuing action-angle coordinates: Ac-
tion for the base directions of B, angle for the fibre directions (compare the detailed
analysis of Duistermaat [20]). In the terminology introduced above, we find that the
isotropy of the generic point x = idx : T'= X — X is the subgroup G, = M xp A
OfGT =M XB T*B.

By our results below (Theorem 4.20 and Theorem 4.25), the orbit

G'SC:GT/Gz:(MXBT*B)/(MXBA)

exists as a universal categorical quotient in the category of manifolds over M.
Moreover (loc. cit.), it coincides with the image of the orbit morphism a,, which is
a surjective submersion. Hence, we have G - x =2 M x g M as manifolds over M.

3. GROUPOID QUOTIENTS OF SUPERSPACES

We now apply the general setup of Section 2 to the categories of locally finitely
generated superspaces and of relative supermanifolds constructed in Ref. [6]. We
will start by recalling some basic definitions, referring to this paper for more details.

We fix a field K € {R, C}. The category SSpy has as objects pairs X = (Xo, Ox)
where X is a topological space and Ox is a sheaf of K-superalgebras with local
stalks. Such objects are called K-superspaces. Morphisms ¢ : X — Y are again
pairs (o, ¢!) where this time, ¢ : Xg — Yj is a continuous map and ¢# : Oy —
(¢0)+Ox is a local morphism of K-superalgebra sheaves.

If S is a fixed K-superspace, the category of objects and morphisms in SSpg
over S will be denoted by SSpg. Objects are denoted by X/S and morphisms by
p: X/S—Y/S.

Now we fix a subfield k of K containing R and a ‘differentiability’ class w €
{o0,w}. Here, co means ‘smooth’ and w means ‘analytic’ (over k). We consider
model spaces adapted to these data. Namely, let a finite-dimensional super-vector
space V' = V5 @ Vi over k be given, together with a compatible K-structure on
V7. Then we may consider on the topological space Vg the sheaf C‘?ﬁ of K-valued
functions of differentiability class w. We set

A(V) = (V5,CF @ A(V1)*)

and call this the affine superspace associated with V. It depends on the data of
(K,k, @), but we will usually omit them from the notation.
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By definition, a supermanifold over (K, k) of class CZ is a Hausdor{f K-superspace
X which admits a cover by open subspaces which are isomorphic to open subspaces
of affine superspaces. We will usually just say that X is a supermanifold. The full
subcategory of SSpy comprised of these objects with be denoted by SMang.

In the literature, the case K = k = R corresponds to (smooth or real-analytic)
real supermanifolds [15, Definitions 3.2.1 and 4.2.1; 33, 3.1.2], and the case K = k =
C corresponds to (holomorphic) supermanifolds [15, Definition 4.8.1; 35, Chapter
4, §1, Definition 1]. In the case of K = C and k = R, supermanifolds are also known
as ‘cs manifolds’ [18, §4.8]. We take this opportunity to replace this unfortunate
terminology with a hopefully less confusing one.

In Ref. [6], we construct a full subcategory SSpié = SSp]K w.lfe of SSpi that
admits finite fibre products and contains SMangk as a subcategory closed under
finite products. Here, ‘lfg’ stands for ‘locally finitely generated’ For any S €
Ob SSp1 €. the category of objects and morphisms over S in SSp]K will be denoted
by SSpSg. Given any super-vector space V as above, we define Ag(V) = S x A(V)
(where the product is taken in SSplfg) Using these as model spaces, we arrive at a
definition of supermanifolds over S, compare op. cit. We denote the corresponding
full subcategory of SSpgg by SMang. Note that this now makes sense for a wide
class of singular base spaces S and, moreover, that, contrary to the setting of
schemes, it would not be appropriate to instead consider products in SSpg, as
already the embedding SMang — SSpyi does not preserve products. For this
reason, the use of the intermediate category SSp]K is essential.

3.1. Geometric versus categorical quotlents In what follows, fix S € SSplfg

and let C be a full subcategory of SSpS admitting finite products. Particular
cases are C = SSplfg and C = SMang, by [6, Corollaries 5.27, 5.42]. Furthermore,
let X € ObC and I' be a groupoid over X in C.

Proposition 3.1. The coequaliser m : X — @ of s,t : I' — X exists in SSpg
and 1is reqular in the sense of [6, Definition 4.12]. If @ € ObC, then Q is the
categorical quotient of X by T.

Proof. The existence and regularity of @ is immediate from [6, Propositions 2.17,
5.5]. By definition, the morphism 7 : X — @ is a coequaliser in SSpg. But since
C is a full subcategory of SSpg, SSp being full in the latter, ) is the coequaliser
of s,tin Cif Q € Ob C, and thus has the properties required by Definition 2.17. [

Remark 3.2. We can describe the colimit @ of s,¢ : I' — X explicitly. Indeed,
by [6, Remark 2.18], Oq is the equaliser in the category Sh(Qo) of sheaves on Q,
defined by the diagram

# #

Og —— 7. Ox S:ni (7o © 50)+Or.
t

Moreover, since the embedding of SSpg in SSp preserves colimits, one may see
easily that Qg is the coequaliser of sg,tg : ['¢ — Xy, i.e. the topological quotient
space of X by the equivalence relation generated by so(y) ~ to(7).

Ezample 3.3. Recall the action from Example 2.3 (iii) and the T-valued point z from
Example 2.10. Recall that the isotropy supergroup G, is in this case representable
by the group object
Go = SpecK[0,7]/(67), p(0) =0, m*(y) =m+72, 1%(7) =0
in SSpT , where 6,y are odd indeterminates. In particular, it lies in (SSplfg) .
Let € be an even indeterminate and define

Q = SpecK[e|]/ (2, O¢).
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We then have morphisms

pQ : Q — Ta pﬁQ(e) = 97 q: T— Qa qﬁ(‘g) = 05 qﬁ(e) = 9
The morphism
0) =0, 7(e) =0~

is in the category (SSp;{g)*. We claim that 7, : G — @Q is the categorical orbit
of G through x.

To establish this claim, let b : G X7 G, — Gr denote the action by right
multiplication of the isotropy, i.e. b#(y) = 71 + 72. We compute

(w2 0 0)*(e) = bH(07) = O(n +72) = 071 = P}(07) = (w2 0 p1)F(e)
so 7, is indeed Gi-invariant. If f is a function on G7, then
f="Jfo+ fol + f+7 + for 07
where f, € K for a« = 0,6,,0v. Then
V(f) = L) = fore,
so f is Gz-invariant if and only f, = 0. In this case,
f=malf)s f=fot fob + fore,

and f is unique with this property. It is easy to conclude that 7w, : Gy — @ is the
categorical quotient of G by G,, and thus the claim follows. Notice that G-x = Q
is not a supermanifold over T

7 :Gr — Q, =t

x

Definition 3.4 (Weakly geometric quotients). The coequaliser 7 : X — @ of
s,t : I' — X is called a weakly geometric quotient of X by I' if Q € ObC. We
say that m: X — @ is a universal weakly geometric quotient if for all morphisms
Q' — @, the fibre products X' = Q' xg X and I" = (Q' x Q') Xgxq I exist in
C,and 7 = Q' xgm: X' — Q' is the weakly geometric quotient of X’ by I".

Remark 3.5. The terminology is justified as follows: If G is a group scheme acting
on a scheme X, then a morphism 7 : X — @ is called a geometric quotient of X
by G if it is the coequaliser of ps,a : G x X — X in the category of locally ringed
spaces, and in addition, the scheme-theoretic image of (pz,a) : G x X — X x X
is X x¢g X, see [36, Definition 0.6].

In terms of the above terminology, we may rephrase Proposition 3.1 as follows.
The result is a generalisation of [36, Proposition 0.1].

Corollary 3.6. Let the (universal) weakly geometric quotient Q of X by T exist in
C. Then Q is the (universal) categorical quotient of X by T in C.

4. EXISTENCE OF SUPERORBITS

In this section, we will derive general sufficient conditions for the existence of
isotropies at and orbits through generalised points in the category SMang of su-
permanifolds over S, where in what follows, S will denote some object of SSpiig.

The material is organised as follows: In Subsection 4.2, we discuss at length
the notion of morphisms of constant rank basic for our considerations. In partic-
ular, we characterise precisely when the orbit morphism of a generalised point is
locally of constant rank. Subsequently, in Subsection 4.3, we study the isotropy
of a supergroup action at a generalised point. This leads, in Subsection 4.4, to a

characterisation of the existence of orbits through generalised points.
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4.1. Tangent sheaves of supermanifolds over S. We briefly collect some defi-
nitions and facts concerning tangent sheaves. These are totally classical if S is itself
a supermanifold.

Definition 4.1 (Tangent sheaf). Let px : X — S and py : Y — S be super-
spaces over S and ¢ : X/S — Y/S a morphism over S. Let U C X, be open. An
p}}OOS-linear sheaf map

vy Oyl — Oxlu

will be called a vector field along ¢ over S (defined on U) if v = vg + vy where
vi(f9) = vi())e*(9) + (1) H (f)ui(g)

for all i = 0,1 and all homogeneous local sections f, g of p}}OOle.

The sheaf on X whose local sections over U are the vector fields along ¢ over S
defined on U will be denoted by Tx/s—y/s or T,.x/s—y,s if we wish to emphasize
. It is an Ox-module, and will be called the tangent sheaf along ¢ over S. In
particular, we define Tx,g = Tiay.x/s—x/s and Tx = Tx/s, the tangent sheaf of
X over S and the tangent sheaf of X, respectively.

Let 7 be an even and 6 an odd indeterminate. Whenever X is a K-superspace,
we define

X[r0] = (Xo, OX[T|9]/(7'2,79)).
There is a natural morphism (+)|,=g—¢ : X — X[7|0] whose underlying map is the
identity and whose pullback map sends 7 and 6 to zero.

Lemma 4.2 (Superderivations and super-dual numbers). Let X/S and Y/S be
superspaces over S and ¢ : X/S — Y/S be a morphism over S. There is a
natural bijection

{¢ € Homgs (X[7|0],Y) | ¢lr=p=0 = ¢} — D(Tx/s—yys) : ¢ — v

given by the equation

(4.1) ¢ (f) = ¢H(F) + 7o (f) + O (f) (72, 70)
for all local sections f of Oy . Symbolically, we write
d¢(f) 99*(f)
Uo(f)—T and vi(f) = 90
Proof. Since X|[r]6] is a thickening of X [6, Definition 2.10], the underlying map of
¢ is fixed by ¢g = pg. The assertion follows easily. O

Definition 4.3 (Infinitesimal flow). Let v € I'(Tx/s—y/s). The unique morphism
¢V € Homg(X|[7]0],Y), such that ¢|,—p—0 = @, associated with v vie Lemma 4.2,
is called the infinitesimal flow of v.

The infinitesimal flow construction allows us to introduce for each fibre coordi-
nate system a family of fibre coordinate vector fields.

Construction 4.4 (Fibre coordinate vector fields). Let S € SSplfg and X/S be

in SMang with a global fibre coordinate system z = (z%).

By [6, Propositions 5.18, 4.19, Corollary 5.22], we have X[0|7] € Ob SSp , and
there are unique morphisms ¢® € Homg (X [7]6], X) such that

" x? + 78, for |z¢| =0,
o) =1, oY
2’ + 68, for |z% =1

Evidently, we have (¢%|;—s—0)*(2?) = 2°, and hence ¢®|,—g—o = idx.
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On account of Lemma 4.2, the morphisms ¢® are the infinitesimal flows of unique
vector fields over S, denoted by a%a € I'(Tx/s). We call these fibre coordinate vector
fields and simply coordinate vector fields in case S = .

Observe that the meaning of each individual aia depends on the entire fibre

coordinate system (2%), and not only on the coordinate x%.

As we shall presently see, the coordinate vector fields give systems of generators
for the relative tangent bundle.

Proposition 4.5 (Coordinate expression of vector fields). Let S be in SSp]lég, X/S

be in SSpgg, Y/S be in SMang, and ¢ : X/S — Y/S be a morphism over S. Let
(y*) be a local fibre coordinate system on an open subset V.C Yy. Let U C Xq be
an open subset, such that po(U) CV, and v € Tx/s—y;s5(U). Then

(4.2) v= Za v(y®) ¢ o 62“'

In particular, we have
TX/S—>Y/S = w*(TY/S) =0Ox ®¢;10Y <P0_1TY/S7

and this Ox-module is locally free, of rank vk, Tx;sy/s = dimg ,@) Y for z €
Xo.

Proof. We may assume that (y®) is a globally defined fibre coordinate system.
Define the vector field v" € ¢*(Ty,s)(U) € Tx/s-y/s(U) by

V= o) eho

Let ¢ and ¢’ be the infinitesimal flows of v and v’, respectively. For any index a,
we have v/(y®) = v(y®), and hence ¢ (y*) = ¢'*(y*). This implies that ¢ = ¢', by
reason of [6, Propositions 5.18, 4.19, Corollary 5.22]. Hence, we have v’ = v.

oy’

In particular, the vector fields ¢f o 62@ form a local basis of sections of Tx,s__,y/s,
and this readily implies the remaining assertions. (I

Corollary 4.6 (Local freeness of Tx,5). Let S € SSp]lég and X/S € SMang.
Then Tx s is locally free, with vk, Tx;s = dimg . X, for x € Xo.

A special case of the above concerns the relative tangent spaces.

Definition 4.7 (Tangent space). Let p = px : X — S be a superspace over S. For
any point z € Xy we let mx , be the maximal ideal of Ox , and s(x) := Ox 5 /mx 4.
Setting s == px o(x), we define

TZ(X/S) = wos,s (OX,Z’ %(.T)),

the Z-span of all homogeneous v € Homoy , (Ox,z, 5#(x)) such that

(4.3) v(fg) = v(f)g(x) + (=D f (2)o(g).

This is naturally a super-vector space over »(z), called the tangent space at x over
S. For S = %, we also write T,,X. The elements are called tangent vectors (over
S).

As is immediate from the definitions, the tangent space coincides with the tan-
gent sheaf over S along the morphism (x, »(x)) — X.

Corollary 4.8 (Dimension of Ts,X). Let S € SSpiég, X/S be a supermanifold
over S, and x € Xo. Then dimg Ts , X = dimg , X.
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Definition 4.9 (Tangent morphism). Let ¢ : X/S — Y/S be a morphism of
superspaces over S. We define the tangent morphism

Toss = Txys — Tx/s—vys

by setting

Tos(v) =vo gt

for any locally defined vector field v over S. In view of Proposition 4.5, if Y is in
SMang, then the range of 7,5 is in ¢*(Ty,g).
Similarly, we obtain for any x € Xy a tangent map

by setting
Ta(0/S)(v) = vo ¢l
for any tangent vector v over S.

4.2. Morphisms of constant rank. In order to handle supergroup orbits through
T-valued points, we will need to understand morphisms of locally constant rank in
the setting of relative supermanifolds. Already for ordinary supermanifolds, the
notion is somewhat different from the standard one used for manifolds. The correct
definition was first given in [33, 2.3.8].

For our present purposes, it is useful to state this in a more invariant form. We
need the following definitions and facts, which are more or less standard.

Definition 4.10 (Conditions on module sheaves). Let £ be a sheaf (of Z-modules)
and I = (I, I;) a graded set, i.c. a pair of sets. We write £ for the direct sum
®;, € @ D, € with its natural Z/2Z-grading.

Let X be a superspace and F an Ox-module (understood to be graded). We say
that £ is locally generated by sections if any x € Xy admits an open neighbourhood
U C Xp and a surjective morphism of Ox |y-modules (Ox|y)) — &y for some
I. If I can be chosen to be finite for any x, we say that £ is of finite type.

Proposition 4.11. Let X be a superspace and ¢ : € — F a morphism of Ox-

modules, with £ of finite type and F finite locally free. For x € Xy, we define
E(x) =&y /mx &y

For every x € Xg, the following are equivalent:

(i) The »(x)-linear map defined below is injective:
(p(.%') = P ®0X,m id%(m) : g(‘r) — ]:(‘T)

(ii) For some open neighbourhood U C X of x, the morphism @|y is injective
and the Ox|u-module (F/im )|y is locally free.

(iil) For some open neighbourhood U C X of x, p|y admits a left inverse.

(iv) There exist an open neighbourhood U C Xo of x and homogeneous bases of
sections for €|y and Fly, such that the matriz M, of ¢ is

A 0 1 0 10
(0 p) 4= (o0) 2=(00)
The set of all those © € Xy where this holds is open. Moreover, in this case, & is

locally free on an open neighbourhood of x.

Proof. The equivalence of (i)—(iii) follows from [25, Chapitre 0, Proposition 5.5.4],
and the equivalence with (iv) can be seen from its proof. O

Proposition 4.11 suggests the following definitions.
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Definition 4.12 (Morphisms of constant rank). Let X be a superspace and ¢ a
morphism & — F of Ox-modules. We say that ¢ is split if F/im ¢ is locally free.

Let f: X/S — Y/S be a morphism of superspaces over S and z € Xy. We say
that f is of locally constant rank over S at x if for some open neighbourhood U of
x, the tangent map

Tpss : Txyslo — (f*Tyys)lu

is a split morphism of Ox|y-modules. We say f is of locally constant rank over S
if it is of locally constant rank over S at = for any = € Xj.

Corollary 4.13. Let f : X/S — Y/S be a morphism over S and x € Xy,
where X/S € SSpgg and Y/S is a supermanifold over S. Then the following are
equivalent:

(i) The morphism f has locally constant rank over S at x.
(ii) For every x’ in a neighbourhood of x, the map

(m Ty s)(a') —> (FTyss)(@') = Tpy(ay (Y/S)

induced by the inclusion im Ty, — f*(Ty,g) is injective.
(iii) There exist an open neighbourhood U C Xo of x and homogeneous bases
of Txyslu and f*Tys|lu such that the matriz M of Ty/s|u has the form

w0 n) 4= o) 2=6)

Proof. Locally, X admits an embedding into a supermanifold Z/S over S, so that
locally, Tx/s injects into Tx/s—z/s, which is finite locally free by Proposition 4.5.
Hence, Tx/g is of finite type. By the same proposition, f*(7y,g) is finite locally
free. Therefore, the assumptions of Proposition 4.11 are verified, which proves the
assertion. (I

With the above definition and corollary, we generalise the rank theorem [33, The-
orem 2.3.9, Proposition 3.2.9] in two respects: First, one may consider superman-
ifolds and morphisms over a general base superspace S. Secondly, we show the
regularity not only of fibres, but also of the inverse images of subsupermanifolds of
the image.

Proposition 4.14 (Rank theorem). Let X/S and Y/S be in SMang, and let
f:X/S — Y/S be a morphism of locally constant rank over S. Then the following
statements hold true:

(i) For any x € X, there is an open subset U C Xy, so that the morphism f|uy
factors as flu = jop. Here, j:Y'/S — Y/S is an injective local embedding of
supermanifolds over S and p: X|y /S — Y'/S is a surjective submersion over S.

Moreover, we may take Y' = (Yy,Oy~), where Y] = fo(U), endowed with the
quotient topology with respect to fo, and Oy: = (Oy/J)ly;, T = ker f4. The
morphism j is given by taking jo equal to the embedding of Yy into Yy, and Gt the
quotient map with respect to the ideal J .

(i) If f' + X'/S — Y/S is an embedding of supermanifolds over S with
Fo(X}) C fo(Xo) and ideal T O T, then the fibre product X' xy X exists as
a supermanifold over S, and the projection ps : X' Xy X — X is an embedding
over S. We have

(4.4) dims(X/ xy X) = dimg X' 4+ dimg X — dimg Y.

The supermanifold Y'/S over S constructed in item (i) is called the image of
flu. For the assertion of item (ii) to hold, it is sufficient to assume that f has
locally constant rank over S at any x € f5 ' (f5(2")), for any 2’ € X}).
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Proof. The statement of (i) is well-known in case S = * [33, Theorem 2.3.9], in
view of Corollary 4.13. By Theorem A.1l, the inverse function theorem holds over
a general base. Thus, by Corollary 4.13, the proof of the rank theorem carries over
with only incremental changes to the general case.

As for (ii), the assumption clearly implies that f’ factors through j to an embed-
ding p' : X'/S — Y’/S over S. Since p is a submersion over S, the fibre product
X' xys X exists, and has the fibre dimension stated on the right-hand side of (4.4).
(See [33, Lemma 3.2.8] for the case of S = %, the proof of which applies in general,
appealing again to Theorem A.1 and its usual corollaries.)

Since j is an injective local embedding, it is a monomorphism, and it follows
that X’ xy~ X is actually the fibre product of f’ and f. We have a commutative
diagram

of morphisms over S such that the left upper square is a pullback whose lower row
is an embedding. In particular, ps g is injective. The image of ps ¢ is the locally
closed subset f ' (f5(X{)) of Xo.

To show that this map is closed, we shall show that it is proper. Let K C X be
a compact subset and L = pg_l(pO(K )), which is a compact subset of X{. Then
pg(l)(K) is a closed subset of (X' xy X)o = Xj xy; Xo whose image in X x X is
contained in L x K. Thus, p, é(K ) is compact and ps o is proper, hence closed by
[11, Chapter I, §10, Propositions 1 and 7]. Moreover, pg is a surjective sheaf map.
Hence, ps is an embedding. (I

Remark 4.15. From the relative inverse function theorem (Theorem A.1), it is clear
that the usual normal form theorems hold for submersions and immersions over S.
Therefore, the converse of Proposition 4.14 holds: Any morphism f : X/S — Y/S
which factors as f = j o p where p is a submersion over S and j is an immersion
over S has locally constant rank over S.

4.3. Isotropies at generalised points. In what follows, fix a Lie supergroup
G (i.e. a group object in SMang) and an action @ : G Xx X — X of G on a
supermanifold X. Let T € SSp]lég and z €7 X be a T-valued point. We recall from

Equation (2.3) the definition of the orbit morphism through x,
az: Gr/T = (T x G))T — X7/T = (T x X)/T,
by

am(t,g) = (taa(gam(t))) = (tag ’ x(t))’ V(t,g) €r Gr,

and for any R € SSpl]ég. When T = x is the singleton space, i.e. x € Xg is an

ordinary point, then a, : G — X is the usual orbit morphism [15, Definition
8.1.4].

Let g be the Lie superalgebra of G, i.e. the set of left-invariant vector fields
on G. This is a Lie superalgebra over K. For v € g, let a, € I'(Tx) denote the
fundamental vector field induced by the action. It is characterised by the equality

(4.5) (v®1)od* = (1®ay,)od.
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Let x epr X with T € SSp]lég. The equation above specialises to
(1®v)od = (p1,0) o (1®1® (2% 0ay)) o (idr x a)?
= (Ar xidg)f o (1® (zF 0a,) ®1) o (idy x (a0 0))?

where we denote the flip by ¢ and the diagonal morphism by Ar. Let Ag be the
fundamental distribution, i.e. the submodule

Ag:=0x a3 CTx, ag:=1{ay|veg}

We shall need to understand when the orbit morphism a, for an arbitrary  ep X
is a morphism of locally constant rank over T'. The following is a full characterisa-
tion.

(4.6)

Theorem 4.16. Let x € X. The following statements are equivalent:

(i) The morphism a, : X7 — G has locally constant rank over T.

(i) The pullback x*(Ag) is a locally direct summand of the Or-module z*(Tx).

(iii) For every t € Ty, the canonical map Aq(xo(t)) — Ty X is injective.

(iv) For anyt € Ty, there are homogeneous v; € g such that a,, (xo(t)) € Tpy1) X
are linearly independent and the x* oay,, span x*(Ag) in a neighbourhood of t in Tp.

In the proof, we use the following two lemmas.

Lemma 4.17. Let f : Y — Z be a morphism of superspaces and £ an O z-module.
Fiz y € Yy. Then the map e — 1 ® e : Efy () — (f*E)y induces an isomorphism

2y (Y) @scy (o)) E(fo(y) — (fE)(y)

of »y (y)-super vector spaces.

Proof. Let z := fo(y). Now simply note that sy (y) is an Oz ,-module via the map
ff: 0z, — Oy,. In particular, we have

(7 E) () = v () ®oy, Ovy R0y, €2 = 2y (y) ®0,.. €2 = 2y (Y) @sey(2) E(2).
This proves our claim. (I
Lemma 4.18. The map

z*(Ag) — (idr, 1) (im Ty, j7) : w — Al o (1®w)
is an isomorphism.
Proof. First, we define a map ¢ : To.rsx — (id7, 1¢)* (Tids,2):m—x7 /1) DY
p(w) = Ak o (10 w).
It admits a left inverse v, defined by
W(u) = woph
where ps : X7 — X is the second projection. Indeed,
Y(p(w)) = Ak o (1@ w) o ph = w.
Moreover, we have
ozt 0 a,) = AL o (1® (2 0 ay)) o (idp X a(lg,-))*
= (idp, 1g)* o (A7 xidg)f o (1 ® (2f 0 ay) ® 1) o (idr x (a0 o))
= (idr, 1g)f ovodl = (idr,1¢)* o To, 7 (v)

by (4.6), so ¢ descends to a map z*(Ay) — (idr, 1g)* (im aI/T), as claimed. The
above computation also shows that

Y((idr, 16)* 0 To, /7 (v) = Yl(p(a 0 ay)) = 2F 0 ay,
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so this map admits a left inverse. But the (idr, 1¢)* o T,, /7 (v) for v € g generate
(id7, 1g)*(im 7Ty, /1), so ¢ is surjective, and is an isomorphism. O

Proof of Theorem 4.16. For every (t,g) € To X Go, we consider the canonical map

(47) L(t,g) = YTap /7. (t0g) (im aI/T) (t,g) — Tg~mg(t) (XT/T)

By Corollary 4.13, the morphism a, is of locally constant rank over 7' if and only
if for all (¢, g), the map ¢(;,q) is injective. Since a, is G-equivariant, it is equivalent
that it be injective for all points of the form (¢,1), where t € T} is arbitrary.

By Lemma 4.18, we have z*(Aq) = (idr, 1g)*(im 7,, 7). Because all residue
fields in question are equal to K, Lemma 4.17 shows that

(im 7o, /) (t:1) = (27 (Ag)) (1) = Ag(0(1)),
(a7 (T /7)) (6,1) = (Txez ) (8 20 (1) = Tog(n X = (2™ (Tx))(1).

Thus, by Proposition 4.11, conditions (i)—(iii) are equivalent.

If (iv) holds, then v( 1) maps a generating set of (v*Ag)(t) = (im7,, /7)(t, 1)
to a basis of T, )X, so it is injective and (i) holds. Conversely, assume (ii) and
(iii). Thus, we may choose homogeneous v; € g such that a,,(wo(t)) € Ty X
are linearly independent and span the image of (z*(A4))(t). By assumption, the
canonical images of the 2 o a,, in (2*(Ag))(t) are linearly independent, so that
(2% 0 a,,); form a minimal generating set of (z*(Aq)): by the Nakayama Lemma.
Since this module is free, they form a basis. Since x*(Ay) is finite locally free,
[24, 4.1.1] shows that the 2% o a,, form a local basis of sections, proving (iv), and
thus, the theorem. ([

Corollary 4.19. Let T = % and © € Xo. Then the orbit morphism a, : G — X
has locally constant rank.

Proof. In this case, 2*E = E(xo(x)) for any Ox-module &, so the condition (ii) of
Theorem 4.16 becomes void. (]

We now apply these general results to the problem of the representability of the
isotropy supergroup functor. To that end, we define for ¢ € Tp:

g:(t) = {v €g | ay(xo(t)) = 0}.
Theorem 4.20. Let x € X with T € SSp%g. Assume that a, has locally con-
stant rank over T. Then the functor G : SSpgg — Sets from Definition 2.8 is

representable by a supermanifold over T of fibre dimension
(48) dimT,(t,g) G, = dimg 15 (t)

The canonical morphism G, — G is a closed embedding.

Conversely, assume that Gy, is representable in SSpqug. Then the canonical mor-

phism j : G, — G is an injective immersion with closed image. If G, is repre-
sentable in SManr, then j is a closed embedding.

Proof. By Proposition 4.14, locally in the domain, the image of a, exists as a
supermanifold over 7', and has fibre dimension

dimp gz (¢) im @z = rk Ty 4 (ay/T) = dim g — dim g, (¢).

In view of Proposition 4.14, it will be sufficient to prove for any superfunction f
defined on an open subspace of Xr:

ah(f) =0 = 2%(f) =0.
But for any supermanifold R and any t €r T', we have

ab(f)(t,1ar) = f(t, 1ar - 2(1)) = f(t,2(t) = 25 (f)(2),
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so this statement is manifestly verified. Hence, GG, is representable and the canon-
ical morphism is a closed embedding. The expression for the fibre dimension of G,
follows from Equation (4.4), since dimr T = 0.

Conversely, assume the functor G, is representable in SSpquﬂg . Then j is man-
ifestly a monomorphism, i.e. Gz(R) — Gr(R) is injective for any R € SSp]lég.

Inserting R = *, we see that the underlying map is injective with image

{(t,9) € To x Go | g~ mo(t) = mo(t)},

which is closed. Inserting R = [7|0], we see that the tangent map T, 4 (j/T) is
injective for every (¢, g), by Lemma 4.2.

If G, is a Lie supergroup, then jy is a closed topological embedding by Theo-
rem B.1, and hence, j is an embedding (as follows from Theorem A.1). O

Specialising Theorem 4.20 by the use of Corollary 4.19, we recover the case of
orbits through an ordinary point first treated by B. Kostant [31] in the setting of
Lie—Hopf algebras, by C.P. Boyer and O.A. Sdnchez-Valenzuela [12] for differen-
tiable Lie supergroups, and by L. Balduzzi, C. Carmeli, and G. Cassinelli [10] using
a functorial framework and super Harish-Chandra pairs.

Corollary 4.21. LetT = % and x € Xg. Then G, is representable by a superman-
ifold and the canonical morphism G, — G is a closed embedding.

4.4. Orbits through generalised points. Having discussed the representability
of the isotropy supergroup functor, we pass now to the existence of orbits. In what
follows, to avoid heavy notation, we will largely eschew writing /S for morphisms
over S, instead mostly stating the property of being ‘over S’ in words.

We have the following generalisation of Godement’s theorem [4, Theorem 2.6],
with an essentially unchanged proof. We have added the detail that in this situation,
the quotients are universal categorical.

Proposition 4.22. Let R/S be an equivalence relation on X/S in SMang, as
defined in Example 2.16 (iii). Then the following assertions are equivalent:

(i) The weakly geometric quotient m : X — X/R exists in SMang and, as a
morphism, is a submersion over S.

(ii) The subsupermanifold R of X xg X is closed, and (one of, and hence both
of) s,t : R — X are submersions over S.

If this is the case, then m : X — X/R is a universal weakly geometric quotient.
The quotient is effective, that is, the morphism (t,s) : R — X Xx/r X 15 an
isomorphism. Moreover, its fibre dimension is

(4.9) dimg(X/R) = 2dimg X — dimg R.

Proof. Apart from that about universal weakly geometric quotients, all statements
are proved for S = x in Refs. [4,9]. In general, the proof carries over unchanged.

Let us prove the claim of universality for the weakly geometric quotient. So, let
the assumption of item (i) be fulfilled and set @ := X/R. Then 7 is a submersion
over S, and hence, X’ := Q' x¢g X exists in SMang for any ¢ : Q' — Q, by
[6, Proposition 5.41] and the normal form theorem for submersions over S (which
follows from Theorem A.1). By item (ii), s is also a submersion over S. Then so
ismos,and R == (Q' x Q) xgxqg R exists in SMang, where R lies over @ x Q
via (m X w)o(t,s): R— Q X Q.
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First, we claim that condition (ii) holds for the equivalence relation R’/S on
X'/S in SMang. Note that we have a pullback diagram

R=Q xgR——R

Y
Q' Q
Since 7 o s is a submersion over S, so is s’. Next, consider the morphism
R/ = (Ql X Ql) XQXQ R — X/ XsX/ = (Q/ X Q/) XQXQ (X X g X)

It is an embedding by [6, Corollary 5.29]. Thus, the assumption (ii) is verified for
R’ and X', the weakly geometric quotient 7’ : X’ — X'/R’ exists in SMang, and
it is a submersion over S. It is categorical by Corollary 3.6.

The morphism p; = idgr xg 7 : X' — @’ is manifestly R’-invariant, so that
there is a unique morphism

0: X'/RN — Q', @or’ =idg xgm.

Since so is p1, ¢ is a surjective submersion.
To see that it is a local isomorphism, we compute the dimensions of the super-
manifolds over S in question. On one hand, we have

dims Q =2 dims X — dims R,
and on the other, we have
dimg X'/R' = 2dimg X' — dimg R’
= 2(dimQ/ X' + dimg Q/) — (dimQ/XQ/ R’ +2dimg Q/)
= 2dimg X' — dimg/xqr R’ = 2dimg X — dimgxq R
= Q(dimQ X +dimg Q) — (dimQXQ R+ 2dimg Q)
= 2dimg X — dimg R
Upon invoking the inverse function theorem (Theorem A.1), this proves that ¢ is
a local isomorphism over S. Finally, we need to show that g is injective.
To that end, let ¢; € Qp, x; € Xo, such that 1o(q}) = mo(2;). Assume that
po(mo(q1, 1)) = @o(mo(g2, ©2)), so that q; = g5, because
©o O7T6 =P1,0: Xé = Qlo XQU XO — Q/O

It follows that mo(z1) = vo(q)) = Yo(gs) = mo(x2), so that (x1,z2) € Ry, since 7
is an effective quotient. Then (¢}, ¢4, z1,x2) € Ry, so that w((q}, z1) = 7(h, x2),
proving the injectivity. ([

We now wish to apply this proposition to supergroup actions. Thus, fix a Lie
supergroup G and a G-supermanifold X. Let x €p X, where T is some super-
manifold. We assume that G, is representable in SMan7 and that the canonical
morphism G, — Gr is an embedding over T’ (automatically closed).

We define an equivalence relation R, on G by

Rz = GT X Gm, ’L'ZRZ—>GT XT GT,
where 7 is given by
i(9,9') = (9,99"), V(9,9") €r /7 (Gr x17 G2)/T,

and for any supermanifold T'/T over T'. It is straightforward to check that ¢ is an
embedding and indeed, that R, is an equivalence relation.
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Proposition 4.23. Let G, be representable in SMany. Then the universal weakly
geometric quotient 7, : Gp — G-x of G by G, exists in SMany. It is an effective
quotient and a submersion over T. Its fibre dimension is

(4.10) dimr G -z = dim G — dimt G,.

Proof. The underlying map of G, — Gr is injective and a homeomorphism onto
its closed image, so it is proper. Therefore, the map underlying the morphism
i: R, — GpxpGrisclosed. The first projection s of R, is obviously a submersion
over T. Then Proposition 4.22 applies, and we reach our conclusion. Equation
(4.10) follows from Equation (4.9), since dimy R, = dim G + dimyp G,. O

Notation 4.24. By abuse of language, the morphism a, : G- — Xp over T
induced by a, will also be called the orbit morphism.

Combining this fact with our previous results, we get the following theorem.

Theorem 4.25. Let x : T — X. The following are equivalent:

(i) The morphism a, has locally constant rank over T.
(ii) The isotropy functor G, is representable in SManry.

In this case, the canonical morphism j : G, — Gr is a closed embedding, the
weakly geometric and universal categorical quotient G - x exists, 7, : Gp — G - x
is a surjective submersion over T', the fibre dimension of G - x is

(4.11) dimT,(t,gmg(t)) G -r=dimG - dimgz(t), V(t,g) S (GT)O = TO X GQ,

and az s an immersion over T.
Moreover, if U C Xq is open such that a,|y admits an image in the sense of
Proposition 4.14, then so does Gz|r, ,(v), and these images coincide.

Proof. The implication (i) = (ii) is the content of Theorem 4.20.

Conversely, let G, be representable in SMany. Then j is a closed embedding,
by Theorem 4.20. From Proposition 4.23, we conclude that G - = exists and m, :
Gr — G - x is a surjective submersion over T'. Because

ker T(t,g) (ﬂ-I/T) = 0z (t) = ker T(t,g)(ax/T)

and @, o m; = ag, it follows that a, is an immersion over 7. By Remark 4.15, a, is
of locally constant rank over T'. This shows that (ii) holds. Equation (4.11) follows
from Equation (4.10) and Equation (4.8). Moreover, since 7, o is surjective and
is injective, it follows that the images of a,|y and a, |7rx’ o(U) are equal whenever one
of the two is defined, proving the asserted equivalence. The remaining statements
follow from Proposition 4.23. O

5. COADJOINT SUPERORBITS AND THEIR SUPER-SYMPLECTIC FORMS

In this section, we construct the Kirillov—-Kostant—Souriau form in the setting
of coadjoint superorbits through T-valued points. For the case of ordinary points,
where T' = #, coadjoint orbits of supergroups were studied by B. Kostant [31],
R. Fioresi and M.A. Lledé [21], and by H. Salmasian [38].

By the introduction of the parameter space T, it is always possible to work with
even supersymplectic forms, provided they are considered over 7. Compare with
the work of Tuynman [39,40], who is obliged to work with inhomogeneous forms.

We will follow the notation and conventions of Sections 3-4 and Ref. [7], only
briefly recalling the basic ingredients. Let G be a Lie supergroup—i.e. a group
object in SMang = SMany ,—with Lie superalgebra g. We set gi = g5 D 91,
where gy 5 is the Lie algebra of Go. (Note that the latter is a k-form of gz.) The
dual K-super vector space of g will be denoted by g*. Let g; be the set of K-linear
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functionals f = f5 © fi € g* such that f5(gxp) € k. We denote the adjoint action
of G on A(gk) by Ad.

The coadjoint action is defined by
<Ad*(g)(f),.’17> = <fa Ad(g_l)($)>a vg €T G,.’L' €r A(g]k)a f €T A(gﬂt)a
where (-, -) denotes the canonical pairing of g* and g.

5.1. The super-symplectic Kirillov-Kostant—Souriau form. Let T € SSp]lég

and f €r A(gf) be a T-valued point of the dual of the Lie superalgebra g. We
define an even super-skew symmetric tensor {1y,

Qf : TGT/T ®OGT TGT/T — OGT;

by the formula

Qf(va w) = <pﬁGT(f>a [v,w]>, V’U,’LU € (OGT & g)(U)v

where U C Ty x Gy is open, pg, = p1 : Gr —> T', and we identify f with a section
of Or ® g* via the natural bijection

HOHl(T, A(gﬂt)) — F((OT & g*)k,ﬁ)v
compare [6, Corollary 4.26, Proposition 5.18]. The identification is wvia
fiz)=(fz), VaecglT(Oug))

From now on and until the end of this subsection, assume that G5 is representable
in SManr, so that in particular, G - f exists in SMany, by Theorem 4.25.

Lemma 5.1. The 2-form Q5 descends to a well-defined even super-skew symmetric
tensor Wy,
s Tar/r—c-f/7 ®0c, Tar/r>c-f/7 — OGr,

by the formula
‘Df (ﬁrf/T(U)aﬁrf/T(w)) = <pﬁGT (f)’ ['Ua ’LU]>, V'Ua w e (OGT ® g)(U),

for every open U C (Gr)o. The 2-form &y is non-degenerate.

Proof. Let v € Tg, r(U) be homogeneous and x € g C I'(Oy(q-)). Let (z;) be a
homogeneous basis of g and expand v =3 y vz,

Then we compute for all R € SSp]lég and all pn € A(g;) that

an, (@) = | g
= —(n[oy.a]) = —pad(a)(2)) = —ad" (&) () (x).

Here, we let |7| = |z;| and follow the conventions of Definition 4.3.
Equation (4.6) shows that

voagc :Zvj~(AT ><idg)ﬂo(1®(fﬁoazj)®1)o(idT x (ao0)).
J

(AQ" (%) (), ) = S| Ad(6™)(@))

T=

Therefore, for all R and all (¢,g) €g G, we have

(voa))@)(t.g) = 3 (¢, g)(ad" (a,)(/ (1)), Ad(g™)(x))
= 370 (1 g) (AL () ad" () (£ (1), 2)
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Vector fields are uniquely determined by their action on systems of local fibre
coordinates, by Proposition 4.5. Moreover, any homogeneous basis of g contained
in gi defines a global fibre coordinate system on Ar(g;). Thus, we have

Teyr(0) =0 <= Zvj(tag) Ad*(g)(ad"(z;)(f(t)) =0 VR, (t g) €r Gr-

On the other hand, we may express

(P, (). [0, w])(t,g) = >V (69)(ad” (@) (1)), (¢ 9)* o w)
=D (L9)(Ad" (g)(ad" () (f (1)), Ad(g™")((¢, 9)* o w)).

This shows immediately that @; is well-defined. Setting w := (idr x Ad)* o w, the
above computation shows that

(Pe (), [0, 0])(t,9) = Zvj (t. 9)(Ad"(g)(ad" (z;)(f (1)), w).

Hence, if O (Tx,(v), Tr,(£;)) = 0 for any j, then it follows that v o w? =0, so we
see that @y is non-degenerate. (|

Since G - f € SManry, we have
Tarr=a-5/7 = 71 (Taf/1),

by Proposition 4.5, so we may ask whether @y is induced by some tensor w; on
G - f. Indeed, this is the case, as we presently show.

The module inverse image and direct image functors ((ms)*, (7s)o«) form an
adjoint pair, so there is a natural bijection

Homoyg,, (A* Ter. /1 (1£)0-Oc) — 2 Homog, (N> Tawjroa-g /1 Ocr)-
Proposition 5.2. There is a unique even super-skew symmetric tensor
wi :Ta.p/r ®0¢.; Ta.pyr — Oc.f
such that mi(wy) = @y.
Proof. By the above, there is a unique even super-skew symmetric tensor

wy TG‘f/T ®OG»f Tg.f/T — (Wf)O*OGT,
such that 7% (wys) = @s. We need to show that it takes values in the subsheaf Oc.;.

But G- f = Gr/Gy is a weakly geometric quotient by Proposition 4.23, so that

by Remark 3.2, we have
Oc.t = ((m4)0xOcz ).
It thus remains to prove that wy takes values in the sheaf of invariants.

To that end, fix a homogeneous basis (x;) of g contained in gi. Take any v, w €
T6.47(U), where U C (G - f)o is open and define V == (my)g " (U) C Ty x Go. We
may write 7T)uc ov =73 v (1® xj) 0 ﬂ]ﬁc) for some v/ € Og,(V), |v| = |z;| + |v],
and similarly for w.

Denote by (¢, g,h) the generic point of Gr|v xr Gyly. We compute for any
superfunction k on G - f, defined on an open subset of U, that

(s 0 0)(R)(t, gh) = (k) ((t.gh) - f(8) = v(k)((t,9) - F(1)) = (w0 V) (R)(t, ).
Here, we are using the fact that G - f is a universal categorical quotient (Theo-

rem 4.25), so that, by Proposition 2.19, it admits a G-action for which 7 is equi-
variant and f, considered as a T-valued point of G - f, is fixed by Gy.
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On the other hand, using results from Ref. [7], we have

S (@ 0T (1 9h) = 3 w7t g S| k(6 ghexp(ra) - £(0)

- T=
J

T=

= S vt gh) |k gesp(r A )h) - £(0)

= St gh) | K gesp(r Ad) @) - £(0)

= > 0 (t,gh)(Ad(R)(z;) o 75) (K)(t, 9)-
J
Combining both computations, we arrive at the equality
(5.1) Y vt gh)(Ad(h)(x;) o) = Y w(t, g) (w5 0 %)
J J
of vector fields over T along the morphism
TfOoOMmagy =TfOP1 : Gr XTGf —)Gf

Using Equation (5.1), we may compute

wy(v,w)(t, gh) = (:Jf(ﬂ')nc ow 7T§c o w)(t,gh)

. Z Iz;||Ik| Jw)(t, gh)<f(t>a [z, xk]>
_ Z(*l)lz]lll‘kl( u}k)(t, gh)<f(t>, [Ad(h)(l']>, Ad(h)(zk>]>
_ Z |I]||Ik| ,UJ k)(t,g)<f(t)a [‘Tj"rk]>

= wf(ﬂf« o, mh ow)(t,g) = ws(v,w)(t,9),
which shows that indeed, wy(v,w) is right G-invariant, and hence, that w; takes
values in the sheaf O¢.f, as desired. O

We may consider wy as a global section of QQG_f/T = /\2 Qé_f/T, i.e. a 2-form
over T'. We show that it is closed.

Proposition 5.3. The 2-form wy over T' is relatively closed.

Proof. The element of I'(Og, ® g*) corresponding to f is a left G-invariant 1-form
(which is, moreover, even and real-valued). We show that it gives a potential for
the pullback of wy. To that end, we follow ideas of Chevalley—Eilenberg [16].

Let v,w € g. Denote by d = dg,. /7 the relative differential. Then

twd + diy = Loy,

where ¢y, |ty] = |v], denotes relative contraction, and L,, |£,| = |v|, denotes the
relative Lie derivative. We have

df (v,w) = (=)l u,df = (=)l (L2, f)
= 7[‘671’ Lw]f = 7L[v,w]f = 7<f7 [v,w]> = 7d}f(,7;f/T(v>’,7;Tf/T(w>>’

since i, f = (f,w) € T'(Or), so that di,f = 0 = Lyt f. Since both sides of the
equation are Og,-bilinear, the equation

&5 (Tryy7(0), Ty yr(w)) = —df (v, )
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holds for any vector fields v,w on G over T, defined on some open subset. But
since Wy = 7} (wy) by Proposition 5.2, we have

mh(wp) (v, w) = @p(Te, 7 (0), Try yr(w)) = —df (v, w)
for any vector fields v, w on G over T. Thus,
ﬂ]ﬁc(dwf) = dﬂ]ﬁc(wf) = —d*f=0.

Since 7T§c is an injective sheaf map, we conclude that dw; = 0. (I

We summarise the above results in the following theorem.

Theorem 5.4. Let G be a Lie supergroup with Lie superalgebra g. Let T € SSp]lég

and f: T — A(gy) be such that Gy is representable and Gy — Gr is an
embedding. Then the coadjoint orbit G - f exists, is universal categorical, and with
the Kirillov-Kostant-Souriau form w¢, G - f is a supersymplectic supermanifold
over T'. The assumption is verified if the equivalent conditions in Theorem /.16
hold.

6. APPLICATION: GLIMPSES OF THE SUPERORBIT METHOD

This section offers an application of our general theory of coadjoint orbits to the
geometric construction of representations. By way of example, we show how the
formalism can be applied to give certain ‘universal’ T-families of representations of
certain Lie supergroups, namely, the Abelian supergroup A% and certain graded
variants of the 3-dimensional Heisenberg group.

At this point, we will only partially address the issue to which extent unitary
structures exist on these families, nor will we make precise in which sense they are
universal. We intend to treat these issues in forthcoming work, together with an
extension to more general Lie supergroups.

6.1. Representations of Lie supergroups over some base. Fix T € SSp]lég.

To set the stage both for the general representation theory of supergroups over
T and in particular, for the examples to be considered below, we give some very
general definitions.

The functor O : (SSpgg)Op — Sets defined on objects U/T in SSpgg by

oW/T) =T(Ovp)
and on morphisms f : U’'/T — U/T in SSplilig by
O(f) : O(U/T) — OU'/T) : h — f*(h)
is a ring object in the category [(SSp;{g)OP, Sets}.
Definition 6.1. Let G be a supergroup over T. A representation of G is a pair
(H, ) consisting of:

i) a -graded O-module object H : — Sets an
(i) a Z/2Z-graded O-module object H : (SSpy?)” — S d
(ii) a morphism 7 : G x H — H, denoted by

m(g)y, YU € SSpps,t ey T,g € G € H(t),

such that 7(g) leaves the homogeneous components of A invariant and the following
equations are satisfied:

T(la(t)y =, w(gige)v = m(g1)(7(g2)¥),
T(9) (M1 +12) = Am(g)vh1 + w(g)¢2,

for all ¢ €u Ta 9,91, 92 €t G; 1/}51/}151/}2 € %(t)v A€ O(t)
A graded O-submodule H' C H is a G-subrepresentation if it is G-invariant,
i.e. if m descends to a morphism G x H' — H'.

(6.1)
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This concept generalises the existent notions of representations of Lie super-
groups in several ways. To make contact with the literature, recall the following
construction, which produces a graded O-module for any Op-module: Let H be a
(graded) Op-module. Define for t €y T

H(t) =T((t"H)), Hi(t) =T ((t"Hi)p)
(where (—)g refers to the total grading) and for any commutative diagram

f

U
T,

H(f) =T(ff 1) H(t) — H{E),
where I" denotes the global sections functor, as usual. The O-module structure is
given by

U/

set

O(t) x H(t) — H(t) : (h,y) — h -9,
where - is the module structure on global sections.

In particular, for T" = *, any super-vector space V over K defines such an O-
module. Assume that V is finite-dimensional and we are given a linear action
7: G x H — H where H = A¥(V) is the functor given on objects U by H(U) =
I'((Oy ® V)g) and linear actions are defined by the identities in Equation (6.1).
Then we may define a representation (H, ) by

m(g)Y = (g,%),
for all U € SSpy¥, g €y G, and ¢ € H(U) =T (O @ V).
If G is a Lie supergroup, then a linear action is the same thing as a representation
of the associated supergroup pair (Go, g), compare [3, Proposition 1.5]. For the
affine algebraic case, compare also [15, Definition 11.7.2].

Ezample 6.2 (The left-regular representation). Let G be a supergroup over T'. The
left-reqular representation (Ha, Ag) of G is defined by taking

Ha(t) =T (Ovxrco)
forallt ey T,
He(f) = (f xride)*: Ha(t) — Ha(t)
for all f:t — ¢, and
e (g = ((idy x7 ma) o ((idy, g~1) x7ide)) (1) = ¥(~. g7 (~))
forallt ey T, g €: G, ¥ € Ha(t) = F(OUXTQ@). Here, g7! is ig(g), as usual.
Let G be a supergroup over T'. By definition, the Lie superalgebra of G is the

Or-submodule g of the direct image sheaf po.(7q ) of left-invariant vector fields
on G, defined by

g(U) ={ve Tg/T(pgl(U)) ] mﬁG ov=(1®v) omﬁc;}
for any open set U C Tj, endowed with the usual bracket of vector fields. We may
consider g as a functor, as explained above. Then the derived representation L of
(Hg, A) is the morphism dAg : g X Hg — He defined by d\g(v) := —L, and

Lot = ((luxpe x7idg)? o (v @ 1) o (idy x1 ma)*) ()

for all U € SSpy®, t €y T, v € g(t) = D((t*g)5), and ¢ € Ha(t) = D(Oprrai)-
Here, we have
1U><TG = (idU, 1g(t)) U — U x7rGQG.
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Similarly, we define R : g x Hg — Hg by
va = ((1U><TG XT idg)Ii o v13 0 (idU XT mg)u)(l/})

forall t ey T, v € g(t) = T'((t*g)s), and ¢ € Ha(t) = ['(Opx,go). Here, we
define

v13 = ((12) 7! xridg)? o (1®@v) 0 ((12) x7idg)?,
where (12) : G xp U — U xp G is the flip.

Let us now indicate how to apply these ideas to transplant the orbit method into
the world of Lie supergroups. Let G be a Lie supergroup and f €r A(g;) a T-
valued point of the dual of the Lie superalgebra g (see the introduction to Section
5). The Lie superalgebra of G := T x G will be denoted by gr and equals Or ® g,
as is easy to see. The representations that appear in the superorbit method are all
instances of the following simple construction.

Proposition 6.3. Let h C gr be an Or-submodule. Then the graded O-submodule
H;’c C Heg, defined by

H) (1) = {¥ € Hap (1) | Vo € (1) = T((t°0)g) : Rt = —i(f (1), v)'}
for allU € SSp]lég, tey T, is a Gr-subrepresentation of (Hay, Aar)-

Proof. The action R is O-linear and commutes with L. O

In the generality they are defined here, the representations (’H;, AG,) are not
interesting. The relevant case is when b is an Op-Lie subsuperalgebra of gr that
is Q-isotropic, i.e. Qy(v,v") = 0 for all local sections v, v of h. If b is maximally
isotropic, then one thinks of H;’c as the ‘space of h-polarised sections of the canonical
line bundle on G - f’ and, following Kirillov’s orbit philosophy, expects suitable
‘completions’ thereof to be irreducible.

In the classical case of a Lie group over T" = x*, this is indeed true, and under
certain assumptions, e.g. when G is nilpotent, one thus obtains all irreducible uni-
tary representations [17]. For nilpotent Lie supergroups, it is known by the work
of H. Salmasian and K.-H. Neeb [37, 38] that irreducible unitary representations
(in the sense of Ref. [13,14]) are parametrised by coadjoint orbits through ordi-
nary points of g*. The known constructions of these representations are however
somewhat roundabout.

As we show below, by way of example, for the Clifford supergroup of dimension
1|2, they are realised as certain ’H?. Moreover, we show that our approach, for
general T, also allows for a Plancherel decomposition of the regular representation,
at least for the simplest case of the Abelian Lie supergroup A", where coadjoint
orbits through ordinary points are totally insufficient.

We believe that these examples are mere inklings of a vastly more general picture
covering the representation theory and harmonic analysis of nilpotent and possibly
more general Lie supergroups.

6.2. The Plancherel formula for A%". Let G = A°" be the additive supergroup
of the super-vector space g = K°". The coadjoint action Ad* of G is trivial. If we
let T := A(g*) and consider the generic point f = idy €7 A(g*), then the following
diagram commutes:

Gr = A(g™)r

N
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Thus, ay factors as the composition of an embedding with a surjective submersion
and thus has constant rank by Remark 4.15. Alternatively, observe that the fun-
damental distribution Ay = 0, so that the criterion (ii) of Theorem 4.16 is verified.
Moreover, the above factorisation coincides with the standard one into m¢ and ay,
ie. Gy = Gp, G- f =T, my = p1, and ay = Ap. The Kirillov-Kostant-Souriau
form wy is zero.

The general philosophy of ‘geometric quantisation’ or ‘Kirillov’s orbit method’
demands the choice of a polarising (i.e. maximally isotropic) subalgebra h C gr.
Since 2y = 0, we must have h = gr. The corresponding Gr-subrepresentation

H= H;’c of (Hay, Aay) is given for all U € SSphe, t ey T, by
H(t) = {¢ [ €T ((Oc,)o), Y € g Rigoth = —i(f(t),v)v}.
This is the functor of a free Op-module of rank 1|0, since it has the basis of sections
Yo = e 2% € H(idr) = T(Ogyrp).

Here, 01, ...,0, is some arbitrary basis of g and £',...,£&" is the dual basis of g*,
considered as coordinate superfunctions on T'= A(g*) and G = A(g), respectively.
The representation of Gp on H is determined by its action on the special vector

b= Hor (Do) = e 20081 = 14(0)).
With 7 denoting the restriction of Ag, to H and g7 = g¥#(&7), it is given by
m(g)n = ((idu,g™") xr ide) (idy x7 me)* (e~ 3 4¢)
= ((idy, g~Y) %7 idg)t (e Zsts (E1+ED))
= ¢TI X (=) _ iltg)y,

that is, it is a character, as was to be expected.
We have the following ‘abstract’ Fourier inversion formula.

Proposition 6.4. For any superfunction f on G, we have
[ D) sten() = (10 ),
where w(f) is defined bi/
w()= [ D) s,
and the integrals are Berezin integrals.
For the Berezin integral, see [18, §3.9; 33, Chapter 2, §4; 35, Chapter 4, §6].

Proof. Since 7 is a character, the operator 7(f) is a function:

m(f) = /GD(é) fei=i%¢ e T(Or)

Therefore, strm(f) is that same function. (Incidentally, this may be viewed as a
baby version of Kirillov’s character formula.) The assertion now follows from the
Euclidean Fourier inversion formula [8, Proposition C.17]. O

We obtain the following Plancherel formula.

Corollary 6.5. For all superfunctions f and g on G, we have
| DOy sta(inte)) = (0020 [ D) Fo,
T G

Here, (=)' is the super-adjoint with respect to the Orp-inner product on H nor-
malised by (¢o|to) = 1 and id is the antilinear antiautomorphism of Og defined by

g=¢.
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Proof. Using the methods of Ref. [5], one sees that 7(f)fn(g) = n(f* * g), where *
is the convolution product on G and f* = i*(f) where i is the inversion of G. Since
§ =¢&'. .. € is the Dirac delta on G, the formula follows from Proposition 6.4. O

Remark 6.6. Thus, by judiciously applying the orbit method to T-valued points, we
have obtained a decomposition of the left regular representation of G into an ‘odd
direct integral’ of ‘unitary’ characters. By contrast, a direct sum decomposition of
the function space I'(O¢g) into irreducible unitary G-representations is impossible,
since the only such representation is the trivial one!

6.3. The orbit method for Heisenberg type supergroups. Let us consider
the Lie superalgebra g over K spanned by homogeneous vectors x,y, z satisfying
the unique non-zero relation

[‘Ta y] =z

When z,y,z are even, g is the classical Heisenberg algebra of dimension 3|0.
When z,y are odd, z must be even. The central element z spans a copy of K, so
¢ is a unital Lie algebra in the sense of Ref. [2], and its unital enveloping algebra
U(g)/(1 — z) is the Clifford algebra Cliff(2,K). (NB: We will use a different nor-
malisation below.) For this reason, g is called the Clifford-Lie superalgebra, and
its representation theory was studied e.g. in Refs. [5,38]. The construction of the
representations used there is ad hoc. Below, we show how they arise in a natural
fashion.

A third possibility, which does not seem to have been considered before, is that
x,y are of distinct parity (but see Ref. [22]). In this case, z is odd. As we show
below, besides characters, there exists a family of representations (which happen to
be finite-dimensional) parametrised by 7' = A%, which bear a striking resemblance
to the Schrodinger representation of the Heisenberg group.

6.3.1. Parity-independent computations. A number of computations concerning the
Lie superalgebra g of Heisenberg type introduced above are somewhat independent
of the parity of its elements. We begin with the coadjoint representation of g. Let
¥, y*, 2* be the basis dual to z,y, z. In terms of this basis, we have

0 0 0 0 0 (_1)|y|
ad*(x) =0 0 —(=n)llE ] ad*(y)=[0 0 0 , ad*(z) =0.
00 0 0 0 0

Recall the definitions given at the beginning of Section 4. We will consider the
field k = R, since we are mainly interested in super versions of real Lie groups. A
Lie supergroup G (i.e. a group object in the category of supermanifolds over (K, R)
of class C¥) with Lie superalgebra g is uniquely determined by the choice of a real
Lie group Go whose Lie algebra is a real form gg 5 of g5, compare Ref. [7].

We fix gr = gr g ® g1 by setting ggr 5 = g5 N (¢, y, 2)r. Let G be the connected
and simply connected Lie supergroup whose Lie superalgebra is g and whose Lie
group has Lie algebra gg 5. Unless g is purely even, Gy is the additive group of
R. With these conventions, ad*(v) is the fundamental vector field corresponding to
v € g under the coadjoint action Ad* of G.

Let T € SSplﬂig be arbitary and f = az* + By* +vz* €p A(gg). Observe that

forv = ax+by+cz € g, where a,b,c € K. Thus, if u = a’z+b"y+c'z € g C T'(Opqr))
with arbitary o', V', ¢ € K, then

(f'i ) ad*(v))(u) = —ab'y+ (—1)‘y‘(1+‘z‘)ba/’y.
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Proposition 4.5 gives

0

—'yfﬂo—, if v=ux,
oy
(6.2) froad (v) = § yywlalahy i O ipy )
ox
0, if v = 2,

where we use z,y,z as a coordinate system on A(g;). Let ¢t € Ty. The image of
fﬁ o ad*(v) in Tfo(t)A(g]}t) = (f*ﬂ(g]:))(f) is

0 .
-0 (3,) <fo<t>>,a if 0 =2,
(=)D ) (=) (folt), v =y,

These are zero if y(¢t) = 0 and linearly independent otherwise. In the latter case,
condition (iii) of Theorem 4.16 is verified. In the former case, the images of (f¥ o
ad*(v)), v =,y, in (f*Ag)(t) are zero if and only if v, € yymp ;.

For simplicity, let T € SMang and (7,0) be a local coordinate system at ¢ such
that 77(t) = 0 for all j. Assume that v, = yhs for some hy € Ory, but v # 0.
Then in the expansion v = Y ;~,607 there is some minimal I such that ~7(t) # 0.
It follows that 7 (t) = vr(t)ho(t), so that h & mrp .

Thus, applying Theorem 4.16, we have proved that for 7' € SMang, as has
locally constant rank over 7T if and only if

(f* o ad”(v)(t) = ad”(v)(fo(t)) =

VieTy: (v(t) =0 = 7 =0).

If Ty is connected, then this condition is equivalent to: v € I'(OF) or v = 0.
The orbit exists if the orbit map ay attached to f has locally constant rank, by
Proposition 4.23.

To compute the coadjoint action, we realise G in matrix form and g as left-
invariant vector fields on G. For any R € SSp]lég, consider 3 x 3 matrices with entries
in Or. We fix the parity on the matrices by decreeing that the rows and columns
of nos. 1,2, 3 have parities depending on those of x,y, z according to Table 1.

TABLE 1. Parity distribution for the supergroups of Heisenberg type

Ll [yl [ 1= ][1]2]3]

0|0]01(|0]0f0
1T {10 (|1|l0]|1
0|1 |1 |0fl0]|1
1|0|1)1|/0]0
Then matrices of the form

1 o ¢

0o 1 v

0 0 1

are even if and only if |d/| = |z|, || = |y|, and || = |z|. Let G'(R) be the set
of these matrices where in addition {a’,¥’,¢'} C T'(Ogrr). Clearly, by defining the
group multiplication by the multiplication of matrices, G’ is the point functor of a
Lie supergroup. As we shall show presently, it is isomorphic to G. Since Gj, = G
is the additive group of R, unless G is purely even, it will be sufficient to show that
the Lie superalgebra of left-invariant vector fields on G’ is precisely g.
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Let (a,b,c) be the coordinate system on G defined on points by

1 d ¢ (—D)lla’ h=a,
RO 1 V| =L (-D)¥p h=b,
0 0 1 (-l h=ec

Note that this sign convention is natural in the following sense: Consider the su-
permanifold G’ as the affine superspace of strictly upper triangular matrices. Then
a, b, c are the linear superfunctions which constitute the dual basis to the standard
basis (E12, F13, Ea3) of elementary matrices.

Let %, %, % be the coordinate vector fields given by the coordinate system
(a,b,c). Let Ry, Ry, R, be the left-invariant vector fields on G’ determined by

0 0
le/:—ll,Rl/:—l/,RZZZRI,R,
(o) = 5 (e), Ry(le) = 5 (1e) [Re, Ry
where write R, (1¢g/) for 1ﬁc, o R, etc.
We now proceed to compute these explicitly. Let ¢® : x[r,] — G’ be the
infinitesimal flow of R;(1¢/), where || = |z|. (Compare Definition 4.3.) For any
function h on G’, we have

1 (=Dl 0
ai o 1 0 :(agh)(lg/),
Ty 1 T2=0 0 0 1 a

as one sees by inserting the coordinates h = a, b, c. Thus, we have

1 (=Dl 0
(@")F(h)=h |0 1 0
0 0 1
Similarly, we obtain
1 0 0
@) =h {0 1 (-1
0 0 1
for the infinitesimal flow ¢¥ of R, (1g/).
We compute
1 o (¢ o 1 a’+(71)|m|7' c
(Rzh) [0 1 ¥ =3 h|0 1 v,
0 0 1 Tz lm=0 "\ 0 1
1 o (¢ 9 1 d (—1)‘y‘a’7y+c’
(Ryp) [0 1 ¥ =5 hlo 1 (=07, +0 |,
0 1 TyIm=0\g o 1

by again inserting the coordinates for h. We obtain

0 0 0]

6.3 R,=—, R,=—+(=1)llvlg—,
( ) aa7 Y ab + ( ) a’ac

Here, we have used the parity identity |z| + |y| + |z| = 0. From these expressions,

we see immediately that

0 0 0
6.4 R, =[R,, R, = (—=1)l=lll| = q—| = (=1)l=llvl =
(6.4) Ry, By] = (~1)FI0| 2 o 2| = (—p)lellol 2
and that this is the only non-zero bracket between the vector fields R, Ry, R.. The
sign (—1)/#I1¥l that appears in the case of |z| = |y| = 1 is an artefact of the parity

distribution which is non-standard in that case.
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Since Ry, Ry, R, are linearly independent, they span the Lie superalgebra of G,
and it follows that G = G’. In what follows, we will identify these two supergroups.
Moreover, we will identify z,y, z with R;, Ry, R., respectively.

For further use below, we note that the right-invariant vector fields L., Ly, L.,
defined by

L’U = 7iﬁGOR’UOiﬂG7 v=xY9,%,
take on the form

0 0 0 0
6.5 L,=—+b—, L,=——, L,= lz|ly] ~
(65) Oa + oc’ T (1) dc’

One immediately checks the bracket relation [Lg, Ly] = —L,.

We now calculate the adjoint action of G in terms of the matrix presentation.
Let U € SSplfg and (g,v) €y G x A¥(g) (cf. Ref. [7] for the notation), where we
write

1 d ¢
g=10 1 V|, v==~&(lg)+ny(le)+Cz(le) € T'((1c(9)"Ta)o)-
0 0 1

According to the definition of a, b, and ¢, the generic point idg €¢ G is

1 (=D)lla (=1)*le
idg = [0 1 (—1)lvlp
0 0 1

Denote the diagonal morphism of U by Ay. We compute, for any function h on G:

Ad(g)(v)(h) = Af(1®v @ 1)h(gide g™")

1 (=D)lla (=D)Fle+ (=D)¥a’b — (=1)1*lad’
=AL1ove1)h|0 1 (—1)l¥lp
0 0 1

To evaluate this further, we insert a, b, ¢ for h. For h = a,b, Equation (6.3) tells us
that we get & and 7, respectively. For h = ¢, we get, upon applying Equation (6.4):

(—1)l=llvl¢ 4 (_1)\w\(\y\+i)na/ — (—1)lep'.

Thus, identifying 2 with 2(1¢), ete., and writing v in columns, we find

1 d J\ [é&x Ex
Adfo 1 ¥ )|ny]|= ny ,
0 0 1/ \¢z (¢ + (=1)*lpa’ — (=1)U=l+Dlvlgp) 2
One may verify the correctness of this result by rederiving the bracket relation
9 v
[z, y] = G_Ty ry=0 *1)| ”yl[z,Tyy]
52 1 (=Dl 0
= (—nllviAd | o 1 0| ()
Gryam Toe =Ty =0 0 0 1
2
__0 _q)lallvl(—pylellvl el (—pylelr) = .
8@8% Toe =Ty =0 Y
It is now straightforward if somewhat tedious to derive
1 o ¢ f*l'* (5* + (71)\y\(\z\+1)b/§*)z*
(6.6) Ad* o 1 vV |[ny | = (n* — (—=1)l=la/¢*)y*
0 0 1 C*z* C*z*
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for any
1 o ¢ e a*
(g,v*) EUGXAK(Q*), g= 0 1 b/ , v* = n*y*
0 0 1 ¢*z*
As for the adjoint action, we make a sanity check:
52 1 (=1l 0
ad"(2)(2") = 5—>5—| 70(—1)‘1‘“‘ Ad* [0 1 0] (r.2%)
z x|\ Ta=Tz= 0 0 1
82
= | (DR el )t = (L,

which is in agreement with our previous computations.
Let us return to our T-valued point f in the case where a = 8 = 0, i.e. we have
f=n~z"€r A(gg). Then

1 a ¢
(6.7)  (tg) v Gy < (1) =Vt()=0, g=|0 1 ¥
0 0 1

Moreover, the orbit map ay : Gp — A(gy) takes the form

(ag)f(z) = b, (ap)f(y) = —(=1)Fha,  (ar)f(z) =7,

in terms of coordinates a,b,c on G and the (linear) coordinates z,y,z on A(gh),
given by
gt (-DFlgra(e) =& h=u,
hinmy™ | =q Dy =0 h=y,
"z (=)l 2(2*) = ¢ h =z
We will now analyse this further, separately in the two cases in which G is not
a Lie group (i.e. when at least one of z,y, z is odd).

6.3.2. The Clifford supergroup of dimension 1]2. Assume that |z| = |y| = 1. In
this case, G is called the Clifford supergroup. This case has been given a definitive
treatment by Neeb and Salmasian [37,38], see also Ref. [5] for the related harmonic
analysis. Our emphasis here will be to put it in the general context the orbit
method. Moreover, we shall obtain the full family of Clifford modules for any
non-trivial central character in one sweep.

We will take 7' := A\ 0 and 7y := u, the standard coordinate function on Al, so
f=nz":T — A(g;). Since ~ is invertible, as has locally constant rank over T,
and in particular, Gy is a Lie supergroup over 7.

It is completely determined by its underlying Lie group (Gy)o over Ty and its
Lie superalgebra gy (over Or), defined by

s (U) = {v =Y, vie; € Or(U) ®x g ‘ >, 01506 0ah) = Y v froa,, = o},

for any open set U C Ty. In view of Equation (6.2), we have gy = Orpz. For the
superspace U = x*, the condition in Equation (6.7) is void. We conclude that the
point functor of G5 is given by

’

0~ { (e (41)) | €7@}

for all U € SSp]lég, so that Gy = Al with the standard addition of A! as multipli-
cation over 7.
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The orbit G - f = Gr/Gy is T x A%? with fibre coordinates a,b. The local
embedding ay : G- f — A(gf)r over T is given by

(@p)*(@) =b,  (ag)*(y) = —va, (ag)*(z) =7
Again following the general philosophy of geometric quantisation or Kirillov’s
orbit method, we choose a polarising subalgebra. To avoid reality problems, we
consider the case of K = C. In the real case, we would have to complexify anyway.
A polarising subalgebra corresponds here to the preimage h in gr = Or ® g of a
locally direct submodule of g7 /gy which is maximally totally isotropic with respect
to the supersymplectic form induced by wy. We will consider the case of

b= {(x,2)or.
The image in gr /g is indeed maximally totally isotropic.

The space of h-polarised sections of the canonical line bundle on G - f is the
O-submodule ’H;’c of Heg, introduced in Proposition 6.3. It is given by

H(t) = {v | ¥ € T(Ogy,0), Rt = 0, Rotp = —it (y)y},
for U € SSpgg, t ey T. By Equations (6.3) and (6.4), this amounts to

’L/) _ sOeitn(v)c

where ¢ € T'(Op 011 g), and we consider b as fibre coordinate on (U x A°')/U.
Thus, 1 admits an expansion in the powers b°, b! of b, with coefficients in functions
on U. Thus, H is the functor of the free Op-module of rank 1|1 = dimT'(Oyop1).
We denote the corresponding Or-module by the same letter.

ZC;’) cy G:

Denoting the restriction of Ag, to H by 7, we compute for g = ((1) 91
00 1

m(g)vr = ((idu, g~") x mG)? (p(by + by)elt D ertertanta)
_ (p(b _ b/)eitu('y)(*C,Jra,b,‘FC*a/b) _ eit”('y)(fa’bJra’b’fc’)w(b _ b/)

Formally deriving this expression, we readily obtain the infinitesimal action
9]

ob’
Since the supercommutator of m(z) and 7(y) is an anticommutator, we recognise
this as the ‘fermionic Fock space’ or ‘spinor module’ of the Op-Clifford algebra
Cliff (2, Or) = (Or ®(g))/(z —ivy-1). That is, we have a trivial bundle of ‘spinor’
modules C'I* over the base space R*, where the central character on the fibre at
t € R* is iy(t) = it. (The fibres are unital algebra representations of Cliff(2, C).)

dr(z) = —ibt*(v), dr(y) = — dr(z) = it* (7).

6.3.3. The odd Heisenberg supergroup of dimension 1|2. Assume now that |x| = 0,
ly| = |z| = 1. In this case, we call G the odd Heisenberg supergroup, since it is a
central extension of the Abelian Lie supergroup A" with respect to a 2-cocycle
corresponding to an odd supersymplectic form.

We will take T := A% and ~ = 6, the standard coordinate function on A%, so
f=0z*:T — A(gf). In this case, Equation (6.7) gives

Gy =(R,0q,), Og; = 0plb,c,0]/(ab,bb),

where b, ¢ are odd, a is the standard coordinate function on A', and the embedding
j : Gy — Gr is the obvious one. Clearly, Gy is not a supermanifold over T'.
To determine the orbit, let h be a function on G and expand

h = hg + hpb + hee + hgl + hpebe + hpgbl + hegch + hpegbch
where h; are functions on A'. The multiplication m of G is given by

mﬁ(a) = a1 + as, mﬁ(b) = by + bo, mﬁ(c) =c1 + ¢ + arbs,
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where we write a; = pg(a), ete. Thus, writing m' := mo (idg, X7 j), we find that
m'*(h) = m'*(ho) +m"(hy)(b1 + ba) +m' (h.)(c1 + c2 + arbz) + m/* (ho)d
+ m" (hpe) (brer + bica + arbiby — c1by + baca) + m* (hyg)b10
+ M (hep) (10 + c20) + m' (hico) (b1c10 + bicaf).
i

Since pj (h) contains only by, ¢1, if h is invariant, then all summands involving by or
c2 have to vanish. Moreover, on Gt X7 G, we have

m (h)0 = hy(ay + a2)0 = hr(a1)0 + hy(a1)as0 = hr(a1)0 = ph (hy)6,

so the invariance condition is verified automatically for the 8 and b components.
Therefore, h is left Gy-invariant if and only if

m/ﬂ(h]):pg(hl), fOI'I:O’
hr =0, for I = b, c,be,ch, bef.

In other words, h is of the form
h = ho + ho0 + hpebl
where hg is constant and hg, hyg are arbitrary. It follows that the colimit in SSp,
of m,p1 : Gr xr Gy — G is given by
Q= (x,0q), Oq={fel(On)eld]/(c* ) | fo € K},
together with the morphism 7y : Gr — @ determined by
mh(a) =a, wh(e) =00, 7H(0)=0,

see Remark 3.2. By Proposition 3.1, @ is a regular superspace in the sense of [6,
Definition 4.12], but it is not locally finitely generated, because it is not a subspace
of Y, = (x,K[a][#",...,0%) for any q. (If Q were locally finitely generated, then it
would have to be a subspace of some Y, [6, Example 3.50].)

Nonetheless, we have the subrepresentation ’H?c of Hg, from Proposition 6.3 for
polarising subalgebras ) C gr. We choose

h = (z,2)0.

Once again, H = H;’c is given by

H(t) = {v | ¥ €T(Ogy ), Reth = 0, Rutp = —it* (7)1}
for U € SSpiég, t ey T. We see that the condition on ¥ amounts to

b= = (1t it (7)),
where ¢ € T'(Opypon 5) admits a finite expansion in b with coefficients in functions

on U. Again, this corresponds to the Op-module O7 @ CH'. The restriction 7 of
A, to H is given by the same formula as before:

m(g) = Oy ), v = (35 )

Formally deriving this expression, one obtains the following infinitesimal action:

0
dn(z) = ()b, dn(y) = —=.  d(z) = it(3).
Since the supercommutator of dr(z) and drn(y) is an ordinary commutator, this is
a parity reversed Schrodinger representation, parametrised by 7' = A1,
If instead we consider the polarising subalgebra h = (y, z)o,., then the dimension
of the representation H;’c changes drastically, although the action is formally very

similar. (Essentially, a and b exchange their roles.) This has also been observed by
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Tuynman [40] in his setting and seems to reflect the fact that in this case, the orbit
is not a supermanifold.

APPENDIX A. THE INVERSE FUNCTION THEOREM OVER A SINGULAR BASE

In this appendix, we prove a relative version of the inverse function theorem,
valid for an arbitrary base S € SSp]lég . This was used heavily in Section 4. The
case where S is a supermanifold is a corollary of the well-known inverse function
theorem for supermanifolds [33, Theorem 2.3.1]. However, the proof in that case
does not apply without change to such cases as S = Spec K[T'], which is covered

by our argument.

Theorem A.1 (Inverse function theorem). Let X/S and Y/S be in SMang and
v: X/S —Y/S amorphism over S. For any x € Xy, the following are equivalent:

(i) There is an open neighbourhood U C Xy of & so that V == ¢o(U) C Yy is
open, and ¢ : X|v = (U,Ox|v) — Y|v is an isomorphism.

(ii) The germ (Ty/s)z : Tx/s,.2 — Ty)s,p0(x) 05 invertible.

iii emap Ts 0 : Ts X — Ts.oo(x)Y 18 invertible.

iii) Th Ts.0p : Tsn X — Ts,py(w)Y is invertibl

Proof. The only non-trivial implication is (iii) = (i). The question is local, so that
we may assume that there are globally defined fibre coordinates (z%) = (u/,£¥) on
X and (%) = (v/,1*) on Y. Consider the ideal Zx C Ox that is the tidy closure
of that generated by the £* and p)_(}o (Zs,), where px : X — S is the structural
projection and Zg, is the ideal of the reduction of S [6, Construction 3.9]. (Here,
the notion of tidy closure of an ideal is introduced in [6, Definition 3.40], where it
was called tidying.) The similarly defined ideal of Oy shall be denoted by Zy.

Let jx : X© — X and jy : Y(© — Y be the thickenings [6, Definition
2.10] defined by Zx and Zy, respectively. Let X (") and Y ("), respectively, be the
tidyings of the kth normal neighbourhoods of jx and jy (see [6, Proposition 3.52],
where the notation is different). That is, X (™ = (X, (’)X/Ig(nﬂ)) where Ig(nﬂ) is
the tidy closure of (Zx)"*!. There are natural tidy embeddings jg?) X 5 X
and jg?H’n) : X X (n+1) gych that the jg?“m form an inductive system.

Since the morphism ¢ is over S, we have ¢*(Zy) C Zx [6, Proposition 3.47,
Corollary 3.49]. Therefore, we obtain commutative diagrams

X d Y
jg(n+1) j¥L+1)
(n+1)

x (n+1) e y (nt+1)
j;z-u,n) Tjg/n-%—l,n)
(n)

x () id y(n)

Notice that by [6, Corollary 5.30], X is the reduction X, of X, so it is reduced
and a supermanifold over Sy of even fibre dimension.

Assume for the moment that we can prove the theorem for such spaces. For a
while, we will proceed similar to the standard proof of the inverse function theorem
for supermanifolds [33, proof of Theorem 2.3.1]. Namely, it is easily seen that
possibly after shrinking X and Y, ¢(?) is an isomorphism over Sy. Again shrinking
X and Y as necessary, we may assume that there are functions v/ on Y such that

(0 j —18, (00,

) = GO ).
Here, we abbreviate ((¢0(?)~1)f by p(©~14 Moreover, define AF¢ = %. This
matrix is invertible, so consider its inverse Ag. After shrinking X and Y further,
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there are functions Aj, on Y such that

'(O)ﬁ( ’ ) = (P(O)flﬁ( '(O)ﬁ(Au))

We let /% : %ﬁg A;an Since jy is a thickening, the values of v/ are determmed
by those of jy ), and hence, the mapping condition for the functions y’*
(CERTEART ver1ﬁed Thus, there is by [6, Corollary 5.36] a unique morphism 1/) :
Y — X over S such that

V() =y
Notice that
DH ) = o RO TG W) = 5w,
so that
Wop)(u)) =uw! (Ix).
But since both sides of the equation are even, the equivalence is modulo Zx g, which

is the tidy closure of the ideal generated by p}}o (Zs,.5) and the gkel.
We argue similarly for the Agg:

I (W) = e O (O TG (Are)),

so that @ﬁ(Aﬁd) = Ay modulo Ty 5. Since Ay, is even and a%g is a vector field

over S, we find that
aAkm

ot

Therefore we have modulo Zx:

9" (¥ (€Y)) Op* (Ajyn™ 9t (™)

—_ = = ———nm_ - A = e,
e ; ¢l Z km™gcr ol ke

where we use the simple fact that a vector field on a tidy superspace that leaves an

ideal invariant also leaves its tidy closure invariant. Thus,

Wop)f(er)=¢" (),
where J is the tidy closure of the ideal generated by Px, O(IS0 1) and the ghetem,

This implies that (1 o ¢)f = id+ & where § annihilates px, !(Os) (because ¢ and
1 are over S), §(Ox) C Zx and §(Zx) C Z%. The identity

6(fg) =0(f)g + fé(g) +4(f)é(g)

shows by induction that §(Z%) C If(ﬂ. At this point, we cannot conclude as for
the case that S is a supermanifold (compare [33, proof of Theorem 2.3.1]), since
Zx may not be nilpotent. However, we can continue as follows.

Since the morphism 1 is over S, it induces morphisms ¥ : Y — X (1)
such that (™ o Mt = id + 6 for some sheaf endomorphlsms 6 which map
Tk J T3 to Ik+1 JZ . Thus, (50)m+1 = 0, and it follows that (™) o (™)
is invertible. Thus <p(") admits a left inverse (b(”) (say). By construction, we see
that

¢(n+1) Oj}(/nJrl,n) _ jg?JrLH) o ¢(n)

Now, since X is formally Noetherian [6, Lemmas 3.36, 3. 37] it follows from
[6, Proposition 3.52] that X = lim X in the category SSp . Thus, ¢ admits
the left inverse ¢ = hﬂn oM, Applymg the above procedure to (b, it follows that
¢ admits a left inverse, too. But it also has a right inverse, namely, ¢, so it is
invertible. Hence, ¢ is invertible.

It remains to prove the theorem in the case where S = S; is reduced and the
fibre dimension of X is purely even. Possibly shrinking S, there is an embedding
1:5 — 85" =A". Let X’ := 5’ x AP and similarly for Y. Define ix : X — X' to
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be the unique morphism over ¢ such that zg( (2'*) = x*, where (2'*) are the standard
fibre coordinates on X’ over S’. Similarly, define 7y : Y — Y’. Then ix and iy
are embeddings by [6, Corollary 5.29].

Define ¢® := *(y®). Possibly shrinking X, X', Y, and Y’, we may assume that
there are functions ¢’® on X such that ¢* = z& (¢'*). Since X is reduced, z& is post-
composition with (ix ). Thus, by taking real parts in the case of (K, k) = (C,R), we
may assume that the functions ¢’® are k-valued. Therefore, there is by [6, Corollary
5.36] a unique morphism ¢’ : X’ — Y’ over S’ such that ¢'#(3/*) = ¢'®. Then

¢ oix =iy o,
so that by Lemma A.2 below, we may assume that ¢’ satisfies the assumption
of (iii). But X’ and Y’ are ordinary manifolds, so the local invertibility of ¢’

follows. Thus, ¢f(y*) = i (¢"#(y/*)) is a system of fibre coordinates. This proves
the assertion. 0

In the proof of the Theorem A.1, we have used the following easy lemma.

Lemma A.2. Let p : X/S — Y/S be a morphism of supermanifolds over S. For
any pair m|n of non-negative integers, the set

{x € Xp | tkTs zp > m|n}
is open. Here, we write plq = m|n if and only if p > m and ¢ = n.

Proof. In local fibre coordinates, T's ¢ is represented by the Jacobian matrix
Jacs(p)(x), which is a continuous function of z. Since the rank of the upper or
lower diagonal block of a block matrix is a lower semicontinuous function and the
finite intersection of open sets remains open, the assertion follows. (]

APPENDIX B. IMMERSIONS OF CLOSED LIE GROUPS OVER SOME BASE
Let T € SSplﬂig be reduced. The aim of this appendix is to prove the following.

Theorem B.1. Let j : H — G be a morphism of Lie groups over T which is an
injective immersion and has closed image. Then j is a closed embedding.

We let g := T x¢ T(G/T), the restriction of the fibrewise tangent bundle of G
to T, be the Lie algebra of G. It is a vector bundle over T" and admits a bracket.
Similarly, we define h and consider the differential dj : h — g induced by T'(j/T).
It is an injective vector bundle morphism and therefore a closed embedding. We
define expy : g — G by

(),

where pj is the vector bundle projection of g and we write G for the fibre of G over
t € T. By the smooth dependence of the solutions of ODE on Cauchy data, expg
is a morphism of manifolds over T'. It is a local isomorphism of manifolds over T’
by the inverse function theorem (Theorem A.1). Similarly, we may define expy. It
follows that j o expy = expg o dj, since this is true fibrewise.

Consider the set

expg(2) = expg

Pg(z)

b = {x €g ‘ expq (Rx) gj(H)}.

From the fibrewise statement (which is classical), it follows that the fibres of §’ are
Lie subalgebras of the fibres of g, and moreover, that dj(h;) = b} for any ¢t € T.
Thus, b’ identifies with the image of dj and is therefore a vector subbundle of g.

Fix t € T. We may choose open neighbourhoods U C g of 0; and V) C G of
1; such that expy : U — Vp is a homeomorphism. Since this holds fibrewise, it
follows that

expe(UNp) CVon H.
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Fix a vector bundle metric (-,-) on g (this exists after possibly restricting to a
paracompact neighbourhood of ¢ in T) and E = (h')t C g a vector subbundle
complementary to §’. We write ||-]] = +/(:,). The proof of the following two
lemmas is identical to the classical case [27, Section 9.2.3].

Lemma B.2. Let x, € U, xp # 0, expa(zr) € j(H), converge to a point in the
zero section of g. Any accumulation point of ||wk|| "tz lies in b'.

Lemma B.3. There is some open neighbourhood U” C U N E of 0; such that we
have expo(U")Nj(H) CT.

Lemma B.4. Possibly after shrinking the meighbourhood U", there exist open
neighbourhoods U' CUNY of 0; and V' C G of 1; such that

¢:U xU" —V": (v, u") — (expg(u’))(expg(u”))
is a diffeomorphism over T'.

Proof. The classical case shows that fibrewise, ¢ fulfills the assumptions of the
inverse function theorem (Theorem A.1). O

We now come to the proof of the theorem.

Proof of Theorem B.1. We claim that exp(U’) = V' N j(H). The inclusion C is
clear, since U’ C U by counstruction. Conversely, let g = ¢(u’,u”) € j(H), where
(u',u") € U' x U". Then

expe(U") 3 expg (u”) = (expg(u') g € j(H),
so that g =1 and «” = 0 by Lemma B.3. Thus, g = expa(u') € exps(U’), proving
the claim.
Let U = expy (dj—1(U’)). This is a neighbourhood of 1; in H, and after shrinking
U’, we may assume that it is open. The claim implies

J(U) = expg(U") = V' N j(H),

so that U carries the initial topology with respect to j. The assertion follows. [
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