Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Masses of neutron-rich 52–54Sc and 54,56Ti nuclides: The N=32 subshell closure in scandium

MPG-Autoren
/persons/resource/persons30312

Blaum,  Klaus
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons188944

Schwenk,  Achim
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons226461

Huang,  Wenjia
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1905.12577.pdf
(Preprint), 238KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xu, X., Wang, M., Blaum, K., Holt, J. D., Litvinov, Y. A., Schwenk, A., et al. (2019). Masses of neutron-rich 52–54Sc and 54,56Ti nuclides: The N=32 subshell closure in scandium. Physical Review C, 99(6): 064303. doi:10.1103/PhysRevC.99.064303.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-4682-A
Zusammenfassung
Isochronous mass spectrometry has been applied in the storage ring CSRe to measure the masses of the neutron-rich 52–54Sc and 54,56Ti nuclei. The new mass excess values ME(52Sc)=−40525(65) keV, ME(53Sc)=−38910(80) keV, and ME(54Sc)=−34485(360) keV, deviate from the Atomic Mass Evaluation 2012 by 2.3σ, 2.8σ, and 1.7σ, respectively. These large deviations significantly change the systematics of the two-neutron separation energies of scandium isotopes. The empirical shell gap extracted from our new experimental results shows a significant subshell closure at N=32 in scandium, with a similar magnitude as in calcium. Moreover, we present ab initio calculations using the valence-space in-medium similarity renormalization group based on two- and three-nucleon interactions from chiral effective field theory. The theoretical results confirm the existence of a substantial N=32 shell gap in Sc and Ca with a decreasing trend towards lighter isotones, thus providing a consistent picture of the evolution of the N=32 magic number from the pf into the sd shell.