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FROM ALE TO ALF GRAVITATIONAL INSTANTONS. II

Hugues AUVRAY ∗

Abstract

This paper is the sequel of our previous article From ALE to ALF gravita-

tional instantons, where we constructed ALF hyperkähler metrics on minimal

resolutions of C2/Dk, with Dk the binary dihedral group of order 4k, k ≥ 2.
In the present article we generalize the construction to smooth deformations

of this Kleinian singularity, with help of the computation of the asymptotics
of the ALE gravitational instantons.

Introduction

A central question in Riemannian geometry in real dimension 4 is that of
the comprehension of non-compact, complete, Ricci-flat manifolds. These spaces
indeed arise naturally in differential geometry as limiting spaces, after rescaling, of
families of compact Einstein 4-manifolds; their knowledge might thus be of crucial
interest for the study of Einstein compact 4-manifolds and especially of sequences
of such spaces.

The dimension 4 moreover allows one to specify the question to Ricci-flat Käh-
ler, or even hyperkähler, non-compact, complete manifolds. If one adds furthermore
a decay condition on the Riemannian curvature tensor, this leads to:

Definition 0.1 (Gravitational instantons) A gravitational instanton is a non-
compact, complete, hyperkähler manifold (X, g, I, J,K) of real dimension 4, whose
Riemannian curvature satisfies the following L2 integral condition:

∫
X
|Rmg |2ρ volg

is finite, where ρ is a "ball volume growth ratio" function.

∗This work was started while the author was visiting the University of Edinburgh during

Spring 2012, supported by an FSMP grant, and completed during the author’s stay at the

MPIM Bonn as an EPDI post-doc visitor in 2013.
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From ALE to ALF gravitational instantons. II

By a ball volume growth ratio function, we merely mean a function comparing the
growth of balls in X to the that of the flat model (R4, e), with e the standard
euclidean metric on R4; more concretely, fixing x ∈ X and setting r = dg(x, ·), one

can take ρ = r4

1+Vol(BX(x,r))
.

Let us add here that besides this differential-geometric definition, gravitational
instantons also appear as fundamental objects in theoretical physics, in fields such
as Quantum Gravity [Haw] or String Theory [CH,CK].

Recall that the hyperkähler condition implies the Ricci-flatness. Thus, the fun-
damental Bishop-Gromov theorem [GLP] implies that on gravitational instantons,
the function ρ mentioned above is at least positively bounded below – in other
words, the growth of the ball volume is at most euclidean. If it is also bounded
above, one deals with Asymptotically Locally Euclidean instantons, or ALE instan-
tons for short. These hyperkähler manifolds are completely classified, after [BKN]
and [Kro2] (notice also the recent extension [Şuv] to the Kähler Ricci-flat case);
their comprehension actually goes deeper, since the classification corresponds to
an exhaustive construction by Kronheimer [Kro1], which is why we shall also often
refer to these spaces as Kronheimer’s instantons. In a nutshell, the hyperkähler
structures of these spaces are asymptotic to that of a quotient R4/Γ, with Γ a
finite subgroup of SU(2) = Sp(1); when moreover Γ is fixed, these spaces are all
diffeomorphic to the minimal resolution of the Kleinian singularity C2/Γ. Here C2

stands for (R4, I1) with I1 the standard complex structure given by the coordinates
z1 = x1 + ix2, z2 = x3 + ix4; we fix this notation, as well as that of I2 and I3 for
the other two standard complex structures on R4 ∼= H, given respectively by the
coordinates (x1 + ix3, x4 + ix2) and (x1 + ix4, x2 + ix3).

Now, still on gravitational instantons, a result by Minerbe [Min1] states the
following quantification: if the ball volume growth is less than euclidean, i.e quartic,
it is at most cubic; in other words, if the comparison function ρ is not bounded, it
grows at most like r. One then speaks about Asymptotically Locally Flat, or ALF,
gravitational instantons. The prototype of such metrics is (are) the Taub-NUT
metric(s), living on R4. Roughly speaking, half of these spaces are classified, by
Minerbe again [Min3]; their geometry at infinity is that of a circle fibration over
R3, and they are explicitly described by the so-called Gibbons-Hawking ansatz.

Results. The only other possibility for the asymptotic geometry of the ALF gravi-
tational instantons is that of a circle fibration over R3/± [Min2]. This we illustrate
by the following, which is one of the two main results of this paper:

Theorem 0.2 Let
(
X, g, IX1 , I

X
2 , I

X
3 ) be an ALE gravitational instanton modelled

on R4/Dk, in the sense that X minus a compact subset is diffeomorphic to R4/Dk

minus a ball, and that the hyperkähler structure of X is asymptotic to that of
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R4/Dk via the diffeomorphism in play; here Dk is the binary dihedral group of
order 4k, k ≥ 2. Then there exists on X a family of hyperkähler structures
(gm, J

X
1,m, J

X
2,m, J

X
3,m)m∈(0,∞), such that:

1. the diffeomorphism above can be chosen so that gm is asymptotic to the Taub-
NUT metric fm;

2. the Kähler classes associated to this hyperkähler structure are the same as
those of the ALE hyperkähler structure, and moreover volgm = volgX ;

3. the curvature tensor Rmgm has cubic decay.

The metric fm of this statement is the Taub-NUT metric of parameter m, the
squared inverse of which shall be interpreted modulo a multiplicative constant as
the length at infinity of the fibres of a circle action fm. The asymptotics between
the ALF metric gm and fm are as follows: if R denotes a distance function for fm,
then (gm − fm) and ∇fm(gm − fm) are O(R−2+ǫ) for an arbitrarily small ǫ > 0. Of
course fm is also invariant under Dk, so that it makes perfect sense on R4/Dk.

Before discussing in more details on how Theorem 0.2 is proved, we shall under-
line the following: its proof heavily relies on the computation of the asymptotics of
the ALE instantons modelled on R4/Dk. More precisely, Kronheimer’s construc-
tion of these spaces allows one to write these asymptotics under the shape of a
power series, the main term of which is the euclidean model, and this actually
holds for any finite subgroup Γ of SU(2) alluded above. Our second main result
deals with the first non-vanishing terms of those expansions:

Theorem 0.3 Let
(
X, g, IX1 , I

X
2 , I

X
3 ) be an ALE gravitational instanton modelled

on R4/Γ. Then one can choose a diffeomorphism Φ between X minus a compact
subset and R4 minus a ball such that:

1. Φ∗gX−e = hX+O(r−6), Φ∗I
X
1 −I1 = ιX1 +O(r−6) and if ωX1 = gX(I

X
1 ·, ·) and

ωe

1 = e(I1·, ·), then Φ∗ω
X
1 −ωe

1 = ̟X
1 +O(r−6), where hX , ιX1 and ̟X

1 admit
explicit formulas and are O(r−4); for instance ̟X

1 = −
∑3

j=1 cj(X)ddcIj(r
−2)

for some explicit constants cj(X).

2. when Γ is not a cyclic subgroup of SU(2), the O(r−6) of the previous point
can be replaced by O(r−8).

Here the O are understood in an asymptotically euclidean context: ε is O(r−a) if
for any ℓ ≥ 0,

∣∣(∇e)ℓε
∣∣
e
= O(r−a−ℓ) near infinity.

Organization of the article. The paper is organized as follows. It is divided into
two parts, reflecting the dichotomy of Theorem 0.2 and 0.3. Part 1 is devoted
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to the proof of Theorem 0.2. We first draw in section 1.1 a detailed program of
construction of our hyperkähler ALF metrics, leading us to the expected result
(Theorem 1.3). In section 1.2 are recalled essential facts on the Taub-NUT metric,
seen as a Kähler metric on C2. The construction itself occupies section 1.3 and 1.4;
roughly speaking, it consists into a gluing of the Taub-NUT metric with the ALE
metric of some ALE instanton, which we subsequently correct into a Ricci-flat
metric thanks to an appropriate Calabi-Yau theorem adapted to ALF geometry.
The concluding section 1.5, which is mainly computational, deals with the proof
of two technical lemmas useful to our construction.

In Part 2, which mostly does not depend on Part 1, after recalling some basic
facts about Kronheimer’s construction of ALE instantons, we state Theorem 2.1,
which is a specified version of Theorem 0.3 – in particular we give the promised ex-
plicit formulas (section 2.1). We give further details on Kronheimer’s construction
and classification in section 2.2, where we also fix the diffeomorphism of Theorem
0.3. Then we compute the tensors hX , ιX1 and ̟X

1 in section 2.3; using similar
techniques, we show in the following section 2.4 that the precision of the asymp-
totics is automatically improved when Γ is binary dihedral, tetrahedral, octahedral
or icosahedral. We develop in the last section 2.5 a few informal digressive con-
siderations on the approximation of complex structures of certain ALE instantons
by the standard I1, relied on links observed in the construction of Part 1.

Comments. Let us start with a few words on previous constructions of ALF
dihedral gravitational instantons. Such objects are known to exist since the
works [CH, CK], in which twistor methods are employed. The produced hyper-
kähler spaces are unfortunately not much explicit, which partly motivates our
construction, although we hope that actually, both constructions produce the same
families of ALF hyperkähler metrics, and more precisely that these constructions
are exhaustive, in the sense the any ALF dihedral gravitational instanton fits into
the produced examples (up to a tri-holomorphic isometry): this folklore conjecture
is the analogue of the classification of [Min3]. Let us recall also our previous con-
struction [Auv], in which we restricted ourselves to resolutions of Kleinian dihedral
singularities for technical reasons. We actually here follow the same guideline, by-
passing those difficulties. We would however like to emphasise their non-trivial
character: we indeed need Theorem 0.3 to tackle them, and some rather impor-
tant technical adjustments are still necessary to handle our construction (see e.g.
Proposition 1.7). Consequently, our approach in Part 1 is to focus on these ad-
justments, recalling only the minimal material from [Auv] to get to the envisaged
end, i.e. Theorem 0.2; in particular, we only state and use an ALF Calabi-Yau
type theorem which was a major result of that paper.

More closely to the statement of Theorem 0.2, notice that it is not of a per-
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turbative nature: this corresponds to taking the parameter m in the whole range
(0,+∞). The price to pay is somehow that so far, we do not control what happens
when m goes to 0. We conjecture that the ALF hyperkähler structure converges
in C∞

loc-topology to the original ALE one, as is the case on C2; this question will
be handled in a future article.

Now in Theorem 0.3, the existence of the first order variation terms hX , ιX1
and ̟X

1 is of course not new, as it is even known from Kronheimer’s construction
[Kro1] that the ALE hyperkähler structures admit an expansion in terms of similar
tensors. What is new though is their explicit determination, which we could only
find in the simplest case that is the Eguchi-Hanson space (see e.g [Joy, p.153]), i.e.
when Γ = A2 = {± idC2}. Notice at this point that as suggested by the statement
of Theorem 0.3, the shapes of hX , ιX1 and ̟X

1 follow a general pattern which is only
slightly affected by the group Γ; up to a multiplicative constant, we can indeed
compute them on the explicit Eguchi-Hanson example. We think moreover that
Theorem 0.3 is of further interest, and that among others, the order of precision
it brings could be useful in more general gluing constructions.

Acknowledgements. I would like to thank my former PhD advisor O. Biquard
for his wide advice, and particularly for his insight into Theorem 0.3. I am also
thankful to FSMP for its support during my visit in the University of Edinburgh,
and to the Max-Planck-Institut für Mathematik Bonn for its very stimulating
environment.

1 Construction of ALF hyperkähler metrics

1.1 Strategy of construction

Outline of the strategy. As described in [Auv] and as we shall see in next section,
one can describe the Taub-NUT metric on R4 as a Dk-invariant hyperkähler metric
with volume the standard Ωe, Kähler for the standard complex structure I1, and
compute a somehow explicit potential, ϕ say, for it.

Now, given one of Kronheimer ALE gravitational instantons
(
X, gX , I

X
1 , I

X
2 , I

X
3

)

modelled on R4/Dk, we have a diffeomorphism ΦX between infinities of X and
R4/Dk such that ΦX∗gX is asymptotic to e, and ΦX∗I

X
1 is asymptotic to I1. It is

this way quite natural to try to take dIX1 d(Φ
∗
Xϕ) glued with gX as an ALF metric on

X, before we correct it into a hyperkähler metric. This naive idea does work when
X is a minimal resolution of (C2/Dk, I1) and ΦX the associated map: this is the
purpose of [Auv]. However this fails in the general case, where X is a deformation
of (C2/Dk, I1), without further precautions: the size of the Taub-NUT potential
ϕ, roughly of order r4 as well as its euclidean derivatives, together with the error
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term ΦX∗I
X
1 − I1 on the complex structure, even make wrong the assertion that

the rough candidate dIX1 d(Φ
∗
Xϕ) is positive – in the sense that dIX1 d(Φ

∗
Xϕ)(·, I

X
1 ·)

is a metric – near the infinity of X.
Fortunately, up to choosing a different complex structure on X to work with,

we can make the appropriate corrections on ϕ so as to get a good enough ALF
metric on X to start with, and then run the same machinery as in [Auv] up to
minor but yet technical adjustments, so as to end up with Theorem 0.2.

Detailed strategy, and involvements of the asymptotics of Kronheimer’s instantons.
We shall now be more specific about the different steps involved in the program
we are following throughout this part.

1. Let act SO(3) on the complex structure of X as follows: for A = (ajℓ) ∈
SO(3), define the triplet (AIX)· as

(AIX)· =
(
(AIX)j

)
j=1,2,3

=
(
aj1I

X
1 + aj2I

X
2 + aj3I

X
3

)
j=1,2,3

;

then
(
X, gX , (AI

X)1, (AI
X)2, (AI

X)3
)

is again hyperkähler, and therefore an
ALE gravitational instanton modelled on R4/Dk.

2. With the model R4/Dk at infinity fixed, Kronheimer’s instantons are parame-
trised [Kro1] by a triplet ζ = (ζ1, ζ2, ζ3) ∈ h⊗ R3 −D, where h is a (k + 2)-
dimensional real vector space endowed with some scalar product 〈·, ·〉, and
D is a finite union of spaces H ⊗ R3 with H a hyperplane in h (as notation
suggests, h is a Lie algebra; we will be more specific about its interpretation
in part 2). This parametrisation is compatible with the SO(3)-action of Point
1. in the sense that if ζ is the parameter associated to

(
X, gX , I

X
1 , I

X
2 , I

X
3

)
,

and if
(
Y, gY , I

Y
1 , I

Y
2 , I

Y
3

)
is the instanton associated to Aζ , defined by:

Aζ =
(
(Aζ)j

)
j=1,2,3

=
(
aj1ζ1 + aj2ζ2 + aj3ζ3

)
j=1,2,3

, (1)

then there exists an isometry which is moreover tri-holomorphic between(
X, gX , (AI

X)1, (AI
X)2, (AI

X)3
)

and
(
Y, gY , I

Y
1 , I

Y
2 , I

Y
3

)
: this is Lemma 2.3,

stated and proved in Part 2. Defined this way, Aζ is of course still in h ⊗
R3 − D; otherwise Aζ ∈ H ⊗ R3 for one of the hyperplanes H mentioned
above, and thus ζ = At(Aζ) ∈ H ⊗ R3, which would be absurd.

3. In general, one can take the diffeomorphism ΦX between infinities of X and
R4/Dk so that ΦX∗I

X
1 − I1 = O(r−4) with according decay on derivatives,

which is not good enough for our construction, see [Auv, p.17-18]. We can
nonetheless improve the precision thanks to the following two lemmas:

6
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Lemma 1.1 If ξ ∈ h⊗ R3 −D is such that |ξ2|
2 − |ξ3|

3 = 〈ξ2, ξ3〉 = 0, and(
Y, gY , I

Y
1 , I

Y
2 , I

Y
3

)
is the associated ALE instanton, then one can choose ΦY

such that there exists a diffeomorphism i = iξ of R4 commuting with the
action of Dk, and such that:

∣∣∣(∇e)
ℓ
(
ΦY ∗I

Y
1 − i

∗I1
)∣∣∣

e

= O(r−8−ℓ) for all ℓ ≥ 0.

Moreover, the shape of i is given by: i(z1, z2) =
(
1 + a

κ+r4

)
(z1, z2), where

κ, a ∈ R, and (z1, z2) are the standard complex coordinates on (C2, I1), and∣∣(∇e)
ℓ
(
Ωe − i∗Ωe

)∣∣
e
= O(r−8−ℓ) for all ℓ ≥ 0.

Lemma 1.2 For any ζ ∈ h⊗R3, there exists A ∈ SO(3) such that |(Aζ)2|
2−

|(Aζ)3|
2 = 〈(Aζ)2, (Aζ)3〉 = 0.

Lemma 1.1, which relies on our analysis of the asymptotics of Kronheimer’s
instantons, is proved in section 1.3, assuming a general statement for this
asymptotics that is seen in Part 2; Lemma 1.2, which is elementary, is proved
at the end of this section.

4. We choose A as in Lemma 1.2, consider the instanton Y associated to ξ =
Aζ ∈ h⊗R3−D, and apply the original program, i.e. the gluing of the Kähler
forms and the corrections of the prototypical ALF metric into a hyperkähler
metric, to the potential ϕ♭ := i∗ϕ instead of ϕ. Thanks to the better
coincidence of the complex structures, the rough candidate dIX1 d(Φ

∗
Xϕ

♭) is
now positive at infinity, and actually also rather close to f

♭ := i∗
f , with f

the Taub-NUT metric on R4, Kähler for I1.

We should moreover specify here that the gluing requires a precise description
of the Kähler form ωY1 := gY

(
IY1 ·, ·

)
, which is again part of the analysis of

the asymptotics of Kronheimer’s ALE instantons.

We get this way after corrections a Ricci-flat, actually hyperkähler, man-
ifold

(
Y, g′Y , I

Y
1 , J

Y
2 , J

Y
3

)
, with ΦY ∗g

′
Y asymptotic to f

♭, and
[
g′Y (I

Y
1 ·, ·)

]
=

[gY (I
Y
1 ·, ·)]; the construction gives moreover

[
g′Y (J

Y
j ·, ·)

]
= [gY (I

Y
j ·, ·)], j =

2, 3.

5. We let At = A−1 act back on the previous data to come back to X, and end
up with a hyperkähler manifold

(
X, g′X , J

X
1 , J

X
2 , J

X
3

)
, with

[
g′X(J

X
j ·, ·)

]
=

[gX(I
X
j ·, ·)], j = 1, 2, 3, and ΦX∗g

′
X asymptotic to f

♭, provided that ΦX is the
composite of ΦY and the tri-holomorphic isometry of Point 2 .

We shall also add that we can play on the metric f in this construction. Indeed,
f is invariant under some fixed circle action on R4, and the length for f of the fibres

7
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of this action tends to some constant L > 0 at infinity. We can make this length
vary in the whole (0,∞) and keep the same volume form for f ; given m ∈ (0,∞)
that we call the "mass parameter", we then denote by fm the Taub-NUT metric

giving length L(m) = π
√

2
m

to the fibres at infinity, and of volume form Ωe (the

choice of the parameter m instead of L will become clear below).
We can then sum up our construction by the following statement, which is the

main result of this part:

Theorem 1.3 Consider an ALE gravitational instanton
(
X, gX , I

X
1 , I

X
2 , I

X
3

)
mod-

elled on R4/Dk. Then there exists a one-parameter family
(
g′X,m, J

X
1,m, J

X
2,m, J

X
3,m

)

of smooth hyperkähler metrics on X such that:

• for any m, one has the equality
[
g′X,m

(
JX1,m·, ·

)]
=

[
gX

(
IX1 ·, ·

)]
of Kähler

classes for j = 1, 2, 3;

• for any m, g′X,m and gX have the same volume form;

• when m is fixed, g′X,m is ALF in the sense that one has the asymptotics

∣∣∣(∇f ♭m)ℓ
(
ΦX∗g

′
X,m − f

♭
m

)∣∣∣
f ♭m

= O
(
R−1−δ

)
, ℓ = 0, 1,

for any δ ∈ (0, 1) and that Rmg′X,m has cubic decay at infinity.

Here R is a distance function for f
♭
m, and ΦX is an ALE diffeomorphism between

infinities of X and R4/Dk, in the sense that |ΦX∗gX−e|e, |ΦX∗I
X
j −Ij |e = O(r−4),

with according decay on derivatives.

In this statement, f
♭
m = i∗

fm, where i = iAζ is given by Lemma 1.1, ζ ∈
h ⊗ R3 − D is the parameter associated to

(
X, gX , I

X
1 , I

X
2 , I

X
3

)
, and A is chosen

as in Lemma 1.2. There might a slight ambiguity here, since different A ∈ SO(3)
could do – namely, given ζ as in Lemma 1.2, there may be many A satisfying its
conclusions; we will see however in Remarks 1.4 and 1.9 that i as we construct it
is not affected by this choice.

Points 1. and 5. of our program above do not need further developments. We
postpone the tri-holomorphic isometry of Point 2. to Part 2, paragraph 2.2.1, since
it will be easier to tackle with a little extra notions on Kronheimer’s classification
of ALE gravitational instantons. As for Point 3., as mentioned already, the proof
of 1.1 is given in section 1.3 assuming results from part 2; apart from the proof of
Lemma 1.2 which we shall settle now, our main task in the current part is thus
the gluing and the subsequent corrections stated in Point 4., to which we devote
sections 1.3 and 1.4 below, after recalling a few useful facts on the Taub-NUT
metric seen as a Kähler metric on (C2, I1) in next section.

8
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Proof of Lemma 1.2. Fix ζ ∈ h⊗R3, and define the matrix Z(ζ) =
(
〈ζj, ζℓ〉

)
1≤j,ℓ≤3

of its scalar products. It is therefore elementary matrix calculus to check that
the SO(3)-action defined by (1) and referred to in the statement of the lemma
translates into: Z(Aξ) = AZ(ξ)At.

We thus want to find A ∈ SO(3) such that AZ(ζ)At has shape:



µ ∗ ∗
∗ λ 0
∗ 0 λ



 . (2)

Since Z = Z(ζ) is symmetric, there exists O ∈ SO(3) such that OZOt =
diag(λ1, λ2, λ3), and we now look for Q ∈ SO(3) such that Q diag(λ1, λ2, λ3)Q

t

has shape (2); setting then A = QO leads us to the conclusion. If two of the λj
are the same then we are done, up to letting act one of the permutation matrices(

1 0 0
0 0 1
0 −1 0

)
,
(

0 1 0
−1 0 0
0 0 1

)
and

(
0 0 1
0 1 0
−1 0 0

)
. Up to this action again, we can therefore assume

λ1 > λ2 > λ3.
Setting

Q =




(
λ1−λ2
λ1−λ3

)1/2
0

(
λ2−λ3
λ1−λ3

)1/2

0 1 0

−
(
λ2−λ3
λ1−λ3

)1/2
0

(
λ1−λ2
λ1−λ3

)1/2


 ,

a direct computation gives Q diag(λ1, λ2, λ3)Q
t =

(
λ1+λ3−λ2 0 −Λ

0 λ2 0
−Λ 0 λ2

)
, where Λ =

(λ1 − λ2)
1/2(λ2 − λ3)

1/2. �

Remark 1.4 Let us give a brief idea about how such a matrix Q can be found.
This is actually what one can get by writing down the three relevant coefficients of
Q diag(λ1, λ2, λ3)Q

t for Q = (qjℓ)1≤j,ℓ≤3 ∈ SO(3), which leads to the underdeter-
mined system

{
(λ1 − λ2)q22q32 + (λ1 − λ3)q23q33 = 0,

(λ1 − λ2)q
2
22 + (λ1 − λ3)q

2
23 = (λ1 − λ2)q

2
32 + (λ1 − λ3)q

2
33,

to which one adds the arbitrary extra two conditions q32 = q23 = 0. Still keeping the
same notations, one can show that the only possibilities for writing Q diag(λ1, λ2, λ3)Q

t

under shape (2) are the
( λ1+λ3−λ2 Λ cosφ Λ sinφ

Λ cosφ λ2 0
Λ sinφ 0 λ2

)
, φ ∈ R, and again λ1 ≥ λ2 ≥ λ3.

1.2 The Taub-NUT metric as a Kähler metric on (C2, I1)

Before we proceed to the gluing of the Taub-NUT metric with the ALE metric of
one of Kronheimer’s instantons, we recall a few facts about this very Taub-NUT
metric on C2, that will be used in the analytic upcoming sections 1.3 and 1.4.

9



From ALE to ALF gravitational instantons. II

1.2.1 Gibbons-Hawking versus LeBrun ansätze

Gibbons-Hawking ansatz. As recalled in the Introduction, the Taub-NUT metric on
R4 is often described via the Gibbons-Hawking ansatz as follows: givenm ∈ (0,∞),

fm = V (dy21 + dy22 + dy23) + V −1η2, (3)

where (y1, y2, y3) is a circle fibration of R4\{0} over R3\{0}, V is the function
1+4mR

2R
(harmonic in the yj coordinates) with R2 = y21 + y22 + y23, and where η is

a connection 1-form for this fibration such that dη = ∗R3dV . Thus defined, the
metric fm confers length π

√
2/m to the fibres at infinity, and is hermitian for the

almost-complex structures

Ja :

{
V dya 7−→ η,

dyb 7−→ dyc,

with (a, b, c) ∈
{
(1, 2, 3), (2, 3, 1), (3, 1, 2)

}
. These are in fact complex structures,

verifying the quaternionic relations JaJbJc = −1, for which fm is Kähler, thanks to
the harmonicity of V : fm is thus hyperkähler. One checks moreover that this way,
the metric fm and the complex structures extend as such through 0 ∈ R4. The
reader is referred to [GH,LeB] for details, as we shall now switch point of view to
a description better adapted to our construction.

LeBrun’s potential. As depicted in [Auv], after [LeB], one can give a more concrete
support of this description, through which, among others, the complex structure J1
mentioned above is the standard I1 on C2, and volfm = Ωe, the standard euclidean
volume form. One starts with the following implicit formulas:

|z1| = em(u2−v2)u,

|z2| = em(v2−u2)v,
(4)

defining functions u, v : C2 → R, invariant under the circle action eiθ · (z1, z2) =
(eiθz1, e

−iθz2), making S1 as a subgroup of SU(2); notice the role of m in these
formulas, which enlightens our choice of taking it as the parameter of the upcoming
construction. One then sets y1 =

1
2
(u2 − v2), y2 + iy3 = −iz1z2, R = 1

2
(u2 + v2) =(

y21+y
2
2+y

2
3

)1/2
; these are S1-invariant functions, making (y1, y2, y3) as a principal-

S1 fibration C2 → R3 away from the origins. One finally defines:

ϕm :=
1

4

(
u2 + v2 +m(u4 + v4)

)
=

1

2

(
R +m(R2 + y21)

)
. (5)

One can then checks that ddcI1ϕm is positive is the sense of I1-hermitian 2-forms,
and that (ddcI1ϕm)

2 = 2Ωe. If one sets moreover V = 1+4mR
2R

, and η = I1V dy1,

10
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noticing by passing that η is then a connection 1-form for the fibration, dη =
∗R3dV , one has: fm := V (dy21 + dy22 + dy23) + V −1η2 = (ddcI1ϕm)(·, I1·). This metric
is well-defined at 0 ∈ C2, as (ddcI1ϕm)(·, I1·) = e at that point.

The metric fm is therefore Kähler for I1 with volume form volfm = Ωe on the
whole C2; by the standard properties of Kähler metrics, it is thus Ricci-flat. One
recovers a complete hyperkähler data after checking that the defining equations

fm(Jj·, ·) = ωe

j , where ωe

j = e(Ij ·, ·), j = 2, 3, (6)

with I2, I3 the other two standard complex structures on R4 ∼= H, give rise to
complex structures, verifying respectively V dyj 7→ η, dyk 7→ dyi for (i, j, k) ∈{
(2, 3, 1), (3, 1, 2)

}
, as well as the quaternionic relations together with I1.

Let us now give a look at the length of the S1-fibres at infinity. Consider the
vector field ξ := i

(
z1

∂
∂z1

− z1
∂
∂z1

− z2
∂
∂z2

+ z2
∂
∂z2

)
giving the infinitesimal action of

S1. One has dy1(−I1ξ) = V −1, thus η(ξ) = 1, and dyj(ξ) = 0, j = 1, 2, 3; since R

is S1-invariant, the length of the fibres is just 2πV −1/2, which tends to π
√
2/m.

Remark 1.5 One can check that even if we can let m vary, this description actu-
ally leads to essentially one metric; indeed, if κs is the dilation of factor s > 0 of
R4, one gets with help of formulas (4) and (5) the following homogeneity property:
κ∗sfm = s2fms2, which is of course coherent with the length of the fibres at infinity
and the fact that volfm = volfms2 = Ωe.

From now on, we see the mass parameter m as fixed, and we drop

the indexes m when there is no risk of confusion.

The Taub-NUT metric and the action of the binary dihedral group on C2. For
k ≥ 2, which we fix until the end of this part, the action of the binary dihedral
group Dk of order 4k seen as a subgroup of SU(2) is generated by the matrices

ζk :=
(
eiπ/k 0
0 e−iπ/k

)
and τ :=

(
0 −1
1 0

)
. One has: ζ∗kyj = yj, j = 1, 2, 3, and thus

ζ∗kR = R, and ζ∗kη = η, whereas: τ ∗yj = −yj, j = 1, 2, 3, thus τ ∗R = R, and
τ ∗η = η. The Taub-NUT metric f is therefore Dk-invariant, and descends smoothly
to (R4\{0})/Dk: this is the metric we are going to glue at infinity of Dk-ALE
instantons in the next section. Before though, we need a few more analytical tools
for the Taub-NUT metric as we describe it.

1.2.2 Orthonormal frames, covariant derivatives and curvature

In addition to the above relations between the vector field ξ, and the 1-forms
η and dyj, j = 1, 2, 3, one has that the data

(e0, e1, e2, e3) :=
(
V 1/2ξ,−I1V

1/2ξ, V −1/2ζ, V −1/2I1ζ
)
, (7)

11
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is the dual frame of the orthonormal frame of 1-forms

(e∗0, e
∗
1, e

∗
2, e

∗
3) :=

(
V −1/2η, V 1/2dy1, V

1/2dy2, V
1/2dy3

)
(8)

on C2\{0}, provided that the vector field ζ is defined by:

ζ :=
1

2iR

(
e4my1

(
z2

∂

∂z1
− ∂z2

∂

∂z1

)
+ e−4my1

(
z1

∂

∂z2
− ∂z1

∂

∂z2

)
, (9)

see [Auv, Lemma 1.11]; we keep the notations (ej)j=0,...,3 and (e∗j )j=0,...,3 throughout
this part. An explicit computation made in [Auv, §1.2.3] then gives us the estimate

∣∣(∇f )ℓej
∣∣
f
= O

(
R−1−ℓ

)
near infinity for all ℓ ≥ 1 and j = 0, . . . , 3.

Notice that consequently, for all ℓ ≥ 0,
∣∣(∇f )ℓRmf

∣∣
f
= O

(
R−3−ℓ); this estimate,

done using the Gibbons-Hawking ansatz, can also be found in [Min1, §1.0.3].

We close this section by two further useful estimates, which may give an idea
of the geometric gap between e and f : first, at the level of distance functions,
rearranging formulas (4) gives: R ≤ 2r2, which is sharp is general; second, there
exists C = C(m) > 0 such that outside the unit ball of C2, C−1r−2

e ≤ f ≤ Cr2e,
and again this is sharp in general.

1.3 Gluing the Taub-NUT metric to an ALE metric

As is usual when gluing Kähler metrics, we shall work on potentials to glue the
ALF model-metric to an ALE one. The previous section gives us the potential
ϕ for the ALF metric (equation (5)); the following paragraph provides us with a
sharp enough potential for the ALE metric.

1.3.1 Approximation of the ALE Kähler form as a complex hessian

Asymptotics of the Kähler form and the complex structure. In view of Step 3. and
4. of the program developed in section 1.1, since we are performing our gluing on
some specific ALE instantons, we fix for the rest of this part

ξ ∈ h−D, such that: |ξ2|
2 − |ξ3|

2 = 〈ξ2, ξ3〉 = 0 (10)

and consider the associated ALE instanton
(
Y, gY , I

Y
1 , I

Y
2 , I

Y
3

)
. Lemma 1.1 gives an

ALE diffeomorphism ΦY : Y \K → (R4\B)/Dk, where K is some compact subset
of Y and B a ball in R4 centred at the origin; recall that by "ALE diffeomorphism"
we mean that for all ℓ ≥ 0,

∣∣(∇e)ℓ(ΦY ∗gY − e)
∣∣
e
= O(r−4−ℓ),

12
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and likewise on the complex structures. Before using the more specific properties
of ΦY at the level of complex structures, let us mention the following: we want to
proceed to a gluing of Kähler metrics, and the convenient way of doing so is to
glue the Kähler forms, via their potentials. We already have a candidate for the
potential of an ALF metric at infinity at hand: as evoked, this would be ΦY ∗ϕ

♭ (see
Point 4. in section 1.1). Conversely, we need to kill the ALE metric near infinity,
and for this we want a sharp enough potential, in a sense that we make clear below,
see Proposition 1.10. We thus need for this a sharp knowledge of the Kähler form
ωY1 := gY (I

Y
1 ·, ·), and since we are about to compute IY1 -complex hessians as well,

we also need a precise description of this complex structure. These are given by
the following, from which Lemma 1.1 actually follows as we shall see at the end of
this section, with the same ΦY :

Lemma 1.6 One can choose the ALE diffeomorphism ΦY such that

ΦY ∗ω
Y
1 = ωe

1 − c
(
|ξ1|

2θ1 + 〈ξ1, ξ2〉θ2 + 〈ξ1, ξ3〉θ3
)
+O(r−8) (11)

where c > 0 is some universal constant, θj =
1
4
ddcIj

(
r−4

)
, j = 1, 2, 3, on the one

hand, and if ιY1 denotes ΦY ∗I
Y
1 − I1, then it is given by:

e(ιY1 ·, ·) = −c
(
|ξ2|

2 + |ξ3|
2
)rdr · α1

r6
+O(r−8) (12)

where c is the same constant as above and α1 = I1rdr, on the other hand.
We can moreover assume that ΦY ∗ΩY = Ωe, where ΩY = volgY .

In this statement the error terms O(r−8) are understood in the "euclidean way",
namely for any ℓ ≥ 0, the ℓth ∇e-derivatives of these tensors are O(r−8−ℓ). This
lemma requires further notions on Kronheimer’s, and is more precisely a direct
application of Theorem 2.1 of Part 2 to Y with ξ verifying (10). Notice however the
order of the error term, which is −8 whereas −6 would be expected, if one think for
instance to the Eguchi-Hanson metric ( [Joy, Ex. 7.2.2]); this is crucial in proving
Lemma 1.1, and this is specific to (groups containing) dihedral binary groups.
Besides, the assertion on the volume forms is only needed in next paragraph.

Approximating ωY1 as an IY1 -complex hessian. We shall see for now how Lemma
1.6 allows us to approximate the Kähler form ωY1 as an IY1 -complex hessian, with
respect to the Taub-NUT metric pushed-forward to Y :

Proposition 1.7 Take ΦY as in Lemmas 1.1 and 1.6, and denote by f̃ a smooth
extension of ΦY

∗
f on Y . Then there exists a function Ψ on Y such that near

infinity, ∣∣(∇f̃ )ℓ
(
ωY1 − ddcIY1

Ψ
)∣∣

f̃
= O(R−2), ℓ = 0, 1, 2. (13)

13
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More precisely, Ψ can be decomposed as a sum ΦY
∗Ψeuc +ΦY

∗Ψmxd, where on the
one hand, Ψeuc = O(r2),

∣∣Ψeuc

∣∣
e
= O(r), and

∣∣(∇e)ℓ
(
ωe

1 − c|ξ1|
2θ1 − ddcΦY ∗I

Y
1
Ψeuc

)∣∣
e
= O(r−8−ℓ) for all ℓ ≥ 0, (14)

and on the other hand, Ψmxd,
∣∣dΨmxd

∣∣
f
= O(R−1), and

∣∣(∇f )ℓ
(
−c(〈ξ1, ξ2〉θ2+〈ξ1, ξ3〉θ3)−dd

c
ΦY ∗I

Y
1
Ψmxd

))∣∣
f
= O(R−2), ℓ = 0, 1, 2. (15)

Proof. Notice that once the statement on Ψeuc (the "euclidean component" of
Ψ) and Ψmxd (the "mixed component") are known, estimates (13) follow at once
by transposition of estimates (14) and (15) and of the expansion of ωY1 stated in
Lemma 1.6 to Y , keeping the following fact in mind:

Fact 1 If α is a tensor of type (2, 0), (1, 1) or (0, 2) such that
∣∣(∇e)ℓα

∣∣
e

=

O(r−2a−ℓ), a ≥ 1, ℓ = 0, 1, 2, on R4, then
∣∣(∇f )ℓα

∣∣
f
= O(R1−a), ℓ = 0, 1, 2.

This fact takes into account estimates such as R = O(r2) and C−1r−2
e ≤

f ≤ Cr2e at level ℓ = 0, and roughly says that by passing from euclidean to
ALF geometry we do not win regularity by differentiation anymore; it is proved
in [Auv, p.22].

We hence come to the statements on Ψeuc and Ψmxd. We consider before
starting a large constant K such that the image of ΦY is contained in both {r ≥
K} ⊂ R4/Dk and {R ≥ K} ⊂ R4/Dk, and define a cut-off function χ : R → [0, 1]
such that: {

χ(t) = 0 on t ≤ K − 1,

χ(t) = 1 on t ≥ K,
(16)

which will be useful when defining functions to be pulled-back to Y via ΦY .

The euclidean component Ψeuc. In an asymptotically euclidean setting, a natural
first candidate for the potential of a Kähler form is 1

4
r2. Now remember we are

working with IY1 – or more exactly with ΦY ∗I
Y
1 , but we forget about the push-

forward here for simplicity of notation; following Lemma 1.6, a straightforward
computation gives, near infinity in R4:

ddcIY1

(1
4
r2
)
=

1

2
d
[
(I1 + ιY1 )rdr

]
=

1

2
d
[
α1 + c(|ξ2|

2 + |ξ3|
2)r−4α1 +O(r−7)

]

= ωe

1 − c(|ξ2|
2 + |ξ3|

2)θ1 +O(r−8),

where the O are understood in the euclidean way. On the other hand observe that
I1d(r

−2) = −2r−4α1, and thus

ddcIY1
(r−2) = d

[
(I1 + ιY1 )d(r

−2)
]
= d

[
− 2r−4α1 +O(r−7)

]
= 4θ1 +O(r−8).

14
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Now define

Ψeuc =
1

4
χ(r)

(
r2 + c(|ξ2|

2 + |ξ3|
2 − |ξ1|

2)r−2
)
;

on R4/Dk (it is Dk-invariant); it has support in the image of ΦY , has the growth
stated in the lemma as well as its differential, and by the previous two estimates
we get that ωe

1 − c|ξ1|
2θ1 − ddc

ΦY ∗I
Y
1
Ψeuc = O(r−8) for e with according decay on

the derivatives, as wanted.

The mixed component Ψmxd. The main reason why we could construct Ψeuc such
as to reach estimates (14) is essentially that θ1 can be realised as an I1-complex
hessian, at least away from 0. Now realising θ2 and θ3 as I1-complex hessians as
well does not seem possible: see [Joy, p.202] on that matter. Nonetheless, θ2 and
θ3 may not be so problematic when looked at via f . We can indeed approximate
them precisely enough with respect to this metric by the I1 or IY1 -complex hessians
of some well-chosen Dk-invariant functions, provided that we partially leave the
euclidean world and use also functions coming from Taub-NUT geometry, e.g. y1
and R (hence the previous dichotomy "euclidean/mixed"):

Lemma 1.8 Consider the complex valued function

ψc := −2
(y2 + iy3) sinh(4my1)

r2R

on R4\{0}. Then near infinity:

1.
∣∣(∇f )ℓψc

∣∣
f
= O(R−1) for ℓ = 0, . . . , 4;

2.
∣∣(∇f )ℓ

(
ddcI1ψc − (θ2 + iθ3)

)∣∣
f
= O(R−2) for ℓ = 0, 1, 2, and these estimates

hold for IY1 as well.

The proof of this crucial lemma is essentially computational, which is why we
postpone it to section 1.5. For now set ψ2 = Re(ψc) and ψ3 = Im(ψc), and define

Ψmxd := −cχ(R)(〈ξ1, ξ2〉ψ2 + 〈ξ1, ξ3〉ψ3).

In view of Lemma 1.8, such a function, defined on the image of ΦY , verifies the
growth assertions of Proposition 1.7, as well as the estimates (15): Proposition 1.7
is proved. �

We are now in position to perform the gluing advertised in Point 4. of the
program of section 1.1. This is done in next paragraph to which the reader may
jump directly, since we conclude the current paragraph by the proof of Lemma 1.1,
assuming Lemma 1.6 (and more precisely the assertion on IY1 in that statement).
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Proof of Lemma 1.1 following Lemma 1.6. We fix ΦY as in Lemma 1.6; we work
on R4, and to simplify notations we forget about the push-forwards by ΦY .

We are thus looking for a diffeomorphism i of R4 such that
∣∣IY1 − i∗I1

∣∣
e
=

O(r−8), with according decay on euclidean derivatives – until the end of this proof
we forget about ALF geometry and stick to the euclidean setting; we will thus
content ourselves with using O in this euclidean meaning. An explicit formula is
given for i in the statement of Lemma 1.1, which is: i(z1, z2) 7→

(
1+ a

κ+r4

)
(z1, z2)

with (z1, z2) the standard complex coordinates on (C2, I1); since the value of κ does
not affect asymptotic considerations – changing κ only contributes as a O(r−8) –,
we could thus, up to determining the value of the constant a, simply check that
such a i meets our requirement, in light of the asymptotics for IY1 stated in Lemma
1.6.

We prefer nonetheless the following more constructive approach. If we are
to look at some i as in the statement, we should certainly take it with shape
(z1, z2) 7→ (z1+ ε1, z2+ ε2), with εj = O(r−4), j = 1, 2. The condition IY1 −i∗I1 =
O(r−8) can be rewritten as a condition on ε1: I

Y
1 i

∗dz1 = i∗(I1dz1) + O(r−8) =
i∗(idz1) + O(r−8), i.e. IY1 (dz1 + dε1) = i(dz1 + dε1) +O(r−8). Recall the writing
IY1 = I1 + ιY1 ; the previous condition hence gives us: I1dz1 + I1dε1 + ιY1 dz1 =
i(dz1+ dε1)+O(r

−8). Since I1dz1 = idz1 and I1dε1 = I1(∂ε1+∂ε1) = i(∂ε1−∂ε1)
(with ∂ and ∂ those attached to I1), the final condition is: 2i∂ε1 = ιY1 dz1+O(r

−8) =
−dz1(ι

Y
1 ·) +O(r−8).

Set αj = Ijrdr, j = 2, 3; from Lemma 1.6, rdr(ιY1 ·) =
c(|ξ2|2+|ξ3|2)

r4
α1 + O(r−7),

α1(ι
Y
1 ·) = c(|ξ2|2+|ξ3|2)

r4
rdr + O(r−7), α2(ι

Y
1 ·), α3(ι

Y
1 ·) = O(r−7). Hence from the

equality

dz1 =
1

r2
[
z1(rdr + iα1)− z2(α2 + iα3)

]
,

we have: dz1(ι
Y
1 ·) = c(|ξ2|2+|ξ3|2)

r6
z1(α1 + irdr) + O(r−8) = ic(|ξ2|2+|ξ3|2)

r6

(
z21dz1 +

z1z2dz2
)
+O(r−8). At last we must thus solve

2∂ε1 = −
c(|ξ2|

2 + |ξ3|
2)

r6
(
z21dz1 + z1z2dz2

)
+O(r−8).

One easily checks that ε1 = c(|ξ2|2+|ξ3|2)z1
4r4

is an exact solution. A similar analysis

leads us to ε2 =
c(|ξ2|2+|ξ3|2)z2

4r4
, and one checks easily that this way, one has indeed

IY1 −i∗I1 = O(r−8). The last point to be dealt with is the singularity of the εj at 0;

one can nonetheless take instead εj =
cz1

1+4r4
. One can even take εj =

c(|ξ2|2+|ξ3|2)z1
4(κ+r4)

with κ ≥ 1 large enough so that i = idC2 +(ε1, ε2) is a diffeomorphism of C2; we
leave it to the reader as an exercise to check that κ = 20c(|ξ2|

2 + |ξ3|
2) seems is

sufficient).
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The estimate i∗Ωe − Ωe = O(r−8) amounts to seeing that Re
(
∂ε1
∂z1

+ ∂ε2
∂z2

)
=

O(r−8): extend id(z1 + ε1) ∧ d(z1 + ε1) ∧ id(z2 + ε2) ∧ d(z2 + ε2), and look at the

linear terms in ε1, ε2. Since after multiplication by a := c(|ξ2|2+|ξ3|2)
4

the error would
again be O(r−8), we can do this computation with z1

r4
and z2

r4
playing the respective

roles of ε1 and ε2. Now ∂
∂zj

( zj
r4

)
= 1

r4
−

2|zj |2

r6
, j = 1, 2. Since these are real, we only

need to compute the sum ∂
∂z1

(
z1
r4

)
+ ∂

∂z2

(
z2
r4

)
, which is 2

r4
− 2|z1|2

r6
− 2|z2|2

r6
= 0.

The Dk-invariance of i thus constituted is clear. �

Remark 1.9 According to the preceding proof, i as we construct it depends only
on c(|ξ2|

2 + |ξ3|
2). If now ξ is chosen as an Aζ, A ∈ SO(3), ζ ∈ h −D, so as to

satisfy condition (10) as is evoked in Point 3. in the program of section 1.1, by
Remark 1.4, |ξ2|

2 = |ξ3|
2 does not depend on A, and has to be the middle eigenvalue

of the matrix (〈ζj, ζℓ〉).Consequently, i = iAζ does not depend on A ∈ SO(3).

1.3.2 The gluing

We keep the notations of the previous paragraph:
(
Y, gY , (I

Y
j )j=1,2,3

)
is a Dk-

ALE instanton with parameter ξ verifying (10), ΦY an asymptotic isometry be-
tween infinities of Y and R4/Dk fixed by Lemma 1.6, and i is given by Lemma
1.1 which we may also see as as diffeomorphism of (R4\{0})/Dk.

As alluded above, the form we want to glue ωY1 = gY (I
Y
1 ·, ·) with at infinity

is dIY1 dϕ
♭, where ϕ = ϕm is LeBrun’s I1-potential for f given by (5), and where

ϕ♭ = i∗ϕ. We set likewise f
♭ = i∗

f , both on R4 and its quotient. Recall that
Ψ = Ψeuc + Ψmxd is defined in Proposition 1.7 as an approximate IY1 -complex
hessian of ωY1 . The following proposition, which is the analogue of [Auv, Prop.
2.3], explains how to glue dIY1 dϕ

♭ to ωY1 , so as to obtain an ALF metric on Y at
the end; notice that we lose one order of precision in the asymptotics though:

Proposition 1.10 Take K ≥ 0 so that the identification ΦY between infinities of
R4/Dk and Y is defined on ϕ ≥ K. Consider r0 ≫ 1, β ∈ (0, 1] and set

Φ♭m = κ ◦
(
ϕ♭ +Ψmxd −K

)
− χ

(
(r − r0)

β
)
Ψ̃euc,

where κ : R → R is a convex function vanishing on (−∞, 0] and equal to idR

on [1,∞), χ is the cut-off function dκ
dt

, and Ψ̃euc := χ(r − r0)Ψeuc. Then if the
parameters K and r0 (resp. β) are chosen large enough (resp. small enough), the
symmetric 2-tensor gm associated via IY1 to the IY1 -(1,1)-form

ωm := ωY1 + ddcIY1
Φ♭m

is well-defined on the whole Y , is a Kähler metric for IY1 , is ALF in the sense that∣∣(∇f ♭)ℓ(gm − f
♭)
∣∣
f ♭
= O

(
R−2

)
for ℓ = 0, 1, 2, and its volume form Ωm verifies

∣∣(∇f
♭

)ℓ(Ωm − ΩY )
∣∣
f ♭
= O

(
R−2

)
(17)
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for ℓ = 0, 1, 2, where Ω is the volume form of the ALE metric gY .

Proof. The positivity of gm and its asymptotics follow from the arguments analo-
gous to those developed in the proof of Proposition 2.3 in [Auv], which is why we
are brief. We nonetheless underline a few necessary adjustment; for example, we
will keep the following comparison between f and its correction f

♭ = i∗
f in mind:

Lemma 1.11 For ℓ = 0, 1, 2, we have:
∣∣(∇f )ℓ(f ♭−f)

∣∣
f
= O(R−1) on R4. Moreover

i∗R = R +O(R−1).

We first consider the closed IY1 -hermitian form ddc
IY1
κ ◦

(
ϕ♭ + Ψmxd − K

)
on

Y . Even though K is not fixed yet, this is equal to ddc
IY1

(
ϕ♭ + Ψmxd

)
on {ϕ♭ +

Ψmxd ≥ K + 1} seen on Y via ΦY – this is possible for K large enough since
ϕ♭ + Ψmxd is proper on R4 as ϕ♭ ≥ i∗R ∼ R (by Lemma 1.11) and Ψmxd =
O(R−1). Moreover κ is convex, and thus ddc

IY1
κ ◦

(
ϕ♭+Ψmxd −K

)
is non-negative

wherever ddc
IY1

(
ϕ♭ + Ψmxd

)
is, which is indeed the case near infinity. Since indeed∣∣ddc

IY1
Ψmxd

∣∣
f
= O(R−1), this claim will be checked if we prove the estimate:

∣∣∣ddcIY1 ϕ
♭ −

1

2

[
f
♭
(
IY1 ·, ·

)
− f

♭
(
·, IY1 ·

)]∣∣∣
f ♭
= O(R−2) (18)

as ̟f ♭ :=
1
2

[
f
♭
(
IY1 ·, ·

)
−f

♭
(
·, IY1 ·

)]
is nothing but the IY1 -hermitian form associated

to the IY1 -hermitian metric 1
2

[
f
♭+f

♭
(
IY1 ·, I

Y
1 ·

)]
– notice ̟f ♭ is not closed in general.

Pushing-forward by i, this amounts to

∣∣∣ddc
i∗IY1

ϕ−
1

2

[
f
(
i∗I

Y
1 ·, ·

)
− f

(
·,i∗I

Y
1 ·

)]∣∣∣
f ♭
= O(R−2).

Now ddc
i∗IY1

ϕ = di∗I
Y
1 dϕ = ωf + ddϕ, where ωf = f(I1·, ·) and  = i∗I

Y
1 − I1.

Let us estimate ddϕ; by Lemma 1.1 and by the analogue of the fact raised in
the proof of Proposition 1.7 for (1, 1)-tensors, for all ℓ ≥ 0,

∣∣(∇f )ℓ
∣∣
f
= O(R−3),

whereas
∣∣(∇f)ℓϕ

∣∣
f
= O(R2−ℓ); therefore

∣∣ddϕ
∣∣
f
= O(R−2). On the other hand,

still from i∗I
Y
1 = I1 + , f

(
i∗I

Y
1 ·, ·

)
− f

(
·,i∗I

Y
1 ·

)
= 2ωf + f(·, ·)− f(·, ·). The

error term f(·, ·) − f(·, ·) is controlled by ||f , which is O(R−3). We have thus
proved estimate (18). Thanks to the general formal formula

∇g+hT = ∇gT + (g + h)−1 ∗ ∇gh ∗ T, (19)

(see e.g. [GV, p.21]) for any metrics g and g+ h (h is thus seen as a perturbation)
and any tensor T , with Lemma 1.11 take g = f , g + h = f

♭ and T the tensor in

18
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play, we prove with the same techniques an estimate similar to (18) up to order 2,
that is: ∣∣(∇f ♭)ℓ

(
ddc

i∗IY1
ϕ−̟f ♭

)∣∣
f ♭
= O(R−2),

for ℓ = 1, 2. If therefore K is chosen large enough, and taking moreover the
contribution of Ψmxd into account, ωY1 + ddc

IY1

(
ϕ♭ +Ψmxd −K

)
is well-defined and

is an IY1 -Kähler form, and is equal to
(
ωY1 −ddc

IY1
Ψmxd

)
+̟f ♭ up to a O(R−2) error

at orders 0,1 and 2 for f ♭; we fix such a K once for all.

We know deal with the summand −χ
(
(r− r0)

i
)
ψ̃euc of Φ♭m, which is meant to

kill the ALE part the Kähler form we reached, or equivalently of the IY1 -hermitian
form

(
ωY1 − ddc

IY1
Ψmxd

)
+̟f ♭. As before, there are two issues here: the positivity

of the resulting IY1 -(1,1) form on Y , and its asymptotics.
About the latter, since we are only looking at what happens near infinity, notice

they are independent of r0 and β. Indeed, for any value of these parameters, and
provided that r0 is chosen much larger than K, we have on r ≥ r0, by definition
of Φ♭m,

ωY1 + ddcIY1
Φ♭m =

(
ωY1 − ddcIY1

Ψ
)
+ ddc

i∗IY1
ϕ,

with Ψ that of Proposition 1.7; the parenthesis in the right-hand side is thus
O(R−2) for f by this proposition, and again this holds for f ♭ by Lemma 1.11. We
have already dealt with the asymptotics of ddc

i∗IY1
ϕ in the previous step, and know

they verify they announced estimates, i.e. the metric associated to this Kähler
form via IY1 differs from f

♭ up to order 2 by a O(R−2) error.
We are therefore left with the positivity assertion, which has to be proved

carefully since we essentially have to subtract a metric to another one, hence our
use of the to parameters r0 and β. This is however perfectly similar to what is
done in [Auv, p.21], and consists here into the following:

• take r0 so that on r ≥ r0, dd
c
IY1

(
ϕ♭ +Ψmxd −K

)
≥ 1

2
̟f ♭,

• consider the remaining part ωY1 −dd
c
IY1

[
χ
(
(r−r0)

β
)
ψ̃euc

]
, which can be rewrit-

ten as

χ
(
(r − r0)

β
)(
ωY1 − ddcIY1

Ψ̃euc

)
+
(
1− χ

(
(r − r0)

i
))

+Rβ ,

where Rβ vanishes outside of {r0 ≤ r ≤ r0 + 1}, and |Rβ|e ≤ Cβ for some
constant C = C(r0);

• χ
(
(r−r0)

β
)(
ωY1 −dd

c
IY1
Ψ̃euc

)
, which is O(r−4) for e, that is O(r−2) i.e. O(R−1)

for f or f
♭, and vanishes outside {r ≥ r0}; one can thus fix r0 large enough

so that it this 2-form is ≥ −1
6
̟f ♭ everywhere on Y

19



From ALE to ALF gravitational instantons. II

• fix finally β so that|Rβ|e small enough to say that |Rβ|f ♭ ≤
1
6
̟f ♭ where it may

not vanish, i.e. on {r0 ≤ r ≤ r0+1}; this way ωY1 −ddc
IY1

[
χ
(
(r−r0)

β
)
ψ̃euc

]
≥

−1
6
̟f ♭ −

1
6
̟f ♭ = −1

3
̟f ♭, and therefore ωY1 + ddIY1 Φ

♭
m ≥ 1

2
̟f ♭ −

1
3
̟f ♭ =

1
2
̟f ♭−

1
3
̟f ♭ on {r ≥ r0}, whereas it is equal to ωY1 +dd

c
IY1

(
ϕ♭+Ψmxd−K

)
≥ 0

on Y \{r ≥ r0}, hence the desired positivity assertion.

The last part of the statements concerns volume forms, and is a direct con-
sequence of the estimates on the metrics, after seeing that (on R4, say; recall

that ΦY ∗ΩY = Ωe) volf
♭

−ΩY = i∗ volf −Ωe = i∗Ωe − Ωe, which can be writ-
ten as εΩe with

∣∣(∇e)ℓε
∣∣
e
= O(r−8) (ℓ ≥ 0) by Lemma 1.1. This converts into∣∣(∇f

♭
)ℓε

∣∣
f ♭
= O(R−4), ℓ ≥ 0, which is better than wanted. �

1.4 Corrections on the glued metric

1.4.1 A Calabi-Yau type theorem

We want to correct our IY1 -Kähler metric gm from Proposition 1.10 into a Ricci-
flat Kähler metric. For this it is sufficient to correct it into an IY1 -Kähler metric
with volume form ΩY , since this is the volume of the IY1 -Kähler metric gY – and
once the complex structure is fixed, it is well-known that the Ricci tensor of a
Kähler metric depends only on its volume form. As suggested by program ending
to Theorem 1.3, at the level of IY1 -Kähler forms, we want to stay in the same class;
in other words, we are looking for the IY1 -complex hessian of some function to be
our the desired correction.

The tool we are willing to use to determine this function is the following ALF
Calabi-Yau type theorem:

Theorem 1.12 Let α, β ∈ (0, 1) and let (Y, gY, JY, ωY) an ALF Kähler 4-manifold
of dihedral type of order (3, α, β). Let f a smooth function in C3,α

β+2(Y, gY). Then

there exists a smooth function ϕ ∈ C5,α
β (Y, gY) such that ωY+ ddcJYϕ is Kähler, and

(ωY + ddcJYϕ)
2 = efω2

Y.

The weighted Hölder spaces of this statement follow the classical definition, and
are the analogues of those defined in next paragraph for gm on Y . Let us now
make the following remark: since we want to construct a metric with volume form
ΩY , this is tempting to take f = log

(
ΩY

volgm

)
to apply Theorem 1.12. But so far

we only control such an f up to two derivatives (see Proposition 1.10, estimates
(17)).

The other issue is that "ALF Kähler manifold of dihedral type" can be taken so
as to mean that outside a compact subset, Y is diffeomorphic to the complement of
a ball in R4/Dk, and that one can choose the diffeomorphism ΦY between infinities
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of Y and R4/Dk such that for all ℓ = 0, . . . , 3,
∣∣(∇gY)

(
ΦY∗gY− f

)∣∣
gY

= O(ρ−β−ℓ), in

addition with a similar statement of the α-Hölder derivative of (ΦY∗gY − f), and
an analogous statement on the complex structures ΦY∗J

Y and I1. Here again, a
reading of Proposition 1.10 indicates us that the asymptotics at our disposal do
not allow us to take ΦY = ΦY .

We remedy to those problems as follows. First we correct gm into an IY1 -Kähler
metric with volume form ΩY – which is nothing but a Ricci-flat IY1 -Kähler metric
– outside a compact subset of Y , which gives us an f with compact support; then
we put this corrected metric into so-called Bianchi gauge with respect to ΦY

∗
f
♭,

which corresponds to correct ΦY itself so as to fit into the definition of an ALF
Kähler manifold of dihedral type.

We conclude this paragraph with a word on Theorem 1.12. Strictly speaking,
it is proved in [Auv] – see also the seminal works [Yau, TY1, TY2], or the more
recent [Hei] – with Hölder regularity of infinite order instead of (3, α). A careful
reading of the proof though shows the statement we propose here is also valid.

1.4.2 Ricci-flatness outside a compact subset

To correct gm into an IY1 -Kähler metric with volume form ΩY outside a com-
pact subset of Y , we proceed as in [Auv, §2.3], with the loss of one order in the
asymptotics, both in the precision and the order of differentiation. Namely we
start with defining on Y weighted Hölder spaces

Cℓ,α
δ (Y, gm) :=

{
f ∈ Ck,α

loc

∣∣‖f‖Cℓ,αδ <∞
}
, (20)

for k ∈ N, α ∈ (0, 1], δ ∈ R, and where

‖f‖Cℓ,αδ
:=

∥∥Rδf
∥∥
C0 · · ·+

∥∥Rδ+ℓ(∇gm)ℓf
∥∥
C0

+ sup
(x,y)∈Y,

dgm (x,y)<injgm

∣∣∣∣max
(
R(x)ℓ+α+δ, R(y)ℓ+α+δ

)(∇gm)ℓf(x)− (∇gm)ℓf(y)

dgm(x, y)
α

∣∣∣∣
gm

with R a positive smooth extension of ΦY
∗R on Y , and C0-norms of the tensors

computed with gm.
We then state the following, indicating the type of functions which can help

correcting ωm in the sense raised above:

Proposition 1.13 Fix (α1, δ1) ∈ (0, 1)2 such that α1 + δ1 < 1, δ1 >
3
4
. There

exists a smooth function ψ ∈ C2,α1

δ1−1 ∩C
3,α1

δ1−2 such that ωψ := ωm + ddc
IY1
ψ is Kähler

for IY1 , and such that 1
2
ω2
ψ = ΩY outside a compact set.

Proof. It is completely analogous to the proof of Proposition 2.7 of [Auv], namely
if χ is a cut-off function as in Proposition 1.10 and setting χR1 = χ(R− R1), one
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solves the problem
(
ωm + ddc

IY1
ψ
)2

= (1 − χR1)ω
2
m + 2χR1ΩY for R1 large enough

with help of the implicit functions theorem. This is manageable, since:

• ω2
m −

(
(1 − χR1)ω

2
m + 2χR1ΩY

)
= χR1(ω

2
m − 2ΩY ), and

∥∥∥χR1

ω2
m−2ΩY
ΩY

∥∥∥
C
k,α1
δ1

tends to 0 as R1 goes to ∞ thanks to estimates (17) for k = 0, 1;

• the linearisation of the operators C2+ε,α1

δ1−1−ε → Cε,α1

δ1+1−ε, ε = 0, 1, ψ 7→ (ωm +

ddc
IY1
ψ)2/ω2

m, at ψ = 0, are the scalar Laplacians ∆gm : C2+ε,α1

δ1−1−ε → Cε,α1

δ1+1−ε.

These are surjective, with kernel reduced to constant functions, according
to the appendix of [BM], and using that (Y, gm) is asymptotically a circle
fibration over R3/±.

Once R1 is chosen large enough so that one can apply the implicit function theorem

simultaneously and that ψ is fixed in C2,α1

δ1−1 ∩C
3,α1

δ1−2 so that
(
ωm+ ddc

IY1
ψ
)2

= (1−

χR1)ω
2
m+2χR1ΩY , the last point to be checked is the positivity of ωψ := ωm+dd

c
IY1
ψ.

Since ddc
IY1
ψ = O(R−δ1), ωψ is asymptotic to ωm, hence positive near infinity. Since

its determinant
(1−χR1

)ω2
m+2χR1

ΩY
ω2
m

relatively to ωm never vanishes, it is positive on
the whole Y . The smoothness of ψ is local. �

1.4.3 Bianchi gauge for ωψ

Motivation. We are know willing to deduce regularity statements on gψ, using its
Ricci-flatness near infinity. Nonetheless this cannot be done immediately. The
reason is that the Ricci-flatness condition is invariant under diffeomorphisms, and
consequently the linearisation of the Ricci tensor seen as an operator on metrics
is not elliptic, which is problematic when looking for regularity.

One can however bypass this difficulty by fixing a gauge, which infinitesimally
corresponds to looking at metrics with good diffeomorphisms. We introduce the
diffeomorphisms we shall work with in next paragraph; then the gauge is fixed,
and regularity is deduced from this process (Propositions 1.16 and 1.17). Notice
that the Ricci-flatness of ωψ is an indispensable prerequisite in this procedure,
since the gauge alone is not enough in general to obtain the regularity statement
we are seeking here.

ALF diffeomorphisms of C2. The class of diffeomorphism we work with to perform
our gauge enters into the following definition; we define the dual frames (e♭0, . . . , e

♭
3)

and
(
(e∗0)

♭, . . . , (e∗3)
♭
)

as the pull-backs by i of the frames (ei) and (e∗i ) defined in
section 1.2.2 by formulas (7), (8).

Definition 1.14 Let (ℓ, α) ∈ N∗ × (0, 1), and let ν > −1. We denote by Diff
ℓ,α
ν

the class of diffeomorphisms φ of C2 such that:
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• φ has regularity (ℓ, α);

• there exists a constant C such that for any x ∈ C2, df ♭
(
x, φ(x)

)
≤ C

(
1 +

R(x)
)−ν

;

• let R0 ≥ 1 such that for any x ∈ {R ≥ R0}, df ♭
(
0, φ(x)

)
≥ 1. Denote by

γx : [0, 1] → C2 a minimizing geodesic for f
♭ joining φ(x) to x and by pγx the

parallel transport along γx. Consider the maps φij : {R ≥ R0} → R given by

φij(x) = (e♭i)
∗
(
(Txφ ◦ pγx(1)− idC2)(e♭j)

)
, i, j = 0, . . . , 3,

and extend them smoothly in {R ≤ R0}. We then ask: φij ∈ Cℓ−1,α
ν+1 (C2, f ♭).

We endow Diff
ℓ,α
ν with the natural topology.

We moreover denote by
(
Diff

ℓ,α
ν

)Dk the set of diffeomorphisms of Diff
ℓ,α
ν com-

muting with the action of Dk.

The Hölder spaces are those defined for f
♭ on C2, in the same way as those of

defining equation (20). Notice that we authorise the distance between a point and
its image to go to ∞; nonetheless the rate of blow-up we allow makes clear the
existence of the R0 of the third item, since ν > −1.

Diffeomorphisms as Riemannian exponential maps. We now "parametrise" our
diffeomorphisms via vector fields:

Lemma 1.15 There exists a neighbourhood V ℓ,α
ν of 0 in Cℓ,α

ν (C2, f ♭) such that for

any Z in that neighbourhood, the map φZ : x 7−→ expf ♭

x

(
Z(x)

)
is in Diff

ℓ,α
ν .

The weighted spaces of vector fields are defined analogously to that of the pre-
vious paragraph, or equivalently: Z ∈ Cℓ,α

ν (C2, f ♭) if and only if Z ∈ Cℓ,α
loc and

χ(R)(e♭i)
∗(Z) ∈ Cℓ,α

ν (C2, f ♭), i = 1, . . . , 3 (with χ a cut-off function as in 1.10). A
similar statement with Dk-invariant vector fields, and diffeomorphisms commuting

with the action of Dk of course holds. We simply call
(
V ℓ,α
ν

)Dk the neighbourhood

of 0 in
(
Cℓ,α
ν (C2, f ♭)

)Dk, the Dk-invariant vector fields of Cℓ,α
ν (C2, f ♭). Notice finally

that for a genuine parametrisation, we would also need the surjectivity and the
injectivity of Z 7→ φZ from V ℓ,α

ν onto its image. We do not need however this
degree of precision, since as seen in Proposition 1.16 below, it is enough for us to
realise sufficiently many diffeomorphisms of Diff

ℓ,α
ν under the shape φZ .

Proof. The regularity assertions are rather standard. We shall nonetheless pay
a particular attention to the fact that we authorise vector fields blowing up at
infinity, when verifying the injectivity of φZ for a given Z close to 0 in Cℓ,α

ν ; the
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key is the decay of the derivatives of Z at infinity. Suppose (ℓ, α) = (1, 0) to fix
ideas. For the injectivity of φZ with fixed Z ∈ C1,0

ν and ‖Z‖C1,0
ν

≤ 1 say, we claim
that there exists a constant C independent of Z such that for any triple (x, y, z)
such that φZ(x) = φZ(y) =: z,

df ♭(x, y) ≤ C
(
1 +R(z)

)−4−3ν
‖Z‖C1,0

ν
df ♭(x, y),

from which the injectivity of φZ follows at once provided ‖Z‖C1,0
ν

is small enough.

We reach this claim thanks to the estimate
∣∣Rmf ♭

∣∣ = O(R−3), as follows. For x, y

as in the claim, call respectively γx and γy the geodesics t 7→ expf
♭

x

(
tZ(x)

)
and t 7→

expf ♭

y

(
tZ(y)

)
, and denote by pγx , pγy the attached parallel transports. Using [BK,

Prop. 6.6], control first df ♭(x, y) by
∣∣pγx(1)

(
Z(x)

)
−pγy (1)

(
Z(y)

)∣∣
f ♭

(
1+R(z)

)−3−2ν
.

Then control
∣∣pγx(1)

(
Z(x)

)
− pγy(1)

(
Z(y)

)∣∣
f ♭

by df ♭(x, y)
(
1 + R(z)

)−1−ν
‖Z‖C1,0

ν
;

for this interpolate between γx and γy by γs(t) := expf
♭

α(s)

[
tZ

(
α(s)

)]
, where α is a

minimizing geodesic for f
♭ joining x and y. This is where one uses the estimates

on the derivatives of Z. �

The gauge. Denote by Bh = δh + 1
2
trh the Bianchi operator associated to any

smooth metric h on R4. The gauge process now states as:

Proposition 1.16 Let (α2, δ2) ∈ (0, 1)2 such that α2 < α1,
3
4
< δ2 < δ1, with

(α1, δ1) fixed in Proposition 1.13. There exists a smooth diffeomorphism φ ∈(
Diff

1,α2

δ2−1

)Dk hence descending to R4/Dk such that

Bφ∗f ♭
(
(ΦY )∗gψ

)
= 0 (21)

near infinity on C2, where gψ stands for the IY1 -Kähler metric associated to the
Kähler form ωψ of Proposition 1.13. As a consequence, f

♭ − (φ ◦ ΦY )∗gψ ∈
C1,α2

δ2

(
X, f ♭

)
.

Proof. Fix (α2, δ2) as in the statement, and consider the map

Ξ : (V 2,α2

δ2−1)
Dk ×Met

1,α2

δ2
(f ♭)Dk −→ C0,α2

δ2+1(T
∗
C

2, f ♭)Dk

(Z, g) 7−→ Bφ∗Zf
♭

(g),

where Met
1,α2

δ2
(f ♭)Dk denotes the set of Dk-invariant metrics g on R4 such that

g − f
♭ ∈ C∞

δ2

(
X, f ♭

)
– we shall see further why we anticipate the action of Dk at

this point of our discussion.
We would like to solve the equation

Bφ∗Zf
♭

(gψ) = 0, i.e Ξ(Z, gψ) = 0, (22)
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and for this use the implicit function theorem near (0, f ♭), since the differential

of Ξ with respect to its first argument is (∇f
♭
)∗∇f

♭
, which as we shall see enjoys

isomorphism properties. Forgetting that gm may not be defined via ΦY on the
whole C2, if we are to do so nonetheless, we need to make gm arbitrarily close to f

♭

in C∞
δ2

(
X, f ♭

)
. Since we only want equation (22) to be solved near infinity, instead

of gm we consider, for χ a cut-off function as in Proposition 1.10, the metric

gR2 := χ(R− R2)gψ +
(
1− χ(R− R2)

)
f
♭,

which makes sense via ΦY on the whole C2 provided R2 is large enough; since gψ
is C1,α1

δ1
close to f

♭ at infinity, we have that ‖gR2 − f
♭‖
C

1,α2
δ2

(f ♭) goes to 0 when R2

goes to ∞. We are thus left with checking the isomorphism assertion on

(∇f ♭)∗∇f ♭ =
∂Ξ

∂Z

∣∣∣
(0,f ♭)

: (C2,α2

δ2−1)
Dk −→ (C0,α2

δ2+1)
Dk ∼=

(
C0,α2

δ2+1(T
∗
C

2)
)Dk

where the isomorphism on the right is just the duality for f
♭. We shall moreover

replace f
♭ by f (and the weighted spaces subsequently) since these are diffeo-

morphic to each other. Now surjectivity follows from that of (∇f )∗∇f between
C2,α2

δ2−1(TC
2, f) and C0,α2

δ2+1(TC
2, f), which amounts by the theory of self-adjoint op-

erators on weighted spaces to the injectivity of this operator on C0,α2

3−(δ2+1) = C0,α2

2−δ2
,

and is seen in the proof of Proposition 2.11 in [Auv] on the bigger space C0,α2

1−δ2
;

this relies on an easy ellipticity argument, and an integration by parts using than
in ALF geometry, a sphere of large radius t has its volume in t2.

The slightly newer point here is the injectivity of (∇f )∗∇f : (C2,α2

δ2−1)
Dk →

(C0,α2

δ2+1)
Dk ; this is also where the invariance under the action of Dk is needed.

Let thus v ∈ (C2,α2

δ2−1)
Dk such that (∇f )∗∇fv = 0. Forget momentarily about the

Dk-invariance of v, and write it
∑3

i=0 v
iei, on {R ≥ 1}, say, with (ei) the frame de-

fined by (7); each vi is thus in C2,α2

δ2−1 near infinity. Now since (∇f )ℓei = O(R−1−ℓ),
ℓ = 1, 2, 3 and because (∇f )∗∇f(viei) is equal to (∆fv

i)ei plus a linear combina-
tion of the ∇f

ej
vi∇fek and the vi(∇f )ej ,ekei, we get that each vi is the solution of

a Dirichlet problem
{

∆fv
i = wi ∈ C0,α2

δ2+2 on {R ≥ 1},

vi|{R=1} ∈ C2,α2 .

Recall that ∆f : C
2,α2

δ2−1 → C0,α2

δ2+1 is surjective, with kernel reduced to the constants

(see the proof of Proposition 1.13), and that ∆f : C
2,α2

δ2
→ C0,α2

δ2+2 is an isomorphism
(see e.g. [BM, App.]); those properties transfer to Dirichlet problems to tell us
that each vi writes ci+ui, with ci a constant and ui ∈ C2,α2

δ2
. Thus v is asymptotic

to
∑

i ciei; but v is Dk-invariant, whereas τ ∗ei = −ei for any i. This forces the ci
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to be 0, and as a result v ∈ C2,α2

δ2
. Finally, we know that (∇f )∗∇f on this latter

space, so v = 0; in other words, the action of Dk allows us to say that 0 is no more
a critical weight for (∇f )∗∇f on vector fields.

The smoothness of Z, and therefore that of φZ , is purely local. �

Regularity of gψ. We conclude this paragraph by the following statement, which
finally allows us to apply Theorem 1.12:

Proposition 1.17 With the same notation as in Proposition 1.16, f ♭−(φ◦ΦY )∗gψ ∈
C3,α2

4δ2−3

(
X, f ♭

)
near infinity, and in particular,

∣∣Rmgψ
∣∣
gψ

= O(R−2−(4δ2−3)).

Proof. The assertion on the curvature of gψ directly follows from the estimate

stated on ε := gψ − φ∗
f
♭ (or φ∗ε), and the fact that

∣∣Rmf
♭ ∣∣

f ♭
= O(R−3). For the

regularity statement on ε, proceed as for [Auv, Cor. 2.12], with one order less in

the approximation, to deduce, from the two equations Ricgψ = 0, Bf ♭(φ∗gψ) = 0
which are verified near infinity:

1

2
Lφ∗f ♭ε+ ε ⋆ ∂2ε = Q(ε, ∂ε) (23)

where Lφ∗f ♭ is the Lichnerowicz laplacian of φ∗
f
♭, the symbols ⋆ denote algebraic

operations, and Q is at least quadratic in its arguments, and can be factorised by
ε ⋆ ∂ε. Since ε ∈ C1,α2

δ2
– computed with respect to φ∗

f
♭ or gψ, which does not

matter because of the size of the error term ε itself –, the right-hand-side of (23) is
in C0,α2

δ2

(
X, f ♭

)
. Again since ε ∈ C1,α2

2δ2+1, the linear operator η → 1
2
Lφ∗f ♭η + ε ⋆ ∂2η

is elliptic and one can draw for this operator weighted estimates similar to those
for Lφ∗f ♭. From this we deduce that ε ∈ C2,α2

2δ2−1; we conclude by repeating this

argument, giving us ε ∈ C3,α2

2(2δ2−1)−1 = C2,α2

3δ2−3. �

1.4.4 Conclusion: proof of Theorem 1.3

Provided that we take α = α2 and β = 4δ2−3 (which is positive since δ2 >
3
4
), to

fulfil completely the requirements of Theorem 1.12, we are only left with checking
that (φ ◦ ΦY )∗I

Y
1 is also C3,α

β close to the complex structure I♭1 := i∗I1.

The estimate (φ ◦ ΦY )∗I
Y
1 − I♭1 ∈ C0

β follows easily form the decomposition

(ΦY )∗I
Y
1 −φ∗I♭1 =

(
(ΦY )∗I

Y
1 − I1

)
+(I1− I♭1)+ (I♭1−φ∗I♭1), and from the estimates∣∣(ΦY )∗IY1 − I1

∣∣
e
= O(r−4) and

∣∣I1 − I♭1
∣∣
e
= O(r−4) converted into

∣∣(ΦY )∗IY1 −

I1
∣∣
f
,
∣∣I1−I♭1

∣∣
f ♭
= O(R−1), and

∣∣I♭1−φ∗I♭1
∣∣
f ♭
= O(R−δ2) following from φ ∈ Diff

1,α2

δ2−1.

For higher order estimates, remember that gψ is Kähler for IY1 , and f
♭ for I♭1.

It is thus enough for instance to evaluate the successive (∇f
♭
)ℓ
(
(φ ◦ ΦY )∗I

Y
1

)
. In
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view of formula 19, we thus write formally for ℓ = 1

∇f ♭
(
(φ ◦ ΦY )∗I

Y
1

)
= ∇f ♭

(
(φ ◦ ΦY )∗I

Y
1

)
︸ ︷︷ ︸
=0 since gψ is IY1 -Kähler

+(f ♭)−1 ∗ ∇gψ(f ♭ − gψ) ∗
(
(φ ◦ ΦY )∗I

Y
1

)
,

which gives easily ∇f ♭
(
(φ ◦ ΦY )∗I

Y
1

)
∈ C0

β+1 in view of (f ♭ − gψ) ∈ C0
β. For ℓ ≥ 2,

simply use inductively formula (19).
As sketched in the introduction of this section, we now apply Theorem 1.12,

with
(
Y, gY, JY, ωY

)
= (Y, gψ, I

Y
1 , ωψ), and f = log

(
ΩY

vol
gψ

)
, which is smooth and has

compact support. This gives us an IY1 -metric gRF,m on Y , with volume form ΩY
and which is thus Ricci-flat, and with Kähler form ωψ + ddc

IY1
ϕ for some smooth

ϕ ∈ C5,α
β (Y, gψ) with β close to 1.

We need two more complex structures for Theorem 1.3. Recall we have two
more symplectic forms coming with the ALE hyperkähler structure

(
Y, gY , I

Y
1 , I

Y
2 , I

Y
3

)
,

namely ωY2 := gY
(
IY2 ·, ·

)
and ωY3 := gY

(
IY3 ·, ·

)
. We simply define JY2 and JY3 as the

almost-complex structures verifying gRF,m
(
JY2 ·, ·

)
= ωY2 and gRF,m

(
JY3 ·, ·

)
= ωY3 ,

just as in (6); one then checks these are complex structures thanks using that the
symplectic holomorphic 2-form ωY2 + iωY3 is gRF,m-parallel (as (ωY2 + iωY3 )∧ (ωY2 −
iωY3 ) = 4ΩY = 4 volgRF,m), and that together with IY1 they verify the quaternionic
relations.

The cubic decay of RmgRF,m comes as follows: first, an over-quadratic decay is
easily deduced from (gψ − gRF,m) ∈ C2

β+2

(
Y, gψ

)
and Rmgψ = O(R−2−β) (Proposi-

tion 1.17). Then a result of Minerbe [Min2, Cor. A.2] asserts that we automatically
end up with a cubic rate decay of the curvature. �

1.5 Verification of the technical Lemmas 1.8 and 1.11

We conclude this part by the left-over proofs of Lemmas 1.8 and 1.11, both useful
in the gluing performed in section 1.3. Recall that on the one hand, Lemma 1.8 is
about verifying the asymptotics at different orders of a function ψc, the hessian of
which is meant to approximate the 2-form θ2 + iθ3 in the Taub-NUT framework,
although such an approximation is likely to be vain in the euclidean setting; and
that on the other hand, Lemma 1.11 consists in saying that even though f

♭ = i∗
f ,

with i a diffeomorphism of R4 better adapted to the euclidean scope, the transition
between f and f

♭ is relatively harmless.

1.5.1 Proof of Lemma 1.8

Asymptotics of ψc and its successive derivatives. We first look at the first point
of the statement of Lemma 1.8. Since ψc is S1-invariant when looked at on C2

(recall that the S1-action on C2 is given by α · (z1, z2) = (eiαz1, e
−iαz2)), or in other
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words is a function of y1, y2, y3 (recall in particular that 2r2 = R cosh(4my1) +
y1 sinh(4my1), following formulas (4) and the definitions of y1 and R given in
paragraph 1.2.2), we have: dψc =

∂ψc
∂y1
dy1 +

∂ψc
∂y2
dy2 +

∂ψc
∂y3
dy3, and one can see as

well this partial derivatives as functions of the yj only. If we thus prove here that
for any p, q, s ≥ 0 such that p+ q + s ≤ 4,

∂p+q+sψc
∂yp1∂y

q
2∂y

s
3

= O(R−1−q−s), (24)

we will get the desired estimates, since we moreover know that
∣∣(∇f)ℓdyj

∣∣
f
=

O(R−1−ℓ) for all ℓ ≥ 1 and j = 1, 2, 3.
The estimate (24) at order 0 is immediate, since sinh(4my1) = O(R−1r2) –

this follows from the identity 2r2 = R cosh(4my1) + y1 sinh(4my1). What is thus
clearly to be seen is that each time we differentiate with respect to y2 or y3, we
win an R−1, and each we differentiate with respect to y1, we lose nothing. Let us
how it goes at order 1, that is when p + q + s = 1. If p = 1 and q = s = 0, then
(near infinity, where χ(R) ≡ 1):

∂ψc
∂y1

= −4(y2 + iy3)
(4m cosh(4my1)

2Rr2
−
y1 sinh(4my1)

2r2R3
−

sinh(4my1)

4r4R

∂(2r2)

∂y1

)

and ∂(2r2)
∂y1

= 2V
(
y1 cosh(4my1) + R sinh(4my1)

)
(recall that V = 1+4mR

2R
), so that,

after simplifying:

∂ψc
∂y1

= −4(y2 + iy3)
( 1

r4
−

1

R3
+

1

4r4R

)
,

and this is O(R−1), since r−2 = O(R−1) (as R = O(r2)).
If q = 1 and p = s = 0, then

∂ψc
∂y2

= −2
sinh(4my1)

r2R
− 2(y2 + iy3) sinh(4my1)

( y2
r2R3

+
y2 cosh(4my1)

2r4R2

)
,

since ∂(2r2)
∂y2

= y2
R
cosh(4my1). As sinh(4my1) and cosh(4my1) are O(r2R−1), we end

up with ∂ψc
∂y2

= O
(
r2/(R2r2)

)
+O

(
R · r2/R · (r−2R−2 + r2/R · r−4R−1)

)
= O(R−2).

The case s = 1 and p = s = 0, i.e. the estimate of ∂ψc
∂y3

, is done by substituting y3
to y2.

In a nutshell, we win one order each time we differentiate y2, y3, R and r2 with
respect to y2 or y3, which moreover kills functions of y1 such as sinh(4my1); we
win one order as well when differentiating y2, y3 and R with respect to y1, but this
does not hold any more for r2 or functions like sinh(4my1). More formally, using

explicit formulas for the ∂(2r2)
∂yj

, j = 1, 2, 3, we can easily prove by induction that
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for any p, q, s there exists a polynomial Qp,q,s of total degree ≤ (1 + p + q + s) in
their first two variables, and 2 + 3p+ 2(q + s) in total, such that:

∂p+q+sψc
∂yp1∂y

q
2∂y

s
3

=
Qp,q,s

(
Re±4my1 , y1e

±4my1 , R, y1, y2, y3
)

(2r2)1+p+q+sR2(1+p+q+s)

(for instance, Q1,0,0

(
Re±4my1 , y1e

±4my1 , R, y1, y2, y3
)
= 4(y2+ iy3)

[(
R cosh(4my1)+

y1 sinh(4my1)
)2

− R2 − 4R3
]
). If now P (ξ1, ξ2, η1, . . . , η4) = ξa11 ξ

a2
2 η

b1
1 · · ·ηb44 is one

of the monomials appearing in Qp,q,s and a := a1 + a2, b := b1 + · · · + b4 so that
a ≤ 2(1+p+ q+ s) and a+ b ≤ 2+3p+2(q+ s), since Re±4my1 , y1e

±4my1 = O(r2),
we get that:

P
(
Re±4my1 , y1e

±4my1 , R, y1, y2, y3
)

(r2)1+p+q+sR2+2(p+q+s)
= O

(
(r2)aRb

(r2)1+p+q+sR2(1+p+q+s)

)
,

and this is O
(
r2a−2(1+p+q+s)Rb−2(1+p+q+s)

)
; since a ≤ 1 + p + q + s and r−2 =

O(R−1), this is finally O
(
Ra+b−3(1+p+q+s)

)
, which in turn is O(R−(1+q+s)) since

a+ b ≤ 2 + 3p+ 2(q + s). Therefore ∂p+q+sψc
∂yp1∂y

q
2∂y

s
3
= O(R−(1+q+s)), and this settles the

proof of point 1. of the statement.

Asymptotics of θ2 + iθ3, and comparison with ddcI1ψc and ddc
IY1
ψc. We thus now

come to point 2. of this statement. We do it for ℓ = 0; it will become clear from
this that the subsequent estimates could be dealt with in an analogous way. Our
strategy for proving the desired estimate is the following: first we restrict ourselves
to ddcI1ψc; next we decompose ddcI1ψc − (θ2 + iθ3) into its dy1 ∧ η-component and
its dy1 ∧ η-free component; we then observe that the dy1 ∧ η-free components of
both ddcI1ψc and (θ2 + iθ3) have the size we want, whereas we need to look at the
dy1 ∧ η-component of the very difference

[
ddcI1ψc − (θ2 + iθ3)

]
to reach the desired

estimate. We conclude by collecting together these estimates, and settling the case
of the error term d(IY1 − I1)dψc.

Since ψc is S1-invariant,

ddcI1ψc =V
−1

(
∂2ψc
∂y21

− V −1 ∂V

∂y1

∂ψc
∂y1

)
dy1 ∧ η +

(
∂2ψc
∂y22

+
∂2ψc
∂y23

+ V −1 ∂V

∂y1

∂ψc
∂y1

)
dy2 ∧ dy3

+ V −1

(
∂2ψc
∂y1∂y2

− V −1 ∂V

∂y2

∂ψc
∂y1

)
(dy2 ∧ η − V dy3 ∧ dy1)

+ V −1

(
∂2ψc
∂y1∂y3

− V −1 ∂V

∂y3

∂ψc
∂y1

)
(dy3 ∧ η − V dy1 ∧ dy2)

and since (ξ,−I1V ξ, ζ, I1ζ) is the dual frame of (η, dy1, dy2, dy3) and (θ2 + iθ3) is
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(1, 1) for I1,

θ2 + iθ3 =V (θ2 + iθ3)(ξ, I1ξ)dy1 ∧ η + (θ2 + iθ3)(ζ, I1ζ)dy2 ∧ dy3

+ (θ2 + iθ3)(ξ, I1ζ)(V dy1 ∧ dy2 − dy3 ∧ η)

+ (θ2 + iθ3)(ξ, ζ)(V dy3 ∧ dy1 − dy2 ∧ η).

(25)

We already know that (on R ≥ K), ∂ψc
∂y1

= −4(y2+ iy3)
(
m
r4
− 1

R3 +
1

4r4R

)
, thus (recall

that ∂(2r2)
∂y1

= V (|z1|
2 − |z2|

2)):

∂2ψc
∂y21

= −4(y2 + iy3)
(
−

2mV (|z1|
2 − |z2|

2)

r6
+

3y1
R5

−
y1

4r4R3
−
V (|z1|

2 − |z2|
2)

4r6R

)
,

the main term of which is 8mV (y2+iy3)(|z1|2−|z2|2)
r6

, in the sense that it is O(R−1),
whereas the other summands are O(R−2). Moreover, from the estimates of Point
1. and the fact that ∂V

∂yj
= O(R−2), j = 1, 2, 3, we get that:

ddcI1ψc =
8mV (y2 + iy3)(|z1|

2 − |z2|
2)

r6
dy1 ∧ η +O(R−2).

when estimated with respect to f .
Now recall that αj = Ijrdr, and observe that:

θ2 + iθ3 =
rdr ∧ α2 − α3 ∧ α1 + irdr ∧ α3 − iα1 ∧ α2

r6
=

(rdr − iα1) ∧ (α2 + iα3)

r6

=
(z1dz1 + z2dz2) ∧ (−z2dz1 + z1dz2)

r6

=
z1z2(dz1 ∧ dz1 − dz2 ∧ dz2) + z22dz1 ∧ dz2 − z21dz1 ∧ dz2

r6
=
ϑ ∧ φ

r6
,

if we set ϑ = z1dz1 + z2dz2 and φ = −z2dz1 + z1dz2. Direct computations give:

ϑ(ξ) = −(|z1|
2 − |z2|

2), ϑ(ζ) =
2z1z2
iR

cosh(4my1),

φ(ξ) = −2iz1z2, φ(ζ) = −
y1
2iR

.

In particular, ϑ(ξ) = O(r2), ϑ(ζ) = O(r2R−1), φ(ξ) = O(R) and φ(ζ) = O(1).
Moreover, since ϑ (resp. φ) is (0,1) (resp. (1,0)) for I1, (θ2 + iθ3)(ξ, I1ξ) =

− 2i
r6
ϑ(ξ)φ(ξ) = 8mz1z2(|z1|2−|z2|2)

r6
. Therefore, from 25 and since ϑ (resp. φ) has

type (0,1) (resp. (1,0)) for I1, using r−2 = O(R−1) when necessary:

θ2 + iθ3 =
8mV z1z2(|z1|

2 − |z2|
2)

r6
dy1 ∧ η +O(R−2).
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with respect to f . Since y2 + iy3 = −iz1z2, we thus have (up to a multiplicative
constant)

∣∣ddcI1ψc − (θ2 + iθ3)
∣∣
f
= O(R−2).

We set ιY1 := IY1 − I1, and conclude with an estimate on
∣∣d(IY1 − I1)dψc

∣∣
f
=

|dιY1 dψc|f , which is controlled by |ιY1 |f |∇
fdψc|f + |∇f ιY1 |f |dψc|f . But |ιY1 |f and

|∇f ιY1 |f areO(r−2) hence O(R−1) (see e.g. the proof of Proposition 1.10), and |dψc|f
and |∇fdψc|f are O(R−1) as well from Point 1., and as a result

∣∣d(IY1 − I1)dψc
∣∣
f
=

O(R−2).
This settles the case ℓ = 0 of the statement. Cases ℓ = 1 and 2 are done in the

same way, noticing in particular that when letting ∇f act on the (∇f )jψc or the
(∇f )jιY1 , we keep the same order of precision. �

Remark 1.18 The function ψc is not so small with respect to e, at least at positive
orders; for instance, the best we seem able to do on its differential is |dψc|e =
O(rR−1).

1.5.2 Comparison between f and f
♭: proof of Lemma 1.11

Before comparing the metrics, and for this the 1-forms dy♭j := i∗dyj, j = 1, 2, 3,

and η♭ := i∗η to their natural ("unflat") analogues, we shall compare the y♭j :=
i∗dyj to the yj, j = 1, 2, 3:

Lemma 1.19 We have y♭j − yj = O(R−1), j = 1, 2, 3. Consequently if R♭ := i∗R,

then R♭ −R = O(R−1).

Proof of Lemma 1.19 – estimates on (y♭2 − y2) and (y♭3 − y3). Since y2 =
1
2i

(
z1z2 −

z1z2
)
, and i(z1, z2) = α(z1, z2) with α = 1 + O(r−4), it is clear that y♭2 = α2y2 =

y2 + O(y2r
−4), that is y♭2 − y2 = O(Rr−4), and this is O(R−1) (recall that R =

O(r2)).
Similarly, y3 = −1

2

(
z1z2 + z1z2

)
, thus y♭3 − y3 = y3(α

2 − 1), which is O(R−1).

Estimate on (y♭1 − y1). The case of y♭1 is slightly more subtle, and for this we shall
use the very definition of y1. We fix (z1, z2) ∈ C2. Since i∗z1 = αz1, i

∗z2 = αz2,
if one sets u♭ = i∗u and v♭ = i∗v, LeBrun’s formulas (4) become:

α2|z1|
2 = e2m[(u♭)2−(v♭)2](u♭)2,

α2|z2|
2 = e2m[(v♭)2−(u♭)2](v♭)2,

(26)

which we rewrite as:

|z1|
2 = e2mα

2[(u♭/α)2−(v♭/α)2](u♭/α)2,

|z2|
2 = e2mα

2[(v♭/α)2−(u♭/α)2](v♭/α)2.
(27)
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These are precisely the equations verified by umα2 and vmα2 instead of u
♭

α
and v♭

α
; by

uniqueness of the solutions when |z1| and |z2| are fixed, u♭

α
= umα2 and v♭

α
= vmα2 ,

that is: u♭ = αumα2 and v♭ = αvmα2 , and consequently y♭1 = 1
2
[(u♭)2 + (v♭)2] =

α2

2
(u2mα2 + v2mα2) = α2y1,mα2 .
Now again with (z1, z2) fixed, differentiating LeBrun’s equations with respect

to the mass parameter, µ say, since we also see m as fixed, and rearranging them
gives:

∂y1,µ
∂µ

= −
4Rµy1,µ
1 + 4µRµ

; (28)

in particular y1,µ is a non-increasing (resp. non-decreasing) function of µ on {|z1| ≤
|z2|} (resp. on {|z2| ≤ |z1|}).

Since α ≥ 1, we have for instance on {|z1| ≤ |z2|} the estimate:

0 ≤ y1,m − y1,mα2 =

∫ mα2

m

4Rµy1,µ
1 + 4µRµ

dµ ≤ y1,m

∫ mα2

m

dµ

µ
= 2y1,m logα,

and similarly 0 ≤ y1,mα2 −y1,m ≤ −2y1,m logα on {|z2| ≤ |z1|}. Since in both cases
logα = O(r−4) = O(R−2), we have:

y1,mα2 − y1,m = O(y1,mR
−2) = O(R−1).

Therefore y♭1 − y1 = α2(y1,mα2 − y1) + (α2 − 1)y1 = O(R−1) as claimed, since
α− 1 = O(r−4) = O(R−2) and in particular α ∼ 1 near infinity.

The estimate R♭ −R = O(R−1) comes as follows: (R♭ −R)(R♭ +R) = (R♭)2 −
R2 = (y♭1)

2 − y21 + (y♭2)
2 − y22 + (y♭3)

2 − y23 = O(1) from the previous estimates, and
thus R♭ − R = O

(
1

R♭+R

)
, which in particular is O(R−1). �

Estimates on the dy♭j − dyj, j = 1, 2, 3, and η♭ − η. We come back to the proof
of Lemma 1.11 itself, and start with analysing the transition involved by i at the
level of 1-forms. We adopt by places the following elementary strategy to evaluate
the gap between our fundamental 1-forms and their pull-backs by i: for γ one of
the dyj or η, we write

γ♭ = γ♭(ξ)η + V −1γ♭(−I1ξ)dy1 + γ♭(ζ)dy2 + γ(I1ζ)
♭dy3,

and then evaluate the differences γ♭(ξ)− γ(ξ) and the subsequent ones. We start
with the easy cases of dy2 and dy3; for more concision, we use the complex expres-
sion γ = dy2 + idy3.

Keep the notation i(z1, z2) = α(z1, z2); then i∗(dy2+idy3) = d
(
α2(y2+iy3)

)
=

α2(dy2 + idy3) + (y2 + iy3)d(α
2). Since α ∼ 1, we focus on d(α2), or rather on dα.
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As α is invariant under the usual action of S1, we already know that dα(ξ) = 0.

Moreover, by definition, setting a = ‖Γ‖(|ζ2|2+|ζ3|2)
4

,

dα = −2a
r2d(r2)

(κ+ r4)2
, (29)

which we keep under this shape since d(r2) = z1dz1 + z1dz1+ z2dz2 + z2dz2 is easy
to evaluate against I1ξ, ζ and I1ζ . As a matter of fact, all computations done:

dα(−I1ξ) = −4a
|z1|

4 − |z2|
4

(κ + r4)2
, dα(ζ) =

−8ar2

(κ+ r4)2
y2 cosh(4my1)

R
,

dα(I1ζ) =
−8ar2

(κ+ r4)2
y3 cosh(4my1)

R
.

(30)

In particular, dα(−I1ξ) = O(r−4) = O(R−2), and dα(ζ) = O(R−1r−4) and dα(I1ζ) =
O(R−1r−4), which are O(R−3). Since α ∼ 1 and y2 + iy3 = O(R), we end up with
(dy♭2+ idy

♭
3)(−I1ζ) = O(R−2), (dy♭2+ idy

♭
3)(ζ) = 1+O(R−1) and (dy♭2+ idy

I1♭
3 )(ζ) =

i+O(R−1). In other words,

∣∣(dy♭2 + idy♭3)− (dy2 + idy3)
∣∣
f
= O(R−1).

Analogously to what is done above, the estimate on dy♭1−dy1 requires little extra
care. First, likewise y1, y

♭
1 is invariant under the action of S1, since i commutes

to this action; therefore dy♭1(ξ) = 0. Next, pulling-back the known expression for
dy1 (proof of Proposition 1.9 in [Auv]) by i gives:

dy♭1 =
1

4mR♭

(
e−4my♭1d(α2|z1|

2)− e4my
♭
1d(α2|z2|

2)
)

When evaluating dy♭1, we decompose the term e−4my♭1d(α2|z1|
2) − e4my

♭
1d(α2|z2|

2)

into σ := α2
(
e−4my♭1d(|z1|

2)−e4my
♭
1d(|z2|

2) and ρ :=
(
e−4my♭1 |z1|

2−e4my
♭
1 |z2|

2
)
d(α2) =

α−2
(
(u♭)2 − (v♭)2

)
d(α2) = 4α−1y♭1dα.

Now σ(−I1ξ) = 2α2
(
|z1|

2e−4my♭1 + |z2|
2e4my

♭
1

)
= 4R♭, and by (30), ρ(−I1ξ) =

4α−1y♭1dα(−I1ξ) = −16aα−1y♭1
|z1|4−|z2|4

(κ+r4)2
; this way

dy♭1(−I1ξ) = (V ♭)−1 − 8aα−1 y♭1
1 + 4mR♭

|z1|
4 − |z2|

4

(κ + r4)2
, (31)

where V ♭ = i∗V = 1+4mR♭

2R♭
. Since the last summand is O(r−4) and thus O(R−2),

and (V ♭)−1 − V −1 = 2R♭

1+4mR♭
− 2R

1+4mR
= 2 R♭−R

(1+4mR♭)(1+4mR)
= O(R−3), we have

dy♭1(−I1ξ) = V +O(R−2).
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Moreover σ(ζ) = α2

2iR

(
e4m(y1−y♭1)(z1z2−z1z2)−e

−4m(y1−y♭1)(z1z2−z1z2)
)
= α2 y2

R
sinh[4m(y1−

y♭1)], and ρ(ζ) = 4α−1y♭1dα(ζ) = −32aα−1 r2

(κ+r4)2
y♭1y2 cosh(4my1)

R
by (30). Thus

dy♭1(ζ) = α2 y2
2R(1 + 4mR♭)

sinh[4m(y1 − y♭1)]− 16aα−1 r2

(κ+ r4)2
y♭1y2 cosh(4my1)

R(1 + 4mR♭)
;

(32)
since y1−y

♭
1 = O(R−1), the first summand is O(R−2), whereas since cosh(4my1) =

O(r2R−1), the second summand is O(R−1r−4), that is O(R−3), and as a result
dy♭1(ζ) = O(R−2). Similarly dy♭1(I1ζ) = O(R−2) (just replace y2 by y3 in the last
equality above).

Estimate on η♭. We conclude our estimate of |f ♭ − f |f by the estimate on η♭. We

start with a formula for η♭; since on {z1 6= 0}, d(i∗z1)
i∗z1

− d(i∗z1)
i∗z1

= d(α2z1)
α2z1

− d(α2z1)
α2z1

=
dz1
z1

+ d(α2)
α2 − dz1

z1
− d(α2)

α2 = dz1
z1

− dz1
z1

, and similarly i∗
(
dz2
z2

− dz2
z2

)
= dz2

z2
− dz2

z2
on

{z2 6= 0}, we have on {z1z2 6= 0}, according to the identity η♭ = i
4R

[
u2
(
dz1
z1

− dz1
z1

)
−

v2
(
dz2
z2

− dz2
z2

)]
( [Auv, Lemma 1.6]):

η♭ =
i

4R♭

[
(u♭)2

(dz1
z1

−
dz1
z1

)
− (v♭)2

(dz2
z2

−
dz2
z2

)]
(33)

From this we compute η♭(ξ) = 1 and η♭(−I1ξ) = 0. We also compute η♭(ζ) as
follows:

η♭(ζ) =
i

4R♭

1

2iR

[
(u♭)2e4my1

(z2
z1

−
z2
z1

)
− (v♭)2e−4my1

(z1
z2

−
z1
z2

)]

=
i

4R♭

α2

2iR

[
(u♭)2e4my1

z1z2 − z1z2
α2|z1|2

− (v♭)2e−4my1
z1z2 − z1z2
α2|z2|2

]

=
iα2y2
2R♭R

sinh
[
4m(y1 − y♭1)

]
,

since from the pulled-back LeBrun’s equations (26), (u♭)2

α2|z1|2
= e−4my♭1 and (v♭)2

α2|z2|2
=

e4my
♭
1 . Similarly η♭(I1ζ) =

iα2y3
2R♭R

sinh[4m(y1 − y♭1)], and since (y1 − y♭1) = O(R−1),

both η♭(ζ) and η♭(I1ζ) are O(R−2). Collecting together those estimates, we get
that

|η♭ − η|f = O(R−2),

which is better than needed.
Recall that f = V (dy21 + dy22 + dy23) + V −1η; since V −1 − (V ♭)−1, and similarly

V −V −1 are O(R−3), in view on the estimates we have just proved on the dyj−dy
♭
j

and η♭ − η, we have:
|f ♭ − f |f = O(R−1).
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Estimate on ∇f (f − f
♭). We now aim to prove that

∣∣∇f (f − f
♭)
∣∣
f
= O(R−1), which

is the same as proving that
∣∣∇f

f
♭
∣∣
♭
= O(R−1). In view of the previous estimates

on V − V ♭, V −1 − (V ♭)−1, on the dyj − dy♭j and on η − η♭, and since the ∇fdyj
and ∇fη are O(R−2) for f , it will be sufficient for our purpose to see that the
∇f (dyj − dy♭j) and ∇f (η − η♭) are O(R−1) for f .

We start with ∇f (dy2 − dy♭2) and ∇f (dy3 − dy♭3). We have d(y2 + iy3)− d(y♭2 +
iy♭3) = (α2−1)d(y2+iy3)+2(y2+iy3)αdα, we know that α−1 = O(r−4) = O(R−2),
and we actually proved that |dα|f = O(r−4) = O(R−2). Similarly, we will be done
if we prove that |∇fdα|f is still O(r−4).

Since α is §1-invariant, dα = ∂α
∂y1
dy1+

∂α
∂y2
dy2+

∂α
∂y3
dy3; the ∂α

∂yj
are §1-invariant as

well, and thus ∇fdα =
∑3

j,ℓ=1
∂2α

∂yj∂yℓ
dyj⊗dyℓ+

∑3
j=1

∂α
∂yj

∇fdyj. The last summand

is O(R−2r−4), since the ∂α
∂yj

are O(r−4) and the |∇fdyj|f are O(R−2); we thus focus

on the hessian
∑3

j,ℓ=1
∂2α

∂yj∂yℓ
dyj ⊗ dyℓ, and all we need to prove is ∂2α

∂yj∂yℓ
= O(r−4)

(actually, O(R−2)) for all j, ℓ. Now in terms of the yj variables,

α = 1 +
a

κ+
(
(y21 + y22 + y23)

1/2 cosh(4my1) + y1 sinh(4my1)
)2 ,

and using that e4m|y1| = O(Rr−2), proving that ∂2α
∂yj∂yℓ

= O((R cosh(4my1) +

y1 sinh(4my1)
)−2

) = O(r−4) for all j, ℓ amounts to an easy exercise. This set-

tles the cases of ∇f (dy2 − dy♭2) and ∇f (dy3 − dy♭3).
Since our treatment of dyj−dy

♭
j is a little less conventional, we shall see now how

goes that of ∇♭(dyj − dy♭j). According to formulas (31) and (32) and the previous

estimates on the derivatives of r2, it is enough to see that dy♭1 = O(1) and dR♭ =
O(1), which are known for the previous step, giving in particular d sinh[4m(y1 −
y♭1)] = cosh[4m(y1 − y♭1)]d(y1 − y♭1), which is O(R−1) (actually O(R−2)) for f since
cosh[4m(y1 − y♭1)] ∼ 1 and |d(y1 − y♭1)|f = O(R−2).

The treatment of η♭ is similar.
We prove moreover that

∣∣(∇f )2(f − f
♭)
∣∣
f
= O(R−1) with the same techniques.

�

2 Asymptotics of ALE hyperkähler metrics

We prove in this part an explicit version of Theorem 0.3; we indeed com-
pute explicitly the first non-vanishing terms of the hyperkähler data of the ALE
gravitational instantons seen as deformation of Kleinian singularities. This gives
in particular the asymptotics stated in the previous part, Lemma 1.6, which are
crucial in our construction of ALF metrics, as mentioned already.
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2.1 Kronheimer’s ALE instantons

2.1.1 Basic facts and notations

We introduce a few notions about the ALE gravitational instantons constructed
by Kronheimer in [Kro1] – and which is exhaustive in the sense that any ALE
gravitational instanton is isomorphic to one of Kronheimer’s list –, so as to state
properly the main result of this part, i.e. Theorem 2.1 of next paragraph, dealing
with precise asymptotics of those asymptotically euclidean spaces.

Finite subgroup of SU(2), and McKay correspondence. The classification of the
finite subgroup of SU(2) is well-known: up to conjugation, in addition to the
binary dihedral groups Dk used in Part 1, one has the cyclic groups of order

k ≥ 2, generated by
(
e2iπ/k 0

0 e−2iπ/k

)
, on the one hand, and the binary tetrahedral,

octahedral and icosahedral groups of respective orders 24, 48 and 120, which admit
more complicated generators – all we need to notice for further purpose is that
they respectively contain D2, D3 and D5 (among others) as subgroups. When no
specification is needed, we shall adopt the notation Γ for any fixed group among
these finite subgroups of SU(2).

ALE instantons modelled on R4/Γ. Kronheimer’s construction now consists in
producing asymptotically euclidean hyperkähler metrics on smooth deformations
of the Kleinian singularity C2/Γ, which are diffeomorphic to the minimal resolu-
tion of C2/Γ. More precisely, the hyperkähler manifolds Kronheimer produces are
parametrised as follow: since Γ is a finite subgroup of SU(2), McKay’s correspon-
dence [McK] associates a simple Lie algebra, gΓ say, to this group; for instance,
the Lie algebra associated to Dk is so(2k + 4) , (also referred to as Dk+2 – we
prefer the so notation which is less confusing when working with binary dihedral
groups!). Pick a (real) Cartan subalgebra h of gΓ. Then:

For any ζ ∈ h ⊗ R3 outside a codimension 3 set D, there exists an ALE
gravitational instanton

(
Xζ , gζ, I

ζ
1 , I

ζ
2 , I

ζ
3

)
modelled on R4/Γ at infinity in the sense

that there exists a diffeomorphisms Φζ between infinities of X[ζ ] and R4/Γ such

that: Φζ∗gζ − e = O(r−4), Φζ∗I
ζ
j − Ij = O(r−4), j = 1, 2, 3.

The O are here understood in the asymptotically euclidean setting, i.e. ε =
O(r−a) means: for all ℓ ≥ 0,

∣∣(∇e)ℓε
∣∣ = O(r−a−ℓ); since we remain in this setting

until the end of this part, we shall keep this convention throughout the following
sections 2.3 and 2.4.

2.1.2 Asymptotics of ALE instantons: statement of the theorem

Up to a judicious choice of the ALE diffeomorphism Φζ , which actually is part
of Kronheimer’s construction, one can be more accurate about the O(r−4)-error
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term evoked above. This is the purpose of the main result of this part:

Theorem 2.1 Given ζ ∈ h ⊗ R3 − D, one can choose the diffeomorphism Φζ
between infinities of Xζ and R4/Γ such that Φζ∗gζ−e = hζ +O(r

−6), Φζ∗I
ζ
1 −I1 =

ιζ1 +O(r−6) and if ωζ1 := gζ(I
ζ
1 ·, ·), then Φζ∗ω

ζ
1 − ωe

1 = ̟ζ
1 +O(r−6), where:

hζ =− ‖Γ‖
∑

(j,k,ℓ)∈A3

|ζj|
2
(rdr)2 + α2

j − α2
k − α2

ℓ

r6
− ‖Γ‖〈ζ1, ζ2〉

α1 · α2 − rdr · α3

r6

− ‖Γ‖〈ζ1, ζ3〉
α1 · α3 + rdr · α2

r6
− ‖Γ‖〈ζ2, ζ3〉

α2 · α3 − rdr · α1

r6
,

(34)
where ιζ1 is given via the coupling:

e(ιζ1·, ·) =‖Γ‖(|ζ3|
2 − |ζ2|

2)
α2 · α3

r6
− ‖Γ‖(|ζ3|

2 + |ζ2|
2)
rdr · α1

r6

− ‖Γ‖〈ζ2, ζ3〉
(rdr)2 + α2

3 − α2
1 − α2

2

r6
,

(35)

and
̟ζ

1 = −‖Γ‖|ζ1|
2θ1 − ‖Γ‖〈ζ1, ζ2〉θ2 − ‖Γ‖〈ζ1, ζ3〉θ3, (36)

with ‖Γ‖ = c|Γ| for a universal constant c > 0. Moreover, Φζ∗ vol
gζ = Ωe, and if

Γ is binary dihedral, tetrahedral, octahedral or icosahedral, the error term can be
taken of size O(r−8).

Recall the notations αj = I1rdr, j = 1, 2, 3, and θa = rdr∧αa−αb∧αc
r6

, (a, b, c) ∈{
(1, 2, 3), (2, 3, 1).(3, 1, 2)

}
. The scalar product on h used in this statement is the

one induced by the Killing form.
The rest of this part is devoted to the proof of this result. In next section we

specify the meaning of the space of parameters h−D; in particular we see how h is
identified to the degree 2 homology of our Kronheimer’s instantons, which is helpful
in computing the constant c of the statement, as well as the coefficients appearing
in formulas (34)-(36). We also fix the choice of the diffeomorphisms Φζ , and check
their properties on volume forms (Lemma 2.5). The explicit determination of hζ,

ιζ1 and ̟ζ
1 is the purpose of section 2.3, and section 2.4.

2.2 Precisions on Kronheimer’s construction

2.2.1 The degree 2 homology/cohomology

The "forbidden set" D. We keep the notation Γ for one of the subgroups of SU(2)
mentioned in the previous section. We saw that Kronheimer’s ALE instantons
asymptotic to R4/Γ are parametrised by a triple ζ = (ζ1, ζ2, ζ3) ∈ h⊗R3−D. with h
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is a real Cartan subalgebra of the Lie algebra associated to Γ by McKay correspon-
dence; for instance, if Γ = Dk, k ≥ 2, then h can be taken as the Cartan subalgebra
of so(2k+4) constituted by matrices of shape diag(λ1, . . . , λk+2,−λ1, . . . ,−λk+2).
We shall first be more specific about the "forbidden set" D; according to [Kro1,
Cor. 2.10], it is the union of codimension 3 subspaces Dθ ⊗ R3 over a positive
root system of h, with D[θ] the kernels of the concerned roots; as such, it thus has
codimension 3 in h.

Topology of Xζ . Recall the notation
(
Xζ, gζ, I

ζ
1 , I

ζ
2 , I

ζ
3

)
for the hyperkähler man-

ifold of admissible parameter ζ – this is actually also defined as a hyperkähler
orbifold if ζ ∈ D. Those spaces are diffeomorphic to the minimal resolution of
C2/Γ (for I1, say) [Kro1, Cor. 3.12]; as such they are simply connected and, again
when Γ = Dk, their rank 2 topology is given by the diagram:

��������

�������� �������� �������� ��������

��������

❖❖
❖❖

❖❖
❖

♦♦♦♦♦♦♦

︸ ︷︷ ︸
k vertices

(which is nothing but the Dynkin diagram associated to so(2k + 4)), where each
vertex represents the class of a sphere of −2 self-intersection, and where two ver-
tices are linked by an edge if and only if the corresponding spheres intersect, in
which case they intersect normally at one point.

Furthermore, there is an identification between H2(Xζ ,R) and h such that:

• the cohomology class of the Kähler form ωζj := gζ
(
Iζj ·, ·

)
is ζj, j = 1, 2, 3;

• H2(Xζ ,Z) is identified with the root lattice of h; more precisely, given simple
roots of h and the corresponding basis of H2(Xζ ,Z), the intersection matrix
of this basis is exactly the opposite of the Cartan matrix of the simple roots,
see [Kro1, p.678]; in the case Γ = Dk, k ≥ 2, this matrix is thus:

k+2







2 0 −1 0 · · · 0

0 2 −1 0
...

−1 −1 2 −1
. . .

...

0 0 −1
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · 0 −1 2




k+2

.
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From the latter, we deduce the following lemma, identifying cup-product on H2

and the scalar product on h induced by the Killing form, up to signs:

Lemma 2.2 Consider α, β ∈ H2(Xζ,R) with compact support. Then α ∪ β =∫
Xζ
α∧β = −〈α, β〉, where the latter is computed with seeing α and β in h via the

above identification.

Proof. We do it for Γ = Dk, k ≥ 2. By Poincaré duality, the computation of
α, β ∈ H2(Xζ,R) amounts to that of intersection numbers for a basis of H2(Xζ,Z).
But through the above identification between H2(Xζ,Z) and the root lattice of h
above, the matrix of intersection numbers on the one hand and that of scalar
products of the corresponding basis (or dually, of the simple roots) are the same
up to signs. �

Period matrix. For ζ ∈ 〈 − D, consider as above a basis σj , j = 1, . . . , r say, of
H2(Xζ ,Z); from the previous paragraph, the period matrix

P (ζ) = (Pjℓ(ζ)) 1≤j≤3

1≤ℓ≤r
:=

(∫

Σℓ

ωζj

)
1≤j≤3

1≤ℓ≤r

can be computed thanks to the identities [ωζj ] = ζj. One easily sees that these
P (ζ) = P (ξ) if and only if ζ = ξ. With this formalism Kronheimer’s classi-
fication [Kro2, Thm. 1.3] can be stated as : two ALE gravitational instantons
are isomorphic as hyperkähler manifolds if and only if they have the same period
matrix. From this we deduce (see also [BR, p.8, (4)]):

Lemma 2.3 Let ζ ∈ h −D, and let A ∈ SO(3) act on ζ and the complex struc-
tures Iζj as in section 1.1. Then there exists a tri-holomorphic isometry between(
Xζ, gζ , (AI

ζ)1, (AI
ζ)2, (AI

ζ)3
)

and
(
XAζ , gAζ, I

Aζ
1 , IAζ2 , IAζ3

)
.

Proof. Just check that in both cases, the period matrix is AP (ζ), and apply
Kronheimer’s classification theorem. �

2.2.2 Analytic expansions.

Choice of the map at infinity. Consider a parameter ζ = (ζ1, ζ2, ζ3) ∈ h ⊗ R3 and
set

ζ ′ = (0, ζ2, ζ3), ζ ′′ = (0, 0, ζ3)

– we will keep these notations below. As described in [Kro1, p.677], there exist
proper continuous maps:

λζ1 :
(
Xζ , gζ, I

ζ
1 , I

ζ
2 , I

ζ
3

)
−→

(
Xζ′, gζ′, I

ζ′

1 , I
ζ′

2 , I
ζ′

3

)
,

λζ
′

2 :
(
Xζ′, gζ′, I

ζ′

1 , I
ζ′

2 , I
ζ′

3

)
−→

(
Xζ′′, gζ′′, I

ζ′′

1 , Iζ
′′

2 , Iζ
′′

3

)
,

λζ
′′

3 :
(
Xζ′′, gζ′′, I

ζ′′

1 , Iζ
′′

2 , Iζ
′′

3

)
−→ (R4/Γ, e, I1, I2, I3).
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which are diffeomorphisms (at least) on (λζ
′′

3 ◦ λζ
′

2 ◦ λζ1)
−1({0}), (λζ

′′

3 ◦ λζ
′

2 )
−1({0}),

and (λζ
′′

3 )−1({0}) respectively. As soon as ζ ′′ /∈ D (resp. ζ ′, ζ /∈ D), λζ
′′

3 (resp.

λζ
′

2 , λ
ζ
1) is a resolution of singularities for the third (resp. the second, the first) pair

of complex structures; in particular, if ζ ′ /∈ D (resp. if ζ /∈ D), then λζ
′

2 (resp. λζ1)
is smooth, and holomorphic for the appropriate pair of complex structures.

To get a "coordinate map" on Xζ (or rather, to view objects on R4/Γ), one
sets:

Fζ : (λ
ζ′′

3 ◦ λζ
′

2 ◦ λζ1)
−1 : (R4\{0})/Γ −→ Xζ

(beware this is not exactly the same order of composition as Kronheimer’s "coor-
dinate map", but this is not a problem by symmetry).

"Homogeneity" and consequences. We shall see that the Fζ are going be the Φζ of
Theorem 2.1. For now, according to Proposition 3.14 in [Kro1] and its proof, we
have for any ζ the converging expansion

Fζ
∗gζ = e+

∞∑

j=2

h
(j)
ζ ,

with h
(j)
ζ a homogeneous polynomial of degree j in ζ with coefficients homogeneous

symmetric 2-tensors on R4/Γ – more precisely, if κs is the dilation x 7→ sx for any

positive s, κ∗sh
(j)
ζ = s−2(j−1)h

(j)
ζ . We will thus be concerned with determining ex-

plicitly the term h
(2)
ζ , and moreover show that when Γ is binary dihedral then

h
(3)
ζ = 0. For now, observe that Kronheimer’s arguments, consisting in analyticity

and homogeneity properties of his construction, can also be used to give the exis-
tence of an analogous expansion of other tensors such as the complex structures,
and therefore the Kähler forms, or the volume forms as well. We can write for
example

Fζ
∗Iζ1 = I1 +

∞∑

j=1

ιζ1,j , (37)

where ιζ1,j is a homogeneous polynomial of degree j in ζ with coefficients (1,1)-

tensors, satisfying κ∗sι
ζ
1,j = s−2jιζ1,j (and again, the lower-order term ιζ1,1 vanishes,

but we will find this fact again below).

2.2.3 Minimal resolutions, invariance of the holomorphic symplectic structure.

We know that as soon as ζ /∈ D, λζ1 :
(
Xζ , I

ζ
1

)
→

(
Xζ′, I

ζ′

1

)
is a minimal

resolution, and a similar statement holds for λζ
′

2 :
(
Xζ′, I

ζ′

2

)
→

(
Xζ′′, I

ζ′′

2

)
and
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λζ
′′

3 :
(
Xζ′′, I

ζ′′

3

)
→ (R4/Γ, I3) whenever ζ ′ /∈ D or ζ ′′ /∈ D, respectively ( [Kro1,

p.675]).
As seen already, those maps can happen to be smooth – for instance λζ1 is, when

ζ, ζ ′ /∈ D; we are then only left with their holomorphicity property. This can be
used nevertheless with their asymptotic preserving of the hyperkähler structure,
to see that they do preserve the appropriate holomorphic symplectic structure:

Lemma 2.4 Fix ζ ∈ h⊗R3, and assume that ζ ′′ /∈ D. Then the map λζ
′′

3 verifies:

(λζ
′′

3 )∗(ωe

1 + iωe

2) = ωζ
′′

1 + iωζ
′′

2 .

Similarly, if ζ ′, ζ ′′ /∈ D, then (λζ
′

2 )
∗(ωζ

′′

3 + iωζ
′′

1 ) = ωζ
′

3 + iωζ
′

1 ; if ζ, ζ ′ /∈ D, then

(λζ1)
∗(ωζ

′

2 + iωζ
′

3 ) = ωζ2 + iωζ3.

Proof. The assertion on λζ
′′

3 is actually classical, and can be settled in the following

elementary way. Call θ the 2-form (λζ
′′

3 )∗(ω
ζ′′

1 + iωζ
′′

2 ), well-defined on (R4\{0})/Γ,

pulled-back to R4\{0}. Since λζ
′′

3 is holomorphic for the pair
(
Iζ

′′

3 , I3
)

and ωζ
′′

1 +iωζ
′′

2

is a holomorphic (2,0)-form for Iζ
′′

3 , θ is a holomorphic (2,0)-form for I3, and can
thus be written as f(ωe

1 + iωe

2), where f is thus holomorphic for I3 on R4\{0}. By

Hartogs’ lemma it can be extended to the whole R4; however, since (λζ
′′

3 )∗ω
ζ′′

j =

Fζ′′
∗ωζ

′′

j ∼ ωe

j near infinity on R4/Γ, j = 1, 2, which can be seen as a consequence
of the power series expansions analogous to (37) for Kähler forms, we get that f
tends to 1 at infinity. It is therefore constant, equal to 1, which exactly means
that (λζ

′′

3 )∗(ωe

1 + iωe

2) = ωζ
′′

1 + iωζ
′′

2 .

We deal with the assertion on λζ
′

2 in a somehow similar way. Since ζ ′, ζ ′′ /∈ D, λζ
′

2

is a global diffeomorphism between the smooth Xζ′ and Xζ′′, holomorphic for the

pair
(
Iζ

′

2 , I
ζ′′

2

)
; since ωζ

′

3 + iωζ
′

1 trivialises K
(Xζ′ ,I

ζ′

2 )
and is a (2,0)-holomorphic form

for Iζ
′

2 , (λζ
′

2 )
∗(ωζ

′′

3 + iωζ
′′

1 ) can be written as f(ωζ
′

3 + iωζ
′

1 ) with f a holomorphic

function on
(
Xζ′, I

ζ′

2

)
. Again f tends to 1 near the infinity of Xζ′, since there

(λζ
′

2 )
∗ωζ

′′

j ∼ ωζ
′

j , j = 1, 3. Moreover ωζ
′′

3 + iωζ
′′

1 never vanishes on Xζ′′, and so
neither does f on Xζ′′. We collect those observations by saying that log(|f |2)
is a gζ′-harmonic function on Xζ′ tending to zero at infinity, and thus identically
vanishing. Since f is holomorphic, it is not hard seeing that it is therefore constant,
thus f ≡ 1, or in other words: (λζ

′

2 )
∗(ωζ

′′

3 + iωζ
′′

1 ) = ωζ
′

3 + iωζ
′

1 .
The assertion on λζ1 is done in the exact same way. �

An easy but fundamental consequence of the construction of Fζ via the λζj and
the previous lemma is the invariance of the volume form, which we state for ζ
corresponding to smooth Xζ so as to avoid useless technicalities:

Lemma 2.5 The volume form Fζ
∗ volgζ does not depend on ζ ∈ h⊗ R3 −D, and

is equal to the standard Ωe.
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Proof. Notice first that once we know that Fζ
∗ volgζ does not depend on ζ , the

equality Fζ
∗ volgζ = Ωe is a direct consequence of the expansion of Fζ

∗ volgζ as a
power series of ζ , the constant term of which is Ωe. To prove that Fζ

∗ volgζ is
independent of ζ , we proceed within three steps, considering first ζ ′′, and then ζ ′

and ζ . Even if ζ /∈ D, ζ ′ or ζ ′′ might lie in D; we can however assume this is
not the case without loss of generality, since Fζ

∗ volgζ can be written as a power

series of ζ . Now from the hyperkähler data
(
Xζ′′ , gζ′′, I

ζ′′

1 , Iζ
′′

2 , Iζ
′′

3

)
, we know that

volgζ′′ = 1
2
(ωζ

′′

1 )2. Since Fζ
∗(ωζ

′′

1 ) = ωe

1 (the standard Kähler form on C2), we get
that Fζ′′

∗ volgζ′′ = Ωe.

Consider now Xζ′; we know that ωζ
′

3 is "preserved" by λζ
′

2 , and therefore:

Fζ′
∗ volgζ′ =

1

2
Fζ′

∗(ωζ
′

3 )
2 =

1

2
Fζ′′

∗(λζ
′

2 )∗(ω
ζ′

3 )
2 =

1

2
Fζ′′

∗(ωζ
′′

3 )2 = Fζ′′
∗ volgζ′′ ,

the last equality coming from the fact that ωζ
′′

3 is one of the Kähler forms of the

hyperkähler structure (gζ′′, I
ζ′′

1 , Iζ
′′

2 , Iζ
′′

3 ).

To conclude, we notice that ωζ3 is preserved by λζ1 i.e. ωζ3 = (λζ1)
∗ωζ

′

3 , and thus

Fζ
∗ volgζ =

1

2
Fζ

∗(ωζ3)
2 =

1

2
Fζ′

∗(λζ1)∗(ω
ζ
3)

2 =
1

2
Fζ′

∗(ωζ
′

3 )
2 = Fζ′

∗ volgζ′ .

Here we could also have used the forms ωζ2 and ωζ
′

2 ; to make a long story short,
the reason for the volume form invariance is that at each step of the composition
of the λζi , at least one Kähler form is preserved. �

2.3 Explicit determination of hζ

2.3.1 Verifying a gauge

We shall now work more precisely on the first possibly non-vanishing term of
the expansion of Ftζ

∗gtζ ; this allows us to redefine h
(2)
ζ as follows:

Definition 2.6 Fix ζ ∈ h⊗ R3, and set on R4\{0}:

hζ :=
1

2

d2

dt2

∣∣∣∣
t=0

Ftζ
∗gtζ , (38)

which is then O(r−4), with ℓth derivatives (for ∇e) O(r−4−ℓ), near both 0 and
infinity, and verifies:

Fζ
∗gζ = e + hζ + εζ,

with (∇e)ℓεζ = O(r−6−ℓ). More precisely, hζ is a homogeneous polynomial of degree
2 in ζ, with coefficients symmetric 2-tensors homogeneous of degree 2 in the sense
that κ∗shζ = s−2hζ , where κs is the dilation x 7→ sx of R4\{0} for any s > 0; as
for εζ, it is a sum of terms of degree at least 3 in ζ.
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As indicated by the title of this section, given an admissible ζ , we want to anal-
yse hζ , which is the first (a priori, possibly) non-vanishing term in the expansion
of gζ (from now on, for the sake of simplicity, we forget about the Fζ – we will
be more accurate about this abuse of notation whenever needed). There already
exists a rather powerful theory of deformations of Kähler-Einstein metrics; see
in particular [Bes, ch.12] for an overview on that subject. Nonetheless, because
of the diffeomorphisms action in general, much of the theory is configured so as
to work once a gauge is fixed, precisely killing the ambiguity coming from the
diffeomorphisms.

The following proposition asserts that the hζ are indeed in some gauge, making
us able of further considerations – just as is done in paragraph 1.4.3. Let us specify
though that in determining explicitly hζ , we will be more concerned with other
specific properties of that tensor, namely with its inductive decomposition into
hermitian and skew-hermitian parts with respect to I1, I2 and I3. As we shall see
though, the gauge and the decomposition are rather intricate with one another;
seeing the verification of the gauge as a guiding thread, we state:

Proposition 2.7 Fix ζ ∈ h⊗R3. Then the lower order term hζ of the deformation
gζ of e on R4\{0} is in Bianchi gauge with respect to e, and more precisely:

tre(hζ) = 0 and δehζ = 0.

Moreover, the I1-skew-hermitian part of hζ is hζ′, and the I2-skew-hermitian part
of hζ′ is hζ′′, and hζ′′ is I3-hermitian, while the I1-hermitian part of hζ , the I2-
hermitian part of hζ′ and hζ′′ give rise to closed forms, that is:

d
(
hζ(I1·, ·)− hζ(·, I1·)

)
= d

(
hζ′(I2·, ·)− hζ′(·, I2·)

)
= d

(
hζ′′(I3·, ·)

)
= 0 on R

4\{0}.

Remark 2.8 We took the liberty of possibly having ζ in D since these statements
are made on R4\{0}. More precisely, even if Xζ is not smooth, its orbifold singu-
larities lie above 0 ∈ R4 via Fζ, and hζ is smooth on the regular part of Xζ , i.e.
(Fζ)

∗hζ is smooth on R4\{0}.

Proof. Let us deal first with the assertion on tre(hζ). At any point of (R4\{0})/Γ,
for any t:

volgtζ = dete(gtζ)Ωe = dete
(
e + t2hζ +O(t3)

)
Ωe =

(
1 + t2 tre(hζ) +O(t3)

)
Ωe.

But we saw in Lemma 2.5 that for all t, volgtζ = Ωe; consequently, tre(hζ) = 0.
We now deal with the divergence assertion. As for the previous lemma, we pro-

ceed inductively on the shape of ζ ; the hermitian/skew-hermitian decomposition
as well as the closedness property will come out along the different steps of the
induction. For this we assume that ζ ′ = (0, ζ2, ζ3) and ζ ′′ = (0, 0, ζ3) are as well
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out of the "forbidden set" D. Again, since hζ can be written as a sum of quadratic
polynomials of ζ times symmetric 2-forms independent of ζ , this assumption does
not actually lead to a loss of generality.

Step 1: δehζ′′ = 0. We hence start with ζ ′′ = (0, 0, ζ3). Since I3 is parallel for e,
we have that d∗e[hζ′′(·, I3·)] = (δehζ′′)(I3·); indeed, given any local e-orthonormal
frame (ej)j=1,...,4:

d∗e [hζ′′(·, I3·)] = −

4∑

j=1

ejy
[
∇e

ej

(
hζ′′(·, I3·)

)]
and δehζ′′ = −

4∑

j=1

(∇e

ej
hζ′′)(ej, ·),

(39)
see for instance [Biq, 1.2.11] for the first equality, and [Biq, 1.2.13] for the second
one. Moreover hζ′′ is clearly I3-hermitian, since the gtζ′′ are, which is straight-

forward from the holomorphicity of the λtζ
′′

3 for the pairs
(
I tζ

′′

3 , I3
)
; hζ′′(·, I3·) is

therefore a (1,1)-form for I3. It is furthermore closed, since the gtζ′′(·, I3·) are. We
can now use the Kähler identity with the structure (e, I3) to write:

d∗e
(
hζ′′(·, I3·)

)
= [Λωe

3
, dcI3]

(
hζ′′(·, I3·)

)
.

But Λωe

3

(
hζ′′(·, I3·)

)
= −1

2
tre(hζ′′) = 0, and since hζ′′(·, I3·) is I3-hermitian and

closed, dcI3
(
hζ′′(·, I3·)

)
= d

(
hζ′′(·, I3·)

)
= 0, hence the result.

Step 2: δehζ′′ = 0. We go on our induction and analyse hζ′, where we recall the
notation ζ ′ = (0, ζ2, ζ3). We proceed through the following lines:

(i) we come back momentarily to hζ′′ and prove it is I2-skew-hermitian;

(ii) we prove that the I2-skew-hermitian part of hζ′ is hζ′′ , which is known to be
divergence-free for e;

(iii) we conclude by proving that the I2-hermitian part of hζ′ is e-divergence-free
as well.

We tackle Point (i). Recall that the map λζ
′

2 : Xζ′ → Xζ′′ is holomorphic for

the pair
(
Iζ

′

2 , I
ζ′′

2

)
; since we forget about Fζ′ and Fζ′′ , this amounts to writing

Iζ
′

2 = Iζ
′′

2 . Recall that in the same way as for the metric, the complex structures
admit an analytic expansion, which can be written as a power series of ζ with
coefficients homogeneous (1,1)-tensors on (R4\{0})/Γ. We assume momentarily

that the first order variation vanishes, and we thus write Iζ
′′

2 = I2 + ιζ
′′

2 + ǫζ
′′

2 ,

where ιζ
′′

2 = 1
2
d2

dt2

∣∣
t=0
I tζ

′′

2 , is O(r−4) (with according decay on derivatives), and

(∇e)ℓǫζ
′′

2 = O(r−6−ℓ) for all ℓ ≥ 0.
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Now ιζ
′′

2 splits into an e-symmetric part and an e-anti-symmetric part. But

according to [Bes, 12.96], to the anti-symmetric part, (ιζ
′′

2 )a say, corresponds an

I2-holomorphic (2, 0)-form θ via the coupling e
(
·, (ιζ

′

2 )
a ·

)
= θ; this we get by con-

sidering the second order variation of the Kähler-Einstein deformation
(
gtζ′′, I

tζ′′

2

)
,

satisfying the gauge tre(hζ′′) = δehζ′′ = 0, and observing that all the statements
are local. We can lift θ on R4\{0}, and then write θ = fdw1 ∧ dw2, where w1 and
w2 are the standard I2-holomorphic coordinates x1 + ix3 and x4 + ix2, and f is
thus I2-holomorphic with decay r−4 at infinity. By Hartogs’ lemma we can extend
f through 0; we thus have an entire function on (R4, I2), decaying at infinity: the

only possibility is f ≡ 0, and therefore (ιζ
′′

2 )a = 0, or: ιζ
′′

2 is e-symmetric.

Here we would like to follow [Bes, 12.96] again, to see for example that ιζ
′′

2 then

corresponds to the I2-skew-hermitian part of hζ′′ , via the coupling ωe

2(·, ι
ζ′′

2 ·) – this
latter (2,0)-tensor being clearly I2-skew-hermitian, because ωe

2 is I2-hermitian, and

since for all t, −1 = (I tζ
′′

2 )2 = I22 + t2(I2ι
ζ′′

2 + ιζ
′′

2 I2) + O(t3), thus I2ι
ζ′′

2 = −ιζ
′′

2 I2.

Since in our situation, ωζ
′′

2 does not vary, we could also expect from [Bes, 12.95] that
the I2-hermitian part of hζ′′ vanishes. Nonetheless some of the quoted arguments
are of global nature, and one should check they can be adapted to our framework.
This can be bypassed however by a rather simple computation, which we quote
here: for any t,

gtζ′′ =

{
ωtζ

′′

2 (·, I tζ
′′

2 ·) = ωe

2(·, I2·) + t2ωe

2(·, ι
ζ′′

2 ·) +O(t3) since ωtζ
′′

2 = ωe

2

e + t2hζ′′ +O(t3),

and thus hζ′′ = ω2(·, ι
ζ′′

2 ·) which is I2-skew-hermitian, as announced.

We now claim that the I2-skew-hermitian part of hζ′ is nothing but hζ′′, which

is Point (ii) of the current step. Indeed, since for all t, I tζ
′

2 = I tζ
′′

2 (consider λtζ
′

2 ),

0 =gtζ′(I
tζ′

2 ·, I tζ
′

2 ·)− gtζ′ = gtζ′(I
tζ′′

2 ·, I tζ
′′

2 ·)− gtζ′

=e(I tζ
′′

2 ·, I tζ
′′

2 ·) + t2hζ′(I
tζ′′

2 ·, I tζ
′′

2 ·)− e− t2hζ′ +O(t3)

= e(I2·, I2·)︸ ︷︷ ︸
=e

+t2e(I2·, ι
ζ′′

2 ·) + t2e(ιζ
′′

2 ·, I2·) + t2hζ′(I2·, I2·)− e− t2hζ′ +O(t3),

and thus hζ′ − hζ′(I2·, I2·) = e(I2·, ι
ζ′′

2 ·) + e(ιζ
′′

2 ·, I2·). We know that e(I2·, ι
ζ′

2 ·) =

ω2(·, ι
ζ′′

2 ·) = hζ′′ . To conclude, use that e and e(·, ιζ
′′

2 ) are both symmetric, that

I2ι
ζ′′

2 = −ιζ
′′

2 I2, and that e is I2-hermitian to see that for all X, Y ,

e(ιζ
′′

2 X, I2Y ) = e(I2Y, ι
ζ′

2 X) = −e(Y, I2ι
ζ′′

2 X) = e(Y, ιζ
′′

2 I2X) = e(I2X, ι
ζ′′

2 Y ),
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i.e. e(ιζ
′′

2 ·, I2·) = e(I2·, ι
ζ′′

2 ·) = hζ′′ . We have proved that

1

2

(
hζ′ − hζ′(I2·, I2·)

)
= hζ′′ ,

as claimed. Since δehζ′′ = 0, to see that δehζ′ = 0, we are only left with checking
this identity on the I2-hermitian part of hζ′, which is Point (iii) of the current
induction step.

For this, let us call ϕ this tensor twisted by I2, namely ϕ = 1
2

(
hζ′(I2·, ·) −

hζ′(·, I2·)
)
. As above, we want to see that d∗eϕ = 0. This is clearly an I2-hermitian

2-form, that is an I2-(1,1)-form. It is moreover trace-free with respect to e, since
hζ′ is. If we check it is closed then we are done, using the Kähler identity [Λω2 , d

c
I2
].

For this, we use an expansion of ωζ
′

2 : for all t,

ωtζ
′

2 =
1

2

(
gtζ′(I

tζ′

2 ·, ·)− gtζ′(·, I
tζ′

2 ·)
)
=

1

2

(
gtζ′(I

tζ′′

2 ·, ·)− gtζ′(·, I
tζ′′

2 ·)
)

=
1

2

(
e(I2·, ·) + t2e(ιζ

′′

2 ·, ·) + t2hζ′(I2·, ·)

− e(·, I2·)− t2e(·, ιζ
′′

2 ·)− t2hζ′(·, I2·)
)
+O(t3)

=ωe

2 + t2ϕ+O(t3), since e(I2·, ·) = −e(·, I2·) = ωe

2 and e(·, ιζ
′′

2 ·) = e(ιζ
′′

2 ·, ·);

this expansion can be differentiated term by term, so that t2dϕ+O(t3) = 0, hence
dϕ = 0, as wanted.

Step 3: δehζ = 0. We now analyse hζ. All the techniques to pass from hζ′′ to hζ′
can actually be used again, and bring us to the desired conclusion:

1. we first observe that Iζ1 = Iζ
′

1 , and we define ιζ
′

1 = d2

dt2

∣∣
t=0
I tζ

′

1 which we

assume again to be the possibly lower-order non-vanishing variation of I tζ
′

1 ;

then (ιζ
′

1 )
a = 0, since otherwise we would have a non-trivial entire function

on C2 going to 0 at infinity;

2. since ωζ
′

1 = ωζ
′′

1 = ωe

1 , we get that hζ′ is I1-skew-hermitian, given by ιζ
′

1 via

the identity hζ′ = ωe

1(·, ι
ζ′

1 ·), and that the I1-skew-hermitian component of
hζ coincides with hζ′ , the δe of which vanishes; we are thus left with the
I1-hermitian component of hζ ;

3. this component is e-trace-free (hζ is), and gives rises to an I1-hermitian 2-

form ψ, which is closed since the ωtζ1 are; the Kähler identity [Λωe

1
, dcI1] = d∗e

then leads us to d∗eψ = 0, which is equivalent to:

δe
(
I1-hermitian component of hζ

)
= 0.
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To finish this proof, we justify our assumption of the vanishing of the first order
variation of the complex structures. For instance, let us not assume that ι :=
d
dt

∣∣
t=0
I tζ

′′

2 is a priori vanishing. Then it is defined on R4\{0}, and is O(r−2). Now

as above, since 0 = d
dt

∣∣
t=0
gtζ′′ has vanishing trace and divergence for e, the e-anti-

symmetric part of ι has to vanish since it gives rise to a holomorphic function on
(R4, I2) decaying at infinity. And we see as above that ωe

2(·, ι·) =
d
dt

∣∣
t=0
gtζ′′ = 0,

and thus ι = 0. Similarly, the arguments for ιζ
′

1 apply to d
dt

∣∣
t=0
I tζ

′

1 with 0 =
d
dt

∣∣
t=0
gtζ′ = 0 instead of hζ′, so that d

dt

∣∣
t=0
I tζ

′

1 = 0. �

Remark 2.9 By contrast with what is usually done, we used properties already
known of hζ′ and hζ′′, conjugated to properties of mappings between Xζ , Xζ′ and
Xζ′′ to show that indeed, our first order deformations were in gauge, which is also

retroactively used in some places, e.g. in killing tensors like (ιζ
′′

2 )a.

2.3.2 Lower order variation of the Kähler forms: general shape

As seen when proving that the gauge was verified, given ζ ∈ h ⊗ R3, hζ′′ is
I3-hermitian, the I2-skew-hermitian part of hζ′ is hζ′′ , and the I1-skew-hermitian
part of hζ′ is hζ′′ . In order to determine hζ completely, we are thus left with
working on the respective I3, I2 and I1-hermitian components of hζ′′, hζ′ and hζ,
or equivalently on the respectively I3, I2 and I1-(1,1) forms

̟ζ′′

3 := hζ′′(I3·, ·), ̟ζ′

2 :=
1

2

(
hζ′(I2·, ·)− hζ′(·, I2·)

)

and ̟ζ
1 :=

1

2

(
hζ(I1·, ·)− hζ(·, I1·)

)
.

We interpret these forms as the first (possibly) non-vanishing variation term of

ωζ
′′

3 , ωζ
′

2 and ωζ1; as such and as seen above, these are closed forms. More precisely,
they follow a general common pattern:

Proposition 2.10 There exist real numbers a1j(ζ), a2j(ζ
′), a3j(ζ

′′), j = 1, 2, 3,
such that:

̟ζ′′

3 = a31(ζ
′′)θ1 + a32(ζ

′′)θ2 + a33(ζ
′′)θ3, ̟ζ′

2 = a21(ζ
′)θ1 + a22(ζ

′)θ2 + a23(ζ
′)θ3,

and ̟ζ
1 = a11(ζ)θ1 + a12(ζ)θ2 + a13(ζ)θ3.

where we recall the notations:

θ1 =
rdr ∧ α1 − α2 ∧ α3

r6
, θ2 =

rdr ∧ α2 − α3 ∧ α1

r6
, θ3 =

rdr ∧ α3 − α1 ∧ α2

r6
.
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Proof. We do it for ̟ζ
1, as it will be clear that the arguments would apply similarly

to ̟ζ′

2 and ̟ζ′′

3 ; we work on R4\{0}. As ̟ζ
1 is of type (1,1) for I1, it is at any point

a linear combination of rdr∧α1, α2∧α3, rdr∧α2−α3∧α1 and rdr∧α3−α1∧α2.
The symmetric tensor 1

2

(
hζ + hζ(I1·, I1·)

)
corresponding to ̟ζ

1 is moreover

trace-free for e, which translates into ̟ζ
1 ∧ ωe

1 = 0. Since ω1 = rdr∧α1+α2∧α3

r2
,

we have (rdr ∧ α2 − α3 ∧ α1) ∧ ωe

1 = (rdr ∧ α3 − α1 ∧ α2) ∧ ωe

1 = 0, whereas
rdr ∧ α1 ∧ ωe

1 = α2 ∧ α3 ∧ ωe

1 . As a consequence, the pointwise coefficient of
α2 ∧α3 is the opposite of that of α2 ∧α3. To sum up, since the θj are O(r−4) with
corresponding decay (or growth, near 0) of their derivatives, which are precisely
the orders of ̟ζ

1, we know that:

̟ζ
1 = fθ1 + gθ2 + hθ3,

for three bounded functions f , g, h, with euclidean ℓ-th order derivatives of order
O(r−ℓ), near 0 and infinity. We can be more precise here: from the properties of
analytic expansions in play discussed in paragraph 2.2.2, we have that κ∗s̟

ζ
1 =

s−2̟ζ
1, where κs is the dilation of factor s > 0 on R4. But we exactly have

κ∗sθj = s−2θj , j = 1, 2, 3; therefore, f , g, h are functions on the sphere S3. Notice

that from this point, we also know that̟ζ
1 is anti-self-dual (for e), since the θj ’s are.

Therefore ̟ζ
1 is e-harmonic on R4\{0}, which is the same as: (∇e)∗(∇e)̟ζ

1 = 0.
On the other hand, the θj are harmonic as well: they are anti-self-dual, and closed,
since

θj =
1

4
ddcIj

( 1

r2

)
, j = 1, 2, 3. (40)

Putting those facts together and setting ej = Ij
1
r
xi

∂
∂xi

, j = 1, 2, 3 – forget about
formulas (7) – so that rdr(ej) = 0 and αk(ej) = rδjk, j, k = 1, 2, 3, we get that:

∆e(fθ1) =
1

r2
(∆S3f)θ1 − 2

3∑

k=1

(ek · f)∇
e

ek
θ1

The ∇e

ek
θ1 are easy to compute: since ek · r = 0, ∇e

ek
θ1 = 1

r6
∇e

ek
(rdr ∧ α1 − α2 ∧

α3). Moreover since the Ij are parallel, we just have to compute ∇e

ek
rdr; since

∇e(rdr) = e, ∇e

ek
(rdr) = e(ek, ·) =

1
r
αk. Therefore ∇e

e1
θ1 = 0, ∇e

e2
θ1 = 2

r
θ3 and

∇e

e3θ1 = −2
r
θ2. Thus ∆(fθ1) =

1
r2
(∆S3f)θ1 −

2
r
(e2 · f)θ3 +

2
r
(e3 · f)θ2. A circular

permutation on the indices gives as well ∆(gθ2) =
1
r2
(∆S3g)θ2−

2
r
(e3·g)θ1+

2
r
(e1·g)θ3

and ∆(hθ3) = 1
r2
(∆S3h)θ3 −

2
r
(e1 · h)θ2 + 2

r
(e2 · h)θ1. Since the θj are linearly

independent, ∆̟ζ
1 = 0 translates into:

∆S3f−4(e3 ·g−e2 ·h) = ∆S3g−4(e1 ·h−e3 ·f) = ∆S3h−4(e2 ·f−e1 ·g) = 0. (41)

On the other hand, d̟ζ
1 = 0 is equivalent to e1 · f + e2 · g+ e3 ·h = e2 · f − e1 · g =

e3 · g− e2 ·h = e1 ·h− e3 · f = 0; the latter three equalities, plugged into equations
(41), exactly give ∆S3f = ∆S3g = ∆S3h = 0, hence: f , g and h are constant. �
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Remark 2.11 We have not used the Γ-invariance of the tensors here; nonetheless,
since the θj are SU(2)-invariant, which comes from the identities θj = ddcIj(

1
r2
),

this does not give us any further information.

2.3.3 Lower order variation of the Kähler forms: determination of the coefficients

We know form the formal expansion of gζ (or those of gζ′ and gζ′′) that the ajk
coefficients of Proposition 2.10 are quadratic homogeneous polynomials in their
arguments. Their explicit form is given as follows.

Proposition 2.12 With the same notations as in Proposition 2.10,

a31(ζ
′′) = 0, a32(ζ

′′) = 0, a32(ζ
′′) =− ‖Γ‖|ζ3|

2,

a21(ζ
′) = 0, a22(ζ

′) = − ‖Γ‖|ζ2|
2, a32(ζ

′′) =− ‖Γ‖〈ζ2, ζ3〉,

a11(ζ) = −‖Γ‖|ζ1|
2, a12(ζ) = − ‖Γ‖〈ζ1, ζ2〉, a32(ζ

′′) =− ‖Γ‖〈ζ1, ζ3〉.

where ‖Γ‖ := |Γ|
2Vol(B4)

= |Γ|
π2 .

Proof. We shall first prove the assertion on the a3j(ζ
′′), and then apply the same

techniques to determine the a2j(ζ
′) – the a1j(ζ) being dealt with in a similar way.

One more time we can assume that ζ is chosen in h−D, and so that ζ ′, ζ ′′ /∈ D.

The coefficient a33(ζ
′′). To begin with, set a = a31(ζ

′′), b = a32(ζ
′′) and c = a33(ζ

′′).
We consider on Xζ′′ (which is smooth by our assumption ζ ′′ /∈ D) a closed form
λ with compact support representing ζ3 by Poincaré duality; this is possible since
minimal resolutions of C2/Γ have compactly supported cohomology [Joy, Thm
8.4.3], and Xζ′′ is diffeomorphic to such a resolution (this is actually a minimal
resolution of (C2/Γ, I3), but we will not use this fact). Next, consider a smooth
cut-off function χ, vanishing on (−∞, 1], equal to 1 on [2,+∞). From the equality
ωe

3 = 1
2
ddcI3(r

2), and from formulas (40), we have that

ε := ωζ
′′

3 − λ− d

[
1

4
I3d

(
χ(r)r2

)
+

1

4
(aI1 + bI2 + cI3)d

(
χ(r)r−2

)]

is well-defined on Xζ′, has cohomology class 0, and is O(r−6) at infinity, with

appropriate decay on its derivatives; here we write r instead of (λζ
′′

3 )∗r. As we
need it further, we shall also see now that ε admits a primitive decaying at infinity.

From [Joy, Thm 8.4.1], ε can indeed be written as h+ dβ + d
∗g
ζ′′ γ, where h is

in C∞
3 (Xζ ,Λ

2) and is gζ′′-harmonic, and β and γ are in C∞
2 (Xζ,Λ

2); we used here
classical notations for weighted spaces: for example, β = O(r−2), ∇eβ = O(r−3)
and so on. The harmonic form h is actually decaying fast enough so that we can
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say it is closed and co-closed: write (all the operations and tensors are computed
with respect to gζ′′) for all r

0 =

∫

BX
ζ′′

(r)

(h,∆h) vol =

∫

BX
ζ′′

(r)

(
|dh|2+|d∗h|2

)
vol +

∫

SX
ζ′′

(r)

(h⊙dh+h⊙d∗h) vol,

where BXζ′′ (r) = (λζ
′′

3 )−1
(
B4(r)/Γ

)
, and SXζ′′ (r) is its boundary. From what pre-

cedes, the boundary integral is easily seen to be O(r3−3−4) = O(r−4), and thus
dh = d∗h = 0. Hence 0 = dε = dd∗γ; an integration by parts similar to the
previous, but with boundary term of size O(r−2), leads us to d∗γ = 0, and thus
ε = h + dβ. According to [Joy, thm 8.4.1] again, H2(Xζ′′) → H2(Xζ′′), h 7→ [h] is
an isomorphism; now here [h] = [ε − dβ] = 0. Therefore h = 0, and ε = dβ, with
β = O(r−2).

Write B(r) for BXζ′′ (r) to simplify notations; we shall now compute the integrals∫
B(r)

(ωζ
′′

3 )2 in two different ways. First, recall that (ωζ
′′

3 )2 = 2 vole, and thus1

∫
B(r)

(ωζ
′′

3 )2 = 2r4

|Γ|
Vol

(
B4

)
. On the other hand, since ωζ

′′

3 = λ + dϕ + ε, with

ϕ = 1
4
I3d

(
χ(r)r2

)
+ 1

4
(aI1 + bI2 + cI3)d

(
χ(r)r−2

)
, we have:

∫

B(r)

(ωζ
′′

3 )2 =

∫

B(r)

λ2 + 2

∫

B4(r)/Γ

λ ∧ dϕ+ 2

∫

B(r)

λ ∧ ε

+

∫

B(r)

(dϕ)2 + 2

∫

B(r)

ε ∧ dϕ+

∫

B4(r)/Γ

ε2.

(42)

Let us analyse those summands separately.
For r large enough,

∫
B(r)

λ2 =
∫
Xζ′′

λ2 = λ∪λ = −|ζ3|
2, by Lemma 2.2, and the

fact that [λ] = [ωζ
′′

3 ] = (ζ ′′)3 = ζ3.
The integral

∫
B(r)

λ ∧ dϕ equals
∫
S(r)

λ ∧ ϕ by Stokes’ theorem, where S(r)

stands for SXζ′′ (r), and this vanishes for r large enough; similarly,
∫
B(r)

λ ∧ ε =∫
B(r)

λ ∧ dβ =
∫
S(r)

λ ∧ β = 0 for r large enough.

1 Indeed,
∫
B(r)(ω

ζ′′

3 )2 is the limit as s goes to 0 of
∫
B(r)−B(s)(ω

ζ′′

3 )2,since as an s-tubular

neighbourhood of E := (λζ′′

3 )−1
(
{0}

)
which is of real dimension 2, B(s) has its volume tending to

0 when s goes to 0. Now we can also see
∫
B(r)−B(s)(ω

ζ′′

3 )2 on R4/Γ via λζ′′

3 which is diffeomorphic

away from E, and since (λζ′′

3 )∗(ω
ζ′′

3 )2 = 2Ωe,
∫
B(r)−B(s)(ω

ζ′′

3 )2 is twice the euclidean volume of

the annulus of radii s and r in R4/Γ, hence the result when s → 0.
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We now come to
∫
B(r)

(dϕ)2. By Stokes, this is equal to
∫
S(r)

dϕ ∧ ϕ, which we

view back on R4/Γ via λζ
′′

3 . For r ≥ 2, the integrand is

(ωe

3 + aθ1 + bθ2 + cθ3) ∧
[1
2
α3−

1

2

(
a
α1

r4
+ b

α2

r4
+ c

α3

r4
)]

=
1

2r2

(
1−

c

r4

)
α1 ∧ α2 ∧ α3 +O(r−7),

since ωe

3 ∧ α3 = 1
r2
α1 ∧ α2 ∧ α3, ω

e

3 ∧ α1 = 1
r2
rdr ∧ α3 ∧ α1 = 0 and ωe

3 ∧ α2 =
1
r2
rdr ∧ α3 ∧ α2 = 0 on S3(r)/Γ; θ3 ∧ α3 = −α1∧α2∧α3

r6
, θ1 ∧ α3 = rdr∧α1∧α3

r6
= 0,

θ2 ∧ α3 = rdr∧α2∧α3

r6
= 0 on S3(r)/Γ; and θj ∧ αk = O(r−7) for j, k = 1, 2, 3.

Observe that
∫
S3(r)/Γ

α1 ∧ α2 ∧ α3 = 4r2Vol
(
B4(r)

)
/|Γ| – for instance, compute∫

B4(r)
(ωe

3)
2 = 1

2

∫
B4(r)

ωe

3 ∧ dα3 by Stokes; we thus end up with:

∫

B(r)

(dϕ)2 = 2
(
1−

c

r4
)Vol

(
B4(r)

)

|Γ|
+O(r−4) =

2(r4 − c)

|Γ|
Vol

(
B
4
)
+O(r−4).

We conclude by the last two summands of (42). On the one hand,
∫
B(r)

ε∧dϕ =∫
S(r)

ε ∧ ϕ = O(r3−6+1) = O(r−2), since ε = O(r−6) and ϕ = O(r). On the other

hand,
∫
B(r)

ε2 =
∫
B(r)

ε ∧ dβ =
∫
S(r)

ε ∧ β: this is O(r3−6−2) = O(r−5) (and this is
actually the only place where we need an estimate on the decay of a primitive of
ε).

Collecting the different estimates and letting r go to ∞, we have:

2r4

|Γ|
Vol

(
B
4
)
= −|ζ3|

2 +
2
(
r4 − c

)

|Γ|
Vol

(
B
4
)
,

that is: c = − |Γ|
2Vol(B4)

|ζ3|
2.

The coefficients a31(ζ
′′) and a31(ζ

′′). We use the same techniques to see that
a31(ζ

′′) and a32(ζ
′′), used above as a and b in ϕ, vanish. Recall for example that

ωζ
′′

1 = ωe

1 ; therefore, µ := ωζ
′′

1 − d
[
1
4
I1d

(
χ(r)r2

)]
has compact support in Xζ′′, and

cohomology class [ωζ
′′

1 ] = (ζ ′′)1 = 0.

We can compute
∫
B(r)

ωζ
′′

3 ∧ ωζ
′′

1 in two different ways. First, this is 0 for all

r, since ωζ
′′

1 and ωζ
′′

3 are Kähler forms for the same hyperkähler metric and anti-

commuting complex structures, and thus ωζ
′′

3 ∧ ωζ
′′

1 ≡ 0. Secondly, using the sums

ωζ
′′

3 = λ+ dϕ+ ε and ωζ
′′

1 = µ+ dψ, with ψ = 1
4
I1d

(
χ(r)r2

)
, we write for all r:

∫

B(r)

ωζ
′′

3 ∧ ωζ
′′

1 =

∫

B(r)

λ ∧ µ+

∫

B(r)

dϕ ∧ µ+

∫

B(r)

ε ∧ µ

+

∫

B(r)

λ ∧ dψ +

∫

B(r)

dϕ ∧ dψ +

∫

B(r)

ε ∧ dψ.

(43)
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We briefly examine each summand. The first integral,
∫
B(r)

λ ∧ µ, is equal to∫
Xζ′′

λ∧ µ for r large enough, and this is 0, since [µ] = 0. The second integral can

be rewritten as
∫
S(r)

dϕ∧λ, which vanishes for r large enough; the same is true for

the third (since ε = dβ) and fourth integrals. As for the sixth integral, it can be
written as

∫
S(r)

ε ∧ ψ, and this is O(r3−6+1) = O(r−2).

We are left with the fifth summand of (43), which we rewrite as
∫
S(r)

dϕ ∧ ψ,

and view back on R4/Γ. For r ≥ 2, the integrand is

(ωe

3 + aθ1 + bθ2 + cθ3) ∧
1

2
α1 = −a

α1 ∧ α2 ∧ α3

2r6

on S3(r), since there ωe

3 ∧ α1 = θ2 ∧ α1 = θ3 ∧ α1 = 0. As a consequence,∫
B(r)

dϕ ∧ dψ = −aVol(B4)/|Γ|.

This tells us that the right-hand-side of (43) is −aVol(B4)/|Γ| when we let
r go to ∞; as the left-hand-side is always 0, a31(ζ

′′) = a = 0. One proves that
a32(ζ

′′) = 0 in the same way.

The a2j(ζ
′) coefficients. Let us come now to the a2j(ζ

′) coefficients. Since Iζ
′

2 = Iζ
′′

2

and since we have the equality of Iζ
′

2 -holomorphic (2,0)-forms ωζ
′′

3 + iωζ
′′

1 = ωζ
′

3 +

iωζ
′

1 , we have the writing:

ωζ
′

1 = µ+ dψ and ωζ
′

3 = λ+ dϕ+ ε;

taking ν a compactly supported closed 2-form representing ζ2 = [ωζ
′

2 ] (since (ζ ′)2 =
ζ2), we can write, for the same reasons as those invoked when proving the analogous

formula for ωζ
′

3 :

ωζ
′

2 = ν + dξ + η

with ξ = 1
4

[
I2d

(
χ(r)r2

)
+(aI1+bI2+cI3)d

(
χ(r)r−2

)]
where this time, a = a21(ζ

′),
b = a22(ζ

′), c = a23(ζ
′), and with η ∈ C∞

6 (Xζ′,Λ
2) of the form dγ for some

γ ∈ C∞
2 (Xζ′,Λ

2).

Exactly as in what precedes, we get from computing respectively
∫
B(r)

(ωζ
′

2 )
2

and
∫
B(r)

ωζ
′

2 ∧ ωζ
′

1 , where now B(r) = (λζ
′′

3 ◦ λζ
′

2 )
−1
(
B4(r)/Γ

)
, that a22(ζ

′) = b =

− |Γ|
2Vol(B4)

|ζ2|
2 and a21(ζ

′) = a = 0. The slightly new computation is that of
∫
B4(r)/Γ

ωζ
′

2 ∧ ωζ
′

3 , though it goes through similar lines. Indeed, ωζ
′

2 ∧ ωζ
′

3 = 0
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identically, whereas:
∫

B(r)

ωζ
′

2 ∧ ωζ
′

3 =

∫

B(r)

ν ∧ λ+

∫

B(r)

ν ∧ dϕ+

∫

B(r)

ν ∧ ε

+

∫

B(r)a

dξ ∧ λ+

∫

B(r)

dξ ∧ dϕ+

∫

B(r)

dξ ∧ ε

+

∫

B(r)

η ∧ λ+

∫

B(r)

η ∧ dϕ+

∫

B(r)

η ∧ ε.

(44)

The first integral of the right-hand-side equals
∫
Xζ′

ν ∧ λ = −〈[ν], [λ]〉 = −〈ζ2, ζ3〉

for r large enough. For r large enough again, the second, the third, the fourth
and the seventh integrals vanish (use Stokes’ theorem). Further uses of Stokes’
theorem and the estimates ϕ, ξ = O(r), ε, η = O(r−6) and β, γ = O(r−2) (with
ε = dβ, η = dγ) give us that

∫
B(r)

dξ ∧ ε and
∫
B(r)

η ∧ dϕ are O(r−2), and that∫
B(r)

η ∧ ε = O(r−5).
We hence are left with computing the contribution of the fifth summand,

namely
∫
B(r)

dξ ∧ dϕ, in the right-hand-side of (44). This can be rewritten as∫
S(r)

ξ ∧ dϕ; seen on R4/Γ, the integrand is:

1

2

[
α2 −

1

r4
(
a22(ζ

′)α2 + cα3

)]
∧
(
ωe

3 + a33(ζ
′)θ3

)
.

All computations done, this can be rewritten on S3(r)/Γ as: −cα1∧α2∧α3

2r6
. Thus∫

B(r)
dξ ∧ dϕ = −2cVol(B4)

|Γ|
+O(r−4) (recall that

∫
S3(r)/Γ

α1 ∧ α2 ∧ α3 =
4r6 Vol(B4)

|Γ|
).

Collecting the estimates of the last two paragraphs and letting r go to ∞, we

get: 0 = −〈ζ2, ζ3〉 −
2cVol(B4)

|Γ|
, that is: c = − |Γ|

2Vol(B4)
〈ζ2, ζ3〉.

The a1j(ζ) coefficients. After noticing that ωζ2 + iωζ3 = ωζ
′

2 + iωζ
′

3 , and that ωζ1 can
be written as a sum

µ+ dψ + ς,

where µ still has compact support but this time has class [ωζ1] = ζ1, ψ is the 1-form
1
4

[
I1d

(
χ(r)r2

)
+ (a11(ζ)I1 + a12(ζ)I2 + a13(ζ)I3)d

(
χ(r)r−2

)]
, and ς ∈ C∞

6 (Xζ ,Λ
2)

can be written dσ with σ ∈ C∞
2 (Xζ,Λ

2), we get that

a11(ζ) = −
|Γ|

2Vol(B4)
|ζ1|

2, a12(ζ) = −
|Γ|

2Vol(B4)
〈ζ1, ζ2〉

and a13(ζ) =−
|Γ|

2Vol(B4)
〈ζ1, ζ3〉,

from respective computations of
∫
B(r

(ωζ
′

1 )
2,
∫
B(r)

ωζ
′

1 ∧ωζ
′

2 and
∫
B(r)

ωζ
′

1 ∧ωζ
′

3 , where

here B(r) is seen in Xζ, following the same lines as above. �
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2.3.4 Conclusion: proof of Theorem 2.1 (general Γ)

Let us sum up the situation. If we take Φζ = F−1
ζ : Xζ\F

−1
ζ ({0}) → (R4\{0})/Γ

and keep the notations introduced in this section, we have Φζ∗gζ = e+hζ+O(r
−6),

Φζ∗I
ζ
1 = I1 + ιζ1 +O(r−6) and Φζ∗ω

ζ
1 = ωe

1 +̟ζ
1 +O(r−6). The I1-hermitian com-

ponent of hζ is ̟ζ
1(·, I1·), which we know, and its I1-skew-hermitian component

is hζ′ . Now the I2-hermitian component of hζ′ is ̟ζ′

2 (·, I2·), which we also know,
and its I2-skew-hermitian component is hζ′′. Finally, hζ′′ is I3-hermitian, equal

to ̟ζ′′

3 (·, I3·), which we know as well. In a nutshell, we are able to write down
explicitly hζ :

hζ =̟
ζ′′

3 (·, I3·) +̟ζ′

2 (·, I2·) +̟ζ
1(·, I1·)

=− ‖Γ‖

( 3∑

j=1

|ζj|
2θj(·, Ij·) +

∑

1≤j<k≤3

〈ζj, ζj〉θj(·, Ij·)

)
,

which gives exactly formula (34), with c = 1
2Vol(B4)

= π−2.

From this and the formula for ̟ζ
1 proved in 2.12 – which gives formula (36)

of Theorem 2.1 –, we deduce the expected formula for ιζ1. We know indeed that

ιζ1 = ιζ
′

1 , and that hζ′ = ωe

1(·, ι
ζ′

1 ·) and ιζ
′

1 is e-symmetric, hence

e(ιζ1·, ·) =e(·, ιζ
′

1 ·) = −ωe

1(I1·, ι
ζ′

1 ·) = −hζ′(I1·, ·)

=‖Γ‖
(
|ζ3|

2θ3(I1·, I3·) + |ζ2|
2θ2(I1·, I2·) + 〈ζ2, ζ3〉θ3(I1·, I2·)

)

=‖Γ‖
(
|ζ3|

2θ3(·, I2·)− |ζ2|
2θ2(·, I3·)− 〈ζ2, ζ3〉θ3(·, I3·)

)

=‖Γ‖|ζ3|
2α2 · α3 − rdr · α1

r6
− ‖Γ‖|ζ2|

2α2 · α3 + rdr · α1

r6

− ‖Γ‖〈ζ2, ζ3〉
(rdr)2 + α2

3 − α2
1 − α2

2

r6
,

of which formula (35) is just a rewriting.

2.4 Vanishing of the third order terms when Γ is not cyclic

We shall see in this section that in the expansion gζ = e+ hζ +
∑∞

j=3 h
(j)
ζ , when Γ

is one of the Dk, k ≥ 2, or contains one of these as is the case when Γ is binary
tetrahedral, octahedral or icosahedral, then the third order term h

(3)
ζ vanishes, and

that this holds as well for complex structures and Kähler forms. Keeping working
the diffeomorphisms Fζ of the previous part even if we omit them to simplify
notations, we claim:

Proposition 2.13 Suppose Γ contains Dk, k ≥ 2, as a subgroup. Then gζ =

e+ hζ +O(r−8), Iζ1 = I1 + ιζ1 +O(r−8), ωζ1 = ω1 +̟ζ
1 +O(r−8), where by O(r−8)

we mean tensors whose ℓth-order derivatives (for ∇e) are O(r−8−ℓ).
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Proof. We shall first see that, for a general Γ, the crucial considerations made in
section 2.3 on the second order term hζ of the expansion of gζ still hold for h

(3)
ζ ;

first recall that h
(3)
ζ is a homogeneous polynomial of ζ of order 3, with values in

tensors O(r−6), with according decay on the derivatives, independent of ζ . We
start by the claim that:

tre(h
(3)
ζ ) = 0 and δeh

(3)
ζ = 0.

Indeed for the trace assertion, once ζ ∈ h⊗ R3 −D is fixed, one has for all t that

Ωe = volgtζ = dete
(
e+ t2hζ + t3h

(3)
ζ +O(t4)

)
Ωe

=
(
1 + t2 tre(hζ) + t3 tre(h

(3)
ζ ) +O(t4)

)
Ωe,

since the higher order contributions of t2hζ are included in the O(t4), hence the
claim.

We thus see that h
(3)
ζ shares this property with hζ because the non-linear con-

tributions of the htζ , which are of order at least 4 in t, do not interfere with the

linear contribution of h
(3)
tζ . We thus generalize this observation to prove that h

(3)
ζ

shares other properties with hζ , and to start with, that δeh
(3)
ζ = 0, as promised.

Again we proceed within three steps, considering first ζ ′′ = (0, 0, ζ3), and then
ζ ′ = (0, ζ2, ζ3) and ζ = (ζ1, ζ2, ζ3).

The case of h
(3)
ζ′′ is immediate, and merely amounts to the fact that it is an

I3-hermitian tensor (the gtζ′′ are) with vanishing trace for e, used with the Kähler

identity [Λω3 , d
c
I3
] = d∗e applied to h

(3)
ζ′′ (I3·, ·).

For the case of h
(3)
ζ′ , remember the following: we first saw that the second

order variation of Iζ
′

2 = Iζ
′′

2 was e-symmetric; this still holds for the third order
term, since otherwise we would end up with a non-trivial I2-entire function on C2,
decaying (like r−6) at infinity, which is absurd. Then we identified the I2-skew-

hermitian part of hζ′ with hζ′′; again, this holds for h
(3)
ζ′ with h

(3)
ζ′′ (and the latter

is indeed I2-skew-hermitian). This amounts to looking at the third order term in
t of:

• the expansion of gtζ′′ = ω2(·, I
tζ′′

2 ·) to see that h
(3)
ζ′′ is indeed I2-skew-hermitian

(recall ωζ2 = ω2);

• the expansion of gtζ′(I
tζ′

2 ·, I tζ
′

2 ·)−gtζ′ to see that 1
2

(
h
(3)
ζ′ +h

(3)
ζ′ (I2·, I2·)

)
= h

(3)
ζ′′ .

We concluded by using the usual Kähler identity (for I2) on the e-trace-free I2-
(1,1) form 1

2

(
hζ′(I2·, ·)− hζ′(·, I2·)

)
, after seeing it was closed; we can do the same

on its analogue 1
2

(
h
(3)
ζ′ (I2·, ·) − h

(3)
ζ′ (·, I2·)

)
, which is also an e-trace-free I2-(1,1)
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form, and is closed as seen when looking at the third order in t of the expansion
of ωtζ

′

2 = 1
2

(
gtζ′(I

tζ′

2 ·, ·)− gtζ′(I
tζ′

2 ·, I2·)
)
.

One deals with hζ in analogous way. In particular, we get in passing that the

third order variation of Iζ1 = Iζ
′

1 , ζ1 say, is e-symmetric and anti-commutes to I1,

that the I1-skew-hermitian part of h
(3)
ζ is h

(3)
ζ′ , related to ζ1 by h

(3)
ζ′ = ω1(·, 

ζ
1·), and

that its I1-hermitian part gives rise to an e-trace-free closed I1-(1,1) form.

Running backward this description, we will thus be done if we show that the
third order variations of the Kähler forms vanish when Γ contains a binary dihedral
group. In general though, we know these are O(r−6) near 0 and infinity with
corresponding decay on their derivatives, that they are of type (1,1) for one of the
Ij and trace-free; they are thus ∗e-anti-self-dual, and therefore can be written as
fθ1 + gθ2 + hθ3, where this time, r2f , r2g and r2h depend only of the spherical
coordinate of their argument. Our form are moreover closed, hence in particular
harmonic; using again that the Laplace-Beltrami operator and the rough laplacian
coincide on (R4, e), and that the θj are harmonic, we have this time:

∆e(fθ1) = (∆ef)θ1 − 2

3∑

k=0

(ek · f)∇
e

ek
θ1,

with e0 =
xj
r

∂
∂xj

. We set f̃ = r2f ; this is a function on S3, and e0 ·f = e0 · (r
−2f̃) =

e0 · (r
−2)f̃ = −2r−3f̃ = −2r−1f . Since on functions, ∆e = − 1

r3
∂r
(
r3∂r ·

)
+ 1

r2
∆S3,

one has:

∆ef = ∆e(r
−2f̃) = −

1

r3
∂r
(
r3∂r(r

−2)
)
f̃ +

1

r4
∆S3 f̃ =

1

r4
∆S3 f̃ ,

since ∂r
(
r3∂r(r

−2)
)
= 0 (r−2 is the Green function on R4).

Moreover, ∇e

e0
θ1 = ∂r(r

−6)(rdr ∧α1 −α2 ∧ α3) + r−6∇e

e0
(rdr∧ α1 −α2 ∧ α3) =

−6
r
θ1 +

2
r
θ1 = −4

r
θ1. We recall that ∇e

e1
θ1 = 0, ∇e

e2
θ1 = 2

r
θ3 and ∇e

e3
θ1 = −2

r
θ2,

therefore:

∆e(fθ1) =
1

r4
(
∆S3 f̃ − 16f̃

)
θ1 −

2

r3
(
(e2 · f̃)θ3 − (e3 · f̃)θ2

)
.

Writing the analogous equations on g̃ = r2g, h̃ = r2h, the equation ∆e(fθ1+gθ2+
hθ3) = 0 is equivalent to the system:

∆S3 f̃ − 16f̃ − 4(e3 · g̃) + 4(e2 · h̃) = 0,

∆S3 g̃ − 16g̃ − 4(e1 · h̃) + 4(e3 · f̃) = 0,

∆S3 h̃− 16h̃− 4(e1 · f̃) + 4(e3 · g̃) = 0.

(45)
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Now the closure assertion on fθ1+gθ2+hθ3 is equivalent to (e1·f)+(e2·g)+(e3·h) =
(e0 ·f)− (e3 ·g)+(e2 ·h) = (e0 ·g)− (e1 ·h)+(e3 ·f) = (e0 ·h)− (e2 ·f)+(e1 ·g) = 0.

Since e0 · u = − 2
r3
ũ and ek · u = 1

r2
ek · ũ for u = f, g, h and k = 1, 2, 3, we

deduce from the latter equalities and the system (45) the equations:

∆S3 f̃ − 8f̃ = ∆S3 g̃ − 8g̃ = ∆S3 h̃− 8h̃ = 0.

Setting f̂ = r2f̃ and likewise for ĝ and ĥ, we get that f̂ , ĝ, ĥ are harmonic (on
the whole r4) and homogeneous of degree 2. This is not hard seeing that they are
thus linear combinations of the x21 − x2j , j = 2, 3, 4, and the xjxk, 1 ≤ j < k ≤ 4.

The θj are Γ-invariant; f , g and h, and consequently f̂ , ĝ and ĥ, must thus be
as well. But if Γ contains a binary dihedral group as a subgroup, then there is no
non-trivial linear combination of the above polynomials which is Γ-invariant. We
use first the τ -invariance; if indeed Dk < Γ for some k ≥ 2 and u =

∑3
j=1 aj(x

2
1 −

x2j )+
∑

1≤j<ℓ≤4 ajℓxjxℓ is Γ-invariant, then 2u = u+ τ ∗u = a2(x
2
1−x22+x23−x24)+

a3(x
2
1 − x23 + x23 − x21) + a4(x

2
1 − x24 + x23 − x22) + a12(x1x2 + x3x4) + a13(x1x3 −

x3x1) + a14(x1x4 − x3x2) + a23(x2x3 − x4x1) + a24(x2x4 − x4x2) + a34(x3x4 + x1x2),
that is: u has shape a(x21 − x22 + x23 − x24) + 2b(x1x2 + x3x4) + 2c(x1x4 − x3x2), i.e.
aRe(z21 + z22) + bIm(z21 + z22) + cIm(z1z2), a, b, c ∈ R, in complex notations. We
now use the ζk-action and write:

ku =

k∑

ℓ=0

ζ∗ku =

k∑

ℓ=0

a(ζℓk)
∗Re(z21 + z22) + b(ζℓk)

∗Im(z21 + z22) + c(ζℓk)
∗Im(z1z2)

=Re

( k∑

j=0

a(e2iℓπ/kz21 + e−2iℓπ/kz22)

)

+ Im

( k∑

j=0

b(e2iℓπ/kz21 + e−2iℓπ/kz22) + ce−2iℓπ/kz1z2

)

=0,

since e2iπ/k 6= 1 (k ≥ 2). In particular, the third order variation term of ωζ1
vanishes. In other words, ωζ1 = ω1 +̟ζ

1 +O(r−8).

Moreover, since ζ1 is determined by h
(3)
ζ′ which is also 0, this third order varia-

tion of complex structure vanishes as well, or: Iζ1 = I1 + ιζ1 +O(r−8). �

This completes the proof of Theorem 2.1. Notice however that in view of the
previous two sections, we could also have given similar statements on the second
and third complex structures and Kähler forms of Xζ . We chose to focus and the
first ones since this is what is needed in our construction of Part 1, see in particular
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Lemma 1.6, which is just a specialization of Theorem 2.1: take ζ = ξ verifying
conditions (10), and ΦY = Φζ .

Nonetheless, the asymptotics of the second and third complex Kähler forms are
available via Proposition 2.12, from which the asymptotics of the corresponding
complex structures easily follow, since the asymptotics of the metric are known.

2.5 Comments on Lemma 1.1

2.5.1 The condition (10)

The first comment we want to make about Lemma 1.1 concerns the reason
why we state it under the condition (10), which we can recall as (|ζ2|

2 − |ζ3|
2) +

2i〈ζ2, ζ3〉 = 0 (if one takes ζ instead of ξ as parameter).
One could instead try to generalize the proof we give in section 1.3 with help

of the asymptotic given by Theorem 2.1, with ζ a generic element of h⊗ R3 −D.
This is formally possible, by leads to include terms such 1

r2z1
, 1
r2z1

, 1
r2z2

, 1
r2z2

in ε1
and ε2 of that proof, which is obviously not compatible with the requirement that
i is a diffeomorphism of R4.

In others words, (|ζ2|
2 − |ζ3|

2) + 2i〈ζ2, ζ3〉 appears as an obstruction for Iζ1 to
be approximated to higher orders by I1, even with some liberty on the diffeomor-
phism between infinities of Xζ and R4/Γ, which reveals some link between the
parametrisation of the Xζ and the general problem of the approximation of their
complex structures.

2.5.2 Links with the parametrisation

Conversely we interpret of Lemma 1.1 as follows: when Γ = Dk – this would be
true also in the tetrahedral, octahedral and icosahedral cases – and (|ζ2|

2−|ζ3|
2)+

2i〈ζ2, ζ3〉 = 0, then the complex structure Iζ1 can be viewed as approximating
the standard complex structure I1 with precision twice that of the general case,
i.e. with an error O(r−8) instead of O(r−4), up to an adjustment of the ALE
diffeomorphism given in Kronheimer’s contruction. Now (|ζ2|

2−|ζ3|
2)+2i〈ζ2, ζ3〉 =

〈ζ2 + iζ3, ζ2 + iζ3〉, and this precisely the coefficient ak in the equation of Xζ seen
as a submanifold of C3, which is

u2 + v2w + wk+1 = a0 + a1w + · · ·+ akw
k + bv (46)

(aj being given by symmetric functions of the (k + 2) first diagonal values of
ζ2 + iζ3 ∈ hC or hC/(Weyl group) of degree (k + 2− j), and b by their Pfaffian).

Denote by XDk the orbifold defined in C3 by the equation u2+v2w+wk+1 = 0,
i.e. equation (46) with a0 = · · · = ak = b = 0. This is identified to C2/Dk via
the map (z1, z2) 7→ (u, v, w) :=

(
1
2
(z2k+1

1 z2 − z2k+1
2 z1),

i
2
(z2k1 + z2k2 ), z21z

2
2

)
. This

suggests that (u, v, w) in equation (46) should somehow have respective degrees
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2k + 2, 2k and 4 in the z1, z2 variables, and this equation remains homogeneous if
we give formal degree 2 to ζ . When ak = 0, the right-hand-side member of (46) is
therefore formally conferred "pure" degree at most 4k − 4, instead of 4k.

We suspect that this corresponds to the improvement by four orders in the
approximation of Iζ1 by I1 in the sense of Lemma 1.1. It would thus be of interest
to draw a rigorous picture out of these informal considerations, establishing a
more direct link of this kind between the parameter ζ and the associated complex
structures, without passing by the analysis of gζ , which we unfortunately have not
been able to so far.
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