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Abstract. Motivated by analytical methods in mathematical music theory, we de-
termine the structure of the subgroup J of GL(3,Z12) generated by the three voicing
reflections. As applications of our Structure Theorem, we determine the structure of
the stabilizer H in Σ3nJ of root position triads, and show that H is a representation
of Hook’s uniform triadic transformations group U . We also determine the centralizer
of J in both GL(3,Z12) and the monoid Aff(3,Z12) of affine transformations, and
recover a Lewinian duality for trichords containing a generator of Z12. We present
a variety of musical examples, including the Wagner’s hexatonic Grail motive and
the diatonic falling fifths as cyclic orbits, an elaboration of our earlier work with
Satyendra on Schoenberg, String Quartet in D minor, op. 7, and an affine musical
map of Joseph Schillinger. Finally, we observe, perhaps unexpectedly, that the ret-
rograde inversion enchaining operation RICH (for arbitrary 3-tuples) belongs to the
representation H. This allows a more economical description of a passage in Webern,
Concerto for Nine Instruments, op. 24 in terms of a morphism of group actions.
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1. Introduction

1.1. Motivation for Transformational Approaches in Music Theory.

A driving motivation for the investigation of group actions on musical spaces is their
application to the analysis of temporally ordered sequences of musical objects.1 Chord
sequences, and in particular sequences of major and minor triads, constitute a central
instance of this work. The musical objects under consideration are thereby conceived
of as elements or “points” of an underlying space S and the sequences become discrete
trajectories (s0, s1, . . . , sn) within this space.

Major and minor triads in a chromatic 12-tone system can be encoded in various
ways as the “points” of a 24-element set S. We briefly sketch encodings of consonant
triads, since the rest of paper relies on this. As is usual in this area, we identify pitch
classes with integers modulo 12 via the bijection C ↔ 0, C] ↔ 1, . . . , and finally
B ↔ 11. Consonant triads come in two types: major and minor. A major triad
{r, r+ 4, r+ 7} ⊆ Z12 is said to have root r, third r+ 4, and fifth r+ 7. The letter name
of this major triad is the letter corresponding to the root r under the aforementioned
bijection. Similarly, a minor triad {r, r + 3, r + 7} ⊆ Z12 has root r, third r + 3, and
fifth r+7. The letter name of this minor triad is the letter corresponding to the root r.
Major triads are indicated by capital letters, minor triads are indicated by lowercase
letters. A voicing of a triad corresponds to a selected ordering encoded as a 3-tuple
(x, y, z) ∈ Z×312 . To summarize, one can encode a triad in three possible ways: as
an unordered subset {x, y, z} ⊆ Z12, or as an ordered 3-tuple (x, y, z) ∈ Z×312 via a
pre-selected unique voicing, or as a pair (root name, mode).

1Another motivation is classification in terms of orbits and stabilisers.
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Returning to our motivation begun in the first paragraph, the “transformational
analyst” judiciously selects group actions G×S → S and seeks to interpret trajectories
(s0, s1, . . . , sn) within S via associated sequences (g1, . . . , gn) of transformations gi ∈ G
satisfying gi(si−1) = si, as pictured in the network below.

s0
g1 // s1

g2 // · · · gn // sn

These networks are then themselves transformed and combined into larger networks
that elucidate paradigmatic musical motions for the piece under investigation. The
analyst thereby presupposes that the transformations in question are defined on the
entire space S.

This global domain presupposition is crucial for the interpretation and evaluation
of transformational analyses and needs to be understood in its radicality. In [24],
David Lewin (1993–2003) distinguished and compared two simply transitive actions on
the consonant triads: one including global reflections (inversions), the other including
contextual reflections (inversions).2 We illustrate the difference on consonant triads
as unordered subsets of Z12 for the moment. The interpretation of the e[-minor triad
{3, 6, 10} as a mirror image of the E[-major triad {3, 7, 10} (across the axis in the
middle of 3 and 10) has two natural extensions to the set of all consonant triads.
Either one can apply the global reflection operation I3+10(x) = −x+3+10 throughout
to all the consonant triads, or one may apply the contextual reflection operation parallel
P to all the consonant triads. In the definition of P , the contextual local mirror axis is
selected so as to exchange the root and the fifth of the input chord, so that the input
triad and the output triad overlap in the root and the fifth. The transformation P has
therefore been characterized as a contextual inversion. The precondition to “know”
the effect of a transformation on the entire space can be satisfied in both cases through
homogeneity assumptions about the underlying pitch class space. This allows, on the
one hand, for the definition of pitch class inversions and transpositions. On the other
hand, in the case of the contextual transformations, one could speak of an isotropy
principle, i.e. a uniformity assumption about the collection of the conextual mirror
axes. Two other such contextual inversions defined via common tone retention called
leading tone exchange L and relative R are recalled in Section 2.

For an example of transformational interpretations that illustrate the difference be-
tween global reflections, consider a hexatonic cycle of Cohn [7].

E[, e[, C[, b, G, g (1)

This progression is in measures 586–618 of Schubert, Piano Trio No. 2 in E[ Major,
op. 100, 1st Movement, see the reduction by Cohn [9, page 215]. There are (at least)
two possible group-theoretic interpretations of the hexatonic cycle (1), one involving
the alternating application of neo-Riemannian P and L operations, the other involving
the componentwise global reflection operations I1, I9, and I5, where In(x) := −x + n.

2For the moment it may suffice to acknowledge the fact that Lewin just distinguished the two
actions. His mathematical insight, that these actions can even be understood as mutually dual actions
of a dihedral group on the 24 consonant triads, shall be recalled and appreciated in Section 2.



4 FIORE AND NOLL

The transformations P and L are described in more detail in Section 2.

E[
P // e[

L // C[
P // b

L // G
P // g

L

jj (2)

E[
I1 // e[

I9 // C[
I5 // b

I1 // G
I9 // g

I5

jj (3)

Notice that each occurrence of P has a different reflection axis, as does each occurrence
of L. What unifies these P -occurrences is the alignment of the contextual reflection
axes perpendicularly to the fifth interval of the respective triads. Similarly, the L-
occurrences have in common the perpendicular alignment of the reflection axes and
the minor thirds, see Figure 1 where the fifths are orange, the thirds are gray, and the
reflection axes are dotted.

The hexatonic cycle (1), with C[ enharmonically identified with B, has been recon-
sidered by Clampitt after Cohn in a hexatonic analysis [4] of a particular variation of
the Grail motive in Parsifal, Act 3, measures 1098–1100. The exact chord progression
in (1) and (2) is not in the Grail motive, rather the network is PLP followed by L,
followed by PLP . We realize this network via a single transformation in Section 4.1.
Some mathematical background for [4] was recently worked out in [2].

What is the music-analytical intention behind the transformational approach? Crit-
ics sometimes see a kind of useless bookkeeping in the activity of labelling chord progres-
sions through transformations. In fact, if the chosen group action is simply transitive,
the analytical activity is suspiciously easygoing: there are as many musical objects as
there are transformations available, and for any ordered pair (s, s′) of objects there is
a unique transformation g sending s to s′ = g(s). The transformational interpreta-
tion of the trajectories is thus completely determined as soon as a simply transitive
group action is selected. To persuade the critics and oneself about the benefit of a
transformational analysis, the music-theoretically crucial condition that the effect of a
transformation must be “known” on the entire space must not be carelessly neglected
in the mere bookkeeping of labels. Furthermore there should be an economy of de-
scription involved. The more chord successions exemplify the same transformation,
the better.

For instance, let us reconsider the hexatonic cycle (1) in light of “economy of de-
scription” to motivate Julian Hook’s notion of uniform triadic transformation in [22].
Notice that description (2) is more economical than description (3) because (2) only
utilizes the two transformations P and L, while (3) utilizes the three transformations
I1, I9, and I5. Alternating orbits under groups with two generators, such as the alter-
nating PL-orbit in (2), have been coined flip-flop cycles by John Clough in [6]. Is it
possible to make an even more economical description of the hexatonic cycle with only
a single transformation? More precisely, is it possible to define a single transformation
which on major triads acts as P and on minor triads acts as L as in (2)? Hook an-
swers affirmatively with the uniform triadic transformation 〈−, 0, 8〉. The minus sign
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Figure 1. Two interpretations of the hextonic cycle E[ 7→ e[ 7→ C[ 7→
b 7→ G 7→ g 7→ E[ (1) as a network of global reflections I1, I5 and I11
and (2) as a network of contextual operations P and L. The triangles
represent consonant triads. The six clock face diagrams depict the occur-
rences of the global reflections I1, I5 and I11, each of which occurs twice
in the cycle. The colored fifths (orange) and minor thirds (gray) are
always perpendicularly aligned to the respective reflection axis. These
two types of contextual relations between triadic intervals and reflection
axes characterize the transformations P and L, respectively.

indicates the transformation reverses mode, the 0 indicates that a major input is not
shifted before reversing mode, and the 8 indicates that a minor input is shifted by 8
before reversing mode. The flip-flop cycle (2) is thereby turned into an orbit of a cyclic
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transformation group.3 The group U of uniform triadic transformations with its 288
elements is much larger than the 24 element PLR-group, so there is a tradeoff between
the economy of description and the size of the presupposed transformation group. We
will recall uniform triadic transformations in Section 5 and argue that Hook’s group
U occupies a quite natural position within the theoretical perspective of the present
approach via a linear representation constructed from J and the permutation (1 3).

David Lewin [24] often positioned his analytical discourse in another 288-element
group, namely in the group generated by the union of the atonal T/I-group and the con-
textual PLR-group.4 Using these two competing kinds of transformations in tandem,
he typically provides instructive arguments in the spirit of an economy of description
principle within this chosen context.

So far, for consonant triads encoded as ordered 3-tuples, we have discussed two
kinds of reflection (inversion): the global reflection operations In, and the contextual
reflection operations P , L, and R. The present paper studies a third kind of reflection,
called voicing reflection. In a voicing reflection, the local axis of reflection is determined
by the tones in two pre-selected voices, for instance consider for the moment the voice
reflection W (x, y, z) := Ix+z(x, y, z) = (z,−y + x + z, x) determined by the bass and
soprano voices. Let us consider the similarities and differences between the global
reflection I1, the contextual reflection P , and the voice reflection W . Recall that to
compute the parallel contextual reflection P on a consonant triad (x, y, z), we look
inside the chord to find the two tones p and q that span a perfect fifth, and then
compute5 P (x, y, z) := Ip+q(x, y, z).

On root position E[-major (3, 7, 10), all three I1, P , and W coincide to give e[-minor
with voicing (10, 6, 3). On E[-major in any position, we see that I1 and P will coincide,
but that they will differ from W as soon as the first and last positions do not contain
the pitch classes spanning the perfect fifth. For instance

P (3, 10, 7) = I1(3, 10, 7) = (10, 3, 6) = e[-minor

W (3, 10, 7) = I3+7(3, 10, 7) = (7, 0, 3) = c-minor.

Notice that the voicing does not effect the underlying unordered set of the P output,
but the voicing greatly effects the underlying output set of W . On inputs where the
perfect fifth does not sum to 1, the transformations I1 and P differ. For instance,

I1(4, 8, 11) = (9, 5, 2)

P (4, 8, 11) = I4+11(4, 8, 11) = (11, 7, 4).

The transformations W and P agree only when the first and last positions contain the
two pitch classes spanning a perfect fifth.

3John Clough remarks “There is a tension between these two readings of a uniform flip-flop circle,
one as a chain of paired involutions and the other as a chain of repeated one-way transformations.
Which approach is preferable? The answer, I think, depends on one’s objectives, and one’s perceptions
in a particular musical context.” [6, page 36]

4The T/I-group and PLR-group commute with one another, are both of order 24, and have only
two elements in common: the identity and Q6 = T6. Consequently, the T/I-group and the PLR-group
together generate a group of order (24× 24)/2 = 288.

5Recall that Ip+q : Z12 → Z12 is the unique global reflection that exchanges p and q.
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See Figure 2 for a comparison of the graphs of I1, P , and W on all 144 ordered
consonant triads.

(a) Global reflection I1. (b) Contextual reflection P .

(c) Voicing reflection W .

Figure 2. Comparison of global reflection I1, contextual reflection P ,
and voicing reflection W . The cubes represent the complete voicing space
Z×312 . The 144 dots represent the voicings all consonant triads. Each black
dot represents (a voicing of) a major triad, each gray dot represents (a
voicing of) a minor triad. The red dot is E[ in root position (3, 7, 10),
and the blue dot is e[-minor in dualistic root position voicing (10, 6, 3).

1.2. Motivational Problembeispiel.

We motivate the mathematical questions and answers of the present paper with a
new viewpoint on Straus’ interpretation of Webern, Concerto for Nine Instruments,
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op. 24, Second Movement [28, pages 57–61]. Using the usual encoding of pitch classes
as integers modulo 12 and 3-pitch sequences as 3-tuples of such, we horizontally list in
Figure 3 the enchained sequences of measures 15–21 and 22–27 in the order they occur
in the score. Consecutive interlocking 3-note sequences are connected by the RICH

(8, 4, 5)

(13)V

RICH

//

x− 2

��

15–21

(4, 5, 1)

RICH

(13)V

//

x− 2

��

(5, 1, 2)

(13)V

RICH

//

x− 2

��

(1, 2, 10)

(13)V

RICH

//

x− 2

��

(2, 10, 11)

(13)V

RICH

//

x− 2

��

(10, 11, 7)

x− 2

��
(6, 2, 3)

(13)V

RICH

//
22–27

(2, 3, 11)

(13)V

RICH

// (3, 11, 0)

(13)V

RICH

// (11, 0, 8)

(13)V

RICH

// (0, 8, 9)

(13)V

RICH

// (8, 9, 5)

Figure 3. Interpretation of Webern, Concerto for Nine Instruments,
op. 24, Second Movement, measures 15–21 and 22–27. Each 3-note
sequence is a permutation of some transposition/inversion of {0, 1, 4}.
The rows are connected by retrograde inversion enchaining, abbreviated
RICH. The pattern terminates after 6 sequences, but could continue to
8 sequences to traverse a complete cycle that exhausts the octatonic
{1, 2, 4, 5, 7, 8, 10, 11} by Corollarly 6.2 of [17].

transformation, which is an acronym for retrograde inversion enchaining introduced by
Lewin in [24], and first described in [23]. The RICH transformation assigns to a pitch
class sequence the reversed reflection whose first two numbers are the last two numbers
of the input (compare Figure 3).

Straus implements the RICH transformation of Figure 3 with two transformations
he calls “L” and “P” that do not consider the ordering. The definitions of “L” and “P”
are complex, as the 3-note sequences of Figure 3 are not consonant, and one must make
some arbitrary conventions and refer to prime forms to make a definition analogous to
neo-Riemannian L and P . However, the analogy with neo-Riemannian L and P ends
quickly, because the standard neo-Riemannian PL-cycle has an underlying hexatonic
set covered by 6 cycle chords, whereas the two (incomplete) cycles of Figure 3 have
underlying octatonic sets, each covered by 8 cycle chords. Simply replacing “L” by
“R” to instead make an analogy with the neo-Riemannian octatonic PR-cycles does
not solve the problem: no matter which labelling convention one chooses, a reordering
of the 3-note sequences will lead to a clash with standard neo-Riemannian notations,
as we can see in Table 1.

In this paper we instead propose to use voice transformations U , V , and W as defined
in formulas (4), (5), (6) of Section 3.1, in combination with permutations such as (13).
Our usage of (13)V for RICH in Figure 3 respects ordering, is immediately defined
in terms of a straightforward formula without consonant connotations, and offers an
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economy of description with one transformation instead of two. Moreover, we know
that (13)V commutes with affine transformations such as x− 2 by Proposition 3.6.1.

We have arrived at the following questions, which we solve in the present paper.

• What is the structure of the group J generated by the voicing reflections U ,
V , W globally defined on Z×312 by formulas (4), (5), (6) as in Section 3.1?
• Which affine endomorphisms of Z×312 commute with U , V , and W and enable

vertical morphisms such as in Figure 3, or in Figure 10 of [17]?
• What is the structure of the subgroup of GL(3,Z12) generated by J and the

group Σ3 of permutations on three letters?
• How can we describe flip-flop cycles more economically with a single transfor-

mation, as in the description of the PL-network in diagram (2) via the sole
transformation 〈−, 0, 8〉, or the description of the rows of Figure 3 via the sole
transformation (13)V ? Moreover, in doing this replacement, under which con-
ditions can we retain an affine map as a morphism, as with x− 2 in Figure 3?
• How can we recover known duality theorems?
• How can we characterize a certain linear representation H of Hook’s uniform

triadic transformations as a consequence of the Structure Theorem 3.3.2?

1.3. Outline of Contents.

To keep the article self-contained, and to motivate the algebraic structures under
investigation, we begin in Section 2 with a rapid review of the neo-Riemannian trans-
formations P , L, R, their dihedral group, and their centralizer. We clarify the difference
between two possible extensions of P , L, R: as contextual inversions via local permu-
tation conjugation like in [16, 17] and as discussed above, or as voicing reflections W ,
V , and U , which is the main subject of the present paper. In Section 2 we also fore-
shadow a normal form result and the connection to uniform triadic transformations by
comparing RL to UV and writing it as a uniform triadic transformation.

Section 3 is an extensive study of the structure of the group J generated by the
voicing reflections U , V , and W . We first explain how J restricts to six different PLR-
groups on the various consonant orbits, and how each single voicing reflection restricts
twice to three different P , L, R transformations. Our first main result is Structure
Theorem 3.3.2, which specifies relations between the generators of J , gives a normal
form for elements of J together with Schritt-Wechsel type formulae, and identifies J
as a semi-direct product Z2n (Z12×Z12). Matrix representations for the normal form
are in Remark 3.3.5. Then we go on to find the center of J and the centralizers of J
in GL(3,Z12), M(3,Z12), Aff(3,Z12), and Aff×(3,Z12) in Propositions 3.4.1, 3.5.1, and
3.6.1. In Sections 3.8 and 3.9 we bring permutations into the picture: Proposition 3.8.2
identifies the subgroup of GL(3,Z12) generated by permutations Σ3 and J as the semi-
direct product Σ3 n J , while Section 3.9 distinguishes various relevant subgroups of
Σ3nJ and important orbits. Section 3.10 presents the traces of normal form elements
of Σ3 n J , as determined by a computer.

Section 4 presents a variety of musical examples and consequences of the foregoing
results on J and Σ3. Section 4.1 finds four elements of Σ3nJ that realize the flip-flop
cycle PLP , L from Wagner’s Grail motive in Parsifal. In Section 4.2 we revisit our
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earlier work with Ramon Satyendra [17] on Schoenberg, String Quartet in D minor,
op. 7 and include a viola passage via (13)L, map the result on a PR-cycle and a
PL-cycle, and offer a more economical description in terms of (13)V . In Section 4.3
we continue with our work on Schoenberg to illustrate how Proposition 3.6.1 provides
morphisms of generalized interval systems. In Section 4.4 we remark that the present
paper is valid not only to Z12 but for any Zn. In particular Theorem 3.3.2 applies to Z7,
and we realize the diatonic falling fifths sequence via a linear transformation. Another
interesting mod 7 example is in Section 4.5, where we further specify Schillinger’s
M2 map between Rimsky-Korsakov’s Hymn to the Sun and Youmann’s Without a
Song. Section 4.6 applies the commutativity Proposition 3.6.1 to recover the classical
Lewinian duality of PLR and T/I as well as the special cases of pitch-class segment
duality [18] needed in the analysis [17] of Schoenberg, String Quartet in D minor, op.
7.

In Section 5 we define and characterize a representation ρ : U → GL(3,Z12) of
Hook’s uniform triadic transformations group U . Essentially, for a uniform triadic
transformation u, the linear map ρ(u) is the unique linear extension of u from root
position consonant triads to all 3-tuples. Most of the results of Section 5 rely on the
J Structure Theorem 3.3.2. We characterize the image of the embedding ρ as the
subgroup H of Σ3nJ which preserves root position consonant triads, and investigate
the structure of H in terms of our results about J . In Proposition 5.4.1 we find a
normal form associated to the decomposition H = J +

⊔
(13)J − where J + and J −

are the mode-preserving respectively mode-reversing transformations in J . The image
H is generated by (13)U and (13)W as in Proposition 5.4.2, which leads to a second
normal form for H in Proposition 5.4.5. In Theorem 5.4.6 we prove that H is the
semi-direct product 〈(13)W 〉n J +. In Theorem 5.5.1 and Corollary 5.5.2 we select a
new basis for J + in H to prove that H is a wreath product Σ2 * Z12 and to express
the representation ρ more directly in terms of uniform triadic transformation notation
〈s,m, n〉. By this point it is clear that ρ is an isomorphism onto its image.

In the Conclusion Section 6 we revisit the Problembeispiel of Section 1.2 and recall the
more economical description in terms of the element RICH=(13)V in H, also utilizing
the centralizer results of Proposition 3.6.1.

1.4. Related Work of Rachel Hall.

Rachel Hall’s contribution [20] made initial advances in the study of voicing trans-
formations. Her work is motivated6 by [18]. We acknowledge several aspects of her
considerations as a groundwork for our own investigations. For reasons presented above
we do not use Hall’s proposed term linear contextual transformations. Unlike our inves-
tigations of transformations on the discrete space Z×312 , Rachel Hall [20] studies certain
continuous linear transformations on Rn and makes a connection to the work of Cal-
lender, Quinn, Tymoczko [1, 29]. Concerning the mathematical findings, none of the

6In Section 5.3 of [20], Hall’s mathematicizations of P , L, R on consonant triads in dualistic root
position are inspired by the equivalent descriptions of [14] and [18].
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theorems in our present paper are contained in [20]. Hall already noticed the repre-
sentability of Hook’s UTT-group in terms of voicing transformations in her Section 5.5.
We elaborate this finding in several regards.

In [20, Definition 3.1], Hall defines the linear contextual group C n to be the group of
invertible linear maps Rn → Rn that commute with transposition and inversion, and
induce well-defined linear transformations on the quotient Rn/(12Z)n. On page 112,
she characterizes this group as the discrete group of invertible matrices with integer
entries which fix the vector 1 = (1, 1, . . . , 1) of all 1’s.

C n = {M ∈ GL(n,Z) |M1 = 1}
With respect to the basis

1, (−1, 1, 0, . . . , 0), (−1, 0, 1, 0, . . . , 0), . . . , (−1, 0, . . . , 0, 1),

the elements of C n have a very nice form indicated in (3.2) on page 113 of her pa-
per, which then leads to an isomorphism of C n with the group of affine linear maps
Zn−1 → Zn−1, see [20, Theorem 3.1]. She proposes an encoding of C n as elements
〈a, A〉 with a ∈ Zn−1 and A ∈ GL(n − 1,Z). In Section 5, she discusses how fa-
miliar transformations can be encoded in this way, such as contextual transpositions,
retrograde, and uniform triadic transformations.

In Table 1 on page 117, Hall describes various subgroups of C n and their semi-direct
product structures.

2. Recollection of the neo-Riemannian PLR-Group

The neo-Riemannian PLR-group is the algebraic point of departure for the present
investigation. The original and authoritative source is David Lewin’s pioneering book
[24]. A recent exposition of the neo-Riemannian PLR-group and its duality with the
T/I-group can be found in [10]. See also Fiore–Satyendra [18] for an extension to
n-tuples satisfying a tritone condition. Hook also treats the duality in [22].

The neo-Riemannian operations P , L, and R are involutions on the set of 24 major
and minor chords. The bijection P assigns the parallel major or minor chord. The
bijection L is the leading tone exchange, which lowers the root of a major chord by
a half step, and raises the fifth of a minor by half step. The bijection R assigns the
relative major or minor chord. For example, we have

P (C-major) = c-minor L(C-major) = e-minor R(C-major) = a-minor.

Musical motivation for these three transformations of consonant triads is the boundary
conditions that input/output chords overlap in two pitches (or pitch classes) while the
third pitch (or pitch class) moves by a minimal amount.

How can major/minor chords and these operations be mathematized so that no
music-theoretical considerations are needed to compute them? We apply the methods
of [18]. Consider the set S of certain 3-tuples with entries in Z12, namely the set S
consists of the 12 major chords in root position

(r, r + 4, r + 7) r ∈ Z12
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and the 12 minor chords in reversed root position

(r + 7, r + 3, r) r ∈ Z12.

The bijections P,L,R : S → S, called parallel, leading tone exchange, and relative are
formulaically defined on the set S by

P (x, y, z) = (z, −y + x+ z, x) (4)

L(x, y, z) = (−x+ y + z, z, y) (5)

R(x, y, z) = (y, x, −z + x+ y). (6)

The subgroup of Sym(S) generated by the involutions P , L, and R is called the neo-
Riemannian PLR-group or simply PLR-group. It acts simply transitively on S, it is
dihedral of order 24, and is generated by L and R without P , in fact P = R(LR)3.

The composite RL has order 12, it adds 7 to each major triad and subtracts 7 from
each minor triad, and preserves mode. As a uniform triadic transformation on abstract
triads, RL would be notated as 〈+, 7,−7〉, see Section 5.2. We also see this uniform
behavior when we consider RL as the restriction of UV in Section 3.1 to S and consider
the formula UV (x, y, z) = (x, y, z) + (z − x) from Theorem 3.3.2 (v). Namely, on a
major triad in S, we have (z−x) = 7 but on a minor triad in S we have (z−x) = −7.
This highlights the importance of using ordered tuples in the algebraic formulation of
P , L, and R.

Similarly, LR has order 12, as it is the inverse of RL. The composites PL and LP
have order 3, while PR and RP have order 4.

The involutions P , L, and R on S are contextual inversions in that they reflect
chords across an axis that is determined by the input chord, rather than across a
preselected axis for all chords. As a consequence, P , L, and R, so also the entire PLR-
group, commute with the transposition and inversion operations Z12 → Z12 acting
componentwise on 3-tuples.

Tn(x) := x+ n In(x) = −x+ n x, n ∈ Z12

These 24 transposition and inversion operations form the so-called T/I-group. The
slash in the name T/I-group does not indicate any kind of quotient. Lewinian duality
is the theorem that the PLR-group and the the T/I-group centralize each other in
Sym(S) and both act simply transitively on S.

The relationship between P , L, R on S and ordinary inversions In is

P (x, y, z) = Ix+z(x, y, z) (7)

L(x, y, z) = Iy+z(x, y, z) (8)

R(x, y, z) = Ix+y(x, y, z). (9)

In the left side of Figure 4 we illustrated formulas (7) and (8) by revisiting the hexatonic
cycle discussed in Section 1.1, but now using the ordered triads in S.

The present paper studies the naive extension of P , L, and R defined on S to linear
functions W , V , and U defined on all of Z×312 . The formulas (4), (5), (6), or equivalently
(7), (8), (9), work equally well to define W,V, U : Z×312 → Z×312 in Section 3.1. We call
W , V , and U naive extensions because they are not proper extensions to contextually
defined inversions. Namely, W (0, 4, 7) = (7, 3, 0) but W (4, 7, 0) = (0, 9, 4), that is W
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I(13)9 (13)L
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(13)P
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(13)L

(13)I9(13)P

(13)I5

(13)L

Figure 4. Left network: A revisitation of the hexatonic cycle (1) with
chords in dualistic root position. The two interpretations (2) and (3) are
labelled and illustrate the relationships (7) and (8). Right network: The
global reflections I1, I5, I11 and the contextual reflections P,L act analo-
gously on different voicings. But in contrast to the dualistic root position
triads, these voicings form a cyclic orbit under the voicing transformation
(13)V , that is, a RICH-cycle in the sense of Section 1.2.

acts on root position C-major as P , but W acts on “closed first inversion” C-major
as R, not exactly consistent behavior from a neo-Riemannian point of view. In antic-
ipation of Section 3, the right side of Figure 4 illustrates the benefit of this point of
view. The composition of the voicing transformation V with the voice permutation
(13) allows the re-interpretation of a flip-flop cycle in terms of a purely cyclic orbit,
and thereby it realizes a proposal by John Clough [6] through a voicing transformation.
With respect to contextual point of view, we proposed in [17] to extend P to all per-
mutations of major and minor chords via local conjugation. For instance, on (1 2 3)S
we define P to be (1 2 3)P (1 2 3)−1. We prefer to call such extensions of P , L, and
R via local conjugation contextual reflections or contextual inversions, and to call W ,
V , and U voicing reflections. The extension of P , L, and R to contextual reflections
via local conjugation is the same as the following. Consider a consonant triad (x, y, z)
in any order. To compute P (x, y, z), we look inside the chord to find the two tones
p and q that span a perfect fifth, and then compute P (x, y, z) := Ip+q(x, y, z). To
compute L(x, y, z), we look inside the chord to find the two tones p and q that span
a minor third, and then compute L(x, y, z) := Ip+q(x, y, z). To compute R(x, y, z), we
look inside the chord to find the two tones p and q that span a major third, and then
compute R(x, y, z) := Ip+q(x, y, z).
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The geometry behind the PLR-group, in the form of the Tonnetz, its dual, and
related structures, has been studied and exposed in many places, for instance Catanzaro
[3], Clough [5], Cohn [8], Douthett–Steinbach [11], Fiore–Crans–Satyendra [10], Gollin
[19], and Waller [30]. Extensions of the commutativity between PLR and T/I have
been studied by Peck [26].

3. The Group J and its Extension Σ3 n J
The review of the PLR-group in Section 2 motivates our definition of the group J

as generated by the voicing reflections U , V , and W .

3.1. Definition of J via Generators U , V and W .

We extend the formulas (4), (5), (6) on major and minor triads to all of Z×312 to define
linear automorphisms U , V , and W , each having the form of switching two coordinates,
and adding their sum to the inverse of the third. In other words, U , V , and W are
voicing reflections, where the axis of reflection is determined by the input 3-tuple.

U(x, y, z) := J1,2(x, y, z) := Ix+y(x, y, z) = (y, x,−z + x+ y)
V (x, y, z) := J2,3(x, y, z) := Iy+z(x, y, z) = (−x+ y + z, z, y)
W (x, y, z) := J3,1(x, y, z) := Iz+x(x, y, z) = (z,−y + x+ z, x)

We identify U , V , and W with their matrix representations as elements of GL(3,Z12).

U =




0 1 0
1 0 0
1 1 −1


 , V =



−1 1 1
0 0 1
0 1 0


 , W =




0 0 1
1 −1 1
1 0 0




Let J be the subgroup of the general linear group GL(3,Z12) that is generated by U ,
V , and W . Notice that the determinant of each of U , V , and W is 1, so that J is
actually a subgroup of the special linear group SL(3,Z12).

3.2. Consonant Orbits of J .

As a first step in understanding the group J , we may consider its action on the
144 arbitrarily ordered consonant triads in Z×312 , find their orbits, and determine the
restriction of J to the individual orbits.

Consider the six T/I-orbits of the six reorderings of the C-major chord (0, 4, 7).
Each of the three generators U , V , W of J preserves these six T/I-orbits because U ,
V , W act locally as P , L, or R (exactly which of U , V , W restricts to P , L, or R
depends on to which of the six T/I-orbits we are restricting). Each generator of J
restricts twice to P , L, and R operations on the six T/I-orbits, as Table 1 indicates.

Thus, the restriction of J to the T/I-orbit of any reordering of (0, 4, 7) is a copy
of the PLR-group and acts simply transitively, so we see that the consonant orbits
of J are precisely the T/I-orbits of the six permutations of (0, 4, 7). However, the
restriction of J to any of its consonant orbits has a nontrivial kernel, for instance
(WV )3 is (PL)3 on the orbit of (0, 4, 7), so the identity there, although (WV )3 is itself
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Restriction of J -Generators to Six T/I-Orbits,
Indicated by C-Major Representatives
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
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

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





7
4
0




U R L P P R L

V L P R L P R

W P R L R L P

Table 1

a nontrivial element of J (for instance, on the orbit of (4, 7, 0) it is (RP )3 which is not
the identity). The kernel of the restriction r : J → Sym(S) has 12 elements, since

|ker r| = |J |
|im r| =

288

24
= 12.

The restriction of J to the six T/I-orbits of the permutations of (0, 4, 7) is a group
homomorphism comp : J → (PLR-group)×6 which on generators is given by the bot-
tom three rows of Table 1.

3.3. The Structure of J .

Convention 3.3.1. In the interest of readability, to indicate the addition of a constant
c ∈ Z12 to each component of (x, y, z) ∈ Z×312 , we write

(x, y, z) + c := (x+ c, y + c, z + c).

Theorem 3.3.2 (Structure of the Group J ). Consider the subgroup J of SL(3,Z12)
generated by U , V , and W as in Section 3.1.

(i) The generators U , V , and W satisfy the following relations.
(a) Each of U , V , and W has order 2.
(b) Both composites UV and UW have order 12.
(c) The composite UVW has order 2.
(d) The composites UV and UW commute.
(e) The U-conjugation of (UV )m and (UW )n is inversion.

U−1(UV )mU = (UV )−m U−1(UW )nU = (UW )−n

(ii) Every element of J can be written uniquely in the form

Uk(UV )m(UW )n (10)

where k = 0, 1 and m,n = 0, 1, . . . , 11.
(iii) The group J has order 288.
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(iv) The group J is the internal semi-direct product 〈U〉n 〈UV, UW 〉, so is isomor-
phic to the semi-direct product Z2n (Z12×Z12) where Z2 acts on Z12×Z12 via
additive inversion.

(v) The elements of J in the normal form of (10) act as follows.

(UV )m(UW )n(x, y, z) =
(
x, y, z

)
+m(z − x) + n(z − y)

U(UV )m(UW )n(x, y, z) = U(x, y, z) +m(z − x) + n(z − y)

(vi) For completeness, we also observe

(VW )j(x, y, z) =
(
x, y, z

)
+ j(x− y)

and VW has order 12.

Proof.

(i) (a) The computations U2 = V 2 = W 2 = Id are straightforward.
(b) To see that UV has order 12, notice that UV (x, y, z) is the addition of

(z − x) to each component,

UV (x, y, z) =
(
x, y, z

)
+ (z − x) (11)

(here we use Convention 3.3.1). Thus, an application of UV to the outcome
of (11) will similarly add the difference of the third and first components
of (11), which is also the addition of z − x,

(
z + (z − x)

)
−
(
(x+ (z − x)

)
= z − x,

so that (UV )2(x, y, z) is the addition of (z − x) twice to each component.
By induction, we have

(UV )m(x, y, z) =
(
x, y, z

)
+m(z − x), (12)

so that (UV )12 = Id. The order of UV is not smaller than 12, for instance
(UV )m(1, 3, 2) is not (1, 3, 2) for m = 1, . . . , 11 by (12), so UV now has
order 12.

To see that UW also has order 12, we similarly observe that UW (x, y, z)
is the addition of (z − y) to each component

UW (x, y, z) =
(
x, y, z

)
+ (z − y), (13)

and
(UW )n(x, y, z) =

(
x, y, z

)
+ n(z − y), (14)

and then argue as for UV .
(c) A straightforward computation shows UVW (x, y, z) = (x,−y+2x,−z+2x)

and (UVW )2 = Id.
(d) From equations (11) and (13) we see that both

(UV )(UW )(x, y, z) and (UW )(UV )(x, y, z)

are the addition of (z − x) + (z − y) to each component of (x, y, z).
(e) Both U and V have order 2, so U−1(UV )U = V U = (UV )−1. Similarly,

U−1(UW )U = WU = (UW )−1.
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(ii) Since U , V , and W each have order 2, any element of 〈U, V,W 〉 is a word in
the letters U , V , and W in which no two consecutive letters are the same.

We first observe that length 1 words, i.e. the generators, can be put into the
form (10). Clearly U can, and we use V = U(UV ) and W = U(UW ) for the
other two generators.

We next describe how to transform a word of length 2 or more into the form
(10) by converting two letters at a time (starting on the far right) into products
of powers of UV and UW . Consider a word in U , V , and W in which no two
consecutive letters are the same and in which there are 2 or more letters. If the
2 far right letters are UV or UW , then we leave them as is. If they are V U or
WU then we replace them by (UV )11 or (UW )11 respectively. If they are VW ,
then we rewrite VW as

VW = (V U)(UW ) = (UV )11(UW ).

Similarly, if they are WV , we rewrite as (UW )11(UV ). Thus, in all of the
possible cases, we have rewritten the two far right letters of the word as a
product of powers of UV and UW .

We similarly treat the third and fourth letters from the right, and so on,
moving pairwise from right to left, until either no letters are left, or only one
letter remains. If the remaining far left letter is U , then we are done. If the
remaining far left letter is V , then we rewrite it as U(UV ). If the remaining
far left letter is W , then we rewrite it as U(UW ).

We have now achieved Uk followed by products of powers of UV and UW .
Finally we use the facts that UV and UW commute and have order 12 to move
the UV ’s left towards Uk and the UW ’s right, and bring the resulting word
into the form (10).

Next is uniqueness of the decomposition (10). We claim 〈UV 〉 ∩ 〈UW 〉 =
{Id}. From equation (12) we know (UV )m(x, y, z) is the addition of m(z − x)
in each component, and from (14) we know (UW )n(x, y, z) is the addition of
n(z−y) in each component. To distinguish (UV )m and (UW )m we evaluate on
(1, 2, 3). To distinguish (UV )m and (UW )n for m 6= n with 0 ≤ m,n ≤ 11, we
evaluate on (1, 1, 2). Hence, 〈UV 〉 ∩ 〈UW 〉 = {Id}, and as a consequence of the
commutativity of UV and UW , we see 〈UV, UW 〉 is an internal direct product
of 〈UV 〉 and 〈UW 〉, and isomorphic to Z12 × Z12.

We also claim U /∈ 〈UV, UW 〉. From the relations we already know, the only
elements of order 2 in 〈UV, UW 〉 are (UV )6, (UW )6, and (UV )6(UW )6. We
can distinguish all these from U on (0, 0, 1) using (12), (14), and the proof of
(i)(d).

U(0, 0, 1) = (0, 0,−1) (UV )6(0, 0, 1) = (6, 6, 7) (UW )6(0, 0, 1) = (6, 6, 7)

(UV )6(UW )6(0, 0, 1) = (0, 0, 1)

For the uniqueness, suppose Uk(UV )m(UW )n = Up(UV )q(UW )r for some
k, p equal to 0 or 1 and some m,n, q, r equal to 0, . . . , or 11. Then Uk−p =
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(UV )q−m(UW )r−n ∈ 〈UV, UW 〉 and

Uk−p = Id = (UV )q−m(UW )r−n,

so that k = p, m = q, and n = r.
(iii) Immediately follows from (ii).
(iv) The 144-element group 〈UV, UW 〉 has index 2 in J , so is normal. From

the unique decomposition (10) we have 〈U〉 ∩ 〈UV, UW 〉 = {Id} and J =
〈U〉〈UV, UW 〉 as sets. Finally, J = 〈U〉n 〈UV, UW 〉 as groups. The conjuga-
tion action of U on 〈UV, UW 〉 is inversion by ((i)(e)).

(v) The first equation follows from (12) and (14). The second equation is an appli-
cation of U to the first equation, using linearity and U(c, c, c) = (c, c, c).

(vi) From the commutativity of UV and UW and (v), we have

(VW )j(x, y, z) = (V UUW )j(x, y, z)

= (UV )−j(UW )j(x, y, z)

=
(
x, y, z

)
− j(z − x) + j(z − y)

=
(
x, y, z

)
+ j(x− z).

�

Corollary 3.3.3. The group J has a presentation of the form

〈a, b, c | a2, b2, c2, (abc)2, (ab)12, (ac)12〉. (15)

Proof. By Theorem 3.3.2 (i)(a), (i)(b), (i)(c), the generators U , V , and W of J satisfy
the relations indicated in (15). Also, J has order 288.

Thus, since any group presented by (15) surjects onto any other group satisfying
the indicated relations (and perhaps more), it suffices to show that any group with
presentation (15) can have at most 288 elements. We do this by showing that the
group (15) also provides generators that satisfy the relations of the 288-element group
Z2n (Z12×Z12) where Z2 acts by additive inversion.7 We suppose (15) and claim that
a, ab, and ac satisfy the relations of Z2 n (Z12 × Z12). We already have a2 = 1, and
(ab)12 = 1 = (ac)12. The commutativity of ab and ac follows from

1 = (abc)(abc) = (ab)(ca)(ba)(ac) = (ab)(ac)−1(ab)−1(ac)

(ab)−1(ac)−1 = (ac)−1(ab)−1

(ac)(ab) = (ab)(ac).

The semi-direct product action relation also follows from the assumption that a, b, and
c have order 2.

a−1(ab)a = ba = (ab)−1

a−1(ac)a = ca = (ac)−1

Thus we have surjective group homomorphisms

Z2 n (Z12 × Z12) // (15) // J
7Recall that a presentation of semi-direct product is given in terms of presentations of the con-

stituent groups and the action, so we know the presentation of Z2 n (Z12 × Z12).
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where the first and last group have order 288. Therefore they must be isomorphisms.
�

Remark 3.3.4 (J � U � 〈PLR, T/I〉). Although both J and U have order 288 and
are semi-direct products of Z2 and Z12 × Z12, they are not isomorphic, since the Z2

action is different. In J , the Z2 action is additive inversion on Z12 × Z12, while in U ,
the Z2 action exchanges the two copies of Z12. The group generated by the union of
the T/I-group and the PLR-group also has order 288, but is isomorphic to neither J
nor U .

Remark 3.3.5 (Matrix Representation of Normal Form). Evaluation of Theorem 3.3.2 (v)
on the standard basis yields the columns of the matrix representations of the elements
of J in the normal form of Theorem 3.3.2 (ii).

(UV )m(UW )n =

(
1−m −n m+ n

−m 1− n m+ n

−m −n 1 +m+ n

)
, U(UV )m(UW )n =

( −m 1− n m+ n

1−m −n m+ n

1−m 1− n −1 +m+ n

)

Remark 3.3.6 (Index of J in GL(3,Z12)). The size of GL(3,Z12) is

|GL(3,Z12)| = |GL(3,Z3)| · |GL(3,Z4)|.
The first factor has order

|GL(3,Z3)| = (33 − 1)(33 − 3)(33 − 32) = 25 · 33 · 13 = 11, 232.

For the second factor, we use Theorem 1 of Hong–You [21] and take p = 2, α = 2,
β = 1, and n = 3 to obtain

|GL(3,Z4)| = pn
2α

(
1− 1

pβ

)
· · ·
(

1− 1

pnβ

)

= 232·2
(

1− 1

2

)(
1− 1

22

)(
1− 1

23

)

= 86, 016.

Consequently, the 288-element group J has index

3, 354, 624 =
11, 232 · 86, 016

288

in GL(3,Z12).

Remark 3.3.7 (Index of J in SL(3,Z12)). In general, the orbits of SL(m,Zn) acting
naturally on the Cartesian product Z×mn were determined by Novotný–Hrivnák in [25],
and the order of SL(m,Zn) was determined by Hong–You in [21], see also [13]. Using
the formula of Hong–You, recalled in equation (2.3) of [25], the order of the present
group SL(3,Z12) is

241, 532, 928 = 128× 3

4
× 7

8
× 8

9
× 26

27
= 128×

(
1− 1

22

)(
1− 1

23

)(
1− 1

32

)(
1− 1

33

)

Here we have taken r = 2 and p1 = 2, p2 = 3, and 12 = 22 × 31 in equation (2.3) of
[25]. Consequently, the 288-element group J has index 838, 656 in SL(3,Z12).
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3.4. The Center of J is a Klein 4-Group.

We can now use Structure Theorem 3.3.2 to determine the center of J .

Proposition 3.4.1. The center of J is the Klein 4-group
{

Id, (UV )6, (UW )6, (UV )6(UW )6
}
.

Proof. Let A ∈ J be in the abelian subgroup 〈UV, UW 〉 ∼= Z12 × Z12. Then A is
in the center of J if and only if A commutes with U (recall the normal form in
Theorem 3.3.2 (ii)). But A commutes with U if and only if

A = U−1AU = A−1,

where the last equality follows from Theorem 3.3.2 (i)(e). Hence A must have order 1
or 2 to be in the center. The only elements of order 1 or 2 in 〈UV, UW 〉 are Id, (UV )6,
(UW )6, and (UV )6(UW )6.

Let A ∈ J be in the abelian subgroup 〈UV, UW 〉 (not necessarily in the center), and
consider UA. We show that UA cannot be in the center by contradiction. Suppose
UA commutes with UV . From Theorem 3.3.2 (i)(e) again we have

UV = (UA)(UV )(UA)−1 = U(A(UV )A−1)U−1 = U(UV )U−1 = U−1(UV )U = (UV )−1.

But UV = (UV )−1 is impossible, as UV has order 12. Hence UA does not commute
with UV , and UA cannot be in the center.

We have now considered all elements of J because of the normal form in Theo-
rem 3.3.2 (ii). �

3.5. The Centralizer of J in GL(3,Z12) is a Product of Klein 4-Groups.

In Proposition 3.4.1 we found the center of J to be a Klein 4-group. Other elements
of GL(3,Z12) that commute with J are of course scalar multiplication with the units
1, 5, 7, 11 of Z12, that is, the four diagonal matrices with a single unit in all diagonal
entries commute with J . These four matrices also form a Klein 4-group, as 5, 7, and
11 all have multiplicative order 2. The center of J and these four matrices generate an
internal direct product of two Klein 4-groups that commutes with J . We claim that
the centralizer of J in GL(3,Z12) consists of precisely these 16 matrices, and no more.

Further, we determine all not-necessarily-invertible matrices in M(3,Z12) that com-
mute with J .

Proposition 3.5.1. The group centralizer of J in GL(3,Z12) consists of the following
16 matrices with u = 1, 5, 7, 11.

diag(u) =




u 0 0
0 u 0
0 0 u


 diag(u) · (UV )6(UW )6 =




u+ 6 6 0
6 u+ 6 0
6 6 u




diag(u) · (UV )6 =




u+ 6 0 6
6 u 6
6 0 u+ 6


 diag(u) · (UW )6 =




u 6 6
0 u+ 6 6
0 6 u+ 6




This abelian group is an internal direct product of the Klein 4-group of the indicated
diagonal matrices and the Klein 4-group of the center of J from Proposition 3.4.1.
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The monoid centralizer of J in the monoid of all matrices M(3,Z12) consists of the
30 matrices with arbitrary u ∈ Z12 given by

diag(u) diag(u) · (UV )6(UW )6

diag(u) · (UV )6 diag(u) · (UW )6.

When u ∈ Z12 is odd, these matrices take the form indicated above for u invertible.
When u ∈ Z12 is even, these four matrices coincide and are all simply diag(u).

Proof. Scalar multiplication and the center of J clearly commute with all of J , so the
indicated 16 elements are in the group centralizer of J , and the indicated 30 elements
are in the monoid centralizer of J .

We first confirm that the indicated group elements have the claimed matrix forms.
From Remark 3.3.5 we directly compute

(UV )6 =




7 0 6
6 1 6
6 0 7


 (16)

and directly compute the matrices (UW )6 and (UV )6(UW )6, and see that (UW )6

and (UV )6(UW )6 are cyclic permutations of (16) (i.e. both rows and columns are
simultaneously cyclically permuted). Considering the effect of multiplying u on entries
of (16), if u is odd, we have

u6 = (2k + 1)6 = 0 + 6 = 6

u7 = u(1 + 6) = u+ 6,

and we obtain the claimed matrix form for diag(u) · (UV )6 for u odd. The claimed
forms for diag(u)(UW )6 and diag(u)(UV )6(UW )6 in the case u odd follows similarly.

If u is even, then

u6 = 0

u7 = u(1 + 6) = u

and diag(u)·(UV )6 = diag(u), again using (16). Similarly, diag(u)(UW )6 and diag(u)(UV )6(UW )6

are just diag(u).
Next we show that no other matrices are in the monoid centralizer. We suppose

A ∈ M(3,Z12) commutes with J , and then compute only part of the commutators
with U , V , W , UV , UW , and VW . Since the commutators are zero, we have a family
of equations which the entries of A must satisfy, and these determine A. To avoid
unnecessary computation, we only compute some of the commutator with U , and then
only single entries of the other commutators that arise from a row/column with a single
±1 in V , W , UV , UW , and VW . We use a ∗ to indicate entries we do not compute.
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Recall the matrix representations in Section 3.1 and Remark 3.3.5.

AU − UA =




a b c
d e f
g h i






0 1 0
1 0 0
1 1 −1


−




0 1 0
1 0 0
1 1 −1






a b c
d e f
g h i


 (17)

=




b+ c− d ∗ −c− f
e+ f − a ∗ ∗

h+ i− (a+ d− g) ∗ ∗


 = 0 (18)

AV − V A =




∗ ∗ ∗
−d− g ∗ ∗
∗ ∗ ∗


 = 0 (19)

AW −WA =



∗ −b− h ∗
∗ ∗ ∗
∗ ∗ ∗


 = 0 (20)

A(UV )− (UV )A =



∗ b− h ∗
∗ ∗ ∗
∗ ∗ ∗


 = 0 (21)

A(UW )− (UW )A =




∗ ∗ ∗
d− g ∗ ∗
∗ ∗ ∗


 = 0 (22)

A(VW )− (VW )A =



∗ ∗ ∗
∗ ∗ f − c
∗ ∗ ∗


 = 0 (23)

A pairwise comparison of the two-variable equations above, namely (18) with (23),
(19) with (22), and (20) with (21), reveals that all the non-diagonal entries of A,
specifically b, c, d, f , g, h, must be 0 or 6, and

c = f d = g b = h. (24)

Consequently, in each column of A the same value occurs in both off-diagonal positions.
The equation b+ c− d = 0 in the upper left of matrix (18) then implies that either:

b, c, and d are all zero, or exactly two of b, c, and d are 6 and the third is 0. We make
this case distinction.

(i) Suppose b, c, and d are all zero.
Then f , g, and h are also zero, as f = c, g = d, and h = b. The bottom two
equations in the left column of matrix (18) now imply a = e = i, so the diagonal
entries of A are equal, the non-diagonal entries are zero, and A = diag(u) for
some u ∈ Z12.

(ii) Suppose exactly two of b, c, and d are 6 and the third is 0.
We go through the three possibilities, and look at the lower two equations in
the far left column of matrix (18).
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(a) Suppose b = c = 6, and d = 0.
Then f = h = 6 and g = 0 by (24). Then

0 = e+ f − a =⇒ e = a+ 6,

0 =
(
h+ i− a− d+ g

)
=
(
6 + i− a− 0 + 0

)
=⇒ i = a+ 6,

and the lower two diagonal entries e and i are equal, while the first diagonal
entry a differs from them by 6.

(b) Suppose c = d = 6 and b = 0.
Then f = g = 6 and h = 0 by (24). Then

0 = e+ f − a =⇒ e = a+ 6,

0 =
(
h+ i− a− d+ g

)
=
(
0 + i− a− 6 + 6

)
=⇒ i = a,

and the corner two diagonal entries a and i are equal, while the middle
diagonal entry e differs from them by 6.

(c) Suppose d = b = 6 and c = 0.
Then g = h = 6 and f = 0 by (24). Then

0 = e+ f − a =⇒ e = a,

0 =
(
h+ i− a− d+ g

)
=
(
6 + i− a− 6 + 6

)
=⇒ i = a+ 6,

and the first two diagonal entries a and e are equal, while the lower corner
diagonal entry i differs from them by 6.

Thus, in all three cases (ii)(a), (ii)(b), (ii)(c), we see that the two diagonal
entries in the columns with 6 coincide, and the third diagonal entry differs from
these two diagonal entries by the residue 6.

By this point, we have shown that any matrix A ∈ M(3,Z12) in the monoid cen-
tralizer has the form of the four matrix families indicated in the statement of the
proposition, so we have determined the monoid centralizer.

Our final task is to determine the invertible elements in the monoid centralizer, i.e.
to prove that such a matrix is invertible if and only if u is a unit. We claim that the
determinant of each matrix is u3. The matrix diag(u) clearly has determinant u3. The
determinant of the other 3 matrix families is

u
(
(u+ 6)2 − 36

)
= u

(
u2 + 12u+ 36− 36

)
= u3.

Thus, in all cases u3 must be a unit in order for the matrix to be invertible. Every unit
in Z12 has multiplicative order 2, so u6 = 1 and u(u5) = 1, so u is a unit for all four
matrix families, and we are finished. �

3.6. The Centralizer of J in Aff(3,Z12).

In [17, Theorem 3.2], we proved that U , V , and W commute8 with the component-
wise application of any affine map Z12 → Z12. Next we can actually determine all
affine endomorphisms of Z×312 that commute with U , V , and W .

8Actually, we proved this commutativity in the context of any Zm rather than Z12.
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Proposition 3.6.1. Let Aff(3,Z12) denote the monoid of affine endomorphisms of Z×312

and let Aff×(3,Z12) denote its group of invertible elements. The monoid centralizer of
J in Aff(3,Z12) consists of those maps x 7→ Ax + (q, q, q) where A is any of the 30
matrices in M(3,Z12) that commute with J as determined in Proposition 3.5.1, and
q ∈ Z12. In particular, the T/I-group commutes with J .

The centralizer of J in Aff×(3,Z12) is isomorphic to the semi-direct product of its
centralizer in GL(3,Z12) with Z12, where we consider Z12 as embedded into Z×312 via the
“diagonal” embedding q 7→ (q, q, q). The centralizer in GL(3,Z12) was determined in
Proposition 3.5.1.

Proof. We use homogeneous coordinates to notate affine maps.
Suppose an affine endomorphism x 7→ Ax+ b commutes with all J ∈ J . Then

(
0 0

0 1

)
=

(
A b

0 1

)
·
(
J 0

0 1

)
−
(
J 0

0 1

)
·
(
A b

0 1

)

=

(
AJ − JA b− Jb

0 1

)

and AJ − JA = 0 for all J ∈ J , so A is in the monoid centralizer of J . We also
have b− Jb = 0 for all J ∈ J , in particular b is fixed by the generators U , V , and W .
Already for U and V , we see from

U




b1
b2
b3


 =




b2
b1

b1 + b2 − b3


 and V




b1
b2
b3


 =



−b1 + b2 + b3

b3
b2




that b1 = b2 = b3.
Thus, if x 7→ Ax + b commutes with all J ∈ J , then A is in the monoid centralizer

of J and the translation vector b has the same entry in all three components. The
converse is clearly also true.

Since Aff×(3,Z12) = GL(3,Z12)o Z×312 , the structure claim follows. �

3.7. Recollection on Permutation Matrices.

We denote by Σ3 the permutation group on the set {1, 2, 3}, and we follow the
standard function orthography in which the rightmost function is done first. The
notation (123) is cycle notation for the permutation 1 7→ 2 7→ 3 7→ 1. For any set X,
the left action of Σ3 on the Cartesian product X3 is

σ(x1, x2, x3) = (xσ−11, xσ−12, xσ−13).

When X = Z12, this left action of Σ3 on Z12 × Z12 × Z12 arises from the left action of
Σ3 on the standard column vector basis {e1, e2, e3} via

σei = eσi.

In this way, the 3× 3 matrix Pσ corresponding to σ has columns eσ1 eσ2 eσ3. See for
instance [12, Section 5.1, Exercises 7,8,9].
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For example, for σ = (1 2 3), we have σ(x1, x2, x3) = (x3, x1, x2) and



0 0 1
1 0 0
0 1 0






x1
x2
x3


 =




x3
x1
x2


 .

For readability, we always just write σ for Pσ when the context is clear. No confusion
between cycles (1 2 3) and vectors (1, 2, 3) can arise, because cycles have no commas,
while vectors have commas.

Permutations were incorporated into neo-Riemannian duality in [16].

3.8. The Group 〈Σ3,J 〉 is Σ3 n J .

Conjugation by elements of σ3 permutes the generators U , V , and W .

Proposition 3.8.1. Recall the standard left action on 3-tuples from Section 3.7, and
recall the notation J1,2, J2,3, and J3,1 for U , V , and W in Section 3.1.
For σ ∈ Σ3 we have the following compatibilities.

(i) σJr,s = Jσr,σsσ
(ii) σJr,sσ−1 = Jσr,σs

(iii) Jr,sσ = σJσ
−1r,σ−1s.

Proof. For (i), let i, j ∈ {1, 2, 3} be such that r = σ−1i and s = σ−1j. We follow
Convention 3.3.1, and have indicated where the definition of the J-operators from
Section 3.1 are used.

σJr,s(x1, x2, x3)
def
= σIxr+xs(x1, x2, x3)

= σ
(
−
(
x1, x2, x3

)
+ (xr + xs)

)

= −
(
xσ−11, xσ−12, xσ−13

)
+ (xr + xs)

= −
(
xσ−11, xσ−12, xσ−13

)
+ (xσ−1i + xσ−1j)

= Ixσ−1i+xσ−1j
(xσ−11, xσ−12, xσ−13)

def
= J i,j(xσ−11, xσ−12, xσ−13)

= Jσr,σjσ(x1, x2, x3)

Claim (ii) follows directly from (i) by right multiplication with σ−1, while (iii) follows
from (i) by replacing σ by σ−1 and multiplying. �

Proposition 3.8.2. The subgroup 〈Σ3,J 〉 of GL(3,Z12) generated by the permutation
matrices and the group J is the semi-direct product Σ3 n J .

Proof. Recall that U , V , and W are involutions, so every element of J = 〈U, V,W 〉
can be written as a concatenation of U , V , and W .

The group J is normal in 〈Σ3,J 〉 because if we have such a concatenation j1j2 · · · jn,
and σ ∈ Σ3, then

σj1j2 · · · jnσ−1 =
(
σj1σ

−1) (σj2σ−1
)
· · ·
(
σjnσ

−1) ∈ J



26 FIORE AND NOLL

by Proposition 3.8.1 (ii).
We have 〈Σ3,J 〉 = Σ3J because if we have any concatenation of U , V , W and

elements of Σ3, we can move all the permutation matrices to the left via Proposi-
tion 3.8.1 (iii), and obtain a concatenation of U , V , W on the right, in total an element
of Σ3J .

Finally, we also have Σ3 ∩ J = {Id} because we know that the restriction of J to
its six orbits is the PLR-group (in various correspondences), and no element of the
PLR-group acts as a permutation of vector entries. �

Proposition 3.8.3. The centralizer of J in GL(3,Z12) is stable under conjugation by
permutations as a set. If C commutes with U , V , and W , then so does σCσ−1 for all
σ ∈ Σ3.

Proof. Suppose C commutes with U , V , and W , and let σ ∈ Σ3. Then

Jr,sC = CJr,s

σ(Jr,sC)σ−1 = σ(CJr,s)σ−1

Jσr,σs(σCσ−1) = (σCσ−1)Jσr,σs

where we use Proposition 3.8.1 (i) and (iii) in the last step. �

3.9. Subgroups of Σ3 n J and their Triadic Orbits.

We now consider subgroups of Σ3nJ and their relevant triadic orbits. These orbits
will be of use in Section 5.4 when we study the Hook group H and its properties. The
present section also elucidates J and Σ3 n J as triadic transformation groups.

The Structure Theorem 3.3.2 provides a good understanding of J . The group J
contains an index 2 commutative subgroup

J + :=
{

(UV )m(UW )n | m,n = 0, 1, . . . , 11
}

of operations that preserve mode, that is, which map major triads to major triads, and
minor triads to minor triads, no matter the voicing (recall from Theorem 3.3.2 (v) that
(UV )m(UW )n adds a constant in each component). The other coset

J − := UJ + = {U(UV )m(UW )n | m,n = 0, 1, . . . , 11}
consists of operations that reverse mode, that is, send major triads to minor triads,
and minor triads to major triads, no matter the voicing.

Clearly, permutations also preserve the modes of consonant triads. So we extend the
foregoing discussion to include permutations as well. The group of mode-preserving
operations in Σ3 n J is

Σ3 n J + := Σ3J + =
{
σ(UV )m(UW )n | σ ∈ Σ3, m, n = 0, 1, . . . , 11

}
,

and the coset of mode-reversing operations in Σ3 n J is

Σ3J − =
{
σU(UV )m(UW )n | σ ∈ Σ3, m, n = 0, 1, . . . , 11

}
.

In summary we have

J = J +
⊔
J − and Σ3J = Σ3J +

⊔
Σ3J −.
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We define H to be the subgroup of Σ3 n J that maps root position triads to root
position triads, and we callH the Hook group. We will study its structure in Section 5.4
and see that it is exactly the image of the representation ρ from Section 5.3. For the
moment, we introduce the following collections of triads, and observe that they are
orbits of the C-major or C-minor triad under appropriate groups.

Triads := set of all 144 consonant triads in any of the 6 voicings

=








0
4
7


 ,




4
7
0


 ,




7
0
4


 ,




0
7
4


 ,




4
0
7


 ,




7
4
0


 ,




0
3
7


 ,




3
7
0


 ,




7
0
3


 ,




0
7
3


 ,




3
0
7


 ,




7
3
0


 , et cetera





= orbit of (0, 4, 7) under action of Σ3 n J

MajTriads := set of all 72 major triads in any of the 6 voicings

=








0
4
7


 ,




4
7
0


 ,




7
0
4


 ,




0
7
4


 ,




4
0
7


 ,




7
4
0


 , et cetera





= orbit of (0, 4, 7) under action of Σ3 n J +

MinTriads := set of all 72 minor triads in any of the 6 voicings

=








0
3
7


 ,




3
7
0


 ,




7
0
3


 ,




0
7
3


 ,




3
0
7


 ,




7
3
0


 , et cetera





= orbit of (0, 3, 7) under action of Σ3 n J +

RootPosTriads := set of all 24 consonant triads in root position

=








0
4
7


 ,




1
5
8


 ,




2
6
9


 , . . . ,




0
3
7


 ,




1
4
8


 ,




2
5
9


 , . . .





= orbit of (0, 4, 7) under action of H

DualRootPosTriads := set of all 24 consonant triads in dualistic root position

=








0
4
7


 ,




1
5
8


 ,




2
6
9


 , . . . ,




7
3
0


 ,




8
4
1


 ,




9
5
2


 , . . .





= orbit of (0, 4, 7) under action of J
The penultimate claim that RootPosTriads is the H-orbit of (0, 4, 7) follows from

equations (29) and (31) and the that fact that H is the image of ρ in Section 5.5.
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3.10. Computer Observations about Σ3 n J .

trace
(

(UV )m(UW )n
)

= 3 trace
(
U(UV )m(UW )n

)
= −1

For any cyclic permutation (a b c) ∈ Σ3, we have

trace
(

(a b c)(UV )m(UW )n
)

= 0 trace
(

(a b c)U(UV )m(UW )n
)

= 2

For any transposition (a b) ∈ Σ3, we have

trace
(

(a b)(UV )m(UW )n
)

= 1 trace
(

(a b)U(UV )m(UW )n
)

= 1

The conjugation class of U in J consists of 36 elements, while the conjugation class
of U in Σ3 n J has 108 elements.

4. Musical Examples and Music-Theoretical Consequences

4.1. Hexatonic Grail Motive as a Cycle.

The Grail motive in Wagner’s Parsifal, Act 3, measures 1098 – 1100 is harmonized
by the consonant triads E[, b, G, e[ which eventually lead via A[ to D[. Following
David Clampitt’s [4] hexatonic reading of the first four chords we extrapolate from the
upper three voices a full hexatonic cycle leading back to E[ as shown in the upper part
of Figure 5.

The lower part of this figure provides a transformational network for these six voic-
ings with two readings. The outer labels (12)PLP and (12)L denote two contextual
transformations which form a hexatonic flip-flop-cycle. The inner label ρ stands for
four elements of Σ3nJ , each of which yields a cyclic orbit along these six voicings. To
find the linear transformations with this cyclic orbit, we recall Theorem 3.3.2 (v) and
use the first three sequence elements to produce a system of 2 equations in 2 unkowns.

U(3, 7, 10)+m(10−3)+n(10−7) = (6, 2, 11) U(2, 6, 11)+m(11−2)+n(11−6) = (11, 7, 2)

Notice that the output chords are in the T/I-class of the input, but need to be
reordered by permutation (12) to match the sequence. The two equations reduce to

4m = 8 and n = 1 + 3m, so solutions are
m 2 5 8 11

n 7 4 1 10
, and the elements of

Σ3 n J with orbit the Grail sequence are

(12)U(UV )2(UW )7 =




11 5 9

10 6 9

11 6 8


 , (12)U(UV )5(UW )4 =




8 8 9

7 9 9

8 9 8


 ,

(12)U(UV )8(UW )1 =




5 11 9

4 0 9

5 0 8


 , (12)U(UV )11(UW )10 =




2 2 9

1 3 9

2 3 8


 .
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Figure 5. The two musical staves show the extrapolation of a hexatonic
cycle of alternating root position major triads and first inversion minor
traids from the first four chords in the harmonization of Grail motive
in Wagner’s Parsifal, Act 3, measures 1098–1100. The top staff depicts
David Clampitt’s [4] reduction of these measures. The staff below depicts
our hexatonic extrapolation. The hexagonal network provides a trans-
formational analysis of this extrapolation. The outer labels (12)PLP
and (12)L denote two contextual transformations between the chosen
voicings (i.e. root position major triads and first inversion minor triads).
The inner label ρ stands for any of the four elements of Σ3nJ that pro-
vide a cyclic orbit along these six voicings. The normal forms of these
group elements are depicted in the center of the network.

4.2. Recalcitrant Viola in Schoenberg, String Quartet in D minor, op. 7.
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We revisit an analysis of a triadic sequence in Schoenberg, String Quartet in D mi-
nor, op. 7 by Fiore–Noll–Satyendra [17]. Our group J affords us a more economical
description, allowing us to replace both (13)P and (13)R by (13)V . We also comple-
ment the work of [17] to include two final 3-pitch-class sequences in the viola using
(13)L, which we promptly also replace by (13)V . We use the term segment to refer to
3-note sequences such as (1, 6, 10), et cetera.

The first 9 consonant triadic segments of Figure 6a form a complete enchained oc-
tatonic PR-cycle (the transformations P and R are defined via local conjugation of
standard dualistic P and R by permutations, see Section 2). The G[-segment in order-
ing (1, 6, 10) in the ninth position does not actually occur in the score, as we indicate
with a dotted line and question mark. Instead, the G[-segment appears in ordering
(10, 1, 6) as the final viola notes. The penultimate segment b[ in voicing (5, 10, 1), after
the PR-cycle, does not belong to the octatonic PR-cycle, but instead stands in an
L-relationship to the final G[-segment, which in turn stands in a P -relationship to the
preceding f].

In Figure 6b we map the triadic segments as an enchained octatonic PR-cycle and an
implied enchained hexatonic PL-cycle. The final G[ pitch-class set {6, 10, 1}, common
to both cycles, is at the bottom of both cycles in its two relevant voicings. In Figure 6b,
all the arrows have two labels: (13)V and one of (13)P , (13)L, (13)R. The two labels
illustrate how the single transformation (13)V offers a more economical description
than the other three together. The transformation (13)V is equal to RICH, retrograde
inversion enchaining. All consonant cycles for RICH were determined in Table 1 on
page 113 of [16]. See Straus [28] for some analyses involving RICH, one of which we
revisited in the motivational Problembeispiel in Section 1.2.

4.3. Affine Morphisms of Generalized Interval Systems.

Our determination of the centralizer of J in the monoid Aff(3,Z12) in Proposi-
tion 3.6.1 is relevant for constructing morphisms of generalized interval systems, as we
very briefly indicate with a few examples.

Consider again the first 9 consonant triads indicated in Figure 6a and in the outer
ring of Figure 6b. The image of these interlocking consonant triads under the affine
endomorphism x 7→ 7x+7 of Z12 sends interlocking major/minor triads to interlocking
“jet/shark” trichords, as in Figure 15 of the paper of Fiore–Noll–Satyendra [17]. The
outer ring of Figure 6b is mapped to its (2, 1, 5)-analogue via the affine map x 7→
7x+ 7 in such a way that each of the relevant squares commutes, see Figure 15 of [17].
The present paper contributes the observation that both the consonant (1, 6, 10)-cycle
and the non-consonant (2, 1, 5)-cycle are labelled by the single transformation (13)V
and this transformation commutes with x 7→ 7x + 7 by Proposition 3.6.1. Moreover,
thanks to our decomposition of the uniform triadic transformations representation H
in Proposition 5.4.1 (iii), we know that the instantiation (13)V of RICH is an element
of H, for all 3-tuples. Notice that not only do we have an economy of description in the
sense of only a single transformation (13)V for both the consonant (1, 6, 10)-cycle and
the non-consonant (2, 1, 5)-cycle, but we also have the exact enchaining of consecutive
chords, all in the representation H.
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(a) Schoenberg, String Quartet in D minor, op. 7, measures 88–93. See Figure 6b for a
mapping of these measures in actual and implied cycles.
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
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

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1
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

(13)V

(13)P

(13)V (13)L

(13)V
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(13)V

(13)L

(b) Cyclic networks extrapolating connections between triadic segments in Schoenberg, String
Quartet in D minor, op. 7, measures 88–93. The outer cycle is the octatonic PR-cycle of the
first 9 triadic segments of Figure 6a, while the inner cycle is the hexatonic PL-cycle implied
by the final viola L-relationship b[64 7→ G[6 and the P -relationship between the final G[ and
the earlier f] in the 2nd violin. All implied edges are indicated by dotted arrows.

Figure 6
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The musical interest in the image of the consonant (1, 6, 10)-cycle under the affine
transformation x 7→ 7x+ 7 is that the image provides pitch-class segment material for
other passages in the piece, including the opening theme in measures 1 and 2. See
Figure 3 of [17] for measure numbers of other passages with fragments of the affine
image.

Proposition 3.6.1 applies not only to invertible affine transformations like x 7→ 7x+7
in the preceding paragraphs, but also to non-invertible affine transformations such as
x 7→ 10x in Figure 15 of [17]. Thus, Proposition 3.6.1 provides the mathematical
justification for such instances of morphisms of simply transitive groups actions and
morphisms of their associated generalized interval systems. See Section 2 of [17] for a
development of such morphisms. Another example of a morphism is x− 2 in Figure 3
of the Webern Problembeispiel.

Section 4.5 is dedicated to an example where these ideas are applied to the space Z×37

of generic scale degree triples rather than the space Z×312 of specific pitch class triples.
Section 4.4 introduces this switch from specific to generic coordinates on the basis of
yet another musically interesting example.

4.4. Diatonic Falling Fifth Sequence as a Cycle.

The Structure Theorem 3.3.2 and this entire paper are formulated for Z12 because of
the main application to the twelve tone system. However, we did not use any specifics
about 12, so analogous results also hold Zn. Particularly interesting is n = 7 because
Z7 models the diatonic pitch collection. We encode the underlying set of the C-major
scale as C ↔ 0, D ↔ 1, E ↔ 2, . . . , and finally B ↔ 6. The diatonic falling fifth
sequence is then encoded as in Figure 7. To find a linear transformation with this
orbit, we recall Theorem 3.3.2 (v) and use the first three sequence elements to produce
a system of 2 equations in 2 unkowns.

U(0, 2, 4)+m(4−0)+n(4−2) = (0, 5, 3) U(5, 0, 3)+m(3−5)+n(3−0) = (1, 6, 3)

Notice that the output chords are in the T/I-class of the input, but need to be reordered
by permutation (12) to match the sequence. The solution is m = 3 and n = 0, so the
linear transformation in Σ3 n J (Z7) with orbit the diatonic falling fifth sequence is

(12)U(UV )3 =




5 0 3
4 1 3
5 1 2


 .

4.5. A Transformational Idea of Joseph Schillinger Revisited.

The composer and teacher Joseph Schillinger (1895–1943) is one of the early pioneers
of transformational thinking in musical composition. He utilized affine transformations
in pitch and rhythm. And in particular he proposed the expansion and contraction
of musical pitch, both in the specific pitch class domain Z12 as well as in the generic
scale degree domain Z7. In Book 2: Theory of Pitch Scales (p. 138) of the posthu-
mously published Schillinger System of Musical Composition [27] there is a discussion
of melodies, which – from a transformational perspective – can be viewed as results
of a first expansion, i.e. an augmentation by factor 2 mod 7. Schillinger argues that
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Figure 7. The diatonic falling fifth sequence and its encoding as vectors
with entries in Z7. The encoding of the C-major scale collection is C ↔ 0,
D ↔ 1, E ↔ 2, . . . , and finally B ↔ 6. The diatonic falling fifth
sequence is a cycle of the sole transformation (12)U(UV )3 in Σ3nJ (Z7).

the (re-)contraction of the melody may provide new material while it preserves the-
matic continuity at the same time. He recommends to utilize the transformed thematic
motives in the introduction or in interludes.

As an aside he mentions that the processes of expanding and contracting music often
leads to startling discoveries and illustrates this statement with a comparison of Vincent
Youmann’s Without a Song and Nicolai Rimsky-Korsakov’s Hymn to the Sun (from
Act II of his opera Coq d’Or). A slight elaboration of this observation is presented in
Figure 8.

Both melodies possess a model-sequence structure. In the Hymn to the Sun the se-
quence repeats the model one scale degree lower. It deviates in a single note (indicated
by a star) from the model. In Without a Song the sequence repeats the model two
scale degrees lower. In order to illustrate the match of both melodies up to augmenta-
tion/contraction we have encoded their scale degrees in such a way that the last note
of the model corresponds to the scale degree 0 mod 7 in both cases, i.e. C] for Hymn
to the Sun and E[ for Without a Song. In the spirit of the present article we added a
transformational analysis of the 10-note melodic models themselves. These melodies
have been covered by all consecutive 3-note segments, which we regard as elements
of Z×37 . Both melodies exemplify the same transformational structure: except for the
permutation (13) between segments 2 and 3 there is the RICH-transformation which
connects all other consecutive pairs of segments:

(13)V =




0 1 0
0 0 1
−1 1 1


 .

Note, that in contrast to Section 4.2 the RICH transform (13)V in the present example
acts on triples of scale degrees rather than triples of pitch classes.
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4.6. Recovering PLR-T/I-Duality and a Special Case of Duality Theorem of
Fiore–Satyendra.

The centralizer results of Sections 3.5 and 3.6 and the normal form action in The-
orem 3.3.2 (v) allow us to recover the classical PLR-T/I-duality recalled in Section 2
and duality for trichords containing a generator for Z12 (a special case of an earlier
result of Fiore–Satyendra [18]).

Theorem 4.6.1. Suppose (x, y, z) ∈ Z×312 is such that z−x is a generator of Z12. Then
the restrictions of 〈U, UV 〉 and T/I to the T/I-orbit of (x, y, z) are a Lewin dual pair
of groups. That is, they each act simply transitively on the orbit and are centralizers
of each other in the respective symmetric group.

If instead of z−x, the difference z−y is a generator, then we have a similar statement
for 〈U,UW 〉 in place of 〈U, UV 〉.

Proof. Since z − x is a generator of Z12, the T/I-orbit has 24 elements and simple
transitivity of the 24-element T/I-group follows from the Orbit-Stabilizer Theorem.
From Structure Theorem 3.3.2 (v) we see that 〈U, UV 〉 also acts transitively on the
T/I-orbit and has order 24, so 〈U, UV 〉 also acts simply transitively. By Proposi-
tions 3.5.1 and 3.6.1, 〈U, UV 〉 and T/I commute. By Proposition 3.8 of [2], simple
transitivity on a finite set and commutativity together imply that the groups centralize
one another. �

Example 4.6.2.

(i) If we take (x, y, z) = (0, 4, 7) in Theorem 4.6.1, then the restriction of 〈U, UV 〉
is the PLR-group as recalled in Section 2 and Theorem 4.6.1 recovers the fa-
miliar PLR-T/I-Duality. The transformation (UV )m is the Schritt Q7m and
the transformation U(UV )m is a Wechsel.

(ii) If we take (x, y, z) = (0, 4, 1), then we obtain the jet-shark dual pair, and the
Sub Dual Group Theorem of Fiore–Noll [15] applies to construct the jet-shark
sub dual pair in the analysis of Schoenberg, String Quartet in D minor, op. 7,
in [17].

(iii) The hypothesis that z − x is a generator in Theorem 4.6.1 is necessary. A
counterexample is presented by (x, y, z) = (0, 4, 10), which also plays a role
in the Schoenberg analysis of [17]. In the case of (x, y, z) = (0, 4, 10), the
restriction of 〈U, UV 〉 to the T/I-orbit of (0, 4, 10) does not have 24 elements,
namely the restrictions of UV and UV 7 are the same. We have

UV (0, 4, 10) = (0, 4, 10) + 10 = (0, 4, 10) + 7 · 10 = UV 7(0, 4, 10)

UV (4, 0, 6) = (4, 0, 6) + 2 = (4, 0, 6) + 7 · 2 = UV 7(4, 0, 6)

and similarly on the translates. Notice also that the restriction of 〈U, UV 〉
cannot possibly act transitively, as it preserves odd and even.

(iv) Theorem 4.6.1 is a special case of Theorem 7.1 of Fiore–Satyendra [18], which
treats n-tuples in Zm that satisfy a “tritone condition.”
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5. A Linear Representation of Uniform Triadic Transformations

In this section we construct a linear representation ρ : U → GL(3,Z12) of Julian
Hook’s group U of uniform triadic transformations, characterize the image as the sub-
group H of Σ3 n J which fixes the set of triads in (non-dualistic) root position, and
determine the structure of H, along with two normal forms of its elements. Hook’s the-
ory of uniform triadic transformations [22] is an important chapter of well-established
transformational music theory.

The representation ρ sends transformations of abstract triads to linear transforma-
tions of root position triadic voicings. In Section 5.1, we clarify the difference between
non-dualistic root position and dualistic root position, while in Section 5.2 we recall
how Hook treats the consonant triads as abstract entities, parametrized by their roots
and their mode. Importantly, we also recall how he studies certain rigid transfor-
mations of abstract consonant triads called uniform triadic transformations, which
together form his group denoted U . The representation ρ : U → GL(3,Z12) is defined
in Section 5.3: the consonant triads are represented in terms of their root position
voicings (x, y, z) ∈ Z×312 and the uniform triadic transformations are realized as lin-
ear transformations that act on (non-dualistic) root position voicings exactly as they
would on abstract consonant triads. Properties of the representation ρ are investigated
in Sections 5.4 and 5.5. As a final result we will prove in Section 5.5 that ρ(U) = H
is the wreath product Σ2 * Z12 and we will select new generators for H that make ρ
apparent.

Most of the time, we will investigate the structure of H as a subgroup of Σ3 n J ,
instead of via U and the homomorphism ρ. Working with an internal perspective of
the group Σ3 n J provides us with more flexibility in the conceptualization of these
transformations, and provides proofs independent of knowledge of U . Namely, all the
results rely on Structure Theorem 3.3.2 about J .

5.1. Root Position and Dualistic Root Position.

Some explanation of the difference between non-dualistic root position and dualistic
root position is in order. We use the unmodified term root position to mean non-
dualistic root position (hence the optional modifier “non-dualistic” in parentheses in
the foregoing paragraphs). The triple (0, 4, 7) ∈ Z×312 represents the root position C-
major triad, which on the musical staff has tone C in the lowest position, then the very
next E tone above that, and the very next G tone above that. The vector (0, 3, 7) ∈ Z×312

represents the root position c-minor triad, which on the musical staff has tone C in the
lowest position, then the very next E[ tone above that, and the very next G tone above

that. Unfortunately, when written as column vectors




0
4
7


 and




0
3
7


, these root

position triad representations appear in the opposite orientation of actual root position
chords on the musical staff. Nevertheless, we prefer to use this encoding, despite
its opposite orientation, because it is compatible with the mathematical transpose of
vectors and because we find it more natural to have the root listed as the first note
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we read. Root position major triads are of the form (r, r + 4, r + 7) and root position
minor triads are of the form (r, r + 3, r + 7).

Dualistic root position, on the other hand, reverses in the minor triads only the
positions of the root and fifth in its notation. For instance, the triple (0, 4, 7) ∈ Z×312

represents both the dualistic root position C-major triad and the root position C-major
triad, while the vector (7, 3, 0) ∈ Z×312 represents the dualistic root position c-minor
triad. The encoding (7, 3, 0) means that we read the root position c-minor on the
staff from top note to bottom note, in other words, (7, 3, 0) signifies literally the same
musical chord as the root position encoding (0, 3, 7): on the musical staff it has tone
C in the lowest position, then the very next E[ tone above that, and the very next
G tone above that. It does not mean a reordering of the actual tones when we say
dualistic root position (the reordered notation could also signify reordered tones, as we
do elsewhere in the article without the term dualistic root position). Dualistic root
position major triads are of the form (r, r + 4, r + 7) and dualistic root position minor
triads are of the form (r + 7, r + 3, r).

The J orbit of (0, 4, 7) is the set of all 24 dualistic root position triads, denoted
by DualRootPosTriads. It is easy to see that the group J is the set stabilizer of
DualRootPosTriads within the group Σ3 n J . In Sections 5.4 and 5.5 we investigate
the analogous situation for the root position triads: H is by definition the set-wise
stabilizer in Σ3nJ of the root position triads, and the H orbit of (0, 4, 7) is the set of
all 24 root position triads.

5.2. Uniform Triadic Transformations of Abstract Triads.

We now revisit some anchor points from [22] and stay close to the notations intro-
duced there. Hook encodes a consonant triad abstractly as a pair (r, µ) consisting of
its (non-dualistic) root pitch class r ∈ Z12 and a parity µ ∈ {+,−} to indicate major
or minor. For instance,

C = (0,+), C] = (1,+), . . . , B = (11,+),
c = (0,−), c] = (1,−), . . . , b = (11,−).

Hook denotes the set of these abstractly represented consonant triads as

Γ := Z12 × {+,−}.
A uniform triadic transformation is a function 〈s,m, n〉 : Γ→ Γ which translates the

roots of input major chords by m, translates the roots of input minor chords by n, and
preserves (respectively reverses) the input parity when the sign s is + (respectively −).
Formally, we have:

〈+,m, n〉(r,+) = (r +m,+) 〈+,m, n〉(r,−) = (r + n,−)

〈−,m, n〉(r,+) = (r +m,−) 〈−,m, n〉(r,−) = (r + n,+).

Hook denotes by U the group of uniform triadic transformations.

U := {〈s,m, n〉 | s ∈ {+,−} and m,n ∈ Z12} (25)
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The group operation is function composition and satisfies the following formulas.9

〈+, p, q〉 ◦ 〈+,m, n〉 = 〈+,m+ p, n+ q〉 〈+, p, q〉 ◦ 〈−,m, n〉 = 〈−,m+ q, n+ p〉

〈−, p, q〉 ◦ 〈+,m, n〉 = 〈−,m+ p, n+ q〉 〈−, p, q〉 ◦ 〈−,m, n〉 = 〈+,m+ q, n+ p〉
From these formulas we see that 〈+, 1, 0〉 and 〈+, 0, 1〉 generate two commuting copies
of Z12, and 〈−, 0, 0〉 generates a (multiplicative) copy of Z2, and that conjugation

〈−, 0, 0〉−1 ◦ 〈+, p, q〉 ◦ 〈−, 0, 0〉 = 〈+, q, p〉
interchanges the two copies of Z12. Hence, U is isomorphic to the semi-direct product
Z2 n (Z12 × Z12) where Z2 permutes the two copies of Z12. In other words, U is
isomorphic to the wreath product Z12 *Z2. From these isomorphisms, or even directly
from equation (25), we see that the total number of uniform triadic transformations is
|U| = 288 = 2 · 12 · 12.

5.3. A Representation of Uniform Triadic Transformations.

We next derive a representation ρ : U → GL(3,Z12) which acts on major and minor
triads in root position exactly as U does on abstract triads. First notice that the root
position triads C-major, c-minor, and C]-major




0
4
7







0
3
7







1
5
8


 (26)

are clearly linearly independent over Z12. They also generate Z×312 , since the standard
basis can be expressed as linear combinations of them.




1
0
0


 = 7




0
4
7


+ 9




0
3
7


+




1
5
8







0
1
0


 =




0
4
7


−




0
3
7







0
0
1


 = 3




0
4
7


+ 4




0
3
7




(27)

Since (26) is a basis, any linear transformation is uniquely determined by its action on
these vectors.

In particular, ρ〈+,m, n〉 is uniquely determined by the requirement that it adds
m to the C-major chord, adds n to the c-minor chord, and adds m to the C]-major

9We are using the usual order of function composition in this article, namely g ◦ f means to do f
first. In [22], Hook uses the opposite convention, so our equivalent formulas are slightly different.
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chord. Evaluation of ρ〈+,m, n〉 on the standard basis via the formulas (27) computes
the columns as follows.

ρ 〈+,m, n〉 =




1− 4m− 3n m− n 3m+ 4n
−4m− 3n 1 +m− n 3m+ 4n
−4m− 3n m− n 1 + 3m+ 4n


 (28)

Fortunately, ρ 〈+,m, n〉 behaves as expected on the other root position triads, as we
verify with direct computation.

ρ 〈+,m, n〉·




r

r + 4

r + 7


 =




r +m

r + 4 +m

r + 7 +m


 , ρ 〈+,m, n〉·




r

r + 3

r + 7


 =




r + n

r + 3 + n

r + 7 + n


 (29)

For the mode-reversing transformations, ρ〈−,m, n〉 is uniquely determined by the
requirement that it adds m to the C-major chord, adds n to the c-minor chord, and
adds m to the C]-major chord, and then reverses the mode for all three. Evaluation
of ρ〈−,m, n〉 on the standard basis via the formulas (27) computes the columns as
follows.

ρ 〈−,m, n〉 =




1− 3m− 4n −m+ n 4m+ 3n
1− 3m− 4n −1−m+ n 1 + 4m+ 3n
−3m− 4n −m+ n 1 + 4m+ 3n


 (30)

Fortunately, ρ 〈−,m, n〉 behaves as expected on the other root position triads, as we
verify with direct computation.

ρ 〈−,m, n〉·




r

r + 4

r + 7


 =




r +m

r + 3 +m

r + 7 +m


 , ρ 〈−,m, n〉·




r

r + 3

r + 7


 =




r + n

r + 4 + n

n+ r + 7


 (31)

The representation ρ : U → GL(3,Z12) is defined by the formulas (28) and (30).
The map ρ is an injection because the image elements are all different on the basis
(26), as we see from (29) and (31) without any more computation. The map ρ is a
homomorphism because ρ acts on major and minor triads in root position exactly as U
does on abstract triads, and because the set of major and minor triads in root position
contains the basis (26) (forming matrix representations with respect to selected bases
is a group homomorphism).

5.4. The Hook Group and its Structure.

The Hook group H is the subgroup of Σ3 n J that maps root position triads to
root position triads. It is analogous to J in that J is the subgroup of Σ3 n J that
maps dualistic root position triads to dualistic root position triads. In other words,
H is the set-wise stabilizer in Σ3 n J of RootPosTriads, while J is the set-wise
stabilizer in Σ3 n J of DualRootPosTriads, recall the notation and discussion from
Section 3.9. For the major triads, root position and dualistic root position are the same.
However, for the minor triads, root position and dualistic root position are related via
the permutation (1 3). From this relationship, we anticipate H = J +

⊔
(1 3)J −,

similar to J = J +
⊔ J −.

Proposition 5.4.1 (Decomposition of H and its Normal Form).
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(i) The subgroup of mode-preserving operations in H, denoted H+ := H ∩ Σ3J +,
is equal to J +.

(ii) The subgroup of mode-reversing operations in H, denoted H− := H∩Σ3J −, is
equal to (1 3)J −.

(iii) The group H has 288 elements and consists of the 144 mode-preserving trans-
formations (UV )m(UW )n and the 144 mode-reversing transformations
(1 3)U(UV )m(UW )n.

H = J +
⊔

(1 3)J −

Proof. Recall from Theorem 3.3.2 (v) that (UV )m(UW )n adds a constant to an input,
so that (UV )m(UW )n preserves both triad mode and any triad position. The nontrivial
permutations in Σ3, on the other hand, preserve triad mode but nontrivially change
triad position.

(i) From the foregoing, an arbitrary element σ(UV )m(UW )n ∈ Σ3J + is in H if
and only if σ is the identity.

(ii) Recall that U reverses triad mode but preserves dualistic root position, so
the second formula of Theorem 3.3.2 (v) shows that U(UV )m(UW )n reverses
triad mode and preserves dualistic root position. Hence, an arbitrary element
σU(UV )m(UW )n ∈ Σ3J − is in H if and only if σ is (1 3).

(iii) This is an immediate consequence of (i) and (ii). The set (1 3)J − has 144
elements because we have left cancellation in any group.

(1 3)j = (1 3)j′ =⇒ j = j′

�

Proposition 5.4.2. The Hook group H is generated by the two elements (1 3)U and
(1 3)W .

Proof. The two elements (1 3)U and (1 3)W are in H, since

(1 3)U = (1 3)U(UV )0(UW )0 (1 3)W = (1 3)U(UV )0(UW )1.

Conversely, any (UV )m(UW )n ∈ H+ can be expressed in terms of (1 3)U and (1 3)W
because

(1 3)U · (1 3)U = V U = (UV )−1

by Proposition 3.8.1 (ii), and

(1 3)W · (1 3)U = WU = (UW )−1

also by Proposition 3.8.1 (ii). Moreover, any (1 3)U(UV )m(UW )n ∈ H−, can be
obtained from the previous two equations and (1 3)U .

Thus,
〈
(1 3)U, (1 3)W

〉
= H. �

Remark 5.4.3 (Matrices for Generators (1 3)U and (1 3)W of Hook Group H). The
matrices (1 3)U and (1 3)W are obtained from the matrices U and W in Section 3.1
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by exchanging their top and bottom rows.

(1 3)U =




1 1 −1
1 0 0
0 1 0


 (1 3)W =




1 0 0
1 −1 1
0 0 1




In preparation for two propositions about the structure of the Hook group, we inspect
the orders of (1 3)U , (1 3)W , and (1 3)W · (1 3)U .

Proposition 5.4.4 (Orders of Generators (1 3)U and (1 3)W of Hook Group H).

(i) The even powers of (1 3)U are
(
(1 3)U

)2m
=
(

(1 3)U · (1 3)U
)m

=
(
V U
)m

=
(
UV
)−m

,

while the odd powers are
(
(1 3)U

)2m+1
=
(
(1 3)U

)(
UV
)−m

.

Consequently, order (1 3)U = 24.
(ii) order (1 3)W = 2.

(iii) The product (1 3)W · (1 3)U equals (UW )−1, so consequently

order
(

(1 3)W · (1 3)U
)

= 12.

Proof.

(i) The even powers of (1 3)U are
(
(1 3)U

)2m
=
(

(1 3)U · (1 3)U
)m

=
(
V U
)m

=
(
UV
)−m

,

which are all distinct from one another form = 0, 1, . . . , 11 by Theorem 3.3.2 (ii).
The odd powers of (1 3)U are

(
(1 3)U

)2m+1
=
(
(1 3)U

)(
UV
)−m

,

by the preceding statement; these are all distinct from one another for m =
0, 1, . . . , 11 by left cancellation. The odd powers are mode reversing while the
even powers are mode preserving, so they are different, and (1 3)U has order
24.

(ii) Using Proposition 3.8.1 (ii), we have (1 3)W · (1 3)W = (1 3)W (1 3) ·W =
W ·W = Id.

(iii) Again using Proposition 3.8.1 (ii), we have (1 3)W · (1 3)U = (1 3)W (1 3) ·U =
WU = (UW )−1, which is known to have order 12 by Theorem 3.3.2 (i)(b).

�

Proposition 5.4.5 (Another Normal Form for H).

(i) The group generated by the product (1 3)W · (1 3)U is equal to 〈UW 〉, and
consequently its intersection with

〈
(1 3)U

〉
is trivial.

〈
(1 3)W · (1 3)U

〉⋂〈
(1 3)U

〉
= {Id}
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(ii) Every element of H can be written uniquely in the form

(
(1 3)U

)p
(UW )n

where p = 0, 1, . . . , 23 and n = 0, 1, . . . , 11.
(iii) Such a product belongs to H+ (respectively H−) if and only if the exponent p is

even (respectively odd).

Proof.

(i) From Proposition 5.4.4 (iii), the product (1 3)W ·(1 3)U is the mode-preserving
function (UW )−1, so the product generates a subgroup 〈UW 〉 of mode-preserving
functions. From Proposition 5.4.4 (i), the even powers of (1 3)U are (UV )−m,
which are not in 〈UW 〉. The odd powers of (1 3)U are mode-reversing, so also
not in 〈UW 〉.

(ii) Uniqueness follows from (i). For the existence, we use the decomposition H =
J +

⊔
(1 3)J −, and recall J + = 〈UV,UW 〉 and

(1 3)J − = (1 3)UJ + = (1 3)U 〈UV, UW 〉.

All of these can be expressed in terms of powers of (1 3)U and UW by Propo-
sition 5.4.4 (i).

(iii) This follows from Proposition 5.4.4 (i) and that fact that composing a mode-
preserving transformation with U gives a mode-reversing transformation.

�

Note, that the cyclic groups 〈(1 3)U〉 and 〈UW 〉 do not commute. Hence, the Hook
Group H is not their internal direct product.

The group structure of H is a semi-direct product of J + and the other generator
(1 3)W as we see now. In Section 5.5, after a “change of basis” in J +, we will even
see that H is the wreath product Z2 * Z12.

Theorem 5.4.6. The group H is the semi-direct product 〈(1 3)W 〉n J +. The conju-
gation action is

(1 3)W ·
(

(UV )m(UW )n
)
·W (1 3) = (UV )m+n(UW )−n. (32)

Proof. The subgroup J + ≤ H has index 2 and is thus normal. The order 2, mode-
reversing transformation (1 3)W is not in J +, so the other coset is (1 3)WJ +, and
〈(1 3)W 〉J + = H. Clearly, 〈(1 3)W 〉 ∩ J + = {Id}, so finally H = 〈(1 3)W 〉n J +.

The conjugation formula (32) follows from Theorem 3.3.2 (v), the definition of W ,
and the rewriting

m
(
z − x

)
+ n
(
y − x

)
= (m+ n)

(
z − x

)
+ (−n)

(
z − y

)
.

�
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5.5. The Hook Group is our Linear Representation of the UTT Group.

Recall the representation ρ : U → GL(3,Z12) from Section 5.3 in equations (28)
and (30). This representation is an embedding, and acts on root position triads as
it should, see equations (29) and (31). Since ρ(U) maps root position triads to root
position triads, ρ(U) is contained in H, the subgroup of Σ3 n J that preserves the set
of root position triads. The cardinalities are |ρ(U)| = 288 = |H|, so the representation
image ρ(U) is equal to the Hook group H. We would next like to “change the basis”
of J + in H to express H as a wreath product Z2 * Z12 and to express ρ uniformly.

Theorem 5.5.1 (New Basis for J + to Make H into a Wreath Product).

(i) The transformation (UV )4(UW )−1 translates root position major triads by 1
and fixes root position minor triads, so ρ〈+, 1, 0〉 = (UV )4(UW )−1.

(ii) The transformation (UV )3(UW )1 fixes root position major triads and translates
root position minor triads by 1, so ρ〈+, 0, 1〉 = (UV )3(UW )1.

(iii) The two transformations (UV )4(UW )−1 and (UV )3(UW )1 generate J +.
(iv) The transformation (1 3)W switches parity of root position triads, without

translation, so ρ〈−, 0, 0〉 = (1 3)W .
(v) Conjugation by (1 3)W exchanges these two new generators of J + in (i) and

(ii).
(vi) The group H is isomorphic to the wreath product Z2 * Z12, that is, the semi-

direct product Σ2 n
(
Z12 × Z12

)
where Σ2 acts by exchanging the two copies of

Z12.

Proof.

(i) To find (UV )m(UW )n which translates root position major triads by 1 and fixes
root position minor triads, we must solve in Z12 the system of equations

m7 + n3 = 1 m7 + n4 = 0,

obtained from evaluating Theorem 3.3.2 (v) on root position major triads and
root position minor triads (x, y, z). The solutions are found to be m = 4 and
n = −1.

(ii) Similarly, we solve

m7 + n3 = 0 m7 + n4 = 1

and find m = 3 and n = 1.
(iii) The transformations UV and UW commute, so the product

(UV )4(UW )−1 · (UV )3(UW )1

is (UV )7, which generates 〈UV 〉, so that UW =
(
(UV )7

)3 · (UV )3(UW )1 can
also be expressed in terms of (UV )4(UW )−1 and (UV )3(UW )1.

(iv) Straightforward computation.
(v) Straightforward computation using the conjugation formula (32).

(vi) This is a consequence of Theorem 5.4.6 and parts (iii) and (v).

�
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Corollary 5.5.2 (Uniform Formula for ρ and Semi-Direct Product Structure). Let us
denote the new generators of H by

E = (1 3)W F = (UV )4(UW )−1 G = (UV )3(UW )1.

Let index: {+,−} → Z2 be the isomorphism from the multiplicative cyclic group of
order 2 to the additive cyclic group of order 2, that is index(+) = 0, index(−) = 1.
The injective representation ρ : U → GL(3,Z12) from Section 5.3 in equations (28)
and (30) is an isomorphism onto its image H and satisfies

ρ〈s,m, n〉 = Eindex(s)FmGn. (33)

Moreover, the group operation in H in terms of these new generators is

EtF pGq · EsFmGn =

{
EtFm+pGn+q if s = 0

Et+1Fm+qGn+p if s = 1.
(34)

Proof. The formula for the homomorphism ρ in (33) follows directly from Theorem 5.5.1 (i),
(ii), and (iv).

The equation for the group structure in (34) follows from the commutativity of F and
G and Theorem 5.5.1 (v). Equation (34) also follows from the wreath product structure
of U in combination with the fact that ρ is an isomorphism onto its image. �

Remark 5.5.3 (Matrix Representation for New Basis of J +). From the Theorem 3.3.2 (v)
we find matrix representations for the new basis of J +.

ρ〈+, 1, 0〉 = (UV )4(UW )−1 =




9 1 3
8 2 3
8 1 4




ρ〈+, 0, 1〉 = (UV )3(UW )1 =




10 11 4
9 0 4
9 11 5




6. Conclusion

To finish up, we may now return to our Webern Problembeispiel in Section 1.2. In
Figure 3 we saw how to interpret the exact sequences in the Webern piece using the
permutation (12) and a voice reflection V . This motivated us to determine in Theo-
rem 3.3.2 the structure of the group J generated by the voice reflections U , V , and W ,
and to determine in Proposition 3.8.2 the structure of 〈Σ3,J 〉. We further understood
Σ3 n J in Section 3.9 through some special subgroups and their triadic orbits. Our
determination of the centralizer of J in GL(3,Z12) and Aff(3,Z12) in Propositions 3.5.1
and 3.6.1 guaranteed that x− 2 in Figure 3 is a morphism of generalized interval sys-
tems. Further examples of morphisms are in Section 4.3, and special cases of known
duality theorems also follow from the aforementioned centralizers. Our group Σ3 n J
allows us to sometimes turn alternating cycles into orbits of a single transformation,
as we did with the Grail motive in Section 4.1, some triadic networks in Schoenberg’s
String Quartet in D minor, and the diatonic falling fifth sequence. As a final appli-
cation of our Structure Theorem 3.3.2, we characterize our representation of Hook’s
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uniform triadic transformation group U as the subgroup H of Σ3 n J that maps root
position consonant triads to root position consonant triads.
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