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Abstract

Tropical algebra is an emerging field with a number of applications
in various areas of mathematics. In many of these applications appeal to
tropical polynomials allows to study properties of mathematical objects
such as algebraic varieties and algebraic curves from the computational
point of view. This makes it important to study both mathematical
and computational aspects of tropical polynomials.

In this paper we prove tropical Nullstellensatz and moreover we
show effective formulation of this theorem. Nullstellensatz is a next
natural step in building algebraic theory of tropical polynomials and
effective version is relevant for computational aspects of this field.

On our way we establish a simple formulation of min-plus and
tropical linear dualities. We also observe a close connection between
tropical and min-plus polynomial systems.
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1 Introduction

A min-plus or tropical semiring is defined by the set K, which can be R,
R∞ = R ∪ {+∞}, Q or Q∞ = Q ∪ {+∞} endowed with two operations
tropical addition ⊕ and tropical multiplication � defined in the following
way:

x⊕ y = min{x, y}, x� y = x+ y.

Tropical polynomials are a natural analog of classical polynomials. In
classical terms it can be expressed in the form f(~x) = miniMi(~x), where
each Mi(~x) is a linear polynomial (a tropical monomial) in variables ~x =
(x1, . . . , xn), and all coefficients of all Mi are nonnegative integers except a
free coefficient which can be any element of K.

The degree of a tropical monomial M is the sum of its coefficients (except
the free coefficient) and the degree of a tropical polynomial f denoted by
deg(f) is the maximal degree of its monomials. A point ~a ∈ Kn is a root
of the polynomial f if the minimum mini{Mi(~a)} is either attained on at
least two different monomials Mi or is infinite. We defer a more detailed
definitions on the basics of min-plus algebra to Preliminaries.

Tropical polynomials have appeared in various areas of mathematics and
found many applications (see, for example, [14, 21, 25, 22, 23, 13]). One of the
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most important advantage of tropical algebra is that it makes some properties
of classical mathematical objects computationally accessible [27, 14, 21, 25].
One of the main goals of min-plus mathematics is to build a theory of tropical
polynomials which would help to work with them and would possibly lead to
new results in the related areas. Computational reasons, on the other hand,
make it important to keep the theory maximally computationally efficient.

The best studied so far is the case of linear tropical polynomials and
systems of linear tropical polynomials. For them the analog of the large part
of the theory of classical linear polynomials was established. This includes
studies of tropical analogs of the rank of a matrix and the independence
of vectors [5, 16, 1], the analog of the determinant of a matrix and its
properties [23], the analog of Gauss triangular form [9]. Also the solvability
problem for tropical linear systems was studied from the complexity point
of view. Interestingly, it turned out to be polynomially equivalent to a well
known mean payoff games problem [10].

For tropical polynomials of arbitrary degree less is known. In [24] the
radical of a tropical ideal was explicitly described. In [27] it was shown that
solvability problem for tropical polynomial systems is NP-complete.

Along with tropical polynomials there were also studied min-plus poly-
nomials. Min-plus polynomial is an expression of the form miniMi(~x) =
minj Lj(~x), where Mi and Lj are tropical monomials. A point ~a ∈ Kn is a
root of the polynomial if miniMi(~a) = minj Lj(~a).

Min-plus polynomials were studied mainly for its connections to dynamic
programming (see [4, 17]). As in the case of tropical polynomials here the
best studied case is the case of linear min-plus polynomials [4]. Also in [10]
the connection of min-plus and tropical linear polynomials was established.

As for the min-plus polynomials of arbitrary degree much less is known.
We are only aware of the result on the computational complexity of the system
of min-plus polynomials: paper [11] shows that this problem is NP-complete.

Our results. The next natural step in developing of the theory of tropical
polynomials would be an analog of classical Nullstellensatz, the theorem
which for the classical polynomials constitutes one of the cornerstones of
algebraic geometry. Concerning the tropical Nullstellensatz, the problem
was already addressed in the paper [8]. In this paper there was established a
general idea to approach this theorem in the tropical case through the dual
formulation. Moreover, in [8] there was formulated a conjecture (which we
restate below as Conjecture 3) capturing the formulation of the tropical dual
Nullstellensatz and this conjecture was proven for the case of polynomials of
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1 variable. Previously in [26] tropical dual Nullstellensatz was established for
a pair of polynomials (k = 2) in 1 variable relying on the classical resultant
and on the Kapranov’s theorem [6, 26].

More specifically, in [8] there was considered a Cayley matrix of the
system of tropical polynomials F = {f1, . . . , fk}. This matrix can be easily
constructed from F : we just consider all polynomials fi +Mj (in classical
notation) of degree at most N , where N is a parameter and Mj is a tropical
monomial. We put the coefficients of these polynomials in the rows of the
matrix, where columns of the matrix correspond to monomials. Empty
entries of the matrix we fill with ∞. The resulting matrix we denote by CN .
In [8] it was conjectured that the system of polynomials F has a solution iff
the tropical linear system with the matrix CN has a solution, and moreover
N can be bounded by some function on n, k and the degree of polynomials
in F (this refers to effectiveness).

In this paper we prove this conjecture. Moreover, we show an effective
version of the theorem. That is, we pose bounds on N and provide examples
showing that they are close to tight. These bounds is relevant for computa-
tional aspects of tropical polynomial systems. Surprisingly, it turns out that
the cases of tropical semiring with and without ∞ differ dramatically. More
specifically, in the case of tropical semirings K = R and K = Q we show
that F has a solution iff the tropical linear system with the matrix CN has a
solution, where N = (n+ 2) · k · d, d is the maximal degree of polynomials
in F , k is the number of polynomials in F and n is the number of variables.
For the case of tropical semirings K = R∞ and K = Q∞ we show a similar
result, but with N = (Cd)min(n,k) for some constant C. Thus for the case
without ∞ the bound on N is polynomial in n, k, d and for the case with ∞
the bound on N is still polynomial in d, but is exponential in n and k. We
give examples showing that our bounds on N are qualitatively optimal, that
is the difference of the values of N in these cases is not an artifact of the
proof, but is unavoidable. However, quantitatively there is a gap between
upper and lower bounds, see Section 3 for details.

Regarding the substantial gap between the required degree in the finite
and infinite cases we observe there is a similar situation for classical Null-
stellensatz. Indeed, we show that in case of semiring R the bound in a
tropical effective Nullstellensatz depends on the sum of the degrees of the
polynomials, while in case of larger semiring R∞ the bound depends on the
product of the degrees (Theorems 4 and 10). We recall that for systems
of classical polynomials over an algebraically closed field the bound on the
effective Nullstellensatz depends on the sum of the degrees of polynomials
in homogeneous (projective) case [19, 20] while the bound depends on the
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product of the degrees for arbitrary polynomials (affine case) [7, 18].
As a consequence of tropical dual Nullstellensatz we obtain its infinite

version. Namely, system of tropical polynomials has a solution iff an infinite
tropical linear system with an infinite Cayley matrix C (that is, with no
bound on the degree) has a solution. Note that the latter system makes
sense because each row of C contains just a finite number of finite entries.
This infinite version was conjectured in [8], where it was also observed that
a similar infinite version of the classical Nullstellensatz holds.

Next we show the primary version of tropical Nullstellensatz. We view
Nullstellensatz as a duality1 result for systems of polynomials: if there is
no solution to the system of polynomials then some positive property holds
(something does exist). In the classical case this positive property is the
containment of 1 in the ideal generated by polynomials (over algebraically
closed field). The naive analog does not hold for the tropical case. Indeed,
for example, the tropical system {min(x, 0),min(x, 1)} has no solutions but
the ideal generated by this does not contain polynomials with only one
monomial (only these polynomials have ho finite solutions) and in particular
there is no polynomial 0. Basically, the point is that in the tropical semiring
there is no subtraction, so in any algebraic combination of polynomials no
monomials cancel out. To overcome this difficulty we introduce the notion of
nonsingular tropical algebraic combination of tropical polynomials (see the
definition in Preliminaries; here we only note that the property is simple and
straightforward to check). For the primary tropical Nullstellensatz we show
that there is no solution to tropical linear system F iff there is a nonsingular
tropical algebraic combination of polynomials in F of degree at most N . We
show this result for both cases of tropical semiring with and without ∞ and
the value N in both cases correspond to the size of Cayley matrix in the
tropical dual Nullstellensatz.

To establish primary Nullstellensatz we need a duality for tropical linear
systems. We show this duality result as a sidestep. However we note that this
results is heavily based on already known results [2] and should be considered
more as an observation.

We also prove similar results for the case of min-plus polynomials. As

1To avoid a confusion we note that the word ‘dual’ is used in two different meanings.
First, we use it in the term “dual Nullstellensatz” as opposed to standard version of Null-
stellensatz. This means that dual Nullstellensatz is obtained from standard Nullstellensatz
by (linear) duality. Second, we use the word ‘dual’ in term “duality result” to denote the
general type of results. Since standard Nullstellensatz is a duality result itself, applying
linear duality to it results in a non-duality result. Thus, dual Nullstellensatz is not a
duality result.
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a sidestep of our analysis we show the close connection between tropical
and min-plus systems of polynomials. We argue that these two models are
very closely connected and that this connection can be used to establish new
results in tropical algebra. The observation is that some results (like linear
duality) are easier to obtain for min-plus polynomials and then translate
to tropical polynomials, and some other results (like Nullstellensatz) on the
other hand are easier to obtain for tropical polynomials and then translate
to min-plus polynomials. In our opinion it is fruitful for further development
of the theory to consider both models simultaneously.

Our techniques We use the general approach of the paper [8] to Nullstel-
lensatz through dual formulation.

To establish the dual Nullstellensatz we use methods of discrete geometry
dealing with integer polyhedra. First we obtain dual Nullstellensatz for the
case without ∞. The case with ∞ requires much more additional work.

To obtain primary Nullstellensatz we apply the duality results for linear
tropical polynomials. We note that these results rely on the completely
different combinatorial techniques, namely on the connection to mean payoff
games [2].

Other works on tropical Nullstellensatz In papers [15] there was
established Nullstellensatz for tropical semiring augmented with additional
elements (called ghosts). This result is in the line with other results [25]
trying to capture tropical mathematics by the means of the classical ones.
However, tropical semiring augmented with ghosts constitutes (logically) a
completely different model compared to usual tropical semiring. Thus our
results are incomparable with the one of the paper [15].

We also note that the paper [24] (which has Nullstellensatz in the title)
takes completely different view on Nullstellensatz. We consider Nullstellensatz
as a result on the solvability of system of polynomials, and paper [24] views
Nullstellensatz as a result on the structure of the radical of a tropical ideal.
As it can be easily seen, for example, from our results during the translation
from classical world to the tropical one, the connection between these two
objects changes drastically (cf. with example F = {min(x, 0),min(x, 1)}
above). Thus our results are incomparable with the results of [24] as well.

The rest of the paper is organized as follows. In Section 2 we introduce
main definitions. In Section 3 we state our results. In Section 4 we show
tropical dual Nullstellensatz. In Section 5 we establish the connection between
tropical and min-plus polynomial systems. In Section 6 we show min-plus
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dual Nullstellensatz. In Section 7 we show tropical and min-plus primary
Nullstellensätze. In Section 8 we show min-plus and tropical linear dualities.
Sections 5 and 8 can be read independently.

2 Preliminaries

2.1 Min-plus algebra

Tropical and min-plus polynomials. A min-plus or tropical semiring is
defined by the set K, which can be R, R∞ = R∪{+∞}, Q or Q∞ = Q∪{+∞}
endowed with two operations, tropical addition ⊕ and tropical multiplication
� defined in the following way:

x⊕ y = min{x, y}, x� y = x+ y.

Below we mainly consider K = R and K = R∞. The proofs however literally
translate to the cases of Q and Q∞.

The tropical (or min-plus) monomial in variables x1, . . . , xn is defined as

M = c� x�i11 � . . .� x�inn , (1)

where c is an element of the semiring K and i1, . . . , in are nonnegative integers.
In usual notation the monomial is

M = c+ i1x1 + . . .+ inxn.

The degree of the monomial is defined as the sum i1 + . . .+ in. We denote
~x = (x1, . . . , xn) and for I = (i1, . . . , in) we introduce the notation

~xI = x�i11 � . . .� x�inn .

A tropical polynomial is the tropical sum of tropical monomials

f =
⊕
i

Mi,

or in usual notation f = miniMi. The degree of the tropical polynomial f
denoted by deg(f) is the maximal degree of its monomials. A point ~a ∈ Kn

is a root of the polynomial f if the minimum mini{Mi(~a)} is either attained
on at least two different monomials Mi or is infinite.

A min-plus polynomial is an expression of the form⊕
i

Mi(~x) =
⊕
j

Lj(~x),

where Mi, Lj are min-plus monomials. The degree of min-plus polynomial
is the maximal degree among monomials Mi and Lj over all i, j. A point
~a ∈ Kn is a root of this polynomial if the equality holds for ~x = ~a.
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Linear polynomials. An important special case of tropical and min-plus
polynomials are linear polynomials. They can be defined as general tropical
polynomials of degree 1. However, it is convenient to denote by a linear
polynomial an expression of the form

min
16j6n

{aj + xj}.

That is we assume that all variables are presented exactly once. The tropical
linear system

min
16j6n

{aij + xj}, 1 6 i 6 m, (2)

can be naturally associated with its matrix A ∈ Km×n. We will also use a
matrix notation A� ~x for such system.

Analogously min-plus linear systems

min
16j6n

{aij + xj} = min
16j6n

{bij + xj}, 1 6 i 6 m,

can be associated with a pair of matrices A and B corresponding to the
left-hand side and the right-hand side of an equation. We will also write
min-plus linear system in a matrix form as A � ~x = B � ~x. It will be
also convenient to consider min-plus linear systems of (componentwise)
inequalities A� ~x 6 B � ~x. It is not hard to see that their expressive power
is the same as of equations.

Lemma 1. For any min-plus system of linear equations there is an equivalent
system of min-plus linear inequalities and visa versa.

Proof. Indeed, each min-plus linear equation L1(~x) = L2(~x) is equivalent
to the pair of min-plus inequalities L1(~x) > L2(~x) and L1(~x) 6 L2(~x). On
the other hand min-plus linear inequality L1(~x) 6 L2(~x) is equivalent to the
min-plus equation L1(~x) = min(L1(~x), L2(~x)). It is not hard to see that the
last equation can be transformed to the form of min-plus linear equation.

There is one more important convention we make concerning the case of
tropical semiring with infinity. For two matrices A,B ∈ Rn×m∞ we say that
the system A � ~x < B � ~x has a solution if there is ~x ∈ Rm∞ such that for
each row of the system if one of sides is finite, then strict inequality holds,
but also the case where both sides are equal to ∞ is allowed (informally, we
can say that ∞ <∞).

We also consider non-homogeneous tropical linear systems

min
16j6n

{aij + xj , ai}, 1 6 i 6 m. (3)
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This system can be naturally associated to the matrix A ∈ Km×(n+1) and
written in the matrix form as A � (~x, 0). Analogously, we can consider
non-homogeneous min-plus linear systems A� (~x, 0) 6 B � (~x, 0). We note
that over ~x ∈ Rn the tropical system A� (~x, 0) is solvable iff homogeneous
system A � ~x′ is solvable, where ~x′ = (~x, xn+1). Indeed, we can add the
same number to all coordinates of the solution of the latter system to make
xn+1 = 0. The same is true for min-plus case. But the same is not true over
R∞: homogeneous system always has a solution (just let ~x = (∞, . . . ,∞)),
but non-homogeneous system does not always have a solution.

3 Results Statement

3.1 Tropical and Min-plus Nullstellensatz

Definition 2. For a given system of tropical polynomials F = {f1, . . . , fk}
in n variables we introduce its infinite Cayley matrix C. The columns of
C correspond to nonnegative integer vectors I ∈ Zn+ and the rows of C
correspond to the pairs (j, J), where 1 6 j 6 k and J ∈ Zn+. For given I and
(j, J) we let the entry c(j,J),I be equal to the coefficient of the monomial ~xI

in the polynomial ~xJ � fj (if there is no such monomial in the polynomial we
assume that the entry is equal to +∞). By CN we denote the finite submatrix
of the matrix C consisting of the columns I such that i1+. . .+in 6 N and the
rows which have all their finite entries in these columns. The tropical linear
system associated with CN will be of interest to us. Over R∞ we consider
non-homogeneous system with the matrix CN . The column corresponding
to constant monomial is a non-homogeneous column.

For the system of min-plus polynomials F = {f1 = g1, . . . , fk = gk}
we analogously introduce the pair of matrices C and D corresponding to
the left-hand sides and the right-hand sides of polynomials respectively. In
the same way we introduce matrices CN , DN and the corresponding linear
systems CN � ~y = DN � ~y. Analogously, for the case of R∞ we consider
non-homogeneous systems.

In the paper [8] there were conjectured three forms of the tropical dual
Nullstellensatz theorem. We state the most strong of them, effective Null-
stellensatz theorem.

Conjecture 3 ([8]). There is a function N of n and of deg(fi) for 1 6 i 6 k
such that the system of polynomials F has a common tropical root iff the
tropical linear system corresponding to the matrix CN has a solution.

9



Note that the classical analog of this statement is precisely the effective
Nullstellensatz theorem in the dual form (see [8] for the detailed discussion).

In [8] the conjecture was proven for the case of n = 1. In this paper we
prove the general case of the conjecture.

Theorem 4 (Tropical Dual Nulstellensatz). Consider the system of tropical
polynomials F = {f1, . . . , fk} of n variables. Denote by di the degree of the
polynomial fi and let d = maxi di.

(i) Over semiring R the system F has a solution iff the Cayley tropical
linear system CN � ~y for

N = (n+ 2) (d1 + . . .+ dk)

has a solution.

(ii) Over semiring R∞ the system F has a solution iff the Cayley tropical
non-homogeneous linear system CN � ~y for

N = poly(n, k) (2d)min(n,k)

has a solution.

We note that we can also consider an infinite Cayley tropical linear system
C � ~y. It makes sense since each row of C has only finite number of finite
entries. As a trivial corollary of the previous theorem we deduce an infinite
version of Tropical Dual Nullstellensatz.

Corollary 5. The system of tropical polynomials F = {f1, . . . , fk} of n
variables has a solution iff the infinite Cayley tropical linear system C � ~y
has a solution.

The result holds for both R and R∞ semirings.

We show dual Nullstellensatz for min-plus case.

Theorem 6 (Min-Plus Dual Nullstellensatz). Consider the system of min-
plus polynomials F = {f1 = g1, . . . , fk = gk} of n variables. Denote by di
the degree of the polynomial fi = gi and let d = maxi di.

(i) Over semiring R the system F has a solution iff the Cayley min-plus
linear system CN � ~y = DN � ~y for

N = (n+ 2) (d1 + . . .+ dk)

has a solution.
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(ii) Over semiring R∞ the system F has a solution iff the non-homogeneous
Cayley min-plus linear system CN � ~y = DN � ~y for

N = poly(n, k) (2d)min(n,k)

has a solution.

As in the tropical case an infinite version of min-plus dual Nullstellensatz
follows.

Corollary 7. Consider the system of min-plus polynomials F = {f1 =
g1, . . . , fk = gk} of n variables. The system F has a solution iff the infinite
Cayley min-plus linear system C � ~y = D � ~y has a solution.

The result holds for both R and R∞ semirings.

We provide examples showing that our bounds on N are qualitatively
tight. Namely for the semiring R we construct a family F of (n+ 1) tropical
(or min-plus) polynomials of degree d such that F has no solution, but the
Cayley tropical (or min-plus) linear system for N = (d − 1)(n − 1) has a
solution. For the semiring R∞ for any d > 1 we construct a system F of
n + 1 tropical (or min-plus) polynomials of degree d such that F has no
solution, but Cayley tropical (or min-plus) linear system for N = dn−1 − 1
has a solution.

We note that quantitatively there is a room for improvement between our
lower and upper bounds on N . The gap is more substantial in the case of
semiring R. Assuming for the sake of simplicity that n = k our upper bound
gives approximately N 6 dn2 and our lower bound gives N > dn. Thus we
can formulate an open problem.

Open Problem. Close the gap between upper in lower bound on N in the
tropical Nullstellensatz.

Next we establish Nullstellensatz in a more standard primary form.
We start with a more intuitive min-plus Nullstellensatz.

Theorem 8 (Min-Plus Primary Nullstellensatz). Consider the system of
min-plus polynomials F = {f1 = g1, . . . , fk = gk} of n variables. Denote by
di the degree of the polynomial fi = gi and let d = maxi di.

Over semiring R the system F has no solution iff we can construct an
algebraic min-plus combination f = g of degree at most

N = (n+ 2) (d1 + . . .+ dk)
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of them such that for each monomial M = x�j11 � . . .� x�jnn its coefficient
in f is greater than its coefficient in g. In algebraic combination f = g we
allow to use not only polynomials fi = gi, but also gi = fi.

Over semiring R∞ the system F has no solution iff we can construct an
algebraic combination f = g of degree at most

N = poly(n, k) (2d)min(n,k)

of them such that for each monomial M = x�j11 � . . .� x�jnn its coefficient
in f is greater than its coefficient in g and with additional property that the
constant term in g is finite.

For the tropical case we will need the following definition.

Definition 9. For the system of tropical polynomials f1, . . . , fk and tropical
monomials M1, . . . ,Mm the algebraic combination

g =
m⊕
j=1

gj ,

where
gj = Mj � fij ,

is called nonsingular if the following two properties hold:

• for each monomial M of g there is a (unique) 1 ≤ l(M) ≤ m such that
the coefficient of M at polynomial gl(M) is less than the coefficients of
M at all other polynomials gj for j 6= l(M);

• for different M and M ′ we have l(M) 6= l(M ′).

Now we can formulate tropical Nullstellenstz in a primary form.

Theorem 10 (Tropical Primary Nullstellensatz). Consider the system of
tropical polynomials F = {f1 = g1, . . . , fk = gk} of n variables. Denote by di
the degree of the polynomial fi and let d = maxi di.

The system F has no solution over R iff there is a nonsingular algebraic
combination g for it of degree at most

N = (n+ 2) (d1 + . . .+ dk)

The system F has no solution over R∞ iff there is a nonsingular algebraic
combination g for it of degree at most

N = poly(n, k) (2d)min(n,k)

and with finite constant monomial.

For the proofs of the last two theorems we use min-plus and tropical
linear duality.
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3.2 Linear Duality

We prove the following result on linear min-plus duality.

Lemma 11. Let A,B ∈ Rn×m∞ be two matrices.
For any subset S ⊆ [m] exactly one of the following is true.

1. There is a solution to A � ~x 6 B � ~x with finite coordinates xi with
i ∈ S.

2. There is a solution to BT � ~y < AT � ~y such that for some i ∈ S the
i-th coordinates of BT � ~y is finite.

For any subset S ⊆ [m] exactly one of the following is true.

1. There is a solution to A � ~x 6 B � ~x such that for some i ∈ S the
coordinate xi is finite.

2. There is a solution to BT � ~y < AT � ~y such that the i-th coordinates
of BT � ~y are finite for all i ∈ S.

The proof of this lemma is based on the connection of min-plus linear
systems with mean payoff games established in the paper [2]. Though the
proof is rather simple as soon as one has this connection, we are not aware
of the statement and the proof of these results in the literature.

As a simple corollary of this lemma we show the following simple formu-
lation of min-plus linear duality.

Corollary 12. For two matrices A,B ∈ Rn×m exactly one of the following
is true.

1. There is a solution to A� ~x 6 B � ~x.

2. There is a solution to BT � ~y < AT � ~y.

For two matrices A,B ∈ Rn×m∞ exactly one of the following is true.

1. There is a solution ~x 6= (∞, . . . ,∞) to A� ~x 6 B � ~x.

2. There is a finite solution to BT � ~y < AT � ~y.

For two matrices A,B ∈ Rn×m∞ exactly one of the following is true.

1. There is a finite solution to A� ~x 6 B � ~x.

2. There is a solution ~y 6= (∞, . . . ,∞) to BT � ~y < AT � ~y.
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Since the corollary follows from Lemma 11 almost immediately, we present
the proof here.

Proof. If we consider tropical linear systems over R, then all coordinates of
all vectors in Lemma 11 are finite and the corollary follows immediately no
matter what S we fix.

For the second part of the corollary let S = [n] and apply the second part
part of Lemma 11. Then the first property is lemma equivalent to the first
property in corollary. To see that the equivalence holds also for the second
property note that if for some ~y all coordinates of BT � ~y are finite, then
we can assume that all coordinates of ~y are also finite. Indeed, if there are
infinite coordinates in ~y we can just set them to constants large enough not
to change the value of the minimum in each row.

The last part of the corollary can be shown analogously by letting S = [n]
and applying the first part of Lemma 11.

We show similar result for tropical duality.

Lemma 13. Let A,∈ Rn×m∞ be a matrix.
For any subset S ⊆ [m] exactly one of the following is true.

1. There is a solution to A� ~x with finite coordinates xi with i ∈ S.

2. There is ~z such that in each row of AT � ~z the minimum is attained at
least once or is equal to ∞, for each two rows with the finite minimum
the minimums are in different columns and such that for some i ∈ S
the i-th coordinate of AT � ~z is finite.

For any subset S ⊆ [m] exactly one of the following is true.

1. There is a solution to A� ~x such that for some i ∈ S the coordinate
xi is finite.

2. There is ~z such that in each row of AT � ~z the minimum is attained at
least once or is equal to ∞, for each two rows with the finite minimum
the minimums are in different columns and the i-th coordinates of
AT � ~z are finite for all i ∈ S.

This result can be proven either through reduction to min-plus linear
systems, or through analysis of [9].

Just like in the case of min-plus linear systems we can get the following
corollary.
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Corollary 14. For a matrix A ∈ Rn×m exactly one of the following is true.

1. There is a solution to A� ~x.

2. There is ~z such that in each row of AT �~z the minimum is attained only
once and for each two rows the minimums are in different columns.

For a matrix A ∈ Rn×m∞ exactly one of the following is true.

1. There is a finite solution to A� ~x.

2. There is ~z such that in each row of AT �~z the minimum is attained only
once or is equal to ∞ and for each two rows the (unique) minimums
are in different columns.

For a matrix A ∈ Rn×m∞ exactly one of the following is true.

1. There is a solution to A� ~x.

2. There is a finite ~z such that in each row of AT � ~z the minimum is
attained only once and for each two rows the minimums are in different
columns.

The proof of this corollary is completely analogous to min-plus case.

3.3 Tropical vs. Min-plus

We also establish the connection between tropical and min-plus polynomial
systems.

Lemma 15. For both R and R∞ given a system of tropical polynomials we
can construct a system of min-plus polynomials over the same set of variables
and with the same set of solutions.

In the other direction we do not have such a simple connection, but we
can still prove the following lemma.

Lemma 16. For any system of min-plus polynomials F over n variables
there is a system of tropical polynomials T over 2n variables and an injective
linear transformation H : Rn∞ → R2n

∞ such that the image of the solutions of
F coincides with the solution set of T . The same is true over semiring R.

The proof of this lemma follows the lines of the proof of the analogous
statement for the case of linear polynomials in the paper [10].
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4 Tropical Dual Nullstellensatz

First of all we fix some notation that we keep throughout the whole sec-
tion. We assume that we are given a system of tropical polynomials
F = {f1, . . . , fk} in n variables ~x = (x1, . . . , xn).

This section is organized as follows. In Subsection 4.1 we will introduce
required notation and show preliminary results. In Subsection 4.2 we give a
proof outline. In Subsections 4.3 and 4.4 we give a proof for the case without
∞. In Subsection 4.5 we provide some clarifying examples. In Subsection 4.6
we prove the theorem for the case with ∞. Finally ,in Subsection 4.7 we
show that upper bounds in our theorem are tight.

4.1 Preliminary definitions and results

Geometrical interpretation of tropical polynomials.

Definition 17. For the set D ⊆ Zn and two functions f, g : D → R∞
consider t ∈ R (in there is one) such that

1. for all x ∈ D we have f(~x) + t 6 g(~x);

2. there is ~x ∈ D such that f(~x) + t = g(~x) 6=∞.

We denote the set of points satisfying property 2 by Sing(f, g) and call
them singularity points for the pair (f, g). If such t does not exist we let
Sing(f, g) = ∅. We say that f is singular to g iff |Sing(f, g)| > 2.

Geometrically, f is singular to g if we can adjust the graph of f in Rn+1

space along the (n+ 1)-th coordinate in such a way that this graph lies below
of the graph of g and has with it at least two common points.

Note that the notion of singularity is nonsymmetric. It might be that f
is singular to g, but g is not singular to f .

The following lemma follows directly from the definition.

Lemma 18. We have ~x ∈ Sing(f, g) iff ~x minimizes the function g− f . Or,
equivalently, iff for all ~y we have

f(~x)− f(~y) > g(~x)− g(~y).

In this paper we consider rows of the matrix CN , solutions to CN � ~y,
coefficients of fis. All of them constitute vectors ~a which coordinates are
labeled by I ∈ D for some D ⊆ Zn+, that is by vectors with integer non-
negative coordinates. With such vector ~a we associate a function ϕ~a : Zn →
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R∞ letting ϕ~a(I) = aI for I ∈ D and ϕ~a(I) =∞ for I /∈ D. When the vector
is the vector of coefficients of polynomial f we shortly denote the resulting
function by ϕf . When the vector is the vector of coefficients of polynomial
fi ∈ F we simplify the notation even more to ϕi. Note that due to the
definition of CN if ~c is the row of CN labeled by (J, i) then ϕ~c(I) = ϕi(I−J).

In what follows we reserve Greek letters for the functions dealing with
the coefficients of polynomials and entries of Cayley matrix to distinguish
them from the functions fi.

The motivation for our notion of singularity is that it captures the
solvability of tropical polynomials.

Lemma 19. The vector ~y = {yI}|I|6N is a solution to the tropical linear
polynomial minI{yI + cI} corresponding to vector ~c = {cI}|I|6N iff the
function −ϕ~y is singular to ϕ~c.

Proof. Consider arbitrary vector ~c and corresponding tropical linear poly-
nomial. The vector ~y is a root of this linear polynomial if the minimum in
{ϕ~y(I) + ϕ~c(I)}I is attained at least twice. Let t be the minimal number
such that ϕ~y(I) + ϕ~c(I) + t > 0 for all I. Then ϕ~y(I) + ϕ~c(I) + t = 0 equals
zero for at least two different Is. This means that −ϕ~y(I)− t 6 ϕ~c(I) and
equality holds for at least two points. Thus the function −ϕ~y is singular to
ϕ~c.

The proof in the other direction follows the same lines.

In particular, the vector ~y is a solution to CN iff −ϕ~y is singular to all
ϕ~c, where ~c is a row of CN .

Now let ~c be a vector of coefficients of a tropical polynomial f , that is cI
is the coefficient of the monomial ~xI in f . Then its solutions are given by
the vectors ~x = (x1, . . . , xn) and ~y described in the previous paragraph in
this case is given by yI = 〈~x, I〉, that is the inner product of vectors ~x and I.
Thus in this case ϕ~y(I) = 〈~x, I〉 is a linear function, defining a hyperplane in
n+ 1 dimensional space. We introduce the notation χ~x = −ϕ~y. Thus, from
Lemma 19 we get the following result.

Lemma 20. The vector ~x is a solution to f iff the hyperplane χ~x is singular
to the function ϕf .

In particular, the system of polynomials F has a solution iff there is a
hyperplane singular to ϕi for all i = 1, . . . , k.

As a result we have that, if there is a hyperplane singular to all ϕi for
all i = 1, . . . , k, then it clearly provides a solution to CN . This shows the
simple direction of the tropical dual Nullstellensatz theorem. What we need
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to show for the other direction is that if there is some function singular to
all translations of all ϕis within some rectangle |I| 6 N , then there is also a
singular hyperplane.

For the proof of Theorem 4 it is convenient to use the language of
polytopes. We summarize it in the next definition.

Definition 21. To switch to polytope notation for a polynomial f ∈ F we
consider the graph of the function ϕf : {(I, ϕf (I)) | |I| 6 N} and along
with each point (I, ϕf (I)) we consider all points (I, t) above it, that is
such that t > ϕf (I). We take the convex hull in Rn+1 of all these points
and call the resulting polytope P (f) (extended) Newton polytope of f . We
note that this construction is quite standard [14, 23, 25]. By the bottom
of P (f) we denote the set of points ~x = (x1, . . . , xn, xn+1) ∈ P (f) such
that there are no points of P (f) below them, that is for any ε > 0 we have
that (x1, . . . , xn, xn+1 − ε) /∈ P (f). Note that the bottom of P (f) can be
considered as a partial function on Rn and it is not hard to see geometrically
that the hyperplane is singular to ϕf iff it is singular to the bottom of
P (f). This is not necessarily true for an arbitrary function ϕ~a instead of a
hyperplane.

For the given system of polynomials f1, . . . , fk we denote the resulting
convex polytopes by P1, . . . , Pk.

To bring together functional language and the language of polytopes
we introduce two more notations. For a function ϕ we denote by G(ϕ) the
graph of the function in Rn+1. For the case of the functions ϕi to make
the notation more intuitive instead of G(ϕi) we write G(fi). Also for the
extended Newton polytope P we denote by βP : Zn → R the function, whose
graph is given by a bottom of P . For the case of polytopes Pi we shorten
this notation to βi.

Remark. We note that in the paper [8] the conjecture on tropical dual
Nullstellensatz was considered not for the original Cayley matrix, but for
the Cayley matrix in which we already switch to the convex hull. Our proof
works for both settings, but we consider it more natural to state it for the
original Cayley matrix.

Convex polytopes. The convex polytope P in n-dimensional space can
be specified by a set of linear functions E1(~x), . . . , El(~x), L1(~x), . . . , Lk(~x),
where ~x ∈ Rn: P is the set of points ~x ∈ Rn such that Ei(~x) = 0 for all
i = 1, . . . , l and Li(~x) > 0 for all i = 1, . . . , k. Any facet of a polytope can
be specified by the set S ⊆ {1, . . . , k}. The facet corresponding to S is the
set of points ~x ∈ P such that Li(~x) = 0 for all i ∈ S.
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Thus we will always assume that the polytopes are closed. If we would like
to talk about open polytopes we talk about the polytope’s interior instead.
The same applies to the facets of polytopes, by default they are considered

to be closed. We denote the interior of the polytope P by
◦
P .

For polytopes P1 and P2 we will denote by P1 + P2 Minkowski sum of
these polytopes. For natural k we will use the notation kP = P + . . .+ P
where there are k summands on the righthand side. For an n-dimensional
vector ~α we denote by P + ~α the translation of P by the vector ~α. That is,

P + ~α = {~x+ ~α | ~x ∈ P}.

It is well known that if polytope P is similar to polytope Q then there
is a homothety mapping P to Q. Throughout the section we will prefer to
use the homothety notation. By the homothety with the center ~x ∈ Rn and
coefficient λ > 0 we denote the following bijective transformation of the
space Rn: the point y ∈ Rn is sent to the point x+ λ(~y− ~x). We denote this
transformation by hλ~x.

Definition 22. Consider polytope P , a set of points Q and a point ~x on
the boundary of P . We say that Q touches P in ~x iff

1. Q ⊆ P ;

2. ~x ∈ Q;

3. if Q contains a point ~y on the boundary of P , then ~y lies in a facet of
P containing ~x.

Below we collect some facts we will need on the structure of convex
polytopes. Though they are simple and intuitive we give the proofs of them
for the sake of completeness.

Lemma 23. Let P be a convex polytope and let ~x, ~y, ~z be the points in it
lying on the same line in the specified order. Then if ~y belongs to some facet
of P then ~x also belongs to the same facet.

Proof. Suppose on the contrary that ~y belongs to some facet and ~x does not.
Then there is some inequality L among linear inequalities defining P such
that L(~x) > 0 and L(~y) = 0. Then if we consider the values of L on the
line containing ~x, ~y and ~z then it is a linear function there and thus clearly
L(~z) < 0. Therefore ~z is not in P and thus we have a contradiction.
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Corollary 24. Let P be a convex polytope and let ~x, ~y, ~z,~t be the points in
it lying on the same line in the specified order. Then ~y belongs to some facet
of P iff ~z belongs to the same facet.

Proof. Just apply Lemma 23 to the points ~y, ~z,~t and to the points ~z, ~y, ~x.

Lemma 25. Let P be a convex polytope and let ~x be a point in P . Consider
the transformation of P under hλ~x for λ > 1. Denote the image of P under
this transformation by P ′. If P contains a point on some facet of P ′ then
this facet contains ~x.

Proof. Let ~y be a point of P . Then the point ~z = hλ~x(~y) = ~y+ (λ− 1)(~y− ~x)
lies in P ′. Thus by Lemma 23 if ~y is on some facet of P ′ then ~x is also on
this facet.

4.2 The proof outline

The key idea is to consider a large “enveloping” polytope P0. The main
property of P0 we will ensure is that for each point ~x on its bottom and for
any i we can translate the polytope Pi in such a way that it touches P0 in ~x.

It turns out that for P0 we can take just a Minkowski sum of P1, . . . , Pk
multiplied by a large enough number.

We show that we can choose one of the singular points in Sing(~a, ϕP0) in
such a way that the facet containing this point gives a solution to the system
F (Lemma 29).

4.3 The enveloping polytope

In this section we construct an enveloping polytope P0 ⊆ Rn+1 and prove its
properties required for the proof of the theorem.

We just let
P0 = (n+ 2) · (P1 + . . .+ Pk) , (4)

where all operations on polytopes are in the sense of Minkowski sum. It is
clear that for each Pi we have that P0 can be represented as the union of the
translations of Pi by the real vectors. However we will need that all integer
points can be represented by integer translations of vertices of Pi (we will
actually need slightly more).

To prove this we will need some general fact on convex polytopes.

Lemma 26. Let P be an n-dimensional convex polytope and let P ′ = (n+2)P .

Then for each point ~x ∈
◦
P ′ there is a translation P + ~α with the following

properties:

20



1. the center ~y of the homothety mapping P + ~α to P ′ lies in
◦
P ′;

2. ~x is a vertex of P + ~α.

It is easy to see that the first property is equivalent to the fact that

P + ~α ⊆
◦
P ′, but the current form of the lemma will be more convenient for

us.
The main tools in the proof of this lemma are Caratheodory’s Theorem,

the notion of the center of mass and homothety transformation.

Proof. We first give a proof sketch and then proceed to the detailed proof.
Since ~x is in P ′ it lies in some simplex S′ generated by n+ 1 vertices of P ′.
For S′ we consider each of its vertices and make a homothety with the center
in it and the coefficient (n+ 1)/(n+ 2). The resulting (n+ 1) simplices cover
all S′ (even with overlap). So ~x lies in one of them, say in the one defined
by the vertex v′1. Then we can consider the translation S + ~α of the simplex
S which is (n+ 2) times smaller than S′ such that its vertex corresponding
to v′1 is mapped into ~x. Then S + ~α lies in S′. Now we can consider P ′ and
note that P + ~α is in P ′. Formally this is proved via homothety.

Now we give a formal proof following the outline above. Since ~x is a
point in the convex polytope P ′ it lies in the convex hull of its vertices. By
Caratheodory’s Theorem there are n+ 1 vertices v′1, . . . , v

′
n+1 of P ′ such that

~x ∈ Conv{v′1, . . . , v′n+1}. We denote this convex hull by S′. We denote the
corresponding vertices of P by v1, . . . , vn+1.

Let w1, . . . wn+1 be barycentric coordinates of ~x, that is wi > 0 for all i,∑
iwi = 1 and

~x =
∑
i

wiv
′
i.

Without loss of generality let w1 be the largest among wi. Then nw1 >
w2 + . . .+ wn+1. Let

v′ =
1∑n+1

i=2 wi

n+1∑
i=2

wiv
′
i.

Then v′ ∈ Conv{v′2, . . . v′n+1}, there is a relation

~x = w1v
′
1 +

(
n+1∑
i=2

wi

)
v′

and thus the points v′1, ~x and v′ are on the same line. Moreover, |~x− v′1| 6
n|v′−~x| < (n+ 1)|v′−~x| (observe that |v′−~x| is nonzero since w1 is nonzero
since it is the largest weight).
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Consider the homothety transformation of S′ with the center in v′1 and
coefficient (n+1)/(n+2). Denote the image of S′ by S1. Then from above we
get that ~x ∈ S1. Now we can consider S = Conv{v1, . . . , vn+1} and consider
its translation S+ ~α such that v1 is placed to ~x. We have that S′ is equal (up
to a translation) to (n+ 2)S and S1 is equal (up to a translation) to (n+ 1)S.
Consider the image of the vector (v′1, ~x) (that is, the vector with the starting
point v′1 and endpoint ~x) under the homothety of S1 to S+ ~α and denote the
resulting vector by (x, ~y). Then ~y ∈ S + ~α, |~x− v′1| = (n+ 1)|~y− ~x| and thus
|~y − ~x| < |v′ − ~x|. Therefore if we consider the homothety with the center ~y
and coefficient (n+ 2) then ~x is mapped into v′1 and thus S + ~α is mapped
into S′.

Now we can consider the polytope P ′ and the translation P + ~α. For this
translation we have that v1 goes to ~x and thus ~x is a vertex of P + ~α. Once
again the homothety with the center ~y and coefficient (n+ 2) sends ~x to v′1
and thus P + ~α to P ′. Thus P + ~α lies in P ′. It is only left to note that the
points ~x, ~y, v′ lie on the same line in the specified order and all lie in P ′.

Thus by Lemma 23 since ~x ∈
◦
P ′ we have ~y ∈

◦
P ′.

Remark. We note that Lemma 26 does not hold for P ′ = (n + 1)P . The
example is very simple, just let P be a standard simplex, that is a convex
hull of points {0, ~e1, . . . , ~en}. Then P ′ = (n+ 1)P is a convex hull of points
{~0, (n + 1)~e1, . . . , (n + 1)~en}. Let ~x be the center of the polytope, that is
~x = ~e1 + . . .+ ~en. Then for ~x to be a vertex of P + ~α we should have that
either ~α = ~e1 + . . . + ~en, or ~α = ~e1 + . . . + ~ei−1 + ~ei+1 + . . . + ~en for some
i. In the first case ~y = (n + 1)(~e1 + . . . + ~en)/n and in the second case
~y = (n+ 1)(~e1 + . . .+ ~ei−1 + ~ei+1 + . . .+ ~en)/n. In both cases ~y lies on the
boundary of P ′: in the first case it is in the convex hull of {~e1, . . . , ~en} and
in the second case it is in the convex hull of {~0, ~e1, . . . , ~ei−1, ~ei+1, . . . , ~en}.

4.4 A facet of P0 is singular

In this subsection we are going to finish the proof of Theorem 4(i). It will
be convenient to introduce the notation

P = P1 + . . .+ Pk.

Thus P0 = (n+ 2)P .

Lemma 27. For any point ~x on the bottom of P0 and for any fj there is ~β

such that G(fj) + ~β touches P0 in ~x.
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Proof. First we show that there is a translation of P touching P0 in ~x.
If ~x is a vertex of P0 then just note that there is a translation P + ~α lying

inside of P0 and containing ~x. Since ~x is a vertex of P0 it is also a vertex
of P + ~α. The homothety hn+2

~x sends ~x as a vertex of P + ~α into ~x as a
corresponding vertex of P0 and thus sends P + ~α to P0. Then by Lemma 25
P + ~α touches P0 in ~x.

If ~x is not a vertex of P0 denote the minimal dimension facet of P0

containing ~x by Q0. Clearly ~x is in the interior of Q0. Since P0 = (n+ 2)P
we have that there is a facet Q of P such that Q0 = (n+ 2)Q. By Lemma 26

we can find a translation Q+~α such that ~x is a vertex of Q+~α and Q+~α ⊆
◦
Q0.

This lemma also gives us the homothety hn+2
~y which center ~y lies in the

interior of Q0. Now let us consider P + ~α and consider its image under hn+2
~y .

The vertex ~x goes under this homothety to the corresponding vertex of P0

and thus P + ~α goes to P0. Note that by Lemma 25 we also get that P + ~α
intersects P0 only in the facets incident to ~y and thus only in the facets
incident to ~x.

Now note that P + ~α is the translation of Minkowski’s sum of P1, . . . , Pk,
thus for each of Pj there is a translation ~β such that Pj + ~β is in P + ~α and
contains the point ~x. Since this point is a vertex of P + ~α we have that ~x is
a vertex of Pj + ~β. Note that Pj + ~β lies inside of P + ~α and thus also can
intersect the boundary of P0 only in the facets containing ~x.

Finally note that the set G(fj) + ~β is a subset of Pj + ~β, but on the other

hand contains all its vertices. Thus G(fj) + ~β touches P0 in ~x.

For the sake of convenience we will throughout this subsection call the
n + 1 dimensional vector ~α integer if its first n coordinates are integers.
Analogously, we call a point in Rn+1 integer if its first n coordinates are
integers.

Corollary 28. Consider the bottom βP0 of P0, consider the vector {aI}I
corresponding to it, that is aI = βP0(I). Consider the tropical polynomial
g = �I

(
aI ⊕ ~xI

)
. Then for each fj the polynomial g lies in a tropical ideal

generated by fj.

Proof. It is easier to give a proof in geometric terms. For each integer point
~x on the bottom of P0 consider the translation G(fj) + ~α~x touching P0 in ~x.
This translation corresponds to tropical multiplication of fj by monomial.
Then it is easy to see that all integer points on the bottom of P0 lie in the
union of G(fj) + ~α~x for all ~x and on the other hand all other integer points
of this union lie in P0. This union operation corresponds to the minimum
operation for polynomials.
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Lemma 29. Suppose the tropical system CN � ~y has a solution ~a.

(i) For the case of R there is a facet of P0 such that some hyperplane
containing it provides a solution to the tropical system F .

(ii) For the case of R∞ if there is ~x ∈ Zn such that βP0(~x) 6= ∞ and
ϕ~a(~x) 6= ∞ then there is a facet of P0 such that some hyperplane
containing it provides a solution to the tropical system F .

Proof. Consider the functions ϕ~a and βP0 . Since the polynomial correspond-
ing to βP0 is in the ideal, generated by F and its degree is at most N , the
vector {βP0(I)}I is a tropical linear combination of rows of CN . Thus ~a is a
solution to the corresponding tropical linear equation. Since in both cases R
and R∞ there is ~x such that βP0(~x) 6=∞ and ϕ~a(~x) 6=∞, we have that there
is a singularity point in Sing(ϕ~a, βP0). Further proof works for both cases.

For each point ~x ∈ Sing(ϕ~a, βP0) consider the lowest dimension of the
facets of P0 to which the point (~x, βP0(~x)) belongs and further on denote by
~x the point in Sing(ϕ~a, βP0) which maximizes this minimal dimension. In
simple words, we look for a singularity point in the most general position
w.r.t. the polytope P0. Let us denote the minimal dimension facet of P0

containing (~x, βP0(~x)) by Q0. Below we show that this is precisely the facet
we are looking for.

Consider some polynomial fj . By Lemma 27 there is a vector ~α such
that G(fj) + ~α touches P0 in (~x, βP0(~x)). Denote by g the function with the
graph G(fj) + ~α. Then, in particular, we have that ~x ∈ Sing(βP0 , g). Since
we also have ~x ∈ Sing(ϕ~a, βP0) clearly we have ~x ∈ Sing(ϕ~a, g) (indeed, since
~x minimizes functions g − βP0 and βP0 − ϕ~a, it also minimize their sum).
However, recall that ~a is a solution to the system CN � ~y and g corresponds
to one of the rows of CN . Thus |Sing(ϕ~a, g)| > 2. But any point minimizing
g − ϕ~a should also minimize g − βP0 and βP0 − ϕ~a (since ~x does), thus any
point in Sing(ϕ~a, g) should be also in both Sing(ϕ~a, βP0) and Sing(βP0 , g). In
particular, there is at least one more point except ~x in Sing(βP0 , g) and this
means that there is another common point of G(fj) + ~α and the bottom of
P0.

Since G(fj) + ~α touches P0 in ~x we have that any other common point
lies in a facet of P0 incident to (~x, βP0(~x)). If it does not lie in the facet Q0,
then the minimal dimension facet containing this point has larger dimension
than the dimension of Q0 and we get the contradiction with the maximality
property of (~x, βP0(~x)). Therefore there are at least two common points
of G(fj) + ~α and Q0. Hence any hyperplane H going through Q0 and not
intersecting the interior of P0 is singular to the function corresponding to
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G(fj) + ~α and thus provides a solution to fj . Since the argument above
works for all fj and Q0 does not depend on fj , we get that H is singular to
all f1, . . . , fk and thus defines a solution to the system F .

From Lemma 29(i) Theorem 4(i) follows immediately.

4.5 Examples

First we provide several examples illustrating why the case of n > 1 is
substantially harder than the case n = 1.

Stepped pyramid In the case n = 1 it was actually shown in [8] that if
we consider any solution to the infinite Cayley system then if we look onto
the large enough coefficients, then in some natural sense they already form
linear solution, thus directly providing the solution to the polynomial system.
This is not the case already for two variables.

For this consider the polynomial f with

G(f) = {(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 3, 0),

(1, 0, 0), (1, 1,−1), (1, 2,−1), (1, 3, 0),

(2, 0, 0), (2, 1,−1), (2, 2,−1), (2, 3, 0),

(3, 0, 0), (3, 1, 0), (3, 2, 0), (3, 3, 0)}.

Its convex hull is an upturned square right pyramidal frustum.
Consider the polynomial system consisting of one polynomial f . For this

system we will construct a solution which does not become linear no matter
how far away we go from the origin.

It is easier to describe the continuous version of the solution. The discrete
solution is defined by integer points of continuous solution.

Let Sk = {(x, y)|10(k − 1) 6 |x|, |y| 6 10k} for k = 1, 2, . . .. For each
odd k we let the solution g : R2 → R to be constant on Sk. For each even k
we divide Sk into 4 regions by lines y = x and y = −x. On the region with
x > |y| we let g(x, y) = ~x + C, where C will be chosen later. Analogously
for x 6 −|y| we let g(x, y) = −x+ C, for y > |x| then g(x, y) = y + C and
for y 6 −|x| let g(x, y) = −y + C. We choose constants in these linear and
constant functions in such a way that g is linear on the whole real plane. It
is not hard to see that the graph of g is singular to the convex hull of G(f).
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Stripes Now we provide an example that the solution of Cayley system can
behave wildly. Specifically, we describe almost everywhere “non-continuous”
solution, that is the solution having arbitrary large gaps in the neighboring
points. For this example also 2 variables are enough, that is n = 2.

Consider the polynomial f with

G(f) = {(0, 0, 0), (0, 1,−1), (0, 2, 0),

(1, 0, 0), (1, 1,−1), (1, 2, 0)}.

The shape of the convex hull of this polynomial is a prism.
Consider the set of points described by the following function g : R2 → R:

g(x, y) =

{
x, if by/2c is even;

−x, if by/2c is odd.

It is not hard to see that the graph of g is singular to the convex hull of
G(f). Thus the graph of g is a solution to the Cayley system corresponding
to f . On the other hand note that the gaps in the graph of g grows with the
growth of x.

4.6 Tropical Dual Nullstellensatz over R∞
In this section we prove the following more precise version of Theorem 4(ii).

Theorem 30. In the semiring R∞ the system of tropical polynomials F =
{f1, . . . , fk} of degree at most d and n variables has a solution iff the non-
homogeneous Cayley tropical linear system CN for

N = 2(n+ 2)2k(2d)min(n,k)+2

has a solution.

Proof. Suppose we have a system of tropical polynomials F and consider the
corresponding non-homogeneous Cayley linear system CN � ~y. If F has a
solution then trivially CN � ~y also has a solution.

Suppose in the other direction that we have a solution ~a to the system
CN � ~y. If for the enveloping polytope P0 there is x ∈ Zn such that
βP0(~x) 6=∞ and ϕ~a(~x) 6=∞ then we can directly apply Lemma 29(ii). But
initially we know only that ϕ~a(~0) 6=∞ and it can be that βP0(~0) =∞ (and
there is no translation P0 + ~α of P0 within Zn+ such that βP0+~α(~0) 6= ∞).
Below we describe how we solve this problem.
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Consider the column of CN corresponding to the constant monomial. If
it has no finite entry, the Cayley system has a solution — just an infinite
solution. At the same time the system of polynomials also has a solution

— again, just an infinite solution. Indeed, note that no polynomial in the
system in this case has constant term. So, this case is simple and further we
can assume that the column of CN corresponding to the constant monomial
has a finite entry.

This means that there is a polynomial in F with a finite constant term.
For simplicity of notation assume that it is f1.

Now given a system of polynomials F we construct the system of polyno-
mials F ′ such that

1. all polynomials in F ′ have finite free coefficients;

2. F ′ has a solution iff F also has a solution.

The idea is that for enveloping polytope Q for the system F ′ it is true that
βQ(~0) 6=∞.

In the proof we will need the following value

g = max
16i1,i26k

max
~x∈Domϕi1

, ~y∈Domϕi2

|ϕi1(~x)− ϕi2(~y)|. (5)

Informally, it measures the maximal joint variation of ϕ-functions for the
system F .

We also need to assume that minI ϕi(I) = 0 for all i. We can do this
since adding a constant to each coefficient of a polynomial does not change
singularity.

To construct F ′ we first for all i = 2, . . . , k and j = 1, . . . , n define
polynomials of the following form:

Mij = (−C)� xαj � fi.

Here parameters C and α can be fixed in the following way: C =
2g(4d)2min(n,k)+2, α = (4d)min(n,k)+2.

Next for all i > 1 we define

f ′i = f1 ⊕Mi1 ⊕Mi2 ⊕ . . .⊕Min. (6)

Also for each i = 2, . . . , k and j = 1, . . . , n we introduce the polynomial

f ′ij = f1 ⊕Mi1 ⊕Mi2 ⊕ . . .⊕ (−1)�Mij ⊕ . . .⊕Min.
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That is, the difference between f ′i and f ′ij is that in the latter the coefficient
of xαj � fi is −C − 1 instead of −C. We let

F ′ = {f1} ∪ {f ′i | i = 2, . . . , k} ∪ {f ′ij | i = 2, . . . , k, j = 1, . . . , n}.

Overall, F ′ consists of K = (n+ 1)(k − 1) + 1 polynomials of degree at most
α+ d.

The tropical summands of the sum (6) we will call below by components
of the polynomial f ′i . We specifically distinguish f1-component. All other
components are called fi-components. When we need to distinguish them,
the component Mij will be called the j-th component.

Suppose CN � ~y has a solution ~a. Consider the non-homogeneous Cayley
matrix C ′N corresponding to F ′. Note that all polynomials in F ′ are tropical
algebraic combinations of polynomials in F . Thus the rows of C ′N are tropical
linear combinations of the rows of CN . Hence ~a is a solution of C ′N � ~y. Now
we can consider the polytopes P1, P

′
2 . . . , P

′
K for the polynomials in the system

F ′ and consider the enveloping polytope P ′0.. Note that for each of functions
f ∈ F ′ we have ϕf (~0) 6= ∞. Thus the same is true for the corresponding
polytopes and for the enveloping polytope P ′0 as well. Therefore Lemma 29(ii)
is applicable and we obtain a solution b = (−b1, . . . ,−bn) ∈ Rn for F ′. Note
that we have N = (n+ 2)K(α+ d) 6 (n+ 2)2k2(4d)min(n,k)+2.

However we need to show the Nullstellensatz for the original system F .
So, it is only remains to prove that F has a solution iff F ′ has a solution.

One direction is simple: since F ′ consists of algebraic combinations of
polynomials of F , any solution for F is also a solution for F ′.

Thus it is left to show the following lemma.

Lemma 31. If there is a solution to the system F ′ then there is a solution
to the system F .

The proof of this lemma has a geometric intuition, but it is not easy to
see it behind the technical details. So, before proceeding with the proof we
would like to explain this intuition in the case of n = 2 and k = 3. After
that we provide a formal proof for the general case.

Informal proof for n = 2 and k = 3. Informally it is convenient to think
of constants C and α as of very large numbers.

We first review the construction of F ′. Recall that we assume that f1 has
finite constant term and for both polynomials f2 and f3 we introduce new
polynomials f ′2 and f ′3. It is instructive to look at the graph of the function
ϕf ′2 . It consists of the graph of ϕ1 and of two copies of the graphs of ϕ2
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translated far away along each of the axes x1 and x2 and far below along
the vertical axis. To explain the idea behind this construction we first note
that since here we consider only the singularity with the hyperplane, it does
not matter whether we consider the graph of the function ϕf ′2 or the bottom
of the corresponding polytope. The idea behind the construction of f ′2 is
that when we consider a convex hull of the graph of ϕf ′2 and construct the
corresponding polytope P ′1, all points of the polytope P1 (corresponding to
ϕ1) except possibly the points on x1-axis and x2-axis go to the interior of
the polytope P ′1.

We will explain presence of the polynomials f ′21, f
′
22, f

′
31, f

′
32 in F ′ once

we need them.
Next we assume that there is a solution ~b = (−b1,−b2) to the system F ′.

Recall, that the solution corresponds to the plane χ~b(~x) = b1x1 + b2x2 (in
3-dimensional space) singular to ϕf for all polynomials f ∈ F ′. We would
like to deduce that this hyperplane is also singular to functions ϕ1, ϕ2, ϕ3,
corresponding to polynomials f1, f2, f3. We already know that it is singular
to ϕ1 since f1 ∈ F ′. To show that it is singular to ϕ2 and ϕ3 we look closer
at polynomials f ′2 and f ′3. Without loss of generality let us consider f ′2.

We know that our hyperplane has at least two singular points with ϕf ′2 .
First of all we would like to localize them: it would not be helpful if two
singular points belong to different components of ϕf ′2 . Thus, we would like to
show that there are two singular points in one of the components of ϕf ′2 . We
note that if there is at least one singular point in f1-component, then there
are two singular points there. It follows from the fact that the hyperplane is
singular to ϕ1. The case when the hyperplane has only one singular point
in one of f2-components is precisely the case, where we need polynomials
f ′21, f

′
22. Indeed, it is not hard to see that in this case one of these polynomials

has only one singular point overall, and thus the hyperplane does not provide
a solution to it.

Thus we have that each of the polynomials f ′2 and f ′3 has at least two
singular points in the same component. If these are f2-component and f3-
component respectively, then we are done: clearly, the hyperplane is singular
to both ϕ2 and ϕ3. Thus it is left to consider the case when one of the
polynomials (or both) has two singular point in f1-component.

Here we encounter a serious obstacle. It can be that for the polynomials
f ′2 and f ′3 (or for one of them) the singular points are in f1-component and
the hyperplane is not singular to ϕ2 and ϕ3. For example, assume that ϕ2

and ϕ3 have no finite points on the x1-axis. Then the hyperplane having two
singular points with ϕ1 on the x1-axis and decreasing dramatically along the
x2-axis provides a solution to F ′, but not to F .
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Thus it is not always true that the solution F ′ constitutes a solution to
F . However, in the example described above we can let b2 = −∞ obtain the
solution for F .

It turns out that this trick with some additional work can fix the proof.
Indeed, suppose that singular points of the hyperplane and, say, ϕf ′2 are in
f1-component. Then it is not hard to see that all these singular points lie
on one of the axes x1 or x2. Indeed, if there is a point with both positive
coordinates, then it lies in P1 which is inside of P ′1 and thus this point cannot
be a singular point. If on the other hand, there are two points, one with
positive x1-coordinate and the other with positive x2-coordinate, then the
middle point between these two points has both positive coordinates and
due to the convexity is still in P1.

Thus we can further assume that all singular points for f ′2 lie on one
of the axes. Without loss of generality assume that it is x1-axis. Since
there are at least two singular points on this axis in f1-component we have
that b1 is not too large and not too small, that is it is bounded by some
value depending only on f1 (and not on C and α). Since we are allowed to
choose C as large as we want, this in particular means that Dom(ϕ2) does
not intersect x1-axis. Otherwise the singular point of the hyperplane with
ϕf ′2 would be in 1-component and not in f1-component. Thus to obtain the
solution of the system {f1, f2} we can just let b2 = −∞.

We would like to stress here that at this point we have shown the theorem
for the case k = 2. However we need one more observation for the case k = 3.

Consider the other polynomial f ′3. If the domain of ϕ3 also does not
intersects the x1-axis, then like before we can just let b2 = −∞.

Thus we can assume that there is a point in Dom(ϕ3) on the x1-axis,
denote this point by ~y. Then just like in the case of ϕf ′2 the singular points of
ϕf ′3 are not in f1-component. Thus they are in some f3-components and thus
χ~b is singular to ϕ3 itself. But we need to set b2 = −∞ and the singularity
might not survive during this. Consider the set Sing(χ~b, ϕ3). If there are at
least two points in this set on x1-axis, then once again we can let b2 = −∞
and obtain the solution to F . Thus, we can assume that there is only one
singular point on x1-axis. Denote this point by ~z.

Consider both points ~y and ~z on the two-dimensional grid. To get from
~y to ~z in this grid we have to make several steps along x1-axis in positive or
negative direction and at least one step in positive direction along x2-axis.
During this path the value of χ~b can not decrease substantially. Indeed, since
~z is a singular point the difference of the values of χ~b is lower bounded by the
difference of the value of ϕ3 in the same points. Thus the maximal possible
decrease along the path is upper bounded by some value depending only on
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ϕ3 and thus only on f3. Since the value of b1 is also bounded from above
and from below from this we can deduce that b2 is not too small, that is it is
lower bounded by some value depending only on F .

Now choosing C and α large enough we can get a contradiction with the
fact that the singular points of ϕf ′2 are in f1-component: both b1 and b2 are
not two small and if we place f2 components low enough the singular point
will be in one of these components.

This proof (with some additional technical tricks) can be generalized to
the general case.

Next we proceed to the formal proof of Lemma 31.

Proof of Lemma 31. The idea is to consider the solution of F ′ and replace
some of its coordinates by infinity. Below we describe how to choose the
appropriate set of these coordinates. The construction is rather straightfor-
ward: we only keep the coordinates we have to keep and the others replace
by infinity.

Recall that ~b = (−b1, . . . ,−bn) ∈ Rn is a solution of F ′. As discussed in
Section 4.1 this means that the hyperplane χ~b(~x) =

∑
i bixi is singular to all

ϕf for f ∈ F ′.
Note that for each polynomial f ′i there are two singularity points in the

same component. Indeed, if this is not the case consider a j-component
with one singularity point and consider the polynomial f ′ij . It has only one
singularity point which is a contradiction (the same arguments works for
f1-component: we should consider the polynomial f1 in this case).

We will need one more notation: for the set T ⊆ Rn and for the set
S ⊆ [n] let T

∣∣
S

be the set of points ~x ∈ T such that xj = 0 for all j /∈ S.
We will define the sequence of sets of coordinates in the following iterative

way. First consider the set Sing(χ~b, ϕ1) of singularity points for χ~b and ϕ1.
We let j ∈ S0 iff there is ~x ∈ Sing(χ~b, ϕ1) such that xj 6= 0. Suppose we
have defined Sl by recursion on l ≥ 0. If there is a polynomial fi ∈ F such

that
∣∣Sing(χ~b, ϕi)

∣∣ > ∣∣∣Sing(χ~b, ϕi)
∣∣
Sl

∣∣∣ and Dom(ϕi)
∣∣
Sl
6= ∅ then we define

Sl+1 letting Sl ⊆ Sl+1 and j ∈ Sl+1 \Sl iff there is ~x ∈ Sing(χ~b, ϕi) such that
xj 6= 0. Thus we obtain the next set Sl+1.

This procedure results in a sequence S0, S1, . . . Sr and in the corresponding
sequence of polynomials g1, g2, . . . , gr, where for each l we have gl ∈ F . For
the sake of convenience denote g0 = f1. Note that r 6 k, since each
polynomial from F can appear in the sequence at most once. Also r 6 n,
since each Sl is a subset of [n] and each next set is larger than the previous
one. Thus r 6 min(n, k).
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We show the following claim.

Claim 1. If there is j ∈ Sl such that bj 6 −2g(4d)l then there is j′ ∈ Sl
such that bj′ > |bj |/(4d)l+1.

Informally, if there is a very small bj , then there is rather large bj′ .

Proof. We argue by induction on l.
For the case of S0 consider the coordinate j with bj 6 −2g. In this

case consider ~x ∈ Sing(χ~b, ϕ1) such that xj 6= 0 (there is such an ~x by the

definition of S0). Consider χ~b(~x)− χ~b(~0) =
∑

p xpbp. Since ~x ∈ Sing(χ~b, ϕ1)

by Lemma 18 χ~b(~x)− χ~b(~0) > ϕ1(~x)− ϕ1(~0) > −g. Note that for all p we
have xp > 0 and xj > 0, so∑

p 6=j
xpbp > −xjbj − g > −bj − g > −bj/2.

On the other hand note that∑
p 6=j

xpbp 6 max
p 6=j

bp
∑
p 6=j

xp 6 dmax
p 6=j

bp.

Thus there is j′ such that bj′ > −bj/2d.
For the induction step consider the polynomial gl. If j ∈ Sl−1, we are

done by induction hypothesis. Suppose j /∈ Sl−1. By the definition of gl we
have the following

1. There is ~y ∈ Dom(ϕgl)
∣∣
Sl

. In particular, yj = 0.

2. There is a singular point ~x ∈ Sing(χ~b, ϕgl) such that xj 6= 0.

Consider χ~b(~x)− χ~b(~y) =
∑

p(xp − yp)bp. Due to the singularity of ~x we
have χ~b(~x)−χ~b(~y) > ϕgl(~x)−ϕgl(~y) > −g. Just like in the base of induction
we have ∑

p 6=j
(xp − yp)bp > −(xj − yj)bj − g > −bj − g > −bj/2.

Let us break the sum on the left into two parts∑
p6=j,p∈Sl−1

(xp − yp)bp +
∑

p6=j,p/∈Sl−1

(xp − yp)bp > −bj/2.
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Note that in the second sum (xp − yp) is nonnegative, since yp = 0. Since∑
p6=j
|xp − yp| 6 2d

there is either p /∈ Sl−1 such that bp > −bj/4d, or p ∈ Sl−1 such that
|bp| > −bj/4d. In the first case we are done immediately and in the second
case we are done by induction hypothesis.

After this procedure we fix all coordinates of solution not in Sr to ∞,
that is we let bj = −∞ if j /∈ Sr, thus obtaining the new vector ~b′.

We claim that this results in the solution of F .
Indeed, suppose there is a polynomial fi ∈ F such that there is only one

~z ∈ Sing(χ~b′ , ϕi). Clearly, ~z ∈ Rn
∣∣
Sr

. Moreover, no other point can be a
singular point of the original hyperplane χ~b with ϕi. Indeed, other singular
points can be only outside Rn

∣∣
Sr

and if there is at least one, then following
our construction we would have added some more coordinates to Sr. Thus
there is only one singular point in Sing(χ~b, ϕi) and as a result singular points
of χ~b with ϕf ′i are in f1-component. Let ~y ∈ Sing(χ~b, ϕf ′i ) be one of these

singular points. Note that by the definition of S0 we have ~y ∈ Rn
∣∣
S0
⊆ Rn

∣∣
Sr

.
We are going to get a contradiction.

Let m = minj∈Sr bj and M = maxj∈Sr bj . Consider j and j′ such that
bj = m and bj′ = M . Consider j′-component of f ′i and let ~x be the translation
of ~z in this component, that is ~x = ~z + α · ~ej′ . Since ~z ∈ Rn

∣∣
Sr

and j′ ∈ Sr
we have ~x ∈ Rn

∣∣
Sr

.
Our goal is to show that χ~b(~x) − χ~b(~y) > ϕf ′i (~x) − ϕf ′i (~y) which will

contradict Lemma 18 since ~y ∈ Sing(χ~b, ϕf ′i ).
Note that

ϕf ′i (~x)− ϕf ′i (~y) = ϕf ′i (~z + α · ~ej′)− ϕ1(~y) = (ϕi(~z)− C)− ϕ1(~y) 6 −C + g,

where the second equality follows from the definition of f ′i and the last
inequality follows from the definition of g (5). Thus it is enough to show
that χ~b(~x)− χ~b(~y) > −C + g.

Note now that

xj′ − yj′ = xj′ − zj′ + zj′ − yj′ > α− 2d

and ∑
p 6=j′
|xp − yp| 6 2d.
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Consider the sum

χ~b(~x)− χ~b(~y) =∑
p 6=j′,xp−yp>0

(xp − yp)bp +
∑

p 6=j′,xp−yp60

(xp − yp)bp + (xj′ − yj′)bj′ >

m ·
∑

p 6=j′,xp−yp>0

(xp − yp) +M ·
∑

p 6=j′,xp−yp60

(xp − yp) + (xj′ − yj′) ·M.

If M 6 0, then by Claim 1 we have m > −2g(4d)r and thus M > −2g(4d)r.
We have

χ~b(~x)− χ~b(~y) >

− 2d2g(4d)r + 0− 2g(4d)r(α− 2d) = −α2g(4d)r.

If M > 0 we have

χ~b(~x)− χ~b(~y) >

m ·
∑

p 6=j′,xp−yp>0

(xp − yp) + (α− 4d)M.

If m > −2g(4d)r this sum is greater than −2g2d(4d)r.
If m 6 −2g(4d)r then by Claim 1 M > −m/(4d)r+1 and we have

χ~b(~x)− χ~b(~y) >

m2d− (α− 4d)m/(4d)r+1 > 0.

In all these cases χ~b(~x) − χ~b(~y) is greater than −C + g and we have a
contradiction with the singularity of ~y.

This finishes the proof of Theorem 30 and thus Theorem 4(ii).

4.7 Lower Bounds

In this subsection we provide examples showing that our bounds on N in
Theorem 4 are not far from optimal. At the same time we provide the same
lower bounds for Theorems 6, 8, 10.

Lower bound for Theorem 4(i) First we show a lower bound for the
case of R. Namely for any d > 2 we provide a family F of n+ 1 polynomials
of degree at most d such that F has no solution, but the corresponding
Cayley matrix of size (d− 1)(n− 1) has a solution.
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The construction is an adaptation of the standard example for lower bound
for classical Nullstellensatz due to Lazard, Mora and Philippon (unpublished,
see [3, 12]).

Consider the following set F of tropical polynomials

f1 = 0⊕ 0� x1,
fi+1 = 0� x�di ⊕ 0� xi+1, i ∈ [n− 1]

fn+1 = 0⊕ 1� xn.

It is not hard to see that this system has no solutions. Indeed, if there is a
solution, then from f1 we can see that x1 = 0, then from f2 we can see that
x2 = 0 etc., from fn we can see that xn = 0. However from fn+1 we have
that xn = −1 which is a contradiction.

Thus it remains to show the Cayley tropical system with the matrix
C(d−1)(n−1) corresponding to the system F has a solution.

Recall that the columns of C(d−1)(n−1) correspond to monomials. We
associate an undirected graph G to the matrix C(d−1)(n−1) in a natural
way. The vertices of G are monomials in variables x1, . . . , xn of degree at
most (d − 1)(n − 1) (or, which is the same, the columns of C(d−1)(n−1)).
We connect two monomials by an edge if they are presented in the same
polynomial of the form ~xIfi for i ∈ {1, . . . , n}. Or, to state it the other way,
we connect two monomials if there is a row of C(d−1)(n−1) not corresponding
to a polynomial fn+1 and such that elements in the columns corresponding
to these monomials are both finite in this row.

We define the weight w(m) of a tropical monomial m in the following way.
First, w(xi) = di−1 for all i = 1, . . . , n. Second, for all monomials m1 and
m2 we let w(m1�m2) = w(m1) +w(m2). That is, if m = x�a11 � . . .� x�ann

then w(m) = a1 + a2d+ . . . and
n−1.

It turns out that the following lemma holds.

Lemma 32. If for two monomials m1 and m2 we have w(m1) > kdn−1 and
w(m2) < kdn−1 for some integer k, then m1 and m2 are not connected in G.

Proof. Note that if two monomials are connected by an edge corresponding
to one of the polynomials f2, . . . , fn, then their weights coincide. If they are
connected by an edge corresponding to f1, then their weights differ by 1.

Note that for any k each monomial of weight kdn−1−1 has degree at least
(k−1)+(d−1)(n−1). Indeed, consider such a monomial m = x�a11 �. . .�x�ann

of minimal degree. If there is i = 1, . . . , n− 1 such that ai > d, then we can
substitute ai by ai − d and ai+1 by ai+1 + 1 and obtain another monomial
of the same weight but smaller degree. Thus (a1, . . . , an−1) corresponds to

35



d-ary representation of the residue of kdn−1 − 1 modulo dn−1. So for all
i = 1, . . . , n− 1 we have ai = d− 1 and thus an = k − 1.

Due to the restriction on the degree in the graph G there is only one
monomial of weight dn−1 − 1 and no monomials of weight kdn−1 − 1 for
k > 1. Moreover, the unique monomial of weight dn−1 − 1 has maximal
degree (d − 1)(n − 1) and thus is not connected to a monomial of higher
weight by an edge.

From all this the lemma follows. Indeed, if monomials m1 and m2 are
connected, then on the path between them there is an edge connecting
monomials of weights kdn−1− 1 and kdn−1. However, as we have shown, this
is impossible.

Now we are ready to provide a solution to the Cayley system. For a
monomial of weight kdn−1+s, where s < dn−1, set the corresponding variable
to k. Note that due to Lemma 32 if two monomials are connected, then
the values of the corresponding variables are the same. Thus for the rows
corresponding to polynomials f1, . . . , fn are satisfied. Rows corresponding
to fn+1 are satisfied since the weights of monomials differ by precisely dn−1.

Remark. For the case of min-plus polynomials a straightforward adaptation
works. Indeed, since in each polynomial there are only two monomials, the
only way to satisfy them is to make their values equal. Thus it is enough to
consider a system of polynomials F

0 = 0� x1,
0� x�di = 0� xi+1, i ∈ [n− 1],

0 = 1� xn.

Lower bound for Theorem 4(ii) Now we show a lower bound for the
case of R∞. The lower bound here is much stronger, which is completely
correlated with the weakness of the upper bound for the case R∞.

Consider the following system F of tropical polynomials of variables
x1, . . . , xn, y.

f1 = 0� x1 � y ⊕ 0,

fi+1 = 0� x�di ⊕ 0� xi+1, for i = 1, . . . , n− 1,

fn+1 = 0� x�dn−1 ⊕ 1� xn.
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This system clearly has no solutions. Indeed, we can consecutively show
that all coordinates of a solution should be finite and then the polynomials
fn and fn+1 give a contradiction.

Now consider non-homogeneous Cayley system Cdn−1−1. We are going
to construct a solution for it. For a tropical monomial xa11 . . . xann y

b let its
weight be

a1 + da2 + d2a3 + . . .+ dn−1an

Note that the degree in y is not counted. Consider monomials whose y-degree
coincides with their weight and let the corresponding solution coordinates be
equal to 0. For all other monomials let the corresponding solution coordinates
to be equal to∞. Consider the graph on the coordinates of solution in which
two coordinates are connected if the corresponding monomials appear in the
same row of Cayley matrix Cdn−1−1. It is not hard to see that all monomials
on which our solution is finite constitute a connected component of the graph,
containing zero coordinate. Moreover, due to the constraint on the size of
the matrix, no monomials in this component contain xn variable. Thus, all
rows of the Cayley matrix are satisfied.

Remark. For the min-plus case note that the same observation as in the case
of R works. Just consider the system of min-plus polynomials

0� x1 � y = 0,

0� x�di = 0� xi+1, for i = 1, . . . , n− 1,

0� x�dn−1 = 1� xn.

5 Tropical polynomial systems vs. Min-plus poly-
nomial systems

In this section we show that there is a tight connection between systems of
min-plus polynomials and systems of tropical polynomials. We will later use
this connection to obtain min-plus dual Nullstellensatz.

The reduction in one direction is simple.

Lemma 33. Over R for any given tropical polynomial system we can con-
struct a system of min-plus polynomials over the same set of variables and
with the same set of solutions. The same is true for the domain R∞.

Proof. Let A be some tropical polynomial system. For each of its polynomials
we construct a min-plus polynomial system over the same set of variables
which is equivalent to this tropical equation.
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For this let
min{L1, L2, . . . , Lm} (7)

be one of the polynomials of the system A, where Lis are monomials.
It is easy to see that the fact that the minimum in the expression above

is attained at least twice is equivalent to the fact that for any i = 1, . . . ,m it
is true that

min{L1, ..., Li−1, Li, Li+1, ..., Lm} =

min{L1, ..., Li−1, Li+1, ..., Lm}.

These equations are already in min-plus form and thus we have that any
tropical polynomial is equivalent to a system of min-plus polynomials. To get
a min-plus system equivalent to the tropical system we just unite min-plus
systems for all polynomials of A.

Note that exactly the same analysis works for the case R∞.

In the reverse direction we do not have such a tight relation, but the
reduction we show below still preserves many properties.

We first for a given min-plus polynomial system A construct a corre-
sponding tropical polynomial system T and then prove the relation between
A and T .

Let us denote variables of A by (x1, . . . , xn). Our tropical polynomial
system for each variable xi of A will have two corresponding variables xi and
x′i, thus the set of variables of T will be (x1, . . . , xn, x

′
1, . . . , x

′
n).

Polynomial system T consists of polynomials of 3 types.

1. For each i = 1, . . . , n we add to T polynomial

xi ⊕ x′i.

2. Let minjMj(~x) = minl Ll(~x) be arbitrary polynomial of A. For each l
we add to T polynomial of the form

min
(
M1(~x),M1(~x

′), . . . ,Mk(~x),Mk(~x
′), Ll(~x)

)
3. Symmetrically for each min-plus polynomial minjMj(~x) = minl Ll(~x)

in A and for each j we add to T tropical polynomial

min
(
L1(~x), L1(~x

′), . . . , Lk(~x), Lk(~x
′),Mj(~x)

)
.
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The construction of T is over, note that the maximal degree of polynomial
in T is equal to the maximal degree of polynomial in A. Now we are ready
to show how A and T are related.

Lemma 34. There is an injective linear transformation H : Rn∞ → R2n
∞ such

that all solutions of T lie in Im(H) and the image of the solutions of A
coincides with the solution set of T . The same is true for the semiring R.

Proof. For H just consider a transformation H(~a) = (~a,~a) for all ~a.
Note that the polynomial of T of the first type xi ⊕ x′i is satisfied iff

xi = x′i. Thus all solutions of T lie in the image of H.
If there is a solution ~a to A then it is easy to see that its image (~a,~a) under

H satisfies all polynomials of the second and the third type in T . Indeed,
since minjMj(~a) = minl Ll(~a), then there is j such that Mj(~a) = minl Ll(~a).
Then the minimum in the corresponding tropical polynomials of the second
type will be attained in monomials Mj(~x) and Mj(~x

′). The symmetric
argument works for tropical polynomials of the third type.

If there is a solution of T , we already noted that it has the form (~a,~a).
Then it is not hard to see that for each min-plus polynomial of A we have
minjMj(~a) = minl Ll(~a). Indeed, since corresponding tropical polynomials
of the second type are satisfied, we have that minjMj(~a) 6 minl Ll(~a). On
the other hand, tropical polynomials of the third type guarantee that

min
j
Mj(~a) > min

l
Ll(~a)

.
The proof works in both semirings R and R∞.

In particular, we have that tropical prevarieties and min-plus prevarieties
are topologically equivalent.

6 Min-plus Dual Nullstellensatz

In this section we prove Theorem 6.
For this we will apply the results of the previous section to tropical dual

Nullstellensatz.
We present the proof for the semiring R. Exactly the same proof works

also for R∞.
As for the case of tropical dual Nullstellensatz, one direction of Theorem 6

is simple. If the system F has a solution, then Cayley min-plus linear system
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CN � ~y = DN � ~y also has a solution: just let each coordinate of ~y to be
equal to the value of the corresponding monomial under the solution of F .

For the other direction, suppose the system CN � ~y = DN � ~y has a
solution ~a. For the min-plus polynomial system F consider the corresponding
tropical polynomial system T from the previous section. Let us denote by

C
(T )
N its Cayley matrix. We will show that the tropical linear system C

(T )
N �~z

has a solution. From this by Theorem 4 it follows immediately that T has a
solution, and from this by Lemma 11 we have that F has a solution.

Thus it is left to construct a solution to the tropical system C
(T )
N �~z based

on the solution to the min-plus system CN � ~y = DN � ~y. The construction
is straightforward: for each monomial M(~x, ~x′) we break it into two parts
M1(~x)M2(~x

′) depending on variables ~x and ~x′ respectively and we let the
variable of ~z corresponding to M(~x, ~x′) to be equal to the variable of ~y
corresponding to the monomial M1(~x)M2(~x).

Now we have to check that all equations of C
(T )
N � ~z are satisfied. This

is obviously true for the equations corresponding to the polynomials ~xI �
~x′I
′
(xi ⊕ x′i), since we clearly assign the same value to variables of both

monomials. For equations of the second type we consider the corresponding
equation in CN � ~y = DN � ~y. Since the minimum in them is attained in

M -type monomial, in the equation of C
(T )
N � ~z it will be attained in two

corresponding M -type monomials. The same works for polynomials of the
third type.

7 Primary Tropical and Min-Plus Nullstellensätze

Now we will deduce primary forms of tropical and min-plus Nullstellensätze.
We start with Theorem 8 which we restate for convenience.

Theorem 8 (Restated from p. 11). Consider the system of min-plus poly-
nomials F = {f1 = g1, . . . , fk = gk} of n variables. Denote by di the degree
of the polynomial fi = gi and let d = maxi di.

Over semiring R the system F has no solution iff we can construct an
algebraic min-plus combination f = g of degree at most

N = (n+ 2) (d1 + . . .+ dk)

of them such that for each monomial M = x�j11 � . . .� x�jnn its coefficient
in f is greater than its coefficient in g. In algebraic combination f = g we
allow to use not only polynomials fi = gi, but also gi = fi.
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Over semiring R∞ the system F has no solution iff we can construct an
algebraic combination f = g of degree at most

N = poly(n, k) (2d)min(n,k)

of them such that for each monomial M = x�j11 � . . .� x�jnn its coefficient
in f is greater than its coefficient in g and with additional property that the
constant term in g is finite.

Proof. We will use the min-plus linear duality for the proof of this theorem.
By Theorem 6(i) the system of polynomials F has no solution over R iff

the corresponding Cayley linear system

CN � ~y = DN � ~y

has no finite solution. This system is equivalent to the system of min-plus
inequalities (

CN
DN

)
� ~x 6

(
DN

CN

)
� ~x.

By Lemma 11 the fact that this system has no finite solution is equivalent
to the fact that the dual system

(
DT
N CT

)
�
(
~y
~z

)
<
(
CT DT

)
�
(
~y
~z

)
has no solutions in Rn∞ (recall that we allow for both sides to be infinite in
some rows).

This system can be interpreted back in terms of polynomials. Indeed,
note that now the columns of the matrices correspond to the equations of F
multiplied by some ~xJ and rows correspond to some monomials ~xI . Thus the
solution to the system corresponds to the sum of equations of F multiplied
by some monomials, such that each coefficient of the sum on the left side
is smaller than the coefficient of the sum on the right side. The fact that
we allow both sides to be infinite in some row corresponds to the fact that
some monomials might be not presented in the sum. The fact that we allow
infinite coordinates in the solution correspond to the fact that we do not
have to use all polynomials of ~xIfj = ~xIgj in algebraic combination.

The proof of the second part of the theorem is almost the same. The only
difference is that this time we should use nonuniform Cayley system, which
results in a linear combination of polynomials with finite constant term.

Now we proceed to Theorem 10 which we also restate here for convenience.
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Theorem 10 (Restated from p. 12). Consider the system of tropical poly-
nomials F = {f1 = g1, . . . , fk = gk} of n variables. Denote by di the degree
of the polynomial fi and let d = maxi di.

The system F has no solution over R iff there is a nonsingular algebraic
combination g for it of degree at most

N = (n+ 2) (d1 + . . .+ dk)

The system F has no solution over R∞ iff there is a nonsingular algebraic
combination g for it of degree at most

N = poly(n, k) (2d)min(n,k)

and with finite constant monomial.

Proof. By Theorem 4(i) the system of polynomials F has no solution over R
iff the corresponding Cayley system

CN � ~y

has no finite solution.
By Lemma 13 this is equivalent to the fact that there is ~z ∈ Rn∞ such

that in each row of
CTN � ~z

the minimum is attained only once or is equal to ∞ and for each two rows
the minimums are in different columns. Recall, that each column in CTN
corresponds to the polynomial ~xJfj and rows corresponds to the monomials
~xI in these polynomials. Thus ~z corresponds to the algebraic combination of
polynomials of F and the properties of ~z described above are equivalent to
the singularity of the corresponding algebraic combination.

The proof of the R∞ case is completely analogous.

8 Linear duality in min-plus algebra.

8.1 Min-plus linear duality.

Below we show duality for min-plus linear systems.

Lemma 11 (Restated from p. 13). Let A,B ∈ Rn×m∞ be two matrices.
For any subset S ⊆ [m] exactly one of the following is true.
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1. There is a solution to A � ~x 6 B � ~x with finite coordinates xi with
i ∈ S.

2. There is a solution to BT � ~y < AT � ~y such that for some i ∈ S the
i-th coordinates of BT � ~y is finite.

For any subset S ⊆ [m] exactly one of the following is true.

1. There is a solution to A � ~x 6 B � ~x such that for some i ∈ S the
coordinate xi is finite.

2. There is a solution to BT � ~y < AT � ~y such that the i-th coordinates
of BT � ~y are finite for all i ∈ S.

This lemma is based on the interpretation of min-plus linear systems
as mean payoff games. Namely, given two matrices A and B in Rn×m∞ we
construct a mean payoff game G. This connection between min-plus linear
systems and mean payoff games was established in [2]. We present the details
for the sake of completeness.

The game G can be described as follows. We are given a directed complete
bipartite graph which vertices on the left side are r1, . . . , rn and vertices on
the right side are c1, . . . , cm. Left-side vertices corresponds to the rows of
matrices A and B and right-hand side vertices correspond to the columns of
the matrices. From each vertex ri there is an edge to each vertex cj labeled
by −aij . From each vertex cj there is an edge to each vertex ri labeled by
bij . For the number labeling an edge (v, u) we will use the notation w(v, u).
Thus w(ri, cj) = −aij and w(cj , ri) = bij . There are two players which we
call row-player and column-player and which in turns are moving a token
over a vertices of the graph. In the beginning of the game the token is placed
to some fixed vertex. On each turn one of the two players moves the token to
some other node of the graph. Each turn of the game is organized as follows.
If the token is currently in some node ri then the column-player can move
it to any node cj (column-player chooses a column). If, on the other hand,
the token is in some node cj then the row-player can move the token to any
node ri (row-player chooses a row). The game is infinite and the process of
the game can be described by a sequence of nodes v0, v1, v2, . . . which the
token visits. Note that v0 = r1. The column-player wins the game if

lim inf
n→∞

1

t

t∑
i=1

w(vi−1, vi) > 0. (8)

If this limit is negative then the row-player wins. If the limit is zero we
have a draw. If some entries of matrices A,B are infinite we assume that
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there are no corresponding edges in the graph. Alternatively, we can assume
that there are edges labeled by ∞ and the player following such edge losses
immediately.

The process of the game can be viewed in the following way. After each
move of column-player he receives from row-player some amount −aij and
after each move of row-player he receives from a column player some amount
−bij . The goal of both players is to maximize their amount. If one of them
can play in such a way that his amount grows to infinity as the game proceeds,
then he wins. And if the amounts of the players always stay between some
limits, then the result of the game is draw.

Note that if all entries of the matrices are finite the game have complete
bipartite graph and it is easy to see that this property gives that the winner
of the game does not depend on the starting position. The situation is
different in the case of matrices with entries from R∞.

For this game G the following property holds. It is implicit in [2].

Proposition 1. There is a finite solution to A� ~x 6 B � ~x iff the column
player has a non-losing strategy starting from any position.

There is a solution to A� ~x 6 B � ~x (possibly including ∞ coordinates)
iff the column player has a non-losing strategy starting from some position.

There is a solution to A� ~x 6 B � ~x (possibly including ∞ coordinates)
with finite coordinate xi iff the column player has a non-losing strategy
starting from position ci.

There is a solution to A� ~x 6 B � ~x (possibly including ∞ coordinates)
such that the j-th coordinate of A� ~x is finite iff the column player has a
non-losing strategy starting from position rj.

Proof. We always can add the same number to all coordinates of the solution.
In particular we have that there is a solution to A� ~x 6 B � ~x iff there is a
solution such that all xj > 0 and minj xj = 0.

We are going to show that the existence of such solution is equivalent
to the existence of non-losing strategy for the column-player. The proof is
very intuitive, but to make the intuition clear we have to explain what does
~x mean in terms of the game. To do this assume that column-player has a
non-losing strategy starting from some position. We know that if the player
follows the strategy, then his amount does not decrease to −∞. But it might
become negative at some moments of the game. For an arbitrary vertex cj
let us denote by x′j the minimal amount such that if the game starts in cj
and the column player has x′j in the beginning then he can never go below
zero. If in some position cj the column player has no winning strategy we
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naturally set x′j =∞. It turns out that the vector ~x′ is essentially a solution
to the min-plus linear system.

Indeed, suppose that the column-player has a non-losing strategy and
consider ~x′ corresponding to it. Assume that we are in position cj . Then
for each move of row-player (j, i) there is a move of the column-player (i, k)
such that the remaining amount of the column-player after these two moves
is at least x′k (so he does not go below his budget). That is for each i and j
there is a k such that x′j + bij − aik > x′k or

x′k + aik 6 x′j + bij .

And this precisely mean that A� ~x′ 6 B � ~x′.
Now, suppose that there is a solution ~x to min-plus linear system. Let

us give the column-player the amount xj if the game starts in cj . Then
reversing the argument we have that for each i and j there is a k such that
xj + bij − aik > xk. And this means that for each position cj and for each
move (i, j) of the row-player there is a move (i, k) of the column-player, such
that the debt of the column-player does not go below xk. Thus we have that
the column-player indeed does not go below the debts ~x and thus does not
lose the game if he chooses the described moves.

We have shown all statements except the last one. For this statement
note that the column player does not lose in the position rj if he has a move
to some position ci such that first, he does not lose immediately, and second,
he does not lose in position ci. Thus aij is finite and xi is finite. It is easy to
reverse this argument.

Next we show one more property which seems to be the only new step
towards min-plus linear duality.

Proposition 2. There is a finite solution to A� ~x < B � ~x iff the column
player has a winning strategy starting from any position.

There is a solution to A� ~x < B � ~x iff the column player has a winning
strategy starting from some position.

There is a solution to A � ~x < B � ~x with finite coordinate xi iff the
column player has a winning strategy starting from position ci.

There is a solution to A � ~x < B � ~x such that the j-th coordinate of
A � ~x is finite iff the column player has a winning strategy starting from
position rj.

Proof. Suppose there is a solution ~x to A�~x < B�~x. Then for small enough
positive ε there is a solution to A � ~x < (B − ε) � ~x, where we subtract ε
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from all entries of B. Then by Proposition 1 there is a non-losing strategy for
the column player in the mean payoff game G′ corresponding to the system
A � ~x < (B − ε) � ~x. Let the column-player apply the same strategy to
the game G corresponding to A� ~x < B � ~x. Then compared to the game
G′ after k moves column-player will have at least the value kε added to his
amount. Since the amount of the column-player is bounded from below in
G′ it will grow to infinity in G. Thus in the game G the column player has a
winning strategy.

For the other direction, assume that the column player has a winning
strategy. Then if we add a small enough ε to all payoffs of the row-player,
the column player will still have a winning strategy, which is in particular
non-losing. Thus we have by Proposition 1 that there is a solution ~x to
A� ~x 6 (B − ε)� ~x, where we subtract ε from each entry of B. Clearly the
very same ~x is a solution to A� ~x < B � ~x and we are done.

Now to get the lemma it is only left to use a duality of mean payoff
games.

8.2 Tropical duality

Suppose we are given a tropical linear system A� ~x for A ∈ Rn×m and we
are interested whether it has a solution. First of all it is known that if the
number of variables is greater than the number of equations, then there is
always a solution. So we can assume that n > m. Next note that if we add
the same number to all entries in some row of A then the set of solutions
does not change. One simple obstacle to A� ~x having a solution is if we can
add some numbers to all rows of A and possibly permute rows and columns
in such a way that the minimums in the first m rows of the resulting matrix
are attained just in entries (1, 1), (2, 2), . . . , (m,m). It is easy to see that if
this is the case there is no solutions to A� ~x. It turns out that this is the
only obstacle we have. We give a proof below however we note that this is
already implicit in [9, 16].

Lemma 13 (Restated from p. 14). Let A,∈ Rn×m∞ be a matrix.
For any subset S ⊆ [m] exactly one of the following is true.

1. There is a solution to A� ~x with finite coordinates xi with i ∈ S.

2. There is ~z such that in each row of AT � ~z the minimum is attained at
least once or is equal to ∞, for each two rows with the finite minimum
the minimums are in different columns and such that for some i ∈ S
the i-th coordinate of AT � ~z is finite.
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For any subset S ⊆ [m] exactly one of the following is true.

1. There is a solution to A� ~x such that for some i ∈ S the coordinate
xi is finite.

2. There is ~z such that in each row of AT � ~z the minimum is attained at
least once or is equal to ∞, for each two rows with the finite minimum
the minimums are in different columns and the i-th coordinates of
AT � ~z are finite for all i ∈ S.

Proof. Given a tropical product of a matrix by a vector A � ~a, where
A ∈ Rn×m∞ it is convenient to introduce values mi(A� ~a) for all i = 1, . . . , n
which is equal to the number of the column in which the finite minimum in
row i is situated (if there is one). If there are several minimums, mi(A� ~a)
corresponds to the first one. When the matrix and the vector is clear from
the context we simply write mi.

Denote by Ci for i = 1, . . . ,m the matrix in Rn×m with 1 entries in i-th
column and 0 entries in other columns. Denote by Ri for i = 1, . . . ,m the
matrix in Rm×n with 1 entries in i-th row and 0 entries in other rows. Note
that Ri = CTi .

We will show the first part of the lemma. The proof of the second part is
completely analogous.

Suppose we are given a matrix A ∈ Rn×m and consider the tropical
system A� ~x. As shown in paper [10] (cf. Section 5) ~x is a solution to it iff
for all small enough ε > 0 ~x is a solution to the following min-plus system:

A+ εC1

A+ εC2
...

A+ εCm

� ~x 6


A
A
...
A

� ~x.
By min-plus linear duality this system has a solution x with finite coor-

dinates xi for i ∈ S if and only if the system(
AT AT · · · AT

)
�~y <

(
AT + εR1 AT + εR2 · · · AT + εRm

)
�~y
(9)

has no solution ~y such that for some i ∈ S the i-th coordinate of(
AT AT · · · AT

)
� ~y

is finite.
On the right-hand side of (9) we have a block matrix with blocks AT +εRi.
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It is left to show that the system (9) has a specified solution iff there is
~z such that in each row of AT � ~z the minimum is attained at least once
or is equal to ∞, for each two rows with the finite minimum the minimums
are in different columns and for some i ∈ S the i-th coordinate of AT � ~z is
finite. Note that if ~y is a solution then in each row i, where the minimum on
the left-hand side is finite we have n(i − 1) < mi 6 ni. Indeed, otherwise
the minimum in this row in the left-hand side is not smaller. Thus if ~y
is a solution then for each row i with the finite minimum there exists the
column ji of the i-th block such that the minimum is attained in this column.
Note, that for i1 6= i2 with finite minimums we have mi1 6= mi2( mod n).
Otherwise rows i1, i2 and columns ji1 , ji2 will form a 2× 2 subsystem(

ai1,ji1 + ε ai1,ji1
ai2,ji1 ai2,ji1 + ε

)
�
(
yni1+ji1
yni2+ji1

)
,

which has minimums in (1, 1) and (2, 2) entries which is impossible. Thus
columns ji correspond to different columns of the matrix AT . Let us consider
the tropical system

AT � ~z

and consider the vector ~z which finite coordinate are yni+ji . For this ~z
the minimum in each row is either infinite or is attained once and no two
minimums are in the same column. Indeed, if the minimum is attained twice
for some row, then clearly for the same row of (9) we will have equality. Note
also that the ith coordinate of(

AT AT · · · AT
)
� ~y

is finite iff the ith coordinate of AT � ~z is finite.
In the other direction, suppose we have a ~z such that in each row AT � ~z

the minimum is either infinite or is attained once and no two minimums are
in the same column. Then we can consider the columns having minimums in
them and set the corresponding coordinates of ~y to be equal to them. Other
coordinates of ~y we can set to infinity. Then for any small enough ε we will
have a solution of (9) and the ith coordinate of AT � ~z is finite iff the ith
coordinate of (

AT AT · · · AT
)
� ~y

is finite.
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