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SUMMARY

Malaria represents amajor cause of death from infec-
tious disease. Hemozoin is a Plasmodium-derived
product that contributes to progression of cerebral
malaria. However, there is a gap of knowledge
regarding how hemozoin is recognized by innate im-
munity. Myeloid C-type lectin receptors (CLRs)
encompass a family of carbohydrate-binding recep-
tors that act as pattern recognition receptors in
innate immunity. In the present study, we identify
the CLR CLEC12A as a receptor for hemozoin. Den-
dritic cell-T cell co-culture assays indicate that the
CLEC12A/hemozoin interaction enhances CD8+

T cell cross-priming. Using the Plasmodium berghei
Antwerpen-Kasapa (ANKA) mouse model of experi-
mental cerebral malaria (ECM), we find that CLEC12A
deficiency protects mice from ECM, illustrated by
reduced ECM incidence and ameliorated clinical
symptoms. In conclusion, we identify CLEC12A as
an innate sensor of plasmodial hemozoin.
INTRODUCTION

Malaria represents a major cause of death from infectious dis-

ease, resulting in 216 million new cases and an estimated

445,000 deaths in 2016 (WHO, 2017). The disease is caused

by infection with obligate intraerythrocytic apicomplexan
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parasites of the genus Plasmodium. P. falciparum represents a

major morbidity factor due to the development of severemalaria;

e.g., cerebral malaria (Newton et al., 1998). Infection of suscep-

tible mice with Plasmodium berghei Antwerpen-Kasapa (ANKA)

(PbA) is a commonly accepted model for Plasmodium-induced

inflammation. Experimental cerebral malaria (ECM) pathology

induced by PbA infection encompasses neurovascular inflam-

mation with neurological symptoms such as cognitive dysfunc-

tion, ataxia, paralysis, convulsions, and coma, ultimately leading

to death (de Oca et al., 2013).

Immunopathology during PbA infection has been extensively

studied. ECM is predominantly mediated by brain-sequestered

T cells (Boubou et al., 1999; Grau et al., 1986; Hermsen et al.,

1997, 1998; Yañez et al., 1996). CD8+ T cells in particular are

crucial for ECM pathogenesis by release of perforin and gran-

zyme B (GrB), promoting tissue damage and compromising

blood-brain barrier integrity (Haque et al., 2011; Nitcheu et al.,

2003; Potter et al., 2006). Naive T cells are primed by conven-

tional CD11c+ dendritic cells (DCs) in the spleen (cross)present-

ing PbA-derived antigens; thus, DCs contribute to T cell-medi-

ated pathology during malaria (deWalick et al., 2007).

Besides brain-sequestered T cells, a pro-inflammatory cyto-

kinemilieu is linked to the disease that is believed to be provoked

byPlasmodium-derived hemozoin. Hemozoin crystals constitute

a disposal product generated during intra-erythrocytic parasite

development. After infection of red blood cells (RBCs), the para-

site consumes up to 80% of the hemoglobin and crystallizes

otherwise toxic heme monomers into insoluble hemozoin (Coro-

nado et al., 2014). Hemozoin crystals are released during host

cell rupture and rapidly ingested by phagocytes with subsequent
creativecommons.org/licenses/by-nc-nd/4.0/).
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production of pro-inflammatory cytokines, nitric oxide (NO), and

reactive oxygen species (ROS) at the early onset of disease (Oliv-

ier et al., 2014; Shio et al., 2010; Tyberghein et al., 2014). For

instance, hemozoin is known to induce activation of the

NLRP3/inflammasome complex via potassium efflux, phagocy-

tosis, and ROS production, leading to release of the pro-inflam-

matory cytokine interleukin-1b (IL-1b) (Dostert et al., 2009; Shio

et al., 2009). Fatal malaria cases are characterized by increased

numbers of monocytes and neutrophils carrying intracellular

hemozoin deposits (Nguyen et al., 1995). ECM-susceptible

mice infected with PbA exhibit significantly increased levels of

hemozoin in the brain, in contrast to mice infected with the

non-ECM-inducing P. berghei strain NK65 (Sullivan et al.,

1996). Hence, although hemozoin has been shown to be immu-

nologically active in vitro and in vivo, the cellular receptors recog-

nizing hemozoin remain elusive.

It has been shown that pattern recognition receptors (PRRs)

such as Nod-like receptors (NLRs) are important mediators of

ECM pathogenesis in vivo (Dostert et al., 2009), whereas the

role of Toll-like receptors (TLRs) in ECM development is debated

(Coban et al., 2007; Lepenies et al., 2008; Togbe et al., 2007).

TLR2 and TLR4 recognize P. falciparum glycosylphosphatidyl

inositol (GPI) anchors, thus mediating cytokine and NO produc-

tion (Krishnegowda et al., 2005). Additionally, TLR9 senses CpG

and adenine thymine (AT) motifs in plasmodial DNA present on

the surface of Plasmodium-derived hemozoin (Parroche et al.,

2007). In contrast, there is a gap of knowledge regarding the

contribution of C-type lectin receptors (CLRs) to immunity during

the course of malaria. The F-Actin-recognizing CLR CLEC9A

defines a DC subset that is crucial for ECM development via

cross-priming of CD8+ T cells (Piva et al., 2012). We have shown

previously that the DC immunoreceptor (DCIR) markedly alters

the course of disease since DCIR�/� mice are significantly pro-

tected from ECM (Maglinao et al., 2013). However, direct recog-

nition of a Plasmodium-derived ligand by CLRs has so far not

been shown.

Themyeloid inhibitory C-type lectin-like receptor (CLEC12A) is

a type II transmembrane protein predominantly expressed by

innate immune cells such as granulocytes, macrophages, and

DCs (Lahoud et al., 2009; Pyz et al., 2008). CLEC12A can be ex-

ploited to deliver tumor antigens into DCs, inducing efficient acti-

vation of CD8+ T cells by cross-priming (Hutten et al., 2016), and

can be efficiently targeted to induce influenza antigen-specific

tissue-resident memory CD8+ T cells (Wakim et al., 2015). A

recent study identified monosodium urate (MSU) crystals as a

CLEC12A ligand, highlighting an important role of CLEC12A in

recognition of dead cells. In this context, CLEC12A is critically

involved in the MSU-mediated respiratory burst by interfering

with Syk signaling (Neumann et al., 2014).

To identify Plasmodium-derived CLR ligands, we employed a

CLR-human Fc (hFc) fusion protein library (Maglinao et al., 2014;

Monteiro et al., 2019) and observed strong binding of CLEC12A-

hFc to parasitized RBC (pRBC)-derived lysates and permeabi-

lized pRBCs. Reporter cell assays, flow cytometry-based

assays, and fluorescence microscopy revealed hemozoin

crystals as a CLEC12A ligand. Hemozoin affected ROS produc-

tion by bone marrow-derived DCs (BMDCs) and ovalbumin

(OVA)257–264 peptide cross-presentation by BMDCs to OT-I
T cell receptor (TCR)-transgenic T cells in a CLEC12A-depen-

dent fashion. In vivo challenge of CLEC12A�/� mice with PbA

resulted in reduced ECM incidence and attenuated ECM symp-

toms, accompanied by reduced expression of granzyme B in

T cells derived from brains and spleens of infected mice. Taken

together, this study provides a mechanism by which hemozoin is

recognized by innate immunity and reveals an important role of

CLEC12A in immunopathology during malaria.

RESULTS

CLEC12A Recognizes Hemozoin
We demonstrated previously that DCIR plays a crucial role in

ECM development (Maglinao et al., 2013). However, DCIR does

not bind to parasite-derived ligands but, rather, recognizes

endogenous damage-associated molecular patterns (DAMPs;

Bloem et al., 2014). Thus, to identify CLR interactions with

Plasmodium-derived ligands, we employed a CLR-hFc fusion

protein library (Maglinao et al., 2014; Monteiro et al., 2019). Initial

screenings were carried out using P. falciparum-infected RBCs.

We observed marked binding for CLEC12A-hFc as opposed

to the hFc control or other CLR-hFc chimeras, such as DCIR-

hFc, DC immunoactivating receptor (DCAR)-hFc, macrophage

C-type lectin (MCL)-hFc, and CLEC9A-hFc (Figure 1A). Binding

was confirmed using PbA pRBCs (Figure 1B), indicating that

CLEC12A recognizes a plasmodial component present in different

Plasmodium species. To identifywhether CLEC12A recognizes an

intracellular component within Plasmodium-infected RBCs, we

analyzed binding to pRBCs by fluorescence microscopy upon

RBC permeabilization. Indeed, CLEC12A-hFc specifically bound

to permeabilized pRBCs, suggesting that CLEC12A recognizes

an internal ligand present in pRBCs (Figure 1C).

Because CLEC12A was recently shown to bind to uric acid

crystals (Neumann et al., 2014), we hypothesized that this CLR

might be involved in the recognition of hemozoin crystals.

Althoughmany protocols for the synthesis of hemozoin yieldma-

terial that is poorly crystalline (Jaramillo et al., 2009), we used

synthetic hemozoin that resembled natural hemozoin in size

(0.5–1 mm), as confirmed by electron microscopy (Figure S1A).

Indeed, both human CLEC12A-hFc as well as murine

CLEC12A-hFc bound to synthetic hemozoin, as demonstrated

by flow cytometry (Figure 1D) and fluorescencemicroscopy (Fig-

ure 1E). To analyze whether hemozoin acts as an agonistic ligand

of CLEC12A, reporter cell assays were performed. Because

binding of MSU to the CLEC12A reporter cell line has been

demonstrated previously (Neumann et al., 2014), MSU was

used as a positive control. Hemozoin showed marked activation

of cells expressing human CLEC12A and, to a lower extent, mu-

rine CLEC12A (Figure 1F). Even lysates of Plasmodium-infected

RBCs induced activation of CLEC12A reporter cells compared

with uninfected RBCs, indicating that hemozoin can be recog-

nized by CLEC12A at physiological concentrations (Figure S1B).

These findings clearly show that hemozoin acts as an agonistic

ligand of the CLR CLEC12A.

CLEC12A Impairs DC Effector Functions In Vitro

CLEC12A is mainly expressed by DCs (Lahoud et al., 2009).

Therefore, we assessed the effect of the hemozoin/CLEC12A
Cell Reports 28, 30–38, July 2, 2019 31



Figure 1. CLEC12A Recognizes Hemozoin

(A and B) ELISA-based binding studies with (A) P. falciparum and (B) P. berghei ANKA. Isolated parasitized RBCs (pRBCs) were lysed, immobilized on microtiter

plates, and probed with the indicated fusion proteins. Lysates from uninfected RBCs (uRBCs) and PBS alone (control) were used as controls. Data are presented as

mean+SEMand representative of three independent experiments in duplicates forP. falciparum (n = 3) and twoexperiments in duplicates forP.bergheiANKA (n= 2).

(C) Fluorescence microscopy of permeabilized pRBCs. Permeabilized pRBCs were incubated with CLEC12A-hFc, followed by staining with an anti-human

immunoglobulin G (IgG) (Fc) Alexa Fluor 488-labeled antibody (AF488, green). Parasitic DNAwas stained with DAPI (blue). Hemozoin fluorescence was visualized

using a 633-nmHeNe laser (hemozoin, red). pRBCs probedwith hFc served as a negative control. Data are representative of two independent experiments (n = 2).

Scale bars represent 1 mm.

(D) Flow cytometry-based binding studies with hemozoin. Hemozoin was probed with the indicated fusion proteins. CLEC7A-hFc served as a negative control.

Means + SD of three independent experiments (n = 3) are shown.

(E) Fluorescence microscopy of synthetic hemozoin. Hemozoin was probed with the indicated hFc fusion proteins and incubated with an anti-human IgG (Fc)

Alexa Fluor 488 antibody (AF488, green). Samples incubated with hFc served as a negative control. Data are representative of two independent experiments

(n = 2). Scale bars represent 10 mm.

(F) Recognition of hemozoin (100 mg/mL) and MSU (250 mg/mL) by human (h) and murine (m) CLEC12A-CD3 reporter cell lines. A murine CLEC7A-CD3 reporter

cell line served as a negative control. Data are presented as mean + SD and are representative of three independent experiments (n = 3) in triplicates

(two experiments) or quadruplicates (one experiment).

Statistical significance was evaluated using unpaired (ELISA, reporter cell assay) or paired (flow cytometry-based binding studies) two-tailed Student’s t test.

Asterisks indicate significant differences (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). See also Figure S1.
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Figure 2. Hemozoin Recognition by CLEC12A Affects DC Effector Functions

(A) CLEC12A�/� or wild-type (WT) bone marrow-derived dendritic cells (BMDCs) were treated with hemozoin (100 mg/mL) for 4 h or 24 h, respectively. After

hemozoin stimulation, ROS production was induced by stimulation with PMA (100 ng/mL) and evaluated using DHR-123.

(B and C) CLEC12A�/� or WT BMDCs were pulsed with (B) Alexa Fluor 488-labeled ovalbumin (OVA-AF488) (25 mg/mL) to assess antigen uptake or (C) DQ

OVA (25 mg/mL) to measure antigen processing.

All data are representative of three experiments (n = 3) in triplicates, displayed as mean + SD and expressed as percentages to control after normalization to the

mean fluorescence intensities of the respective samples stimulatedwith PMAor OVA only. Statistical analysis was performed using unpaired two-tailed Student’s

t test. Asterisks indicate significant differences (*p < 0.05, **p < 0.01). See also Figure S2.
interaction on DC effector functions by stimulating BMDCs from

CLEC12A�/� and wild-type (WT) mice with hemozoin. Hemo-

zoin is known to interfere with ROS production of antigen-pre-

senting cells (APCs), depending on the stimulation conditions

(Cambos et al., 2010; Schwarzer and Arese, 1996; Shio et al.,

2010). Hence, BMDCs were stimulated with hemozoin for 4 h

or 24 h, followed by ROS induction using phorbol 12-myris-

tate-13-acetate (PMA). Hemozoin slightly reduced the capacity

to produce ROS after 4 h and strongly after 24 h incubation in

both WT and CLEC12A�/� BMDCs. Strikingly, reduction of

ROS production was more pronounced in CLEC12A�/� BMDCs

(ROS activity after 4 h: WT 90.2%, CLEC12A�/� 78.1%; ROS

activity after 24 h: WT 34.4%, CLEC12A�/� 25.0%), indicating

that hemozoin-impaired ROS production is at least partially

CLEC12A dependent (Figure 2A). Interestingly, we did not

observe differences in overall hemozoin internalization by

DCs, indicating that CLEC12A did not act as a phagocytic re-

ceptor (data not shown). To assess whether the CLEC12A/

hemozoin interaction had an effect on antigen uptake and

processing, BMDCs were stimulated with Alexa Fluor 488-

labeled OVA (to assess antigen uptake) or DQ OVA (to measure

antigen processing) in the presence or absence of hemozoin.

OVA uptake and processing were not impaired by the

CLEC12A/hemozoin interaction (Figures 2B and 2C). Additional

DC effector functions were monitored by stimulating BMDCs in

the presence or absence of hemozoin. However, no differences

were observed in pro-inflammatory cytokine secretion (Fig-

ure S2A) or expression of activation markers (Figure S2B) be-

tween WT and CLEC12A�/� BMDCs. These findings indicate

that the CLEC12A/hemozoin interaction selectively affected

ROS production by BMDCs.

CLEC12A Affects T Cell Activation In Vitro

To unravel the CLEC12A/hemozoin interaction on DCs and sub-

sequent T cell priming mechanistically, antigen presentation as-

says using BMDCs from CLEC12A�/�mice andWT control mice

were conducted. Because CD8+ T cells play a pivotal role in
ECM induction, the CD8+ T cell response to cross-presented

OVA257–264 peptide was measured using OT-I TCR-transgenic

CD8+ T cells. To this end, cytokine release by OT-I CD8+

T cells was measured by ELISA, and intracellular cytokine accu-

mulation was determined by flow cytometry (see Figure S3A for

gating of cells). Upon OVA stimulation alone, cytokine secretion

and frequency of cytokine-producing T cells were slightly higher

when T cells were co-cultured with CLEC12A�/� BMDCs,

consistent with the putative role of CLEC12A as an inhibitory re-

ceptor. Thus, to exclude intrinsic hemozoin-independent effects,

data were normalized to stimulation with OVA only. Hemozoin

enhanced CD8+ T cell responses, as indicated by increased

production of GrB, IL-2, tumor necrosis factor alpha (TNF-a),

and interferon g (IFN-g) as well as an elevated number of

cytokine-positive T cells (Figures 3A and S3B). However,

hemozoin-enhanced IL-2 production was completely abolished,

GrB production reduced, and TNF-a production slightly reduced

when CLEC12A�/� BMDCs were used to stimulate OT-I T cells.

Similar effects were observed for the number of cytokine-

expressing T cells (Figure S3B). These findings highlight involve-

ment of CLEC12A in cross-presentation of antigens. A similar

effect was found for expression of the T cell activation marker

CD69 (Figure S3C). In contrast, only minor effects of the

CLEC12A/hemozoin interaction on cytokine production by

OT-II TCR-transgenic CD4+ T cells (activated by the OVA323–

339 peptide) were observed (Figure 3B). Taken together, DC-T

cell co-cultures show that the stimulatory effect of the

CLEC12A/hemozoin interaction is mainly restricted to cross-

priming of CD8+ T cells.

CLEC12A Contributes to ECMDevelopment and Affects
Granzyme B Expression by T Cells
The marked effect of the CLEC12A/hemozoin interaction on

CD8+ T cell priming in vitro prompted us to evaluate the role of

CLEC12A in vivo. Therefore, we challenged CLEC12A�/� mice

with PbA and assessed ECM pathogenesis. As expected, WT

mice displayed neurological symptoms within 7–10 days post
Cell Reports 28, 30–38, July 2, 2019 33



Figure 3. Hemozoin Recognition by

CLEC12A Affects CD8+ T Cell Priming

CLEC12A�/� or WT BMDCs were pulsed with

EndoGrade OVA (300 mg/mL) in the presence or

absence of hemozoin. BMDCs were co-cultured

with either OT-I or OT-II receptor transgenic

T cells. Anti-CD3 (5 mg/mL)-stimulated T cells

served as a positive control.

(A) OT-I CD8+ T cell secretion of granzyme B

(GrB), IL-2, TNF-a, and IFN-g. Mean cytokine

production of samples stimulated with OVA only

ranged from 1,470 pg/mL (WT) to 2,308 pg/mL

(CLEC12A�/�) for GrB, 106 pg/mL (WT) to

133 pg/mL (CLEC12A�/�) for IL-2, 104 pg/mL

(WT) to 119 pg/mL (CLEC12A�/�) for TNF-a, and
1,022 pg/mL (WT) to 866 pg/mL (CLEC12A�/�)
for IFN-g.

(B) OT-II CD4+ T cell secretion of GrB, IL-2, TNF-a,

and IFN-g. Mean cytokine production of samples

stimulated with OVA only ranged from 502 pg/mL

(WT) to 448 pg/mL (CLEC12A�/�) for GrB,

427 pg/mL (WT) to 490 pg/mL (CLEC12A�/�) for
IL-2, 88 pg/mL (WT) to 100 pg/mL (CLEC12A�/�)
for TNF-a, and 465 pg/mL (WT) to 342 pg/mL

(CLEC12A�/�) for IFN-g.
Graphs are representatives of two (OT-I, n = 2) and

three (OT-II, n = 3) independent experiments in

triplicates. All data were normalized to the

respective OVA stimulation, expressed as fold

change and displayed as mean + SD. Statistical

significance was evaluated using unpaired two-

tailed Student’s t test. Asterisks indicate signifi-

cant differences (*p < 0.05, **p < 0.01). n.d., not

detectable. See also Figure S3.
infection (p.i.) with a total ECM incidence of around 90%. Strik-

ingly, CLEC12A�/� mice were significantly protected from

ECM, enhancing the final survival rate after 14 days by 42%

compared with WT mice (52% versus 10%; Figure 4A). Consis-

tent with these findings, CLEC12A�/� mice showed a signifi-

cantly reduced disease score over time (Figure 4B). No signifi-

cant differences were observed regarding parasitemia levels

between CLEC12A�/� and WT control mice, suggesting that

CLEC12A deficiency does not affect parasite replication directly

(Figure S4A).

To analyze systemic inflammation, pro-inflammatory serum

cytokines were measured in PbA-infected CLEC12A�/� and

WT mice. Overall, PbA infection enhanced the levels of

TNF-a, IFN-g, and IL-6. However, systemic inflammation

was not altered in CLEC12A�/� mice compared with WT

mice (Figure S4B). Quantitative T cell sequestration to the

brain was not significantly altered in CLEC12A�/� mice despite

a tendency toward reduced T cell numbers in the brain of

CLEC12A�/� mice (Figure S4C). However, effector functions

were markedly modulated in CLEC12A�/� mice, as indicated

by a reduced frequency of brain-sequestered T cells express-
34 Cell Reports 28, 30–38, July 2, 2019
ing GrB (21.3% ± 3.9% versus 34.4% ±

6.1%; Figure 4C). Similar results were

obtained for splenic T cells; frequencies

of GrB+ CD4+ T cells (6.0% ± 1.1%
versus 10.5% ± 1.2%) and CD8+ T cells (13.9% ± 2.0% versus

22.1% ± 2.2%) were significantly reduced in CLEC12A�/�

mice (Figure 4D).

In conclusion, these findings demonstrate that CLEC12A

affects ECM development by enhancing T cell effector func-

tions; namely, GrB expression by activated CD8+ T cells.

DISCUSSION

Hemozoin constitutes a Plasmodium-derived disposal product

involved in immunomodulation during malaria (Scorza et al.,

1999). However, little is known about the cellular receptors

recognizing hemozoin. It has been proposed that hemozoin

is bound by TLR9 (Coban et al., 2005), likely by adsorbing

Plasmodium DNA (Parroche et al., 2007), whereas the role of

CLRs in hemozoin recognition has so far not been addressed.

Recently, it has been reported that CLEC12A binds to uric

acid crystals and subsequently regulates innate immune re-

sponses (Neumann et al., 2014). We thus hypothesized that

the CLEC12A ligand present in Plasmodium-infected RBCs

might be of crystalline origin. In this study, we identified



Figure 4. CLEC12A Deficiency Protects from ECM Development

(A and B) CLEC12A�/� and C57BL/6 control mice were challenged with PbA by intraperitoneal injection of 13 106 pRBCs and monitored for up to 14 days. The

illustrated plots are summarized from three independent experiments (WT: n = 10, 4, 4; total n = 18 mice; CLEC12A�/�: n = 9, 5, 5; total n = 19 mice). Statistical

analysis was performed using log rank test (survival) or two-way repeated measures ANOVA (disease score).

(A) Survival of CLEC12A�/�mice comparedwithWT animals. Mice were euthanized at an early stage of ECM tominimize suffering (see STARMethods for details).

(B) Disease score values reflecting the presence of symptoms. For each following day post sacrifice, a score of 5 was assigned. Data are expressed as

mean ± SEM.

(C and D) PbA-infected CLEC12A�/� and C57BL/6 control mice were sacrificed on day 6 p.i., followed by flow cytometry measurement of GrB expression.

Data are expressed as mean + SEM and summarized from two independent experiments (n = 3, 5; total n = 8 mice).

(C) Representative plots illustrating the frequency of GrB-expressing CD8+ T cells in the brain with corresponding statistical analysis of GrB+ CD8+ T cells in the

brain. Statistical analysis was performed using unpaired one-tailed Student’s t test.

(D) Statistical analysis illustrating the frequency of splenic GrB-expressing CD4+ and CD8+ T cells. Statistical analysis was performed using unpaired two-tailed

Student’s t test.

Asterisks indicate significant differences (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). See also Figure S4.
CLEC12A as a receptor for hemozoin using CLR-hFc fusion

proteins and CLEC12A-CD3 reporter cells.

Because T cells, as an important cell subset mediating ECM,

depend on activation by APCs, several studies addressed the

role of DCs in ECM pathogenesis. It has been demonstrated
that conventional DCs are of crucial importance for cross-prim-

ing of brain-sequestered CD8+ T cells (deWalick et al., 2007;

Lundie et al., 2008). However, it is largely unknown how DCs

detect Plasmodium antigens and parasite-derived products.

There is growing evidence that PRRs play distinct roles in ECM
Cell Reports 28, 30–38, July 2, 2019 35



pathogenesis in vivo, illustrated by previous findings regarding

the effect of NLRs (Dostert et al., 2009) and TLRs (Coban et al.,

2007; Lepenies et al., 2008; Togbe et al., 2007). In contrast, the

role of CLRs in recognition of protozoan parasites has so far

barely been addressed. In the present study, we observed a

contribution of CLEC12A to hemozoin-dependent ROS produc-

tion. Overall, PMA-induced ROS production by BMDCs was

decreased upon hemozoin incubation, most prominently after

24 h. This is in agreement with previous findings where hemozoin

has been reported to reduce ROS production in monocytes and

macrophages, mainly after ingestion of the crystalline disposal

product (Cambos et al., 2010; Schwarzer and Arese, 1996).

Interestingly, ROS production was significantly reduced in

CLEC12A�/� BMDCs compared with WT BMDCs, indicating

that CLEC12A is involved in intracellular signaling leading to

ROS production. Neumann et al. (2014) reported critical involve-

ment of CLEC12A in MSU-mediated respiratory burst by inter-

fering with Syk signaling. Furthermore, moderate levels of ROS

are critical for efficient T cell activation and effector functions;

for instance, IL-2 production (Franchina et al., 2018; Moro-Gar-

cı́a et al., 2018). In a recent study, ROSwas shown to be involved

in cross-presentation of antigens to CD8+ T cells, where

decreased ROS levels led to reduced CD8+ T cell responses

(Oberkampf et al., 2018). DC-T cell co-culture assays revealed

a marked contribution of the hemozoin/CLEC12A interaction to

CD8+ T cell cross-priming. In particular, hemozoin-induced

GrB and IL-2 production as well as the frequency of GrB+ and

IL-2+ T cells were at least partly CLEC12A-dependent. IL-2 is

known to positively regulate the expression of perforin and GrB

in CD8+ T cells (Janas et al., 2005; Tamang et al., 2006). Further-

more, the CLEC12A/hemozoin interaction partially abrogated

TNF-a production and the frequency of TNF-a-positive T cells

in vitro.

Infection of susceptible mouse lines with PbA is a commonly

used model for Plasmodium-induced inflammation and under-

lines the importance of CD8+ T cells for brain pathology via per-

forin- and GrB-dependent pathways (Haque et al., 2011;

Nitcheu et al., 2003; Potter et al., 2006). To further investigate

the role of the CLEC12A receptor in ECM pathology,

CLEC12A�/� mice were infected with PbA. CLEC12A�/� mice

displayed reduced ECM incidence and an ameliorated disease

score, highlighting the crucial role of CLEC12A in PbA-medi-

ated ECM development. However, this effect may not be

exclusively mediated by the CLEC12A/hemozoin interaction.

For instance, we cannot rule out that uric acid crystals or other

endogenous CLEC12A ligands from damaged cells contribute

to the in vivo effect of CLEC12A. Strikingly, GrB expression

in brain-sequestered and splenic T cells was reduced in

CLEC12A�/� mice during PbA infection. These findings sug-

gest that CLEC12A does not markedly affect overall T cell

activation and brain sequestration but, rather, modulates the

quality of the T cell response by altering GrB expression levels.

Targeting CLEC12A on DCs increased the frequency of GrB+

T cells (Wakim et al., 2015). Interestingly, a recent study

described a role of CLEC12A in induction of experimental auto-

immune encephalomyelitis (EAE), where EAE disease induction

was delayed and disease severity was reduced in CLEC12A�/�

mice (Sagar et al., 2017).
36 Cell Reports 28, 30–38, July 2, 2019
Taken together, our study shows that CLEC12A recognizes

Plasmodium-derived hemozoin. In addition, CLEC12A is criti-

cally involved in the development of ECM during PbA infection.

The CLEC12A/hemozoin interaction affected ROS production

by DCs and cross-presentation of plasmodial antigens to CD8+

T cells. CLEC12A�/� mice exhibited significantly decreased

ECM incidence during PbA infection, accompanied by a reduced

frequency of GrB-expressing T cells in both the brain and spleen

(Figure S4E). In summary, our findings demonstrate an important

role of CLEC12A in hemozoin recognition and immune pathology

during murine PbA infection. Future studies should further inves-

tigate the role of the CLEC12A/hemozoin interaction in vivo; for

instance, by using other murine malaria models.
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Boubou, M.I., Collette, A., Voegtlé, D., Mazier, D., Cazenave, P.A., and Pied, S.

(1999). T cell response in malaria pathogenesis: selective increase in T cells

carrying the TCR V(beta)8 during experimental cerebral malaria. Int. Immunol.

11, 1553–1562.

Cambos, M., Bazinet, S., Abed, E., Sanchez-Dardon, J., Bernard, C., Moreau,

R., Olivier, M., and Scorza, T. (2010). The IL-12p70/IL-10 interplay is differen-

tially regulated by free heme and hemozoin in murine bone-marrow-derived

macrophages. Int. J. Parasitol. 40, 1003–1012.

Coban, C., Ishii, K.J., Kawai, T., Hemmi, H., Sato, S., Uematsu, S., Yamamoto,

M., Takeuchi, O., Itagaki, S., Kumar, N., et al. (2005). Toll-like receptor 9 me-

diates innate immune activation by the malaria pigment hemozoin. J. Exp.

Med. 201, 19–25.

Coban, C., Ishii, K.J., Uematsu, S., Arisue, N., Sato, S., Yamamoto, M., Kawai,

T., Takeuchi, O., Hisaeda, H., Horii, T., and Akira, S. (2007). Pathological role of

Toll-like receptor signaling in cerebral malaria. Int. Immunol. 19, 67–79.

Coronado, L.M., Nadovich, C.T., and Spadafora, C. (2014). Malarial hemozoin:

from target to tool. Biochim. Biophys. Acta 1840, 2032–2041.

de Oca, M.M., Engwerda, C., and Haque, A. (2013). Plasmodium berghei

ANKA (PbA) infection of C57BL/6J mice: a model of severe malaria. Methods

Mol. Biol. 1031, 203–213.

deWalick, S., Amante, F.H., McSweeney, K.A., Randall, L.M., Stanley, A.C.,

Haque, A., Kuns, R.D., MacDonald, K.P., Hill, G.R., and Engwerda, C.R.

(2007). Cutting edge: conventional dendritic cells are the critical APC required

for the induction of experimental cerebral malaria. J. Immunol. 178, 6033–

6037.

Dostert, C., Guarda, G., Romero, J.F., Menu, P., Gross, O., Tardivel, A., Suva,

M.L., Stehle, J.C., Kopf, M., Stamenkovic, I., et al. (2009). Malarial hemozoin is

a Nalp3 inflammasome activating danger signal. PLoS ONE 4, e6510.

Franchina, D.G., Dostert, C., and Brenner, D. (2018). Reactive Oxygen Spe-

cies: Involvement in T Cell Signaling and Metabolism. Trends Immunol. 39,

489–502.

Grau, G.E., Piguet, P.F., Engers, H.D., Louis, J.A., Vassalli, P., and Lambert,

P.H. (1986). L3T4+ T lymphocytes play a major role in the pathogenesis of mu-

rine cerebral malaria. J. Immunol. 137, 2348–2354.

Haque, A., Best, S.E., Unosson, K., Amante, F.H., de Labastida, F., Anstey,

N.M., Karupiah, G., Smyth, M.J., Heath, W.R., and Engwerda, C.R. (2011).

Granzyme B expression by CD8+ T cells is required for the development of

experimental cerebral malaria. J. Immunol. 186, 6148–6156.

Hermsen, C., van de Wiel, T., Mommers, E., Sauerwein, R., and Eling, W.

(1997). Depletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei

induced cerebral malaria in end-stage disease. Parasitology 114, 7–12.

Hermsen, C.C., Mommers, E., van de Wiel, T., Sauerwein, R.W., and Eling,

W.M. (1998). Convulsions due to increased permeability of the blood-brain

barrier in experimental cerebral malaria can be prevented by splenectomy or

anti-T cell treatment. J. Infect. Dis. 178, 1225–1227.
Hutten, T.J., Thordardottir, S., Fredrix, H., Janssen, L., Woestenenk, R., Tel, J.,

Joosten, B., Cambi, A., Heemskerk, M.H., Franssen, G.M., et al. (2016).

CLEC12A-mediated antigen uptake and cross-presentation by human den-

dritic cell subsets efficiently boost tumor-reactive T cell responses.

J. Immunol. 197, 2715–2725.

Janas, M.L., Groves, P., Kienzle, N., and Kelso, A. (2005). IL-2 regulates per-

forin and granzyme gene expression in CD8+ T cells independently of its ef-

fects on survival and proliferation. J. Immunol. 175, 8003–8010.

Jaramillo, M., Bellemare, M.J., Martel, C., Shio, M.T., Contreras, A.P., Godb-

out, M., Roger, M., Gaudreault, E., Gosselin, J., Bohle, D.S., and Olivier, M.

(2009). Synthetic Plasmodium-like hemozoin activates the immune response:

a morphology - function study. PLoS ONE 4, e6957.

Krishnegowda, G., Hajjar, A.M., Zhu, J., Douglass, E.J., Uematsu, S., Akira, S.,

Woods, A.S., and Gowda, D.C. (2005). Induction of proinflammatory re-

sponses in macrophages by the glycosylphosphatidylinositols of Plasmodium

falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) struc-

tural requirement, and regulation of GPI activity. J. Biol. Chem. 280, 8606–

8616.

Lahoud, M.H., Proietto, A.I., Ahmet, F., Kitsoulis, S., Eidsmo, L., Wu, L., Sathe,

P., Pietersz, S., Chang, H.W., Walker, I.D., et al. (2009). The C-type lectin

Clec12A present on mouse and human dendritic cells can serve as a target

for antigen delivery and enhancement of antibody responses. J. Immunol.

182, 7587–7594.

Lambros, C., and Vanderberg, J.P. (1979). Synchronization of Plasmodium fal-

ciparum erythrocytic stages in culture. J. Parasitol. 65, 418–420.

Lepenies, B., Pfeffer, K., Hurchla, M.A., Murphy, T.L., Murphy, K.M., Oetzel, J.,

Fleischer, B., and Jacobs, T. (2007). Ligation of B and T lymphocyte attenuator

prevents the genesis of experimental cerebral malaria. J. Immunol. 179, 4093–

4100.

Lepenies, B., Cramer, J.P., Burchard, G.D., Wagner, H., Kirschning, C.J., and

Jacobs, T. (2008). Induction of experimental cerebral malaria is independent of

TLR2/4/9. Med. Microbiol. Immunol. (Berl.) 197, 39–44.

Lundie, R.J., de Koning-Ward, T.F., Davey, G.M., Nie, C.Q., Hansen, D.S., Lau,

L.S., Mintern, J.D., Belz, G.T., Schofield, L., Carbone, F.R., et al. (2008). Blood-

stage Plasmodium infection induces CD8+ T lymphocytes to parasite-ex-

pressed antigens, largely regulated by CD8f+ dendritic cells. Proc. Natl.

Acad. Sci. USA 105, 14509–14514.

Maglinao, M., Klopfleisch, R., Seeberger, P.H., and Lepenies, B. (2013). The

C-type lectin receptor DCIR is crucial for the development of experimental

cerebral malaria. J. Immunol. 191, 2551–2559.

Maglinao, M., Eriksson, M., Schlegel, M.K., Zimmermann, S., Johannssen, T.,

Götze, S., Seeberger, P.H., and Lepenies, B. (2014). A platform to screen for

C-type lectin receptor-binding carbohydrates and their potential for cell-spe-

cific targeting and immune modulation. J. Control. Release 175, 36–42.

Monteiro, J.T., Schön, K., Ebbecke, T., Goethe, R., Ruland, J., Baumgärtner,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse model
The generation of CLEC12A�/� mice was described previously and mice were backcrossed to C57BL/6 background for ten gener-

ations (Neumann et al., 2014). The genotype of the CLEC12A�/� mice was confirmed by PCR (WT-Fw: 50-CTGTATGCCCTTAAT

ACACCTCCTGC-30; KO-Fw: 5’-GGTGGGATTAGATAAATGCCTGC-30; Rv: 5’-CCATGAACAATGAGGAGAGAAGCC-30) and flow

cytometric analysis of spleen and bone marrow cells using PE-conjugated anti-mouse CLEC12A antibody (5D3/CLEC12A, Bio-

Legend, San Diego, CA, 1:200). Mice were kept and bred in the animal facility of the Federal Institute for Risk Assessment (Berlin,

Germany) under specific pathogen-free conditions and provided food and water ad libitum. Female CLEC12A�/�mice or the respec-

tive C57BL/6wild-type control micewere used for PbA infection experiments at 6-10weeks of age andmaintained on a 12:12 hr light-

dark cycle. Experiments were permitted by the Ethics Commission of the Institutional Animal Care andUse Committee (IACUC) of the

Regional Office for Health and Social Affairs Berlin under reference numbers G0053/10 and G0198/14 and/or the German Lower

Saxony State Office for Consumer Protection and Food Safety under reference number 33.12-42502-04-15/1936. All efforts were

made to minimize suffering. Sacrificing of mice for scientific purposes was approved by the Animal Welfare Officers of the University

of Veterinary Medicine Hannover (AZ 02.05.2016).

Primary cell culture
Bone marrow cells were obtained from femur and tibia of CLEC12A�/� and C57BL/6 control mice (own breeding) and were differ-

entiated into BMDCs using differentiation medium (IMDM medium, 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin

100 mg/ml streptomycin, 10% X63-GM-CSF supernatant) at 37�C and 5% CO2 for 8 to 10 days. Mice used for bone marrow extrac-

tion were not restricted to a specific age or gender. Theyweremaintained under specific pathogen-free conditions on a 12:12 hr light-

dark cycle in the animal facility of the Institute for Physiological Chemistry of the University of Veterinary Medicine Hannover,

Foundation.
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METHOD DETAILS

Culture of Plasmodium species
The Plasmodium falciparum 3D7 line was cultured in human erythrocytes (0+) from healthy donors. Cultures were maintained at a

hematocrit of 2.7% in 3D7 culture medium (RPMI 1640, 0.5% Albumax II, 5 mM HEPES, 2 mM L-glutamine, 28 mg/ml hypoxanthine,

50 mg/ml gentamicin). Cultures were incubated in an anaerobic jar flushedwith a gasmixture of 95%N2, 5%CO2, and 2%O2 at 37
�C.

Medium was replaced daily and parasitemia was estimated by Giemsa staining of thin blood smears. Parasitemia was routinely kept

at 1%–10%. Cultures were synchronized by incubating parasites every 96 hours with 5%D-sorbitol for 10min (Lambros and Vander-

berg, 1979).

The PbA strains 1008M and MRA-311 were kindly provided by PD Dr. Thomas Jacobs (Bernhard Nocht Institute for Tropical Med-

icine, Hamburg, Germany). Stabilates were prepared by passage through BALB/c mice. Parasitized RBCs were snap frozen in 0.9%

NaCl, 4.2% D-sorbitol, and 28% glycerol and used for subsequent infection experiments.

CLR-hFc binding assays
Lysates of Plasmodium-infected RBCs were derived from synchronized late-stage parasites by magnetic activated cell sorting.

Blood obtained from PbA-infected BALB/c mice was diluted in PBS and loaded onto an LD column (Miltenyi Biotec, Bergisch

Gladbach, Germany). The column was washed with MACS buffer (PBS, 1% BSA, 2mM EDTA), followed by elution of infected cells

(Trang et al., 2004). Purity of late-stage parasites was confirmed by Giemsa staining of thin blood smears and RBCs were

subsequently lysed with ultrapure water.

The generation of the CLR-hFc fusion protein library was described previously (Maglinao et al., 2014; Monteiro et al., 2019).

Sequences encoding the extracellular domain of indicated CLRswere ligated into the expression vector pFuse-hIgG1-Fc (InvivoGen,

San Diego, CA). Constructs were subsequently used to transiently transfect CHO-S cells using the FreeStyle Max CHO-S Expression

System (Life Technologies, Darmstadt, Germany) or for generation of stable CLR-hFc expressing CHO cells. Soluble fusion proteins

were purified from the supernatant by affinity chromatography using protein G columns (GE Healthcare, Little Chalfont, UK). Purity

and identity were confirmed by SDS-PAGE and hFc-specific western blot, respectively.

For ELISA-based binding assays, lysates of Plasmodium-infected RBCs were coated on high-binding 96-well microtiter ELISA

plates (Greiner Bio-One, Kremsm€unster, Austria) at RT overnight, corresponding to 2.5 3 105 pRBCs per well. The next day, wells

were blocked using 1% BSA in PBS for 2h at RT, followed by the addition of CLR-hFc fusion proteins at 5 mg/ml in lectin buffer/

BSA (50 mMHEPES, 0.5%BSA, 5 mMCaCl2, 5 mMMgCl2, pH 7.4) for 2h at RT. Binding was detected after incubation with AP-con-

jugated anti-human IgG (Fc) antibody (MinX, Jackson ImmunoResearch Labs, Cambridgeshire, UK) 1:5000 in reagent diluent

(1% BSA, 0.05% Tween 20 in PBS) and colorimetric detection using pNPP as substrate. After each step, plates were washed

with 0.05% Tween 20� in PBS.

Synthetic hemozoin (InvivoGen) was incubated for 2h at 4�C with indicated hFc-fusion proteins in DMEM containing 10%

FBS, washed with PBS 1% FBS and bound hFc-fusion proteins were stained with anti-human IgG (Fc)-PE (MinX, Jackson Im-

munoResearch Labs) 1:100 in 0.5% PBS/BSA for 30min at 4�C. PE fluorescence of hemozoin particles was analyzed by flow

cytometry. To confirm CLEC12A-hFc binding to hemozoin in the presence of higher protein concentrations, selected experi-

ments were also performed DMEM containing 20% FBS and 50% FBS, respectively (data not shown).

Fluorescence microscopy
PbA-infected RBCs were fixed in 1% PFA for 10min at RT with subsequent permeabilization with 0.1% saponin in lectin binding

buffer (50 mM HEPES, 1% BSA, 5 mM CaCl2, 5 mM MgCl2, pH 7.4) for 10min at RT. RBCs were stained with the indicated fusion

proteins at 5mg/ml in saponin-supplemented lectin binding buffer for 2h at 4�C followed by incubation with an anti-human IgG (Fc)

Alexa Fluor 488-labeled antibody (Jackson ImmunoResearch Labs) in saponin-supplemented 1% FBS in PBS (1:200 dilution) for

1h at 4�C. Stained samples were applied to poly-L-lysine-coated cover slides for 90min at 37�C and mounted into proLongTM

Gold antifade mountant containing DAPI (Invitrogen). Fluorescence was detected using a TCS SP5 confocal inverted-base fluores-

cence microscope (Leica, Nussloch, Germany).

Synthetic hemozoin (InvivoGen) was incubated with the indicated hFc-fusion proteins at 10 mg/ml in DMEM10%FBS for 2h at 4�C.
Binding was detected using an anti-human IgG (Fc) Alexa Fluor 488-labeled antibody (Jackson ImmunoResearch Labs) diluted 1:200

in 1% FBS in PBS for 2h at 4�C. Samples were applied to microscopic slides and mounted into Eukitt� quick hardening mounting

medium (Sigma-Aldrich, St. Louis, MO). Fluorescence was detected using an Axio Imager M2 microscope (Zeiss, Oberkochen,

Germany).

Scanning electron microscopy
Crystals were applied to 12,7 mm SEM stubs (Science Services, M€unchen, Germany) and gold sputtered using a Q150R-S sputter

coater (Quorum Technologies, Laughton, UK) for 240 s at a sputter current of 20 mA and a tooling factor set to 2.30. Samples were

transferred directly to a Crossbeam 540 KMAT SEM (Zeiss, Oberkochen, Germany) equipped with a thermic Schottky-emitter, using

a sample lock. Imaging was done at 10 kV acceleration voltage at a magnification of 15.000x and a chamber vacuum of 3 3 10�6

mBar, using a Everhart-Thornley chamber secondary electron detector. Scan speed was set to step 11, probe current was 500 pA.
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Reporter cell line assay
A5 T cell hybridoma reporter cell lines expressing murine CLEC7A, murine CLEC12A and human CLEC12A, respectively (Neumann

et al., 2014), were cultured in selectionmedium (RPMI 1640, 5%FBS, 2mML-glutamine, 1mg/ml G418) at 37�Cand 5%CO2. On day

4, reporter cells were transferred to assaymedium (RPMI 1640, 0.5%FBS, 2mML-glutamine). Cells were seeded in a 96-well plate at

a concentration of 8 3 105 cells/ml and stimulated with MSU (250 mg/ml), hemozoin (100 mg/ml, InvivoGen), lysates of parasitized

RBCs (ratio 20:1) and lysates of uninfected RBCs (ratio 20:1) at 37�C and 5% CO2 for 18h. Afterward, cells were blocked with

anti-mouse CD16/32 (93, eBioscience, Frankfurt am Main, Germany, 1:100) for 10min at 4�C and stained with anti-mouse CD4

APC-eFluor�780 (RM4-5, eBioscience, 1:200) as a reporter cell staining for 20min at 4�C. 7-AAD (eBioscience, 1:80) was used as

a viability staining for 15min at RT. GFP expression of stained cells was analyzed by an Attune NxT Flow Cytometer (Thermo Fisher

Scientific, Waltham, MA). Data analysis was performed using FlowJo (Version 10, FlowJo LLC., Ashland, OR).

ROS assay
Bone marrow cells were obtained from femur and tibia of CLEC12A�/� and C57BL/6 control mice (own breeding) and were differ-

entiated into BMDCs using differentiation medium (IMDM medium, 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin

100 mg/ml streptomycin, 10% X63-GM-CSF supernatant) at 37�C and 5% CO2. After 8 to 10 days of differentiation, BMDCs were

seeded at a concentration of 5 3 105 cells/ml in a 96-well plate and incubated with hemozoin (100 mg/ml, InvivoGen) at 37�C and

5% CO2 for 4h or 24h. Cells were stimulated with PMA (100 ng/ml, AppliChem, Darmstadt, Germany) for 15min followed by addition

of dihydrorhodamine (DHR)-123 (0.5 mg/ml, Sigma-Aldrich) for 15min at 37�C and 5% CO2. Cells were blocked with anti-mouse

CD16/32 (93, eBioscience, 1:100) for 10min at 4�C and stained with APC-conjugated anti-mouse CD11c (N418, eBioscience,

1:200) for 20min at 4�C. ROS production was analyzed using an Attune NxT Flow Cytometer (Thermo Fisher Scientific).

OVA uptake and processing
Bonemarrow cells were differentiated as described above (ROS assay). After 8 to 10 days of differentiation, BMDCswere seeded at a

concentration of 5 3 105 cells/ml in a 96-well plate and stimulated with OVA-Alexa Fluor 488 (25 mg/ml, Thermo Fisher Scientific) or

DQTM OVA (25 mg/ml, Thermo Fisher Scientific) in the presence or absence of hemozoin (50, 20 mg/ml, InvivoGen) at 37�C and 5%

CO2 for 45min. Subsequently, cells were blocked with anti-mouse CD16/32 (93, eBioscience, 1:100) for 10min at 4�C and stained

with APC-conjugated anti-mouse CD11c (N418, eBioscience, 1:200) for 20min at 4�C. Samples were analyzed by an Attune NxT

Flow Cytometer (Thermo Fisher Scientific).

DC stimulation assay
Bonemarrow cells were differentiated as described above (ROS assay). After 8 to 10 days of differentiation, BMDCswere seeded at a

concentration of 5 3 105 cells/ml in a 96-well plate and stimulated with LPS (1 ng/ml, Sigma-Aldrich) in the presence or absence of

hemozoin (100, 50 mg/ml, InvivoGen) at 37�C and 5% CO2 for 24h. On the next day, supernatants were harvested and cytokine con-

centrations were measured by ELISA (Murine TNF-a Standard ABTS ELISA Development Kit, Murine IL-12 Standard ABTS ELISA

Development Kit, PeproTech, Hamburg, Germany). BMDCs were blocked with anti-mouse CD16/32 (93, eBioscience, 1:100) for

10min at 4�C and stained with APC-conjugated anti-mouse CD11c (N418, eBioscience, 1:200), FITC-conjugated anti-mouse

MHC-II (AF6-120.1, eBioscience, 1:100) and PE-conjugated anti-mouse CD86 (B7-2, eBioscience, 1:200) for 20min at 4�C. Samples

were analyzed using an Attune NxT Flow Cytometer (Thermo Fisher Scientific).

DC-T cell co-culture assay
Bonemarrow cells were differentiated as described above (ROS assay). After 8 to 10 days of differentiation, BMDCswere seeded at a

concentration of 23 105 cells/ml in a 96-well plate and stimulatedwith EndoGrade� ovalbumin (0.3mg/ml, Hyglos, Bernried, Germany)

in the presence or absence of hemozoin (100, 50, 20 mg/ml, InvivoGen) at 37�C and 5%CO2 for 24h. T cells were isolated from spleens

of 8 to 14 week old OT-I (purchased from Charles River, Sulzfeld, Germany) and OT-II (own breeding) transgenic mice via magnetic-

activated cell sorting (Pan T Cell Isolation Kit II mouse, Miltenyi Biotec). Purified T cells were adjusted to 1 3 106 cells/ml and co-

cultured with BMDCs at 37�C and 5% CO2 overnight or for 72h, respectively.

After overnight incubation, intracellular granzyme B, IL-2, TNF-a and IFN-g levels were determined upon restimulation of T cells

with PMA (100 ng/ml, AppliChem)/Ionomycin (1 mg/ml, Sigma-Aldrich) in the presence of GolgiPlug (1 ml/ml, BD Biosciences) at

37�C and 5% CO2 for 3h. Cells were blocked with anti-mouse CD16/32 (93, eBioscience, 1:100) for 10min at 4�C and stained using

FITC-conjugated anti-mouse CD8a (53-6.7, eBioscience, 1:100) for 20min at 4�C followed by fixation with 1% PFA for 20min at RT.

Subsequently, cells were permeabilized with saponin buffer (0.5% saponin, 1% FBS in PBS) for 10min at RT and stained for

intracellular cytokines with APC-conjugated anti-mouse granzyme B (NGZB, eBioscience), anti-IL-2 (JES6-5H4, eBioscience),

anti-TNF-a (MP6-XT22, eBioscience) or anti-IFN-g (XMG1.2, BD Biosciences, Franklin Lakes, NJ), respectively, diluted 1:200 in

permeabilization buffer for 20min at RT. Samples were analyzed using an Attune NxT Flow Cytometer (Thermo Fisher Scientific).

After 72h of incubation, supernatants were harvested and GrB, IL-2, TNF-a and IFN-g cytokine concentrations were measured by

ELISA (Granzyme B Mouse Uncoated ELISA Kit, Thermo Fisher Scientific, Murine IL-2 Standard ABTS ELISA Development Kit,

Murine TNF-a Standard ABTS ELISA Development Kit, Murine IFN-g Standard ABTS ELISA Development Kit, PeproTech). Lympho-

cytes were blocked with anti-mouse CD16/32 (93, eBioscience, 1:100) for 10min at 4�C and either stained with FITC-conjugated
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anti-mouse CD4 (RM4-5, eBioscience, 1:100) or PE-conjugated anti-mouse CD8a (53-6.7, BD Bioscience, 1:200) and PE-Cy7-con-

jugated anti-mouse CD62L (MEL-14, eBioscience, 1:200) as well as APC-conjugated anti-mouse CD69 (H1.2F3, eBioscience, 1:200)

for 20min at 4�C. Samples were analyzed using an Attune NxT Flow Cytometer (Thermo Fisher Scientific).

Challenge of mice with PbA
Female CLEC12A�/� mice or the respective C57BL/6 wild-type control mice were intraperitoneally injected with 1 3 106 PbA-in-

fected RBCs (Lepenies et al., 2007; Maglinao et al., 2013). Body weight and clinical score were monitored during the course of infec-

tion, accompanied by daily monitoring for early signs of ECM (more often during ECM development between day 7 and day 10 p.i.).

Disease scoring was performed as described previously (de Oca et al., 2013). C57BL/6 mice infected with PbA develop general

symptoms such as ruffled fur and hunching as well as ECM-specific symptoms including wobbly gait, convulsions, and limb paral-

ysis. Each symptom was assigned a score of 1. Mice were euthanized at an early stage of ECM to minimize suffering (cumulative

score of 3-4). For each following day post sacrifice, a score of 5 was assigned. Parasitemia was determined by examining

Giemsa-stained thin blood smears obtained from the tail vein. Parasitemia was denoted as the percentage of pRBCs.

Flow cytometric analysis of T cells
Splenocytes and brain-sequestered T cells were analyzed by flow cytometry. Mice infected with PbA were sacrificed on day 6 p.i..

Spleens were dissected and flushed with complete RPMI (RPMI 1640, 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin, 100 mg/ml

streptomycin). Collected cells were treated with RBC lysis buffer (144 mM NH4Cl, 10 mM Tris-HCl, pH 7.2) at RT for 5min. Spleno-

cytes were incubated with anti-mouse CD16/32 (93, eBioscience, 1:100) for 20min at 4�C and stained using anti-mouse CD4 FITC

(GK1.5, Miltenyi Biotec, 1:100), anti-mouse CD8a APC (53-6.7, Miltenyi Biotec, 1:100), and anti-mouse CD69 PerCP-Cy5.5 (H1.2F3,

eBioscience, 1:100) for 30min at 4�C. Intracellular granzyme B levels were determined after incubation of splenocytes in complete

RPMI supplemented with 1 ml/ml GolgiPlug (BD Biosciences) at 37�C and 5% CO2 for 3h. Cells were incubated with anti-mouse

CD16/32 (93, eBioscience, 1:100) for 20min at 4�C and stained using anti-mouse CD4 FITC (GK1.5, Miltenyi Biotec, 1:200) and

anti-mouse CD8 APC-H7 (53-6.7, BD Biosciences, 1:200) for 30min at 4�C. To access intracellular GrB, cells were fixed in 2%

PFA in PBS for 20min at RT, permeabilized using 0.5% saponin for 10min at RT, and stained with APC-conjugated anti-mouse

granzyme B antibody (NGZB, eBioscience, 1:100) for 30min at 4�C.
Brain sequestration of T cells in PbA-infected mice was investigated using brain homogenates. Brains were isolated from PbA

infectedmice on day 6 p.i. and homogenized in complete RPMI and filtered through a cell strainer (40 mm). After lysis of RBCs, brain

homogenates were blockedwith anti-mouse CD16/32 (93, eBioscience, 1:100) for 20min at 4�C and stained with anti-mouse CD45

PerCP (30F11, Miltenyi Biotec, 1:50), anti-mouse CD62L PE (MEL14-H2.100, Miltenyi Biotec, 1:50) and anti-mouse CD8 APC-H7

(53-6.7, BD Biosciences, 1:50) for 30min at 4�C. Intracellular GrB levels of brain homogenates were assessed as described above

(Maglinao et al., 2013).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using the GraphPad Prism software (Version 7, La Jolla, CA). For PbA infections, Kaplan-

Meyer survival curves were analyzed using the log-rank (Mantel-Cox) test. Time courses for disease score, body weight, and

parasitemia were compared by two-way ANOVA. All other data was analyzed by unpaired or paired Student’s t test. To exclude

hemozoin-independent intrinsic effects between WT and CLEC12A�/� DCs (ROS assay, OVA uptake and processing, DC-T cell

co-culture assays), data was normalized to the respective positive controls and depicted as fold increase or percentage in relation

to control. In Figures 1, 2, 3, and S1–S3, n represents the number of biological replicates. In the PbA infection experiments (Figures 4

and S4), n represents the number of animals. Statistical details, including biological and technical replicates and animal numbers, are

provided in the respective figure legends. A p-value of p < 0.05 was considered statistically significant.
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