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We show that inversion-asymmetric tethered membranes exhibit a new double-spiral phase with
long range orientational order not present in symmetric membranes. We calculate the universal
algebraic spiral shapes of these membranes in this phase. Asymmetry can trigger the crumpling of
these membranes as well. In-vitro experiments on lipid, red blood cell membrane extracts, and on
graphene coated on one side, could test these predictions.

The statistical mechanics of membranes has long gen-
erated considerable theoretical and experimental inter-
est [1]. In contrast to linear polymers [2, 3], fluctuating
surfaces can exhibit a wide variety of different phases,
depending on rigidity, surface tension, and topology.
Polymerized, or “tethered” membranes [1, 4] are two-
dimensional (2D) analogs of linear polymer chains. But,
unlike polymers, which are always coiled up, tethered
membranes are known [1, 5] to display a statistically flat
phase with long range orientational order (LRO) in the
surface normals. The very existence of a 2D flat phase
is surprising, since the well-known Hohenberg-Mermin-
Wagner theorem (HMWT) forbids spontaneous symme-
try breaking for 2D systems with a continuous symme-
try [6, 7]. Membranes get around this theorem via the
coupling between in-plane elastic degrees of freedom and
out-of-plane undulations, which introduces an effective
long-ranged interaction between those undulation modes.

Most studies of tethered membranes have considered
only inversion-symmetric membranes, i.e., membranes
that are identical on both sides. Many real membranes,
e.g., graphene coated on one side by some substance (e.g.,
polymer or a layer of lipid), in-vivo red blood cell mem-
branes and in-vitro spectrin-deposited model lipid bilay-
ers [8] are structurally inversion asymmetric. The effects
of such asymmetry are still largely unexplored.

In this Letter, we investigate the effects of asymme-
try, and develop a generic and experimentally testable
theory of equilibrium asymmetric tethered membranes
(ATMs). We find that such membranes exhibit a new,
”spiral state” not found in symmetric membranes. As
illustrated in Fig. 1, the mean spatial configuration of
this state can be obtained by joining two coplanar spi-
rals of opposite handedness at their base, and extruding
that curve in the direction perpendicular to the plane
of the spirals. Note that this state, like the flat phase
of symmetric membranes, exhibits long-ranged orienta-

tional order (LRO), although, obviously, it has a very
different structure.

FIG. 1. (Color online)(left) Schematic diagram of the cross
section of one of the double spirals, (right) Schematic diagram
of a double spiral structure of our model membrane.

In the spiral state at temperature T = 0, all ATMs
assume the same shape. This is also true at T 6= 0,
although the shape differs from that at T = 0; in a sense,
the T 6= 0 shape is infinitely thermally expanded relative
to the T = 0 configuration. The T = 0 configuration is,
for large Lm, simply a double spiral of Archimedes, each
with a hole in the center; i.e., in polar coordinates, each
spiral is given by

r(θ) = r0 + a
θ

2π
; (1)

see Fig. 1 (right). In equation (1), a is the thickness of
the membrane, θ = 0 corresponds to the inner edge of
the membrane, and r0 is the radius of the hole at the
center of each spiral. Choosing this form for r(θ) simply
means that the membrane is curled up as tightly as it
can, given excluded volume effects.

Thermal fluctuations considerably change this picture,
opening up the spiral into the form:

r(θ) = R0θ
β , (2)

where the universal exponent β is related to the equally
universal exponent η characterizing the anomalous bend
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elasticity [1] of symmetric membranes through the rela-
tion β = 4

2+η≈ 4− 2
3

√
15 ≈ 1.418. The numerical esti-

mate is based on the theoretical estimate η = 4/(1 +√
15) ≈ 0.821 obtained by Radzihovsky and LeDous-

sal [9]. In addition, the scale length R0 exhibits univer-
sal scaling with temperature and membrane parameters,
which can also be related exactly to the exponent η; in
particular, we find

R0 ∝ T 2(2−η)/(2+η)≈ T 0.836 . (3)

The total radius RT of the spiral regions also exhibits
universal scaling, in this case with the spatial extent Lm
of the membrane:

RT = R1−α
0 Lαm , α ≡ 4

6 + η
≈ 0.586 . (4)

Increasing asymmetry eventually induces a novel struc-
tural instability which actually crumples the mem-
brane [1, 10]. In further contrast with symmetric mem-
branes, we find two distinct regimes of parameter space
within the crumpled phase of ATMs. In one of these,
(hereafter called “strongly crumpled” , or “SC”), the
membrane will be crumpled no matter how small it is,
while in the second (hereafter called ”weakly crumpled”
or “WC”), it is only crumpled if its lateral spatial extent
Lm exceeds a critical size Lc, which depends on material
parameters of the membrane. Smaller membranes (i.e.,
Lm < Lc) exhibit a spiral structure similar to that found
in the spiral phase, but different in its scaling proper-
ties. Those scaling properties can be obtained from those
specified by equations (2), (3) and (4) by replacing η ev-
erywhere it appears by 0. This crumpling behavior is
summarized in Fig. 2, in which χ is a phenomenological
parameter (defined in equation (5) below) characterizing
the asymmetry of the membrane, with χ = 0 for sym-
metrical membranes.

We will now outline the derivation of these re-
sults; more detail is given in the associated long paper
(ALP) [11].

We begin by formulating the elastic model for a single
turn of the spiral structure, on length scales short com-
pared to both the local radius of curvature R and the
typical distance LH between successive points of contact
between that turn and the turns immediately inside and
outside of it. A membrane patch of linear size L � LH
behaves like an isolated, free membrane with no contact
with anything else. The results of this analysis will then
be used as inputs to treat the membrane on progres-
sively larger scales: first, to compute LH , and thereby
calculate the interaction between successive turns of the
membrane, and then on length scales comparable to R,
to calculate the large scale spiral structure of the mem-
brane.

For L � LH and L � R, we can describe the mem-
brane by a single-valued field h(r) in the Monge gauge
and lateral displacement by a 2D vector field u(r) [1, 12].

Spiral Crumpled

(b)

FIG. 2. (Color online) (a) Schematic “phase diagram” in the
χ2 − κ′ plane. (b) Schematic “phase diagram” in the χ2 − L
plane for fixed κ. The continuous curve (black) is the line
L = ξ(χ2), demarcating the spiral and crumpled phases.

General symmetry considerations then dictate the fol-
lowing form for the free energy functional F for elasti-
cally isotropic (i.e., either amorphous or hexagonal crys-
talline), tensionless asymmetric tethered membranes:

F =
1

2

∫
d2r

[
κ′(∇2h)2 + λu2ii + 2µuijuij + 2χuii∇2h

]
+

∫
d2r C∇2h (5)

to leading order in gradients; here r = |r|, r = (x, y) with
(r, h) denoting the coordinate of a point on the mem-
brane in the three-dimensional embedding space. The
strain tensor uij = 1

2 (∇iuj + ∇jui + ∇ih∇jh), ignor-
ing irrelevant terms, and ∇2h is approximately the mean
curvature for nearly flat membranes. This model (5) dif-
fers from the model for symmetric membranes [1, 12, 13]
by the addition of two generic inversion-symmetry break-
ing terms: a linear “spontaneous curvature” term C∇2h,
that makes the membrane want to curl up with a radius
of curvature Rs ∝ 1/C and a term χuii∇2h, that favors
local bending of the membrane in response to local com-
pression of the elastic network. See Ref. [14] for a term
analogous to our χ term introduced for fluid membranes.

Working to quadratic order in the fields, and integrat-
ing over u, gives an effective free energy functional that
depends only on h(r):

Feff =

∫
d2r

(2π)2

[κ0
2

(∇2h)2 + C∇2h
]
, (6)
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with an effective bending modulus κ:

κ0 = κ′ − χ2

2µ+ λ
≡ κ′(1− χ2/χ2

U
) , (7)

where we have defined

χ2
U = κ′(2µ+ λ) . (8)

Evidently, κ0 < κ′. Thermodynamic stability of the
membrane clearly requires κ0 > 0, otherwise instability
ensues. This implies that χ2

U
is an instability thresh-

old for χ2, with larger χ2’s being unstable. This is the
asymmetry-induced crumpling discussed earlier in this
Letter, which we see can occur even at T = 0. Since (7)
is q-independent, any ensuing crumpling takes place at
all scales, meaning an arbitrarily small membrane will be
crumpled, provided κ0 < 0. We will see later that anhar-
monic effects actually cause the membrane to crumple
for a larger range of χ’s; specifically, when χ2 > χ2

L, al-
though for χ2

L < χ2 < χ2
U , crumpling only occurs if the

membrane is sufficiently large.
We now turn to the uncrumpled case κ0 > 0, and

show that the ground state structure is the double spiral
of Archimedes illustrated in Fig. 1. Since F is bilinear
in ui, we can follow [1] and integrate exactly over ui in
calculating the partition function associated with (5) to
arrive at an effective free energy Fh that depends only
on h (now including anharmonic terms in h). The re-
sult, given in detail in the ALP, is a model with the same
long ranged interaction between Gaussian curvatures as
in symmetric tethered membranes [1], and a new, weaker,
but still long-ranged, interaction between Gaussian and
mean curvature ∇2h that is unique to asymmetric mem-
branes, where the local Gaussian curvature is given ap-
proximately by G(r) ≈ (∂2xh)(∂2yh)− (∂x∂yh)2 for nearly
flat membranes. This long-ranged interaction between
Gaussian curvatures G(r) at different points suppresses
Gaussian curvature, causing the membrane to curl in only
one direction in the spiral state.

In the ALP, we show that the long-ranged interactions
between the mean and the Gaussian curvature do not
alter this conclusion.

We will now more precisely determine the shape of the
membrane at T = 0. Minimizing (6) over the mean in-
verse radius of curvature ∇2h implies that the membrane
energetically prefers to curl up with ∇2h = 1

R1
= − C

κ0
≡

− 1
Rs

, where we have defined the spontaneous radius of
curvature Rs = κ0

C . However, a membrane of lateral ex-

tent L >
πR2

s

a , where a is the thickness of the membrane,
cannot fit into a cylinder of radius Rs, because its total
volume L2a will be greater than the volume of a cylin-
der of radius Rs and length L. Therefore, the best the
membrane can do is to curl up as tightly as it can with-
out overlapping itself. The shape that accomplishes this
while bending in only one direction is the double spiral
of Archimedes described by (1). The reason two spirals

form is that by so doing the membrane can reduce the
average value of R1, since each spiral only has to wind
out 1√

2
as far.

As in symmetric membranes [1, 12, 13], at non-zero
temperatures, the combination of thermal fluctuations
and anharmonic effects substantially modify the behav-
ior of the membrane. To study this, we perform a pertur-
bative renormalization group (RG) analysis of the model
(5), which we remind the reader is only valid on length
scales L� LH . As usual, the RG is done by tracing over
the short wavelength Fourier modes of h(r), followed by
a rescaling of lengths and h. This leads to the following
differential recursion relations:

dκ

dl
= κ

[
−η + g1 −

5

2
g2

]
, (9)

dg1
dl

= g1

[
ε− 5g1

2
+ 5g2

]
, (10)

dg2
dl

= g2

[
ε− 4g1 +

15

2
g2

]
, (11)

where κ(l = 0) = κ0, and we have defined two effective
coupling constants,

g1 ≡
ASDkBTΛ−ε

(2π)Dκ2
, g2 ≡

B2SDkBTΛ−ε

(2π)Dκ3
, (12)

with A ≡ 4µ(µ+λ)
2µ+λ > 0 and B ≡ 2χµ

2µ+λ . Here, exp(l)
is the length rescaling factor, ε ≡ 4 − D, where D is
the ”internal” dimension of the membrane (e.g., D=2 in
the physical case), and SD is the surface area of a D-
dimensional sphere of unit radius. The flows in the g1-g2
plane are illustrated in Fig. 3.

FIG. 3. (Color online) Schematic flow lines in the g1 − g2
plane. (Green) cross marks the stable FP (2ε/5, 0). The red
straight line is the separatrix g2 = 3g1/5.

As can been seen from that figure, the only stable fixed
point is at g2 = 0, g1 = 2ε/5 , which we will denote
by call “ALFP” (Aronovitz-Lubensky fixed point) here-
after [13]. Since only g2 (which depends on B, and hence
χ) and C involve any parameter that breaks the up-down
symmetry of the lattice, the vanishing of g2 at the fixed
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point implies that the large scale properties of any system
whose starting parameters lie in the basin of attraction
of this fixed point (i.e., the region below the separatrix
in Fig. 3) will, with increasing length scale, become iden-
tical to those of a symmetric membrane, until we reach
length scales at which C becomes important. Membranes
in this region of parameter space are in the spiral state
discussed below, whereas membranes whose bare g1,2 lie
above the separatrix g2 = 3g1/5 are crumpled, as we will
discuss later.

We now turn to the effects of thermal fluctuations on
the spiral phase itself. This requires studying the sys-
tem at larger scales L � LH . We still expect a double
spiral (see Fig. 1) when T > 0. Thermal fluctuations
open up the spiral by giving rise to a longer ranged ”Hel-
frich repulsion” UH(d) [15, 16] that is caused by excluded
volume interactions between parts of neighboring turns
of the membrane that have made large excursions from
their mean position (here d is the local mean separation
between successive turns [17]. This interaction has the
same form and scaling as for a lamellar phase of symmet-
ric membranes[16], since g2 → 0 upon renomalization
below the separatrix, as discussed above. As shown in
detail in the ALP, the result of balancing this interaction
against the spontaneous curvature energy is the form of
the spiral given by equations (2), (3), and (4). Note that
this spiral phase displays orientational LRO.

Having discussed the spiral phase, we turn now to the
other region of parameter space, namely that which flows
away from the ALFP, and towards negative κ. While we
cannot follow these flows all the way to κ = 0 (since both
g1,2 diverge there, so that our perturbation theory breaks
down), we suspect that this signals crumpling of large
membranes. This region of parameter space therefore
corresponds to the crumpled phase. For ε = 4 − D �
1, which is the region in which our perturbative RG is
accurate, this is the region in figure (2) lying above the
separatrix g2 = 3g1/5. For the physical case ε = 2, as
discussed in the ALP, it seems reasonable to assume that
there continues to be a separatrix which, for small g1,2,
is a straight line g2 = ρg1 of universal slope ρ = O(1),
although since ε = 2 we cannot calculate the universal
constant ρ.

The range of χ in our original model (5) that we are
now discussing is χ2

L < χ2 < χ2
U , where the upper bound

follows because we are considering positive κ0 in Eq. (7),
while the lower bound follows from assuming that we are
above the separatrix, which implies, for small bare g01,2,
that g02/g

0
1 > ρ. Using our earlier expressions (12) for

g1,2, we see that this implies

χ2 >
ρκ′(2µ0 + λ0)

ρ+ µ0

µ0+λ0

=
χ2
U

1 + µ0

ρ(µ0+λ0)

≡ χ2
L , (13)

where in the equality we have used our result (8) for χ2
u.

Note that, reassuringly, we always have χ2
L < χ2

U , since ρ,

µ0, and µ0+λ0 are all positive, the latter two positivities
being required for stability.

For χ’s in the range χ2
L < χ2 < χ2

U , the mem-
brane can remain uncrumpled if it is sufficiently small.
This is because, in this range of χ’s, the bare value

κ(` = 0) = κ0 = κ′ − χ2

2µ0+λ0
, is positive, and can

stabilize orientational order and thereby prevent crum-
pling. Hence, that order will only be lost on length scales
L > ξ, where ξ is the smallest length scale big enough
to allow enough renormalization group “time” ` for κ(`)
to be driven to zero. This implies that the membrane
will crumple unless new physics beyond the purely elas-
tic model (5) intervenes on some length scale smaller than
ξ.

Now we need to consider what ”new physics” beyond
the elastic model (5) can intervene before this length scale
is reached to prevent crumpling. One possibility is self-
avoidance, which can cut off any tendency to crumpling
in the spiral sections of the membrane. But as inspec-
tion of figure (1) makes clear, this cut off cannot work
for the straight section connecting the two oppositely re-
turning spirals. This section has no neighbors, because
it lies outside both spirals. It is therefore the section of
the membrane that will crumple first, thereby inducing
crumpling of the rest of the membrane.

This straight, “connecting” section of the membrane is
stabilized by surface tension, which arises because that
section of the membrane could lower its energy by ‘rolling
up” into one or the other of the spiral sections it connects.
It is not rolled up, of course, because the other spiral
pulls it equally hard in the opposite direction. These two
pulls create a non-zero surface tension σ, whose magni-
tude should be comparable to the Helfrich interaction in
outermost turn of spiral, since it is the balance between
that interaction, which works to open the spiral, and the
spontaneous curvature term, which tries to tighten it,
that sets the scale of that spontaneous curvature energy,
and, hence, the surface tension. In the ALP we use this
reasoning to calculate this surface tension σ, and the as-
sociated length scale Lσ =

√
κ
σ obtained by equating σ

to the bending energy κ0

L2
σ

. Equating Lσ to ξ and solving

for Lm gives the maximum size Lc of the membrane that
can be stable:

Lc ∼
κ
7/2
0 C2

0

(kBT )5/2B3
0

∝ (χ2
U − χ2)7/2 , (14)

where the final proportionality follows from our expres-
sion (7) for κ0. See Figs. 2 for schematic phase diagrams
in the χ− κ′ and χ2 − L planes.

This scaling law breaks down both near χU , where Lc
gets to be Rs, so the membrane is not long enough to
wind up at all, and as χ → χL, for reasons discussed in
the ALP.
Summary: We have developed the theory of asymmet-
ric tethered membranes. This theory predicts a spiral
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state, with the shape of the membrane at T = 0 a double
Archimedes spiral at T = 0, and an algebraic spiral with
a universal exponent at T > 0. We also find that suffi-
ciently asymmetric membranes are crumpled; the mech-
anism for this is quite different from “buckling” of elastic
shells [18]. This leads to the phase diagrams (2), which
can be tested in non living (ATP-depleted) RBC mem-
brane extract [8], for model asymmetric membranes by
binding spectrin to lipids [19], or graphene coated with
some substance (e.g., polymer or a layer of lipid) on one
side, as well as by numerical simulations[4, 20, 21]. We
hope our work will stimulate experimental and numerical
studies of asymmetric tethered membranes.
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