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Non-vanishing fluctuations of the vacuum state are a salient feature of quantum theory. These fluctuations fun-
damentally limit the precision of quantum sensors. Nowadays, several systems such as optical clocks [1], grav-
itational wave detectors [2], matter-wave interferometers, magnetometers [3], and optomechanical systems [4]
approach measurement sensitivities where the effect of quantum fluctuations sets a fundamental limit, the so
called standard quantum limit (SQL). It has been proposed [5] that the SQL can be overcome by squeezing the
vacuum fluctuations. Realizations of this scheme have been demonstrated in various systems [6–12]. How-
ever, protocols based on squeezed vacuum crucially rely on precise control of the relative orientation of the
squeezing with respect to the operation imprinting the measured quantity. Lack of control can lead to an ampli-
fication of noise and reduces the sensitivity of the device. Here, we experimentally demonstrate a novel quantum
metrological paradigm based on phase insensitive Fock states [13] of the motional state of a trapped ion, with
applications in frequency metrology and displacement detection. The measurement apparatus is used in two
different experimental settings probing non-commuting observables with sensitivities beyond the SQL. In both
measurements, classical preparation and detection noise are sufficiently small to preserve the quantum gain in a
full metrological protocol.

Advances in the ability to control quantum systems together
with the suppression of classical noise originating from tech-
nical imperfections, has led to the emergence of sensors that
are limited in their performance by quantum noise. For more
than thirty years it has been known that certain types of non-
classical states can reduce the effect of quantum noise and
thus enhance the sensitivity of measurement devices beyond
the classical limit [5]. Taking advantage of this sub-SQL sen-
sitivity requires not only the preparation of the non-classical
state with high fidelity, but also the prevention of signal loss in
the entire measurement protocol. This has been achieved e.g.
with squeezed states and Schrödinger-cat or N00N states in in-
terferometric settings [8–11]. A common restriction of these
types of non-classical states is the need for control over the
relative phase between the state creation and the measurement
interaction [14, 15]. In a phase-space picture, squeezing along
the displacement direction enhances the sensitivity for am-
plitude measurements, but weakens the sensitivity for phase
measurements. Here we present sub-SQL measurements of
amplitude and phase of the motional state of a trapped ion
using the same motional Fock state. For this purpose, we op-
erate the sensing device in two different experimental settings.
Firstly, the amplitude of the ions oscillation is varied and the
phase is kept constant, which realizes a displacement or force
sensor [16–18]. Secondly, the Fock state is displaced with a
fixed amplitude in a Ramsey-like interferometry sequence to
measure the phase of the ions oscillation which implements
a measurement of the oscillation frequency of the ion in the
trap. Furthermore, we prove that the non-classicality in terms
of the Glauber-Sudarshan P-function is the resource for the
metrological gain [19] and that Fock states are optimal for

sensing displacements with unknown phase.
The experiments are performed with a single 25Mg+ ion

confined in a linear Paul trap. Excited motional Fock states
are created starting from the motional and electronic ground
state [20], through a sequence of laser-driven blue and red
sideband pulses that each add a quantum of motion while
changing the internal state of the ion [21, 22]. A calibrated
displacement D̂ (α) = exp (αâ† − α∗â) is implemented by
exposing the ion to an electric field oscillating at the trapping
frequency of ωz = 2π × 1.89 MHz. The displacement am-
plitude |α| can be controlled through the modulation time tF
(see Methods for more details). It is measured by mapping the
overlap between initial and displaced state onto the atomic
qubit (|↑〉, |↓〉, encoded in two hyperfine states of the 2S1/2

electronic ground state of 25Mg+), where state-readout is per-
formed using state dependent fluorescence [23]. The mapping
process is implemented by a sequence of sideband rapid adi-
abatic passage (RAP) [24] and microwave pulses and is de-
scribed in more detail in the Methods section.

Fig. 1 a shows the principle and Fig. 1 c the result of
such a measurement for three different initial Fock states
(n = 0, 1, 2). The expected state overlap is given by
|〈n|D(α)|n〉|2 = exp(−|α|2)

(
Ln(|α|2)

)2
, with the Laguerre

polynomials Ln [25]. The measurement suffers from reduced
contrast due to imperfections in state preparation and the de-
tection process, which are of technical nature and pose no
fundamental limitation. To account for these imperfections
the fitting function depicted by the solid line in Fig. 1c is
Pfit = C1 + C2 exp(−|α̇tF|2)

(
Ln(|α̇tF|2)

)2
, with free pa-

rameters C1, C2, and α̇. The fitted value of α̇ for the n = 0
data is used to calibrate the displacement strength shown on
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Figure 1. Measuring displacement amplitudes. a The left panel shows a schematic of the experimental setup: A magnesium ion is trapped in
a linear Paul trap and an additional ac voltage on the end electrodes implements the motional displacement(coherent excitation of motion). On
the right panel the initial motional state wave functions are shown as dashed lines (n = 0 blue, n = 1 red). After applying a resonant oscillating
force, the ion’s motion is in a displaced Fock state whose wave function is depicted by the solid colored lines. To infer the displacement, the
wave function overlap is measured as sketched by the colored areas. b Illustration of the mechanism behind enhanced sensitivity of Fock
states to displacements. The left and the right panel show the theoretically calculated product of the initial and final Wigner function for three
different displacements for the Fock states n = 1 and n = 0, respectively. By integrating over the whole phase space it is possible to infer
the state overlap shown in (c). The negative parts of the n = 1 Fock states lead to a vanishing integral for α = 1, before the contours of
the Wigner functions are fully separated. For states without negative regions in the Wigner function, such as Gaussian states, the integral can
only vanish when the product of Wigner functions vanishes over the whole phase space. c The graph shows the outcome of the state overlap
measurement for three different initial Fock states (blue: n = 0, red: n = 1, green: n = 2). The oscillating force is applied for different
duration tF. The solid curves are fits of the equation given in the main text to the data and the dashed lines are the corresponding theoretical
curves assuming full contrast. The fit for the motional ground state is used to calibrate the upper x-axis, denoting the displacement amplitude
|α|. Error bars for the standard error of the mean (s.e.m.) due to quantum projection noise are too small to be seen. Each point is an average
of approximately 10 000 experiments.

the upper x-axis.
In contrast to the monotonous behavior of the n = 0 mea-

surement outcome, the data for the excited Fock states exhibit
fringes due to interference in phase space [26]. The interfer-
ence fringes and the resulting metrological gain can be under-
stood as a consequence of the negative regions of the Wigner
function as shown in Fig. 1 b. In phase space the overlap
of two quantum states is represented by the integral over the
product of the Wigner functions

|〈ψi|ψf〉|2 =

∫∫
dβW (β)|ψi〉W (β)|ψf〉. (1)

In consequence the overlap between a classical state (with
positive Wigner function) and its displaced counterpart only
vanishes for vanishing overlap of the phase space contours of
the involved states (see left panel in Fig. 1 b). However, if the
quantum state reveals negative values in the Wigner function,
as is the case for Fock states, the negative parts in the prod-
uct can cancel the positive parts and lead to vanishing over-
lap before the wave packets are spatially separated (see right
panel in Fig. 1 b). The metrological gain can be quantified by
the Fisher information F for the displacement measurement

which can be extracted from the data shown in Fig. 1 (see
Methods for details). The result is shown in Fig. 2 a. For
a displacement of α = 0.59 the measured Fisher informa-
tion for the n=1 Fock state measurement is Fn=1 = 5.37(63)
(error is standard deviation (s.d)) which implies a metrolog-
ical gain of gSQL = Fn=1(α=0.59)

FSQL = 1.3 dB compared

to the theoretical SQL and g = Fn=1(α=0.59)
maxα(Fn=0) = 3.6 dB

compared to the achieved performance for the n = 0 state
(Fn=0(α = 0.59) = 2.36(30)). This corresponds to a re-
duction in averaging time by more than a factor of two for
the same displacement resolution. The Fisher information is
directly linked to the achievable measurement uncertainty by
the Cramér-Rao bound

∆α ≥ ∆αCR =
1√

NF(α)
, (2)

where N is the number of independent experimental cycles.
In agreement with the Cramér-Rao bound, the uncertainty for
the displacement measurement shown in Fig. 2 b in the form
of an Allan deviation σα averages down faster for the n=1
Fock state (red circles) compared to the ground state (blue
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Figure 2. Evaluation of displacement measurement. a Fisher information extracted from the amplitude measurement for three different
initial Fock states (blue: n = 0, red: n = 1, green: n = 2). The dashed lines show the theoretically expected value for full contrast, whereas
the solid lines show the expected values considering the reduced contrast and offset (extracted from fit, see Fig, 1). The standard quantum
limit is depicted by the red line. The Fock states with n > 0 significantly surpass this limit. The error bars indicate the standard deviation
(see supplementary information for more details). b Allan deviation for an amplitude measurement around α = 0.59 with a coherent state
(blue circles) and with a n = 1 displaced Fock state (red circles). The solid line shows the quantum projection noise limit from Eq. 2 with the
classical theoretical optimum Fn=0 = 4.

circles). Note that for white noise, the Allan deviation σα
and standard deviation ∆α are identical. The achieved sen-
sitivity for displacement of σA(N = 216) = 65(23) pm for
n = 0 and σA(N = 216) = 32(18) pm for n = 1 can be
translated into force measurement resolution (see Methods)
of 1.8(0.6) yN for n = 0 and 0.9(0.5) yN for n = 1 after
N = 216 = 65 536 independent experiments, where an ex-
perimental cycle takes 8.1 ms and 9.5 ms for the n = 0 and
n = 1 measurement, respectively.

For pure states it can be shown that the quantum Fisher
information for a displacement along phase space quadra-
ture R̂(φLO) =

(
sin (φLO) X̂ + cos (φLO) P̂

)
/
√

2 is pro-
portional to the variance of the conjugate variable [27, 28],

i.e. FQ = 16
(

∆R̂(φLO + π/2)
)2

, where φLO is the phase
of the oscillating force. According to this relation the metro-
logical gain can be understood as a consequence of the anti-
squeezing in the generating, conjugate quadrature. The fact
that Fock states are antisqueezed along all directions provides
an illustrative explanation for the their phase insensitive gain.
For a Fock state of order n, the quantum Fisher information
is given by FQ = 8n + 4. In general, any enhancement be-
yond the classical limit can be traced back to non-classicality
as defined in terms of the Glauber-Sudarshan P-distribution.
Furthermore, for displacement measurements with an un-
known phase, it can be shown that Gaussian states, or mix-
tures thereof, will always perform suboptimally, whereas Fock
states are indeed optimal (see supplementary information).

As a consequence of the insensitivity of the Fock state to
the displacement direction, the same state can be employed
for quantum-enhanced sensing of displacement amplitude and
phase changes. We demonstrate this feature by measuring the

oscillation frequency of the trapped ion with sub-SQL reso-
lution in a Ramsey-like experiment as sketched in the inset
of Fig. 3 (see supplemental information and Extended Data
Fig. 2 for more detailed information). The Ramsey sequence
starts with the initialization of the ion’s motion in a Fock
state (I) and a subsequent displacement in phase space (II). If
the drive for the displacement was detuned by δ from the trap
frequency, the displaced state will evolve in phase space on a
circle around the origin and accumulate a phase φ = δ × T
compared to the driving field during the waiting time T (III).
Undoing the displacement (IV) maps this phase onto a resid-
ual displacement δα that can be detected with the overlap de-
tection method introduced above. The center fringe of the
Ramsey pattern for waiting time T = 50µs and initial dis-
placement α = 1.6 is shown in Fig. 3. As illustrated by
the data shown in the inset, the width of the center fringe
decreases with increasing Fock state order. The full-width-
half-maximum (FWHM) is extracted from a Gaussian fit to
the center peaks. Note that a narrower width does not nec-
essarily imply a metrological gain. For an increase in Fisher
information the slope of the line feature has to increase. For
n=2 the reduction in linewidth is fully compensated by the re-
duced contrast. The whole Ramsey pattern for the different
initial Fock states is shown in Extended Data Fig. 2 and the
theoretical line shape is derived in the supplementary infor-
mation.

To evaluate the performance of the quantum sensing tech-
niques, we have performed a trapping frequency measurement
by two-point sampling and analyzed the data in terms of an
Allan deviation (see Fig. 4). Since the n = 2 Fock state in our
case does not provide an additional metrological advantage
(see Fig. 2) as a consequence of the reduced contrast caused
by technical limitations of the implementation, we have per-
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Figure 3. Trapping frequency measurement. Center fringe of the
Ramsey pattern for three different initial Fock states (blue: n = 0,
red: n = 1, green: n = 2). The circles show the experimental
data, which is the population probability of the ion in the |↓〉-state
(|↑〉 for n = 0, see text for details). The solid lines show a fit of the
theoretically expected lineshape to the data (see supplementary in-
formation). The inset shows the full-width-half-maximum (FWHM)
extracted from a Gaussian fit to the data. Each data point consists
of 1000 experimental cycles, evaluated with a distribution fit tech-
nique [23]

formed the Allan deviation analysis for the n = 0 and n = 1
Fock state only. The measurement has been performed in an
interleaved pattern with an average cycle time of 6.6 ms and
7.8 ms for the n = 0 and n = 1 measurement, respectively.
The Allan deviation for the n = 0 protocol averages down to
σn=0
δ = 2π × 5.8(3) Hz. The achievable resolution is limited

by a linear drift of the trapping frequency, which leads to an
increase in the Allan deviation for long averaging times. The
red line in Fig. 4 is the SQL given by

σSQL
δ =

1

2 (T + tF )

1

|α|
√
N
, (3)

which is the lowest statistical uncertainty achievable with a
classical state. For the quantum-enhanced technique with
n = 1, the overlapping Allan deviation reaches σn=1

δ =
2π × 3.6(2) Hz before it increases due to the linear drift. Us-
ing the n = 1 Fock state improves the frequency resolution
by more than 60 % compared to the vacuum state. This is a
direct consequence of the quantum-enhanced reduction in av-
eraging time, which allows measuring the trapping frequency
with high accuracy before it starts drifting.

In summary, we have demonstrated a quantum-enhanced
sensing scheme based on motional Fock states to measure the
amplitude and the phase of an oscillating force with sensitiv-

ities below the standard quantum limit. This is complemen-
tary to another quantum enhanced method to sense motional
frequencies based on phase-sensitive superpositions of Fock
states [29]. The sensing scheme does not require any phase re-
lation between the displacement and the quantum state of the
detector, which is an important feature when measuring arbi-
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Figure 4. Evaluation of trapping frequency measurement. Over-
lapping Allan deviation for frequency measurement with a coherent
state (blue circles) and with a n = 1 displaced Fock state (red cir-
cles). The solid line shows the quantum projection noise limit from
Eq. 3.

trary interactions without prior phase information. In contrast
to the phase-insensitive schemes exploiting correlated modes
of atomic ensembles [3, 30], our scheme requires no mode
entanglement.

Quantum logic spectroscopy [31] based on motional dis-
placements [32, 33] will benefit from the presented amplitude
detection technique, in particular for state detection and spec-
troscopy of non-closed transitions [34], where scattering on
the spectroscopy ion has to be reduced to a minimum.

The presented quantum-enhanced frequency measurement
can help to further improve high precision mass measure-
ments of atoms in Paul traps [35] and g-factor measure-
ments of subatomic particles, such as (anti-)protons in Pen-
ning traps [36, 37]. Both cases will benefit from a quan-
tum logic approach, in which a mass or spin-dependent force
on the particle of interest is probed with quantum-enhanced
sensitivity by a nearby well-controllable logic ion using mo-
tional Fock states. Further improvements in sensitivity can be
achieved by employing techniques that allow the generation
and overlap detection of larger Fock states with high fidelity.
Scalable overlap measurements for Fock states up to n = 10
have been reported [38], allowing phase-insensitive suppres-
sion of quantum projection noise of up to 13.2 dB.
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[32] Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi,
I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and
P. O. Schmidt, Nature Communications 5, 4096 (2014).

[33] D. B. Hume, C. W. Chou, D. R. Leibrandt, M. J. Thorpe, D. J.
Wineland, and T. Rosenband, Physical Review Letters 107,
243902 (2011).

[34] F. Wolf, Y. Wan, J. C. Heip, F. Gebert, C. Shi, and P. O.
Schmidt, Nature 530, 457 (2016).

[35] Staanum, P. F., Højbjerre, K., and Drewsen, M., in
Practical Aspects of Trapped Ion Mass Spectrometry, Volume V,
Modern mass spectrometry (CRC Press, 2010).
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METHODS

I. TRAP MODULATION TO IMPLEMENT DISPLACEMENT OPERATOR

Applying a resonantly oscillating electric field at the position of the ion leads to a displacement of the ion’s motional state in
phase space [39]. The interaction Hamiltonian for a trapped ion with an additional time dependent potential V (t, z) = −qE(t)ẑ,
where q and ẑ are the charge and the position of the ion, respectively andE(t) is the time dependent electric field, that is assumed
to be spatially constant over the extent of the ion’s wave function, can be written as

Ĥ = −qE(t)z0

(
âe−iωzt + â†eiωzt

)
, (4)

in an interaction picture with respect to the free harmonic oscillation Hamiltonian Ĥ HO = ~ωzâ†â and ẑ is the position
operator ẑ = z0

(
âe−iωzt + â†eiωzt

)
with the annihilation(creation) operator â(â†) and ground state wave function extent

z0 =
√
~/2mωz . For an electric field oscillating at the trapping frequency ωz , this leads to the static Hamiltonian

Ĥ = −qE0z0

2

(
âe−iφLO + â†eiφLO

)
, (5)

where fast oscillating terms (at twice the trapping frequency) are neglected within the rotating wave approximation. Here, φLO
and E0 are the phase and amplitude of the driving field, respectively. The unitary evolution according to this Hamiltonian is

Û(t) = e−
i
~ Ĥt = D̂(α) (6)

and can be identified as the displacement D̂(α) = eαâ
†−α∗â operator with displacement amplitude α = iqE0zo

2~ eiφLO × t.

II. OVERLAP MEASUREMENT

All measurements described in the manuscript rely on the ability to measure the motional state population in a given Fock
state. To achieve this, we have implemented a sequence that transfers a selected initial population pn to the motional and
electronic ground state, while all other motional population is in the |↑〉 state. State-selective fluorescence then provides the
population pn. The sequence for measuring p0, p1 and p2 is shown in Fig. 1. The ion is initialized in the |↑〉-state. At the
beginning of the detection sequence the motional population {pn} is distributed over several motional Fock states n. (I). A blue
sideband rapid adiabatic passage pulse (RAP) transfers the internal state to |↓〉, while simultaneously taking out a quantum of
motion, therefore keeping the ground state population untouched [24]. Averaging the number of |↓〉 and |↑〉 detection events
after this mapping step provides the n = 0 population. For higher order Fock state detection the protocol has to be extended as
follows. The ground state population can be hidden in a dark auxiliary state |aux〉 by radio frequency pulses (II). In 25Mg+ the
Zeeman substates with mF = 1, 0,−1,−2 of the F = 2 dark hyperfine state can be used for this purpose. A second sideband
RAP pulse (III), this time on the red sideband, flips the spin for all motional states except for the ground state, which stores the
information about the initial Fock state n = 1 population. Fluorescence detection of the ion’s spin will give the initial n = 1
Fock state population. To detect even higher Fock states, the spin is flipped independent of the motional state to initialize the
|↑〉-state again (IV). Now steps (II) to (IV) are repeated until the desired Fock state population is isolated in the |↓〉 state from the
rest of motional population (e.g. see (V) to (VII) for n = 2). The limitation for high n is the limited number of auxiliary states
available in 25Mg+. However, other techniques for phonon counting up to n = 10 by exploiting trap induced Kerr-nonlinearities
have been demonstrated [38] and modifications using laser-induced Kerr nonlinearities [40] combined with continuous dynamic
decoupling techniques [41] might be an option for future implementations.

III. QUANTUM METROLOGY

The precision of an estimation is bounded by means of the Cramér-Rao bound as

∆θest ≥ ∆θCR =
1√

NF(θ)
, (7)

where θest is an arbitrary estimator for θ, N is the number of repeated measurements, and

F(θ) =
∑
µ

1

P (µ|θ)

(
∂P (µ|θ)
∂θ

)2

(8)
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Extended Data Figure 1. Experimental scheme to measure the motional state overlap with Fock state n. The reduced level scheme shows
the spin states |↓〉, |↑〉 and the manifold of auxiliary states |aux〉 (see text for details). The boxes indicate the current motional state within
the sequence. The values pn denote the initial population of the Fock state n. The sequence starts with the ion in the |↑〉 state and an
unknown motional state distribution.(I) A blue sideband RAP pulse flips the spin and removes a phonon from all excited Fock states, leaving
the ground state population untouched. (II) The motional ground state population is measured via spin state-selective fluorescence. To detect
the population of higher order Fock states, the ground state population is hidden by a sequence of rf-pulses in one of the auxiliary states |aux〉1.
(III) A red sideband RAP pulse flips the spin and removes a phonon from all excited Fock states. Therefore only the population that was
initially in the n = 1 Fock state remains in the bright spin state |↓〉. (IV) Detection of the ions spin gives the n = 1 Fock state population.
Alternatively, step (II)-(IV) can be repeated after a rf carrier π-flop to detect higher order Fock states (see (V)-(VII)).

is the (classical) Fisher information. The probability distribution P (µ|θ) = Tr{Π̂µρ̂(θ)} is determined by the quantum state
ρ̂(θ) and the choice of measurement, described by the projectors {Π̂µ}µ. We consider scenarios in which the unknown phase θ
is imprinted by a unitary process, i.e. ρ̂(θ) = Û(θ)ρ̂Û(θ)† with Û(θ) = e−iĤθ.

The mean value 〈M̂〉ρ̂(θ) = Tr{M̂ρ̂(θ)} and variance (∆M̂)2
ρ̂(θ) = 〈M̂2〉ρ̂(θ) − 〈M̂〉2ρ̂(θ) of the measured observable M̂ =∑

µ µΠ̂µ can be used to derive a lower bound for the Fisher information [42]

F(θ) ≥ 1

(∆M̂)2
ρ̂(θ)

(
d〈M̂〉ρ̂(θ)

dθ

)2

. (9)

This bound is tight if there are only the two measurement outcomes µ = 1, 0 with P (1|θ) = 1 − P (0|θ) and (∆M̂)2
ρ̂(θ) =

P (1|θ)(1− P (0|θ)).
Maximizing the Fisher information over all possible measurements leads to the quantum Fisher information [27]

max
{Π̂µ}

F(θ) = FQ[ρ̂, Ĥ], (10)

which is a function of the initial state ρ̂ and the generator Ĥ of the unitary evolution. We obtain the quantum Cramér-Rao bound
as the general precision limit for quantum parameter estimation [43]

∆θest ≥ ∆θCR ≥ ∆θQCR =
1√

NFQ[ρ̂, Ĥ]
. (11)
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IV. EXTRACTING THE FISHER INFORMATION FROM EXPERIMENTAL DATA

We can use the data shown in Fig. 1 c to get a measured value for the Fisher information of our measurement. As can be
seen from Eq. 9, the Fisher information depends on the slope and the noise properties of the measurement presented before. The

slope s(αi) =
d〈M̂〉ρ̂(α)

dα is experimentally determined for each displacement amplitude αi by a symmetric difference quotient

s(αi) =
P|↓〉(αi+1)− P|↓〉(αi−1)

αi+1 − αi−1
. (12)

For the first and last measurement point is is determined by an asymmetric difference quotient

s(αi) =
P|↓〉(αi+1)− P|↓〉(αi)

αi+1 − αi
(13)

As discussed before, the noise is dominated by quantum projection noise.

V. ESTIMATION OF THE ACHIEVABLE FORCE SENSITIVITY

The Amplitude F of a resonant oscillating force , required to get a displacement of α after time tF is given by

F =
2~
z0tF

× α, (14)

where z0 =
√

~/2mωz is the ground state wave packet extent for an atom with mass m, trapped in a harmonic potential with
trap frequency ωz . Therefore, the statistical uncertainty for a force estimation can be written as

∆F =
2~
z0tF

×∆α (15)

≥ 2~
z0tF

1√
FN

, (16)

with F , the Fisher information for the α-estimation (measured result shown in Fig. 2 a) and N the number of experiments.
Rewriting this expression with N = τ/tcycle, and introducing RF = tcycle/tF as the ratio of cycle time and tF we obtain

∆F√
∆
≥ 2~RF

z0

√
1

Fτ
, (17)

where ∆ = 1/tcycle is the measurement bandwidth and τ the total measurement time. For 25Mg+ with ωz = 2π × 1.89 MHz,
tF = 10µs, tcycle = 15 ms, F = 5 and τ = tcycle the resulting force sensitivity is 112 yN/

√
Hz.

VI. OSCILLATION AMPLITUDE

For a harmonic oscillator, the position observable x̂ is related to the quadrature component X̂ = 1√
2

(
â† + â

)
by

ẑ =

√
~

mωz
X̂ (18)

From this relation the expectation value of the position operator for a coherent state α can be evaluated to be

〈ẑ〉α =

√
~

2mωz
2α cosωzt = 2z0α cosωzt . (19)

Therefore the oscillation amplitude for a given displacement is A = 2z0α. Accordingly, the y-axis in figure 2 b was scaled by
∆A = 2z0∆α.
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Extended Data Figure 2. Ramsey scheme for trapping frequency measurement A Ramsey scheme to measure the trap frequency. (I) The
ion is prepared in the motional ground state (or higher Fock state, not shown in Figure). After a displacement implemented with a detuned
oscillating force (II) the ion’s motion accumulates a phase φ = δ × T during a waiting time T (III). When the displacement is undone (IV), a
residual displacement remains, which depends on the accumulated phase. Measuring the residual displacement with the overlap measurement
technique described above for different detuning gives the Ramsey fringes shown in subfigure B. The experimental results are shown for three
different Fock states (blue: n = 0, red: n = 1, green: n = 2). It can be seen, that with increasing Fock state order, the width of the resonance
lines decreases. Each point is an average of 1250 experiments. The solid line is a fit to the theoretical lineshape (Supplementary Information
Eq. (17)) considering the reduced contrast.
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SUPPLEMENTARY INFORMATION

VII. ERROR ANALYSIS FOR FISHER INFORMATION MEASUREMENT

Below we will use the shortened notation P|↓〉(αi) ≡ Pi and s(αi) ≡ si.

A. Errors on slope determination

a. Quantum projection noise The slope is determined by measuring the population at two neighboring points. The error

associated with this measurement is ∆Pi−1 =
√

Pi−1(1−Pi−1)
N and ∆Pi+1 =

√
Pi−1(1−Pi−1)

N , where N is the number of
independent measurements and is propagated to the slope error due to quantum projection noise via

(∆si)QPN =

√(
∂si
∂Pi−1

∆Pi−1

)2

+

(
∂si
∂Pi+1

∆Pi+1

)2

(20)

=

√
1

N

Pi−1(1− Pi−1) + Pi+1(1− Pi+1)

(αi+1 − αi−1)
2 (21)

b. Fit error for displacement determination To determine the implemented displacement, we fitted the expected theoretical
curve to the measured data for the motional ground state. The fit error ∆α also gives an error on the denominator in the difference
quotient. The resulting slope error reads

(∆si)fit =
si

αi+1 − αi−1
∆α (22)

c. Error due to finite step size The difference quotient only gives an approximation of the true slope of the signal. For a
symmetric derivative the first order error to this approximation is given by

(∆si)fin =

(
d3P

dα3

)
i

(αi+1 − αi−1)2

6
, (23)

and in the asymmetric case by

(∆si)fin =

(
d2P

dα2

)
i

(αi+1 − αi−1)

2
, (24)

For the error estimation we used the theoretically calculated derivative of P = exp(−|α|2)Ln(|α|2)2, where n denotes the
number of excitations in the Fock state, without additional parameters accounting for the reduced contrast observed in the
experiment.

d. Total slope error The total error on the estimation of the signal slope s then reads

(∆si) =
√

(∆si)
2
QPN + (∆si)

2
fit + (∆si)

2
fin (25)

B. Errors on QPN determination

Since we use a binary data set to determine the expectation value for the spin measurement, the value for the variance is exact.

However, for finite N statistical fluctuation will give rise to an uncertainty given by ∆QPNi = Pi(1− Pi)
√

2
N−1 [44].

(∆F5)sQPN
0.427

(∆F5)fit 0.006
(∆F5)fin 0.464
(∆F5)QPN 0.068

Table I. error budget for the Fisher information estimation of measurement point i = 5 with α = 0.59.
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C. Total error

The total estimated error on the measurement of the Fisher information is given by

∆F =

√(
2s

Pi(1− Pi)
∆si

)2

+

(
s2

(Pi(1− Pi))2
∆QPNi

)2

. (26)

The most significant violation of the standard quantum limit has been observed for point i = 5 in the Fock state n = 1 data. The
Fisher Information for this measurement was F5 = 5.37(63) and the different uncertainties are summarized in the error budget
in table I

VIII. RAMSEY PATTERN LINE SHAPE

The individual displacement pulses start at t0 and are applied for a duration tF . The oscillating force is detuned by δ from the
axial trap frequency ωz , resulting in the time dependent interaction Hamiltonian

Ĥ = i~
(
γ(t)â† − γ∗(t)â

)
(27)

where γ(t) = iΩei(δ·t+φLO) and Ω = −qE0z0/(2~) (see also section Trap modulation to implement displacement operator).
The dynamics is given by the unitary evolution [45]

Û(t0, t) = D̂
(
α(t0, t)

)
eiΦ(t0,t) (28)

where the interaction starts at t0 and has duration t. The displacement and phase are:

α(t0, t) =

∫ t0+t

t0

dτ γ(τ) (29)

Φ(t0, t) = Im

[∫ t0+t

t0

dτ γ(τ)

∫ τ

t0

dτ ′ γ∗(τ ′)

]
. (30)

For the total sequence the evolution is then

Ûtot = ÛφLO+π

(
t0 + tF + T, tF

)
ÛφLO

(
t0, tF

)
(31)

where subscripts represent a phase change of the local oscillator to undo the initial displacement. Up to a global phase this
results in a displacement

Ûtot = D̂ (δα) (32)

where δα = α(t0, tF )− α(t0 + tF + T, tF ) with the two contributions

α(t0, tF ) =
ΩeiφLO

δ

(
eiδ(t0+tF ) − eiδt0

)
=
iΩtF e

i(φLO+δt0)

(δtF /2)
sin

(
δtF
2

)
eiδtF /2 (33)

α(t0 + tF + T, tF ) =
ΩeiφLO

δ

(
eiδ(t0+2tF+T ) − eiδ(t0+tF+T )

)
=
iΩtF e

i(φLO+δt0)

(δtF /2)
sin

(
δtF
2

)
eiδ(3tF+2T )/2 . (34)

So the residual displacement at the end of the sequence is

δα = 2ΩtF sinc

(
δ tF

2

)
sin

(
δ(T + tF )

2

)
· eiφLOeiδ(t0+tF+T/2) (35)

This residual displacement can be detected by the overlap measurement described in the main text and gives the final result for
the line shape of the Ramsey pattern

|〈n|D̂(δα)|n〉|2 = exp(−|δα|2)
(
Ln(|δα|2)

)2
. (36)
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IX. OPTIMAL ESTIMATION OF A DISPLACEMENT AMPLITUDE WITHOUT PHASE INFORMATION

We consider the metrological task of estimating the amplitude of a displacement. The phase of the displacement is unknown
at the time of the state preparation. To optimize the sensitivity of the estimation, the ‘detector’ shall be prepared in an optimal
quantum state.

The unitary process which generates the phase shift is given by the displacement

D̂(α) = exp
(
αâ† − α∗â

)
= exp

(
(â†e−iφLO − âeiφLO)

θ

2

)
= exp

(
−iR̂(φLO)θ

)
, (37)

where we defined real parameters θ and φLO, such that α = θe−iφLO/2 and R̂(φLO) = (sin(φLO)X̂ + cos(φLO)P̂ )/
√

2. Further-
more, we used X̂ = (â + â†)/

√
2 and P̂ = i(â† − â)/

√
2. Our goal is to estimate the parameter θ = 2|α|. To distinguish the

Fisher Information with respect to |α|, F , from the Fisher information with respect to θ, the latter is denoted by a Gothic type F.
The connection between them is

F = 4F . (38)

The reason for introducing F is to normalize the SQL to one, which is a widely used convention in the literature [28], whereas in
the main manuscript the classical limit is at 4, but the estimated parameter is |α| from the standard definition of the displacment
operator. According to Eq. (7) of the main text, the sensitivity of the estimation of θ is bounded by the quantum Fisher informa-
tion FQ[ρ̂, R̂(φLO)], which depends on the phase φLO via the generator R̂(φLO). In a “worst-case” scenario the sensitivity may
be reduced to

Fmin[ρ̂] = min
φLO

FQ[ρ̂, R̂(φLO)]. (39)

In order to prepare the detector such as to render it most sensitive, even in this worst-case scenario, we need to maximize the
figure of merit Fmin[ρ̂]. An alternative strategy consists in optimizing the average performance, as quantified by the figure of
merit

Fmean[ρ̂] =
1

2π

∫ 2π

0

dφFQ[ρ̂, R̂(φLO)]. (40)

Below, we derive the limits on these two figures of merit as a function of the number of excitations. We will see that a Fock state
maximizes the sensitivity in both cases.

A. Optimizing the minimum sensitivity

Let us first focus on the quantity (39). Using FQ[ρ̂, R̂(φLO)] ≤ 4(∆R̂(φLO))2
ρ̂ [27], we find the following upper bound

Fmin[ρ̂] ≤ 4 min
φLO

(∆R̂(φLO))2
ρ̂

= 2 min
n

nTΓρ̂n, (41)

where we introduced the 2× 2 covariance matrix

Γρ̂ =

(
(∆X̂)2

ρ̂ Cov(X̂, P̂ )ρ̂
Cov(X̂, P̂ )ρ̂ (∆P̂ )2

ρ̂

)
, (42)

with

Cov(X̂, P̂ )ρ̂ =
1

2
Tr{ρ̂(X̂P̂ + P̂ X̂)} − Tr{ρ̂X̂}Tr{ρ̂P̂}, (43)
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and a unit vector n = (sin(φLO), cos(φLO)). The minimum in Eq. (41) is given by the smallest eigenvalue λmin of the matrix
Γρ̂. This eigenvalue can again be bounded from above:

λmin(ρ̂) =
(∆X̂)2

ρ̂ + (∆P̂ )2
ρ̂

2

− 1

2

√
((∆X̂)2

ρ̂ − (∆P̂ )2
ρ̂)

2 + 4Cov(X̂, P̂ )2
ρ̂

≤ 1

2
Tr{ρ̂(X̂2 + P̂ 2)}

= Tr{ρ̂(â†â+ 1)}

= n+
1

2
, (44)

where n = Tr{ρ̂â†â} determines the number of excitations. Hence, the minimal sensitivity is generally bounded by

Fmin[ρ̂] ≤ 2n+ 1. (45)

B. Optimal states must be quantum non-Gaussian

States which reach the upper bound (45) for n > 0 must necessarily be quantum non-Gaussian, i.e., they cannot be written as
a mixture of Gaussian states (see e.g. Refs. [46, 47]).

To see this, notice that in (44), equality is reached if and only if the conditions 〈X̂〉ρ̂ = 〈P̂ 〉ρ̂ = Cov(X̂, P̂ )ρ̂ = 0 and
∆X̂ρ̂ = ∆P̂ρ̂ are satisfied, or equivalently, 〈â〉ρ̂ = 〈â†〉ρ̂ = 〈ââ〉ρ̂ = 〈â†â†〉ρ̂ = 0. These conditions can only be satisfied by
a Gaussian state when n = 0, i.e., the vacuum state |0〉. The above statement then follows together with the convexity of the
quantum Fisher information.

All pure states lead to equality in (41). In the case of a pure state, non-Gaussianity is equivalent to a negative Wigner function
[48].

Hence, mixtures of Gaussian states will always perform sub-optimally for the estimation of a displacement amplitude in a
“worst-case” scenario.

C. Average sensitivity bound

The same bound also holds for the average (40). We obtain

Fmean[ρ̂] ≤ (∆X̂)2
ρ̂ + (∆P̂ )2

ρ̂ ≤ 2n+ 1, (46)

and equality is reached only by states that are not displaced: 〈X̂〉ρ̂ = 〈P̂ 〉ρ̂ = 0.

D. Optimality of Fock states

The bounds (45) and (46) are saturated by Fock states |n〉 = (â†)n/
√
n!|0〉. Indeed, one easily confirms that Fock states

satisfy all of the optimality conditions for the two bounds (45) and (46), as stated above. Specifically, one obtains (∆X̂)2
|n〉 =

〈n|X̂2|n〉 = 1
2 〈n|(â + â†)2|n〉 = n + 1

2 , and similarly for (∆P̂ )2
|n〉, as well as Cov(X̂, P̂ )|n〉 = 0. This yields the covariance

matrix

Γ|n〉 =

(
n+ 1

2 0
0 n+ 1

2

)
, (47)

with the two-fold degenerate eigenvalue n+ 1/2 (the degeneracy expresses the fact that the Fock state is equally sensitive in all
directions). Since FQ[|Ψ〉, R̂(φLO)] = 4(∆R̂(φLO))2

|Ψ〉 for all pure states, we find the exact equality

Fmin[|n〉] = 2n+ 1. (48)



14

We obtain the same result for the mean value (40), since for pure states, the equality

Fmean[|Ψ〉] = TrΓ|Ψ〉, (49)

holds. For the Fock state |n〉 this leads to Fmean[|n〉] = 2n+ 1.
In summary, for a fixed energy (given by n), the Fock state provides the optimal precision for displacement detections with

unknown phase. This is true for both strategies, i.e., preparing for the worst-case scenario (39) or optimizing the mean perfor-
mance (40).

X. CLASSICAL LIMIT

Based on the Glauber-Sudarshan P-representation,

ρ̂ =

∫
dαP (α)|α〉〈α|, (50)

we define classical states ρ̂cl as those for which P (α) describes a probability distribution. Here |α〉 = D̂(α)|0〉 is a coherent
state. The classical limit is then given as the maximum quantum Fisher information, taken over all classical states ρ̂c. Since the
Fisher information is convex, the maximum is attained by a pure coherent state |α〉. Using FQ[|α〉, R̂(φLO)] = 4(∆R̂(φLO))2

|α〉,
we obtain

F
(cl)
Q [R̂(φLO)] := max

ρ̂cl
FQ[ρ̂cl, R̂(φLO)] = 1, (51)

which is independent of φ and α and corresponds to the sensitivity of the vacuum state. Thus, any observation of

FQ[ρ̂, R̂(φLO)] > 1, (52)

reveals that the state ρ̂ is non-classical according to the above definition [19]. This form of non-classicality is a necessary re-
source to overcome the classical limit eq. (51). The resulting upper bound on the Fisher information for amplitude measurements
using classical states is given by

FQ = 4. (53)

The corresponding bound for the phase measurement can be infered from

FQ(δ) = FQ(α)

(
d(δα)

dα

)2

. (54)

Assuming that the detuning δ is small compared to the displacement Ω rate, we get

δα = ΩtF (T + tF ) δ +O(δ3) (55)

and for the Quantum Fisher information

FQ(δ) = (2|α| (T + tf ))
2
, (56)

which results in the SQL limit given in eq. (3) in the main text.

XI. ANALOGY WITH A TWO-MODE INTERFEROMETER

Fock-state metrology can be understood in the wider context of a two-mode Mach-Zehnder interferometer [13]. The evolution
in a two-mode interferometer (with modes â and b̂) is described by,

Û(ϕ) = exp
(
−iĴyϕ

)
, (57)

where Ĵy = (â†b̂− b̂†â)/2i and ϕ is the phase shift.
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Extended Data Figure 3. Analogy with a two-mode interferometer. The presented measurements can be understood in terms of a two-mode
interferometer, with a coherent state and a Fock state at the input ports |ψin〉 = |n〉 |α〉. The output state is |Ψout〉 = Û(ϕ) |Ψin〉, with Û given
in Eq. 57

For the two-mode transformation (57) one obtains the classical limit, i.e., the maximum sensitivity for two-mode classical
states,

F
(cl)
Q [Ĵy] = na + nb, (58)

where na + nb is the total number of excitations (na = Tr{ρ̂â†â} and nb = Tr{ρ̂b̂†b̂}). This bound is known as the shot-noise
limit and coincides with the sensitivity bound for states that are separable among particles [49]. For a Fock state |n〉 in input
mode â, the quantum Fisher information reads

F[|n〉〈n| ⊗ ρ̂b, Ĵy] = 2nbn+ nb + n, (59)

which yields a quantum-enhanced sensitivity for any n > 0 [13], in agreement with the results from the previous section.
The specific case of the displacement discussed in Sec. OPTIMAL ESTIMATION OF A DISPLACEMENT AMPLI-

TUDE WITHOUT PHASE INFORMATION is recovered in the homodyne limit, in which a classical, highly populated co-
herent state is inserted in one of the input ports. We thus assume that input mode b̂ is prepared in a coherent state ρ̂b = |α0〉〈α0|
with |α0|2 = n0 � 1 particles, while the quantum state ρ̂a of mode â input is arbitrary. Neglecting quantum fluctuations, by
making the replacement b̂→ α and b̂† → α∗ in Eq. (57), we obtain an effective transformation of mode â, described by

Û(θ) = exp
(
−(α0â

† − α∗0â)ϕ/2
)
. (60)

The evolution of mode â is effectively given by the displacement (37) if we rescale the parameter by α = −α0ϕ/2. The
precision of an estimation of the phase shift φ in the two-mode Mach-Zehnder interferometer is bounded by FQ[ρ̂, Ĥ(φLO)],
where Ĥ(φLO) = −√n0R̂(φLO). The precision limits can be linked to the single-mode results from Sections QUANTUM
METROLOGY and CLASSICAL LIMIT by a simple rescaling transformation: FQ[ρ̂, Ĥ(φLO)] = n0FQ[ρ̂, R̂(φLO)]. Hence,
the non-classicality bound for the Mach-Zehnder interferometer in the homodyne limit can be obtained from Eq. (51) as
F

(cl)
Q [Ĥ(φLO)] = n0. For a Fock state in the second input port, we obtain a precision of FQ[||n〉, Ĥ(φLO)] = 2n0n+n0, indepen-

dently of the phase of α0, which allows for sub-shot-noise sensitivity for n > 0, in agreement with our previous considerations
(see Sec. OPTIMAL ESTIMATION OF A DISPLACEMENT AMPLITUDE WITHOUT PHASE INFORMATION).

As discussed above, the classical bound and the Fock-state sensitivity can be equivalently obtained from the two-mode re-
sults (58) and (59), remembering that in the homodyne limit considered here, the contribution of na or n to the total number of
particles is negligible due to nb = n0 � na, n.
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