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Abstract 

 

One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability 

of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been 

investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two 

replicate HIV-1 populations for almost one year in each of two human T-cell lines. For each of the four 

evolution lines, we determined the genetic composition of the viral population at nine time points by deep 

sequencing the entire genome. Mutations that were carried by the majority of the viral population 

accumulated continuously over one year in each evolution line. Many majority mutations appeared in more 

than one evolution line, i.e. our experiments showed an extreme degree of parallel evolution. In one of the 

evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability 

to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct 

phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity 

at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the 

experiment. 

 

Introduction 

In long-term evolution experiments, organisms are passaged for many generations in controlled environments in 

order to understand basic evolutionary principles (Elena and Lenski 2003). One of the most basic questions 

addressed with experimental evolution is to what extent the evolutionary path of an organism is predetermined, and 

hence can be predicted and repeated. Stephen J. Gould famously claimed, “[…] any replay of the tape of life would 

lead evolution down a pathway radically different from the one actually taken […]” thus rejecting the idea of 

evolution as a repeatable and predictable process (Gould 1989). According to Gould, any deviation from a common 

evolutionary path will lead to different evolutionary end points. This view is consistent with the neutral theory of 

evolution (Kimura 1983), according to which genetic changes accumulate mostly randomly without conferring 

fitness advantages or disadvantages. 
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Gould’s hypothesis has been experimentally tested numerous times by letting populations of organisms evolve 

repeatedly in the same environment. In such experiments, the parallel evolution of similar traits and, in rare cases, 

also identical mutations, have been observed in bacteria and viruses (Bull et al. 1997; Wichman et al. 1999; 

Wichman et al. 2005; Barrick et al. 2009; Engel et al. 2011; Lobkovsky and Koonin 2012; de Visser and Krug 

2014; Foll et al. 2014; Bailey et al. 2015; Lind et al. 2015; Lind et al. 2018; Gallie et al. 2019).  

 

Particularly relevant experiments that study parallel evolution in viruses were performed by James Bull and Holly 

Wichman. In an early experiment phage ϕX174 was grown on two different bacterial hosts, Escherichia coli and 

Salmonella typhimurium (Bull et al. 1997). After 11 days of growth in two and three replicates respectively the 

authors observed 42% of all mutations in more than one replicate line. Due to the extensive parallelism, 

phylogenetic inference methods, applied to the final sequence data, failed to recover the known evolutionary history 

of the phage populations. Ever since, multiple follow up experiments have been performed with other phages 

exploring convergent and parallel evolution (Wichman et al. 1999; Wichman et al. 2000; Wichman et al. 2005; 

Miller et al. 2016). 

 

There are also examples of experimental evolution studies with clinically relevant viruses. Experimental evolution 

has been applied to answer a wide range of question about the epidemiology and biology of these viruses. For 

example, studies have investigated: the effect of different drug concentrations on viral growth and evolution 

(Gatanaga et al. 2002; Maisnier-Patin and Andersson 2004); the effect of fitness recovery after bottlenecking 

(Lorenzo-Redondo et al. 2011); the effect of different environmental and genetic parameters on adaptation (Das et 

al. 1999; van Opijnen and Berkhout 2005; van Opijnen et al. 2007; Vasilakis et al. 2009; Bordería et al. 2015); and 

the shape of fitness landscapes (Acevedo et al. 2014; Lorenzo-Redondo et al. 2014). Hence, experimental evolution 

has been a valuable tool to understand the epidemiology and evolution of viruses. 

 

Apart from the insights gained from a detailed analysis of a well-defined experiment, experimental studies of 

clinically relevant viruses can also take advantage of the vast amount of knowledge gained from clinical studies. 

Particularly, Human Immunodeficiency Virus (HIV) is one of the most relevant and deadly infections in the human 

population. In 2012 about 35.3 million people were infected with HIV (Joint United Nations Programme on HIV 

AIDS 2013). Due to its prevalence and a mortality rate of close to 100% if left untreated, HIV is extremely well 

studied. In PubMed alone, there are 185,490 articles with HIV in the title (2nd of May 2019).  

 

Part of the reason for the evolutionary success of HIV-1 in infecting the human population is its high mutation rate, 

which contributes to its ability to evade the human immune response and persist for years within the host (Coffin 

1995; Koenig et al. 1995; Borrow et al. 1997; Goulder et al. 1997; Wei et al. 2003; Trkola et al. 2005; Liao et al. 

2013). Over this time span HIV-1 evolves and acquires a large number of mutations (Shankarappa et al. 1999; 

Lemey et al. 2006; Keele et al. 2008; Poon et al. 2010). The distribution and type of these mutations is not entirely 

random but converges between different lineages that evolve in similar hosts or are treated with similar drugs 
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(Crandall et al. 1999; Duwe et al. 2001; Gatanaga et al. 2002; Lataillade et al. 2007). This convergence even allows 

the inference of the genetic setup of the human host from the viral sequence (Moore et al. 2002; Bhattacharya et al. 

2007).  

 

To study the extent of parallel evolution in a constant environment, we track the evolution of four independent 

HIV-1 populations for 315 days, which should correspond to about 180 generations (Srivastava et al. 1991; Ho et 

al. 1995; Wei et al. 1995; Mohammadi et al. 2013; Holmes et al. 2015). We identify all mutations that increase in 

frequency above that of the wildtype nucleotide, and compare mutations acquired in the four independent lineages. 

We observe a high degree of parallel evolution that causes phylogenetic reconstruction methods to infer an 

incorrect evolutionary history. This observation highlights the need to carefully assess the validity of phylogenetic 

methods that rely on the assumption of neutral evolution when analyzing within-host evolution of HIV-1, in 

particular phyloanatomic analyses (Salemi and Rife 2015; Lorenzo-Redondo et al. 2016; Bons and Regoes 2018). 

We also provide insights into how viral population sequencing data can be used to alleviate problems of 

phylogenetic reconstruction and analyze sequence diversity to predict evolutionary outcomes. 

 

Results 

We investigated the long-term evolution of HIV-1 in the laboratory by passaging HIV-1 NL4-3 for 315 days in the 

absence of antiviral drugs in two different human T-cell cultures (MT-2 and MT-4), with two replicates on each T-

cell culture (Fig. 1). The viral populations were transferred to fresh culture two times every week (90 times in 

total), which should correspond to about 180 viral generations (Srivastava et al. 1991; Ho et al. 1995; Wei et al. 

1995; Mohammadi et al. 2013; Holmes et al. 2015). Every 10th transfer, we determined the population composition 

by Illumina sequencing for each of the four evolution lines.  
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Fig. 1. Experimental design. HIV-1 NL4-3 was serially transferred in MT-2 and MT-4 T-cells in two replicates 

each. Odd transfers occurred after 3 days, even transfers after 4 days. At each transfer we infected new T-cells with 

~0.05% of the cell suspension from the previous culture (Fig. S1). 

 

The HIV-1 population grows exponentially between transfers. At the start of each transfer, our cultures contain 

approximately 400,000 uninfected T-cells. With a multiplicity of infection (MOI) of 0.0001-0.004 (Fig. S1), 

between 40 and 1600 cells are infected during the first generation after each inoculation. The number of initially 

infected cells (i.e., 40 – 1600) constitute the population bottlenecks in our experiment. Since we transfer about 

0.05% of the previous culture into the new culture and we do not observe any obvious population growth or death 

across our experiment we can assume that each HIV population amplifies 2000-fold between transfers (Fig. S1). 

There are two parameters that determine the level of population amplification in our experiment: the generation 

time and the number of infective viral offspring (R0). R0 of about 10 (Ribeiro et al. 2010) and the generation time of 

about two days (Srivastava et al. 1991; Ho et al. 1995; Wei et al. 1995; Mohammadi et al. 2013; Holmes et al. 

2015) that are cited in the literature cannot explain the virus amplification in our experiment. These parameters 

would only allow for a 100-fold amplification of the virus population and hence would lead to the HIV populations 

dying out in our experiment. To increase the population size 2000-fold we need to either assume R0 to be 44 while 

the HIV population completes two generations or assume R0 to be 12 while the HIV population completes three 

generations. The truth may lie somewhere in the middle. Either way we expect the MOI to reach a value close to 

one at the end of each transfer, which would allow for recombination to happen in our experiment. 

 

Majority mutations accumulate linearly over time 

 

HIV-1NL4-3

transfer of cell suspension
every 3-4 days

next-generation sequencing
of HIV-1 genomes every 10th

passage

90th passage = 315 days
(last analyzed passage)

MT-2 MT-2 MT-2 MT-2

MT-2 MT-2 MT-2 MT-2

MT-4 MT-4 MT-4 MT-4

MT-4 MT-4 MT-4 MT-4
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We observed a total of 92 mutations across the four evolution lines (69 unique mutations) that became more 

frequent in the population than the wildtype nucleotide (Fig. 2A). We call these mutations majority mutations. 

Although we expected the accumulation of majority mutations to decelerate when a population approaches an 

adaptive peak, we did not observe any deceleration during the 90 transfers we considered in this study.  

 

To understand why mutations continue to accumulate at a high rate even towards the end of the experiment we 

determined the time point of the maximum fold increase of the frequencies for each majority mutation (Fig. 2B). 

These maximum fold increases should correspond to “fitness” because a large increase in the frequency of a novel 

mutation could be indicative of greater reproductive success of the viruses that carry this mutation. However, one 

has to keep in mind that the reproductive effect of a novel mutation is not the only factor affecting the frequency 

increase of that mutation. Random fluctuations (especially for low frequency mutants), clonal interference, 

recombination, and linkage can also substantially affect mutation frequency differences. Nevertheless, our analysis 

shows that the “fitness gains” of majority mutations significantly decrease over time at similar rates. However, the 

fitness gains for majority mutations in MT-2 evolution lines initially are much larger than the fitness gains of 

majority mutations in MT-4 evolution lines (fitted regression lines in Fig. 2B). The difference in the fitness gains 

suggests that the viruses growing on MT-4 evolution lines might be closer to an adaptive peak than the viruses 

growing on MT-2 evolution lines. 

 

For all four evolution lines we observe that fitness gains of novel majority mutations decrease over time. This could 

be due to diminishing fitness effects, or more clonal interference as the sequence diversity increases in the 

population. Diminishing fitness effects are expected for populations that are adapting to a new environment (Lenski 

et al. 1991; Wiser et al. 2013). Hence, the fitness effects we observe in our experiment of new mutations are 

decreasing as expected. Nevertheless, the number of new majority mutations observed at each time step does not 

decrease (Fig. 2A). This pattern is similar to the linear accumulation of mutations observed in the long term 

evolution experiment in E. coli, which the authors explained through an accumulation of a large number of small 

effect mutations (Barrick et al. 2009). However, for our experiment there is an alternative explanation for the 

observed pattern. Due to the smaller population sizes in our experiment neutral majority mutations are expected to 

accumulate towards the end of the experiment. These neutral majority mutations could maintain a constant 

accumulation rate of majority mutations.  

 

The appearance of neutral majority mutations at the end of the experiment is supported by simulations. We 

performed simulations of neutrally evolving viruses using experimental data on population sizes at the start of every 

10 transfers (Fig. 2A, Fig. S1). We simulate the evolution of individual HIV-1 genomes for 180 generations with a 

periodic bottleneck every two generations. Between bottlenecks the simulated HIV-1 populations replicate 

exponentially (R0=44). Our results suggest that neutral majority mutations appear at the end of the experiment 

because it takes time for neutral mutations to accumulate in a population before they can become majority 

mutations (thin lines in Fig. 2A). 
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We also analyzed the effect of APOBEC3G on the accumulation of majority mutations. APOBEC3G is only 

expressed in MT-2 T-cells and not in MT-4 T-cells (Borman et al. 1995). Interestingly, the proportion of G to A 

majority mutations at the end of the experiment is higher in HIV-1 growing in MT-4 T-cells (24 G to A mutations 

or 67%) than in HIV-1 growing in MT-2 T-cells (24 G to A mutations or 44%). Among these mutations five were 

found in the APOBEC3G motif (GG to GA) in MT-2 and eight were found in MT-4 HIV-1 populations. Hence, it is 

quite clear that APOBEC3G expression does not drive the accumulation of majority mutations through an increased 

mutation rate. However, it is not clear whether there is an indirect effect of APOBEC3G expression (e.g. stronger 

selective pressure) that drives the faster accumulation of majority mutations in MT-2 virus populations.  

 

 
Fig. 2. Accumulation, maximum mutation frequency slopes (fitness), parallelism, and dynamics of majority 

mutations. (A) Accumulation of majority mutations over time (thick lines), accumulation of neutral majority 

mutations in simulations over 180 generations (thin lines).  (B) For each majority mutation observed in the 

evolution experiment we show the maximum fold mutation frequency increase, plotted against the time frame at 

which the frequency increase occurred. The maximum fold increase of the mutation frequencies is a surrogate of 

the fitness advantage of a mutation. Synonymous mutations are displayed as “S”, non-synonymous mutations are 

displayed as “N”, and mutations in untranslated regions are shown as “U”. Linear regressions on the fitness 

advantages in MT-2 and MT-4 T-cells are displayed in red and blue, respectively.  The decline in fitness advantages 

for evolution lines grown in MT-2 (red) is marginally significant from 0 (p-Value=0.05) and significantly different 

0

10

20

30

0 10 20 30 40 50 60 70 80 90
Transfer

M
aj

or
ity

 M
ut

at
io

ns

A

UU
U

U
U

U

U

U

U
U

U

U

U

U

U

U

U

U
U

N
N

N

N

S

S

S

S

N

N

N

N

N

N

N

N

S

N

S

N
N

S

S

S

S
S S

N

N N

N

NS

S

N
N

N

N

N
N

U

N
N

N

N

N

N

N

N

N
S

S

N

N

N
N

N

NN

N

U
U

U
U

U
U

U

UU

U

U

U

U
10

100

1000

0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80
Transfer

M
ax

. f
ol

d 
in

c.
 in

 m
ut

. f
re

q.

B C

g9412a0.001

0.01

0.1

0.5

1

0 10 20 30 40 50 60 70 80 90
Transfer

M
ut

at
io

n 
fre

qu
en

cy

D

t9528g0.001

0.01

0.1

0.5

1

0 10 20 30 40 50 60 70 80 90
Transfer

M
ut

at
io

n 
fre

qu
en

cy

E

g618a0.001

0.01

0.1

0.5

1

0 10 20 30 40 50 60 70 80 90
Transfer

M
ut

at
io

n 
fre

qu
en

cy

F

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article-abstract/doi/10.1093/m
olbev/m

sz155/5524887 by M
PI Evolutionary Biology user on 17 July 2019



Discoveries	Article	

for MT-4 (blue) evolution lines (p-Value = 0.008). There is no majority mutation, for which the maximum mutation 

frequency increase occurred after transfer 80. (C) Venn diagram of the presence of majority mutations in the four 

evolution lines at transfer 90. (D) to (F) show mutation frequencies of three selected majority mutations for the four 

evolution lines. The black solid line indicates a mutation frequency of 50%. Mutation frequencies are unlikely to be 

informative once they fall below the Illumina sequencing error rate of ~0.1%. The evolution lines are colored as in 

(C). (D) The mutation g9412a becomes a majority mutation in three populations in parallel except for MT-2_1. (E) 

Mutation frequencies of mutation, t9528g, increase almost simultaneously for all four evolution lines. (F) In all four 

evolution lines the mutation g618a increases in frequency, in two lines it becomes a majority mutation at the 

beginning of the experiment and in one line towards the end of the experiment. For the frequency dynamics of other 

majority mutations please see Fig. S2. 

 

Large extent of parallel evolution across evolutionary lines 

Consistent with the large observed fitness effects of the majority mutations, we see many of them arise in parallel in 

more than one evolution line (Fig. 2C, 2D-F and colored lines in Fig. 3). To test whether this observation is 

expected for neutrally evolving viruses with even mutation rates across the genome, we performed simulations (see 

Materials and Methods). For each evolution line we distributed the observed majority mutations at transfer 90 

across the genome (i.e. an observed A to G majority mutations will remain an A to G substitution albeit at another 

position in the genome). We then determined how many of the mutations occurred in more than one evolution line. 

We repeated the simulation 100 times and found that in only 28 of 100 simulations there was a single mutation that 

occurred in more than one evolution line. In the remaining 72 simulations we found no mutations in more than one 

evolution line. Hence, we expect that almost all parallel mutations we observe in our experiment are adaptive or due 

to mutational hotspots (Cuevas et al. 2015; Sackman et al. 2017; Lind et al. 2019).  
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Fig. 3. Frequency dynamics of majority mutations show decoupling of mutations. We observe decoupling 

when the mutation frequency dynamics of two mutations changes from being identical to becoming different. For 

example, in MT-2_1 there is a yellow and a black mutation that show the exact same frequency increase from 

transfer 0 to 10. At transfer 20 the mutation frequencies are different. Hence at transfer 20 the two mutations 

decoupled probably through recombination. Colored thick lines in each of the four graphs indicate mutations that 

are acquired in more than one evolution line in parallel. The same mutations are drawn in the same colors. Black 

thin lines are majority mutations that are only found in a single line. 

 

In the most extreme case, out of 17 majority mutations observed in one of the MT-4 evolution lines (MT-4_2) at 

transfer 90, 12 were shared with the other evolution lines. Of the remaining five private majority mutations from 

MT-4_2, two were also present at frequencies above 10% in other evolution lines (g909a at 15% in MT-4_1 and 

g614a at 43% in MT-2_1, Table S1). In MT-4_1, 11 of 20 majority mutations also reached majority status in at 

least one other line. Of the remaining nine mutations two occurred at frequencies higher than 10%. 

 

In viral populations grown on MT-2 T-cells, parallelism was not as high. Only 7 of 29 majority mutations in MT-

2_1 occur in another evolution line, and only 8 of 26 majority mutations for MT-2_2. Additionally, five private 

majority mutations in MT-2_1 and three such mutations in MT-2_2 are present at frequencies above 10% in other 
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evolutionary lines. Notably, we observed one majority mutation (t9528g) that occurred across all four replicates and 

six mutations that occurred in three replicates in parallel (Fig. 2C). 

 

Interestingly, there was one synonymous mutation that also evolved in parallel (g4808a) of a total of 16 

synonymous mutations. Out of 41 non-synonymous mutations we observed seven majority mutations in more than 

one line. Hence the ratio of parallel mutations to private mutations is about three times as high in non-synonymous 

mutations (17%) compared to synonymous mutations (6.2%). This difference, however, is not significant (Fisher’s 

exact test: p-Value=0.42). The degree of parallelism is higher for majority mutations in untranslated regions of the 

genome: Of 26 mutations 7 were shared (27%, but again not significantly different to both, parallel synonymous 

(p=0.21) and non-synonymous majority mutations (p=0.53), Fisher’s exact test).  

 

Apart from highlighting parallel mutations, Fig. 3 also shows that there are a few instances where recombination 

has decoupled the increase in frequency of a few mutations from each other. For example, the first mutation to 

attain a frequency larger than 50% in MT-2_1 (t1446g, yellow) rises simultaneously with a private mutation (not 

parallel, g3078a, black). Both mutations reach a frequency of 66% at transfer 10. At transfer 20, the two mutations 

decouple in their increase: while t1446g has risen to 99%, g3078a has only increased to 75%. Similarly, g618a 

(orange) in MT-2_1 first increases in parallel with the private mutation t8700c (black) to reach 51% of the 

population at transfer 10. Subsequently the mutations decouple. But in this case, interestingly, the private mutation 

keeps increasing in frequency to 82% at transfer 20 while g618a decreases to 45%. There are other examples in Fig. 

3 showing similar patterns. These patterns strongly suggest that recombination occurs frequently in our evolution 

experiment. 

 

Majority mutations appear in a different order, suggesting low levels of sign epistasis between parallel 

majority mutations 

Although many majority mutations occur in parallel across evolution lines, their chronological order is different 

(Fig. 4). For example, one of the mutations, that exceed the frequency of the wildtype nucleotide at transfer 10 in 

MT-2_1 (g618a), becomes a majority mutation only at transfer 90 in MT-2_2. Similar permutations of the 

chronological order are observed for the MT-4 evolution lines. A different order of mutations suggests that they are 

beneficial in different genetic backgrounds. Although we cannot exclude that the extent of the benefit is modulated 

by the genetic background, the benefit is apparently not turned into a deleterious effect. This means that there is no 

sign epistasis between the parallel majority mutations in our experiment.  
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Fig. 4. Order of majority mutations shared between evolution lines from transfer 10 to 90. (A) All majority 

mutations shared by MT-2_1 and MT-2_2. Black lines connect identical mutations. (B) Majority mutations shared 

by MT-4_1 and MT-4_2.  

 

Implications of parallelism for the reconstruction of the evolutionary history 

The high level of parallelism we find in our experiment poses a challenge for the reconstruction of the evolutionary 

history of our viral populations. When inferring the evolutionary history for the consensus sequences at every tenth 

transfer, the history cannot be reconstructed correctly for MT-4 evolution lines, where we observe the highest level 

of parallel evolution. Instead, the sequences cluster by the environment they evolved in (Fig. 5A). The mixing of 

MT-4_1 and MT-4_2 evolution lines in this tree would be wrongly interpreted as a signature of viral migration in a 

phylogeographic analysis. 

 

The correct evolutionary history (Fig. 5B) can be inferred from simulated sequence data, in which the observed 

majority mutations are randomly redistributed across the HIV-1 genome (see Materials and Methods “Construction 

of neutral phylogenies”). When statistically comparing the correct phylogeny with the one reconstructed from the 

sequences, the hypothesis that our viral populations evolved neutrally can be rejected with high confidence 

(Likelihood ratio = 3.5×10-69, see Materials and Methods “Construction of neutral phylogenies“). 

 

After failing to reconstruct the correct phylogeny for our evolution lines from majority mutations, we decided to 

include minority mutations in our analysis. Unfortunately, commonly used phylogenetic methods cannot take the 

frequency of minority mutations into account when reconstructing phylogenies. Hence, we developed our own 

method. This method calculates the genetic distance between two populations by summing up the absolute 

differences in frequency of all wild type nucleotides and all three possible point mutations. We calculated the 

distances between all sample pairs and with this distance matrix inferred a phylogeny with Neighbor Joining 

(Saitou and Nei 1987). The inferred tree recapitulates the evolutionary history better than the majority mutation tree 

(Fig. 5C). Both MT-4 lines are now clustered separately on the tree. This means that the two evolution lines 

genetically diverge early at the level of minority mutations but not at the level of majority mutations.  
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Fig. 5. Phylogenetic trees. (A) Phylogeny inferred from the observed consensus sequences. (B) A phylogenetic 

tree, of which the topology reflects the correct evolutionary history. The tree was generated by randomly (for each 

evolution line independently) distributing the number of observed majority mutations across the HIV-1 genome. 

The phylogenies in A and B were inferred with PhyML (Guindon et al. 2010). (C) Phylogeny is based on the 

differences between all mutation frequencies that were higher than 1% in our data set. For all pairwise differences 

we constructed a distance matrix. We used the distance matrix to infer the phylogeny via Neighbor joining as 

implemented in the R package ape (Paradis et al. 2004). The trees were colored with phytools (Revell 2012). The 

colors correspond to the four evolution lines and are consistent between A, B, and C.  

 

dN/dS method identifies parallel majority mutations  

To identify positively selected substitutions, one commonly applies dN/dS methods. These methods assume 

synonymous substitutions as selectively neutral (Kimura 1977). This assumption allows the estimation of selection 

by comparing the number of expected synonymous substitutions with the expected number of non-synonymous 

substitutions (dN/dS) (Yang and Bielawski 2000). An excess of non-synonymous substitutions indicates positive 

selection, an excess of synonymous substitutions purifying selection. More sophisticated methods, such as CodeML 

(Yang 2007) also take the phylogenetic relationship between sequences into account to identify positively selected 

codons.  

 

We used CodeML to infer positively selected codons. In our case we can provide CodeML with the consensus 

sequences of the four evolution lines at all time points and the three different trees from Figure 5. Based on our 

sequence analyses, we expect that CodeML, a package from the PAML suite of programs, will identify the seven 

majority mutations that occurred in parallel across evolution lines as positively selected, if we provide CodeML 

with the tree that reflects the true evolutionary history (Figure 5B). As expected CodeML identifies all seven 

parallel non-synonymous majority mutations as likely positively selected (Figure 5B, Table S2). However, it also 

infers two more mutations that appear, disappear and reappear as majority mutations due to changes in mutation 

frequency. These fluctuations in mutation frequency are incorrectly interpreted as independent substitution events 

because CodeML is designed to analyze fully speciated organisms and not evolving populations. These two 
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mutations are also inferred as positively selected when providing the other two phylogenies (Figure 5A and 5C). 

CodeML performs worse when supplying the inferred phylogeny and the minority mutation phylogeny. Hence, our 

analysis shows that CodeML also identifies parallelly evolving non-synonymous sites as positively selected.  

 

The distribution of minority mutations as an indicator for selection strength 

In our experiment we do not have to solely rely on majority mutations to gauge selection strength, we can also 

include all mutation frequencies in the population by using common diversity indices. We find that over time the 

nucleotide diversity (measured as the Shannon entropy summed over all nucleotide sites) in all four HIV-1 

populations increases (Fig. 6A). This mirrors the pattern that has previously been observed for HIV-1 in vivo 

(Shankarappa et al. 1999). We observe that diversity increases faster in MT-4 T-cells than in MT-2 T-cells late in 

the experiment.  

 

We also measure nucleotide diversity for each gene separately (Fig. 6B and C and Fig. S3 and S4). Interestingly, 

genes show similar levels of diversity in the different evolution lines. Across the experiment diversity is greatest in 

nef and the 5’ and 3’ non-coding regions (Fig. 6B, Fig. S4). Nef is particularly diverse in HIV-1 populations 

growing on MT-4 T-cells, whereas the 5’ non-coding region is the most diverse region in MT-2 virus populations. 

The genes with the lowest diversity during the experiment are gag and tat (Fig. 6C).  

 

 
Fig. 6.  Nucleotide diversity observed across time for all four evolutionary lines. (A) We applied the Shannon 

Entropy as diversity measure, which we calculated for each nucleotide site with coverage of more than 1000 

sequence reads and then summed it up across the HIV-1 genome. (B) Relative diversity measures for the 3’ non-

coding region, the most diverse region in the HIV-1 genome in our experiment. To calculate relative diversity, we 

divide the average diversity across one gene by the average diversity across the entire genome. Hence, values above 

one indicate higher than average diversity and below one a lower than average diversity. (C) Like (B) just for the 

least diverse gene gag in our experiment. 
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We hypothesize that genes with high nucleotide diversity should accumulate large numbers of parallel majority 

mutations and genes with low nucleotide diversity should accumulate low numbers of parallel majority mutations. 

When we correlate the nucleotide diversity at transfer 90 with the number of parallel majority mutations at transfer 

90, we find relatively weak correlations ranging from R2 values of 0.03 for MT-4_2 to 0.43 in MT-2_1, with only 

MT-2_1 showing a significant p-Value of 0.04 (Fig. 7A). However, when we correlate nucleotide diversity of all 

the earlier time points with the number of majority mutations that accumulate at transfer 90, we find much higher 

correlations (Fig. 7A). For MT-2_1 we observe the best correlation at transfer 30 (p-Value = 0.0003, R2=0.79, Fig. 

7B). Interestingly, for each evolution line the time point is different at which the correlation between nucleotide 

diversity and number of parallel majority mutations at transfer 90 is highest. The R2 is highest at transfer 70, 0 and 

10 for MT-2_2 (R2=0.70, p-Value=0.002), MT-4_1 (R2=0.42, p-Value=0.04) and MT-4_2 (R2=0.60, p-

Value=0.009), respectively. Hence, nucleotide diversity at earlier time points is predictive of the number of parallel 

majority mutations observed at the end of our experiment, at a gene by gene basis.  

 

 
Fig. 7. Mutation diversity is predictive of observed parallel mutations at transfer 90. (A) Correlation between 

mutation diversity from all measured time points and parallel majority mutations observed at transfer 90 for all 

genes and noncoding regions in the HIV-1 genome of all four lines. R2 values are a measure of how close the data 

are to the fitted regression line. High R2 values indicate good correlations, low R2 values indicate bad correlations. 

(B) The linear model fitted for the diversity observed for all genes and noncoding regions at transfer 30 and the 

number of parallel majority mutations in the same regions for MT-2_1 at transfer 90.  

 

Discussion 

 

In this study, we investigate the long-term evolutionary dynamics of HIV-1 NL4-3 in four independent evolutionary 

lines. We find that the four viral populations rapidly and continuously diverge from the ancestor over the course of 

almost an entire year. The mutation dynamics suggest that at least the first mutations that accumulate in our 

experiment confer large fitness benefits to the virus. Hence, our four evolution lines respond to large selective 

pressures despite the absence of antiviral drugs or the immune system. The selective pressures the viral populations 
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respond to could be due to fluctuating selection (alternating transfers last three or four days), adaptation to different 

T-cells, or adaptation to growing in flask cell cultures. 

 

Detailed analyses of the mutation dynamics suggest that mutational fitness effects are decreasing over the course of 

our evolution experiment, similar to diminishing fitness effects found in the Lenski experiment (Wiser et al. 2013). 

We find that the fitness effects decrease at similar rates for HIV-1 populations growing on MT-2 and MT-4 T-cells. 

However, viruses growing on MT-2 cells show greater fitness effects early on in the experiment, indicating that 

HIV-1 NL4-3 is closer to a local optimum in the MT-4 fitness landscape than in the MT-2 fitness landscape. In line 

with this hypothesis, mutations sweep through the MT-4 viral populations at a lower rate. Being closer to a local 

optimum in a fitness landscape also means that there are fewer beneficial mutations available (Silander et al. 2007). 

If there are fewer beneficial mutations available then it is more likely that, in two independent populations, the 

same mutations are selected to become majority mutations. This is exactly what we observe: a higher proportion of 

sites that evolve in parallel between the two MT-4 viral populations. Also relevant in this context are the less 

stringent bottlenecks (larger Ne) that MT-4 viral populations undergo (Fig. S1). This increases the balance between 

drift and selection in favor of selection in the MT-4 evolution lines and thereby increases the proportion of parallel 

mutations. 

 

Since our analysis suggests that parallel mutations are likely positively selected we mined the existing literature to 

determine the biological relevance of these parallel mutations. The most common parallel non-synonymous 

mutation is a7864g (also known as D547G in ENV, or D36G in gp41). This mutation is a reversion to the database 

consensus of glycine at position 547 in the ENV protein. Aspartate at position 36 has been shown to confer 

resistance to enfuvirtide, a fusion inhibitor (Marconi et al. 2008). There is one more non-synonymous mutation 

(g2058a or M423I in GAG, M46I in p7) that occurs in three evolution lines in parallel. This mutation is also 

extremely common in other evolution experiments that were performed in the presence of protease inhibitors (Koh 

et al. 2009). Unfortunately, these in vitro evolution experiments rarely comprise a drug free control. Hence it cannot 

be determined if the mutation has been selected by the drug, or if it constitutes an adaptation to the host cell type. 

Our experiment suggests that it is a general adaptation to the host cell type or laboratory environment. We found 

another GAG mutation (t1446g or H219Q in GAG or H87Q in p24) that only occurs in evolution lines growing on 

MT-2 cells. This mutation has also been reported previously and found to increase replicative capacity in 

cyclophilin-A rich cells (such as MT-2) (Gatanaga et al. 2006). MT-4 cells are not cyclophilin-A rich and hence it is 

not surprising that we did not observe this mutation in our MT-4 lines. There are four more non-synonymous 

mutations that we found in more than one evolution line (E12K and V35I in GAG, S190N and Q550H in ENV). 

Except for one (S190N in ENV), all of them were reported in previous evolution experiments: one emerged in the 

absence of drug pressure (V35I in GAG (Lorenzo-Redondo et al. 2011)), the other two were found to evolve in the 

presence of antiviral drugs (Nameki et al. 2005; Aoki et al. 2009). The emergence of adaptive mutations in our 

long-term, drug-free HIV evolution experiment emphasizes that drug free control lines in in vitro experiments are 
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required to ascertain that a mutation confers drug resistance rather than an adaptive advantage at growing in the 

host cell line. 

 

Most of our parallel mutations (7 out of 15) occurred in the untranslated part of the HIV-1 genome, which only 

makes up 5.5% of the HIV-1 genome. Unfortunately, there is little information on the function of these mutations. 

However, there is evidence that the host cell environment significantly affects replication rates for different LTR 

(long terminal repeat) sequences (van Opijnen et al. 2004). Interestingly, five of the seven parallel majority 

mutations occur in three of the four evolution lines and only two are host cell specific. Hence, our data suggests that 

HIV-1 NL4-3 adapts to in vitro growth conditions rather than to the specific host cell environment. Alternatively, 

one could argue that the virus adapts most to environmental features that are common between MT-2 and MT-4 

cells. 

 

The large extent of parallel evolution has also a strong effect on our ability to infer the evolutionary history from 

the sequence data at the end of the experiment. If parallel evolution also plays a significant role in vivo, then we 

expect HIV-1 phylogenies to also reflect host similarities, particularly when the viruses have evolved for long 

periods of time within these hosts. Indeed, parallel evolutionary changes have been observed in vivo in genetically 

identical twins infected with the same viral strain as well as in HIV-1 populations during early infection and to a 

smaller extent also in other studies (Draenert et al. 2006; Wood et al. 2009; Bertels et al. 2018).  

 

Nevertheless, reconstructed transmission trees have been found to be consistent with a small number of 

epidemiologically confirmed transmission chains (Leitner et al. 1996). Although the reliability of such 

reconstructions is still being investigated (Leitner et al. 1996; Romero-Severson et al. 2014), it is conceivable that 

transmission histories can be reconstructed accurately if each host exerts a specific selection pressure, thus leaving a 

signature in the viral genome unique to the infected host (Carlson et al. 2016). Such an effect is also apparent in our 

experiment: The extent of parallel evolution between populations growing on different T-cell lines is relatively low 

(Fig. 2C). But one has to keep in mind that even a small number of parallel mutations could cause distortions in the 

branch lengths and the topology of a phylogenetic tree (Bertels et al. 2014). 

 

The levels of parallel evolution we found may be particularly relevant for phyloanatomical approaches (Salemi and 

Rife 2015; Bons and Regoes 2018) that have received a lot of attention recently (Lorenzo-Redondo et al. 2016). 

Phyloanatomy entails the application of phylogeographic methods to viral genetic data sampled from different 

anatomical compartments within infected individuals. The aim is to reconstruct replication rates within each 

anatomical compartment, and the rates of migration between these compartments. The basis for estimating the 

migration rates is the presence of the same mutation in more than one compartment, which, according to a neutral 

model, is most likely due to a virus migrating from one compartment to another. With high rates of parallel 

evolution, however, such an inference cannot be drawn. Indeed, the phylogenetic tree constructed with the majority 

sequences obtained from our four independently evolving viral populations wrongly suggests migration events 
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between the populations. The implications of our experiments for phyloanatomical analyses are more immediate 

than for the reconstruction of epidemiological transmission history of the virus because selection by the immune 

system in different hosts might lead to divergent viral sequences, making the inference of the transmission history 

from viral sequences possible. Within a single host in contrast, immune selection is likely to be more homogeneous 

across different compartments, and will not generate divergent lineages. It may generate even more parallel 

evolution (Vanderford et al. 2011), which will further confound a phyloanatomical analysis.  

 

We tried to alleviate this issue by building a tree from a distance matrix calculated by subtracting mutation 

frequencies between different sequencing samples. The resulting phylogeny separates the two MT-4 lines better 

than the tree that was only built from majority mutations. Nevertheless, there are still numerous inaccuracies of the 

tree topology, which will lead to issues in downstream analyses as shown with our CodeML analysis. However, 

since most studies nowadays take advantage of deep sequencing this method could supplement classical 

phylogenetic analyses when the evolutionary history of sampled populations is not known.  

 

The extent of parallel evolution in our experiment is likely to be determined by the number of high fitness effect 

mutations available during adaptation (Orr 2005; Bons et al. 2018). Interestingly, the majority mutations that evolve 

in more than one line do not necessarily appear in the same chronological order in different evolutionary lines. This 

suggests that these mutations not only have a high fitness effect but also that the effect is independent of the 

presence of other majority mutations that have been acquired previously. Technically speaking, there appears to be 

only low levels of sign epistasis between these mutations. If the number of mutations with high fitness effect were 

large then picking the same mutation twice is unlikely. Similarly, if their effect strongly depends on the genetic 

background, populations would diverge on different evolutionary trajectories. Hence, we can explain high 

parallelism and different mutation orders with a relatively simple argument: for each population, mutations are 

independently drawn from the same small pool of large effect mutations.  

 

Apart from low levels of sign epistasis and large fitness effects, parallel evolution could also be explained by 

differences in mutation rates across the genome, which could for example happen when APOBEC3G affects viral 

evolution (Cuevas et al. 2015; Bertels et al. 2018). High mutation rates at certain positions in the genome could lead 

to increased levels of parallel evolution at these locations in different evolution lines (Bauer and Gokhale 2015). 

Similar observations have been made in other model organisms (Sackman et al. 2017; Lind et al. 2018). However, it 

is very challenging to disentangle the contributions of mutation rate differences and selection to the levels of 

parallel evolution in our experiment.  

 

We also show that the level of nucleotide diversity in each gene early in the experiment is predictive of the number 

of majority mutations that accumulate in these genes by the end of the experiment (Fig. 7). Interestingly the point at 

which the correlation between diversity and number of majority mutations was highest was different between the 

replicate lines. The cause of these differences is unclear, but one contributing factor could be the changing 
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bottleneck sizes in our experiment. We postulate at least two causes for the correlation between diversity and the 

accumulation of majority mutations. Either fitness effects or mutation rates (or both) may be unevenly distributed 

across the genome. In future studies we hope to improve our understanding of this phenomenon.  

 

There are only few long-term evolution experiments with viruses (Holland et al. 1979; Kearney et al. 1999; 

Wichman et al. 2005). An interesting experiment with viruses was conducted with phage ϕX174 growing on E. coli 

(Wichman et al. 2005). The phage population grew in a chemostat for six months and approximately 13,000 

generations. At the end of the experiment 137 substitutions were identified, which is about 4- to 8-fold higher than 

in our experiment. In our experiment we observe between 17 (MT-4_2) and 29 (MT-2_1) majority mutations after 

about one year, but considering that HIV-1 undergoes only 180 generations this difference is not surprising. Despite 

the 70-fold difference in the number of generations we only observe an about 7-fold lower number of majority 

mutations in HIV-1. There are at least two factors affecting this difference, first the five-fold higher mutation rate of 

HIV-1 (~2´10-5 (Mansky 1996)) compared to ϕX174 (~1´10-6 (Cuevas et al. 2009)), and the second probably more 

important factor is the much smaller population size in HIV-1 (bottleneck sizes between 40 and 1600) compared to 

ϕX174 (~109). Smaller population sizes lead to significantly shorter fixation times. Neutral mutations sweep 

through the population in about 2Ne generations (Kimura 1983), which is a tremendously long period of time in the 

ϕX174 experiment (~76,000 years) but likely to occur in our HIV-1 experiment (>160 days).  

 

In conclusion our experiment suggests that the high level of parallel evolution we observe is the result of a limited 

number of large effect mutations with low levels of sign epistasis between them. The high level of parallel 

evolution together with the observation that genomic regions of high nucleotide diversity early in the experiment 

accumulate more majority mutations late in the experiment indicates that HIV-1 evolution may be predictable. 

 

Materials and Methods:  

Passaging of HIV-1 

The human T-cell leukemia cell lines MT-2 and MT-4 (Harada et al. 1985) were obtained through the AIDS 

Research and Reference Reagent Program, Division of AIDS, NIAID, NIH from Dr. Douglas Richman. Cells were 

maintained in RPMI 1640 medium containing 10 % fetal calf serum, 100 U/ml penicillin, and 100 µg/ml 

streptomycin. The HIV-1 full-length plasmid pNL4–3 was obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAID, NIH from Dr. Malcolm Martin (Adachi et al. 1986). The virus stock 

HIV-1 NL4-3 was generated and characterized as previously described (Di Giallonardo et al. 2014). The cultures 

were grown in separate cell culture flasks. At day 0: 4 x 105 cells per replicate and per cell line were infected with 

HIV-1 NL4-3 at an MOI (multiplicity of infection measured on peripheral blood mononuclear cells) of 0.01 

resulting in four independent T-cell cultures (Fig. 1). Virus passaging was performed twice a week (odd transfers 

after three days, even transfers after four days) as follows: Infected cell cultures were resuspended. 4 x 105 

uninfected cells were inoculated with 2 µl cell suspension. Every 10th transfer, cell-free supernatant was stored at -
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80°C. In the first 25 transfers, higher volumes (30-3 µl) were transferred based on the extent of cytopathic effects 

microscopically observed in the cell cultures. 

 

Ancestral sequence 

The HIV-1 NL4-3 ancestor has been sequenced and assembled previously (Di Giallonardo et al. 2014). Differences 

to the HIV-1 NL4-3 reference strain (accession AF324493) are listed in Supplementary Table 3 of the same paper 

(Di Giallonardo et al. 2014). 

 

Sequencing of near full-length HIV-1 genomes  

Near full-length genomes of the virus stock HIV-1 NL4-3 (ancestor) and transfers 10, 20, 30, 40, 50, 60, 70, 80, and 

90 were sequenced using the Illumina MiSeq next-generation sequencing platform as previously described (Di 

Giallonardo et al. 2014). Briefly, HIV-1 RNA was isolated from 150 µl virus stock HIV-1 NL4-3 or cell-free 

supernatant; four samples per transfer. Five overlapping amplicons were generated by RT-PCR covering almost the 

full genome of HIV-1 per sample. In total, 185 amplicons were obtained (4 samples/transfer x 9 transfers x 5 

amplicons/transfer + 5 amplicons of the ancestral virus) after one round of PCR. The five amplicons per sample 

were pooled and libraries were prepared with the Nextera XT DNA Sample Preparation Kit (Illumina, San Diego) 

according to the manufacturer’s description. Next-generation sequencing was performed using a MiSeq Benchtop 

Sequencer generating paired-end reads of 2×250 bp length (v2 kit). To minimize the risk of cross-contamination, 

samples from each replicate line were processed separately. Samples were pooled after barcoding and the following 

samples were sequenced on one chip: Chip 1) virus transfers 10-60; chip 2) virus transfers 70-90; and chip 3) the 

virus stock among other samples. 

 

Determining 50% tissue culture infectious dose (TCID50) and multiplicity of infections for every 10th transfer 

We determined the multiplicity of infection for every 10th transfer in our evolution experiment. For each of these 

nine time points we first approximated the number of infectious viruses per ml for each of the four evolution lines. 

The number of infectious viruses can be determined by plating cell-free supernatant of our evolution lines on MT-2 

and MT-4 cell cultures respectively. To determine infectious viruses we plate increasingly high dilutions of the cell 

free supernatant on 1,000 cells each. For each of the nine time points and four evolution lines we perform four 

replicates. After seven days we determine the number of cell cultures that were successfully infected by checking 

for cytopathic effects under the microscope. This procedure is also called the TCID50 (Reed and MUENCH 1938). 

Using the TCID50 and the number of cells (400,000) and transfer volumes (2-10 µl) in our experiment we can 

calculate the average number of viruses that successfully infect a single T-cell in the first generation of every 10th 

transfer in our experiment. 

 

Mutation identification from Illumina sequencing data 

Illumina sequences were aligned to the ancestral sequence via Bowtie 2 (Langmead and Salzberg 2012). All aligned 

nucleotides with a quality score of greater than 35 (i.e., error probability of <0.00032) were considered. The first 80 
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bp and last 30 bp of the HIV-1 genome were excluded from all analyses due to low and spurious coverage. The 

remaining genome was covered in all data sets by at least 1000 nucleotides. Mean coverage for any sequence 

sample was at least 2912 nucleotides (Fig. S5). 

Consensus sequences were determined by selecting the most common base at each nucleotide site. 

 

Construction of neutral phylogenies 

For each transfer we simulated sequence evolution under a neutral evolutionary model. We randomly distributed 

the same number of majority mutations that occurred from one transfer to the next for each evolution line across the 

HIV-1 genome. When introducing mutations we maintained the GC content of the ancestral HIV genome. Hence at 

the end of the simulation the sequences contained the exact same number of majority mutations as the consensus 

sequence sampled in our experiment. From these sequences we built the phylogenetic tree shown in Fig. 5B.  

 

To determine the robustness of the neutral phylogenetic tree we repeated the sequence simulation 100 times. The 

log-likelihood of the correct trees (inferred from randomly distributed mutations) for the observed consensus 

sequence alignment is -13,375.7 with a standard deviation of 1.1. We call trees correct that resemble the true setup 

of the experiment, i.e. trees expected for neutrally and independently evolving sequences with even mutation rates 

across the genome. In contrast the most likely tree for our consensus sequences has a log-likelihood of -13,218.1, 

which is about 3.5 x 1069 times greater than the correct trees. The most likely tree does not correspond to the real 

evolutionary history of the sequences because it clusters MT-4 strains together, although in the experiment they 

kept completely separate from each other. In Fig. 5B we only showed a single example for illustrative purposes. 

 

Phylogenetic analyses 

We inferred all phylogenetic trees with PhyML (Guindon et al. 2010) under a general time reversible nucleotide 

substitution model and gamma distributed rate variations.  

 

Phylogeny based on minority mutations 

To calculate a high quality phylogeny we first eliminated all mutations that occurred at frequencies of less than 1% 

in the population and included only sites with more than 1,000-fold sequence coverage. For the remaining 

mutations we calculated the absolute distances 𝐷"#	between all populations at all time points: 

 

𝐷"# = & & |𝑓")* − 𝑓#)*|
*	",	[./01]

3

)45

 

𝐷"#	𝑇ℎ𝑒	𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑖	𝑎𝑛𝑑	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑗.	

𝑙					𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝐻𝐼𝑉	𝑔𝑒𝑛𝑜𝑚𝑒.	

𝑝			𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒	𝑎𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑜.	

𝑓			𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒	𝑝	𝑎𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑜	𝑖𝑛	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑖	𝑜𝑟	𝑗.	
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From the distance matrix 𝐷"# we calculated a Neighbor-joining tree in R with the ape package (Paradis et al. 2004). 

 

Likelihood ratio between the correct and the inferred phylogeny 

To assess the likelihood that the sequences of our experiment evolved under a neutral model of evolution, we 

determined the likelihood of the simulated correct tree for the observed consensus sequence and compared it to the 

likelihood of the tree inferred from the consensus sequence alignment.  

 

Determining maximum fitness 

For each mutation that became a majority mutation at transfer 90 we determined the maximum fitness by 

calculating the maximum increase in mutation frequency between two consecutive transfers. We also distinguished 

between viruses growing on MT-2 and MT-4 T-cells. We then fitted a linear model to the three data sets and got the 

following results. For the entire data set the decline slope (log10(fitness) declines by 0.006779 per transfer) was 

insignificantly different from zero (p-Value = 0.4). For MT-2 the decline slope was even smaller (log10(fitness) 

declines by -0.001345 per transfer) and also not significantly different from zero (p-Value= 0.9). For MT-4, 

however, the decline slope was larger (log10(fitness) declines by 0.02762 per transfer) and significantly different 

from zero (p-Value = 0.02762). 

 

dN/dS calculations 

dN/dS calculations were done using the Ka_Ks calculator (Zhang et al. 2006). We applied the calculator with 

standard settings (model averaging) to the open reading frames of the ancestor aligned to consensus sequences at 

transfer 90.  

 

Calculating diversity 

We calculated diversity by measuring the Shannon entropy for each position in the HIV-1 genome that has a 

coverage of more than 1000bp. Then the diversity at position 𝑗 at transfer 𝑡 is: 

 

𝐷#(𝑡) = & 𝑓#"(𝑡) log X𝑓#"(𝑡)Y
"	",	{.,/,1,0}

	

𝑓#"	𝑖𝑠	𝑡ℎ𝑒	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓	𝑏𝑎𝑠𝑒	𝑖	𝑎𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑗	𝑎𝑡	𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟	𝑡 

 

 

The per site diversity 𝐷̂ for gene 𝑥 of length 𝑙 is then: 

𝐷`(𝑡)aaaaaaa =
∑ 𝐷"(𝑡)3
"45
𝑙

 

and for the whole genome with length 𝑔𝑙: 
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𝐷c(𝑡)aaaaaaaa =
∑ 𝐷"(𝑡)
d3
"45
𝑔𝑙

 

 

We defined the accumulated diversity 𝐶𝐷`(𝑡)aaaaaaaaa as: 

 

𝐶𝐷`(𝑡)aaaaaaaaa =&𝐷`(𝚤)aaaaaaa
g

"4h

 

 

The relative diversity for gene 𝑥, 𝐷𝑟𝑒𝑙`, is then: 

𝐷𝑟𝑒𝑙`(𝑡) =
𝐷`(𝑡)aaaaaaa

𝐷c(𝑡)aaaaaaaa 

 

Calculating correlation between diversity and per site majority mutations 

We defined the per site majority mutation numbers as: 

 

𝑀𝑀`(𝑡)aaaaaaaaaa =
𝑀𝑀`(𝑡)
𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)

	

	𝑀𝑀`(𝑡)	is	the	number	of	majority	mutations	found	in	gene	𝑥	at	transfer	𝑡	 

 

For Fig. 7A we combined all 𝑀𝑀`(90)aaaaaaaaaaaa from the four different lines and correlated it with all 𝐷`(𝑡)aaaaaaa (where 𝑡 runs 

from 0 to 90) individually, by inferring a linear model in R. We also correlated 𝑀𝑀`(90)aaaaaaaaaaaa with the accumulated 

diversity 𝐶𝐷`(𝑡)aaaaaaaaa, which slightly improved the fit. 

 

For Fig. 7B and C we inferred a linear model for all 𝐷`(𝑡)aaaaaaa and 𝑀𝑀`(90)aaaaaaaaaaaa from each line separately as well as 

between 𝐶𝐷`(𝑡)aaaaaaaaa and 𝑀𝑀`(90)aaaaaaaaaaaa. 

 

Simulation of neutral mutations (Fig. 2A) 

To predict how many neutral mutations would accumulate in our experiments, we simulated the evolution of 

individual HIV-1 genomes of length 9,130 for 180 generations. We started our simulation with 400 individuals. 

Each individual genome is assumed to produce 44 offspring genomes per generation (R0=44). The viral population 

is allowed to replicate exponentially for two generations. Consistent with the experimental setup, we simulate a 

bottleneck every second viral generation, by randomly selecting a small number of individuals from the previous 

population. The size of the bottleneck, i.e. the number of viruses transferred at every passage, was empirically 

determined. To this end, we determined bottleneck sizes every 20 generations in Figure S1. Because we do not 

have more detailed information on the number of transferred viruses we maintain the number for 20 viral 

generations which corresponds to ten transfers. Every newly produced viral genome can acquire a mutation with a 
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probability of 2.16´10-5 (Lee et al. 2009).  

 

Determining extent of parallel evolution in neutrally evolving HIV-1 evolution lines 

We determined the level of parallel evolution that we would observe for neutrally evolving sequences. For this 

purpose we randomly distribute the same number of mutations that we observed in the four evolution lines across 

the HIV-1 genome. When distributing substitutions we first randomly chose a position in the genome. The mutation 

introduced at this position was then determined from transition probabilities inferred from the mutations observed 

in full length env sequence data during early infection (Keele et al. 2008). Hence we distributed 29 and 26 

mutations for the MT-2 evolution lines and 20 and 17 mutations for the MT-4 evolution lines randomly across 

9,130 unique HIV-1 NL4-3 nucleotide sites. Once the mutations were distributed we determined the number of 

mutations that occurred in more than one evolution line in parallel. We then repeated the entire simulation 100 

times. 

 

Running CodeML 

To identify positively selected sites in the translated part of the HIV-1 genome we supplied CodeML with an 

alignment of the translated regions of all evolution lines and sequenced time points in the experiment where 

majority mutations are substituted for the wild type allele. We ran CodeML three times each time supplying a 

different phylogeny, i.e. the inferred phylogeny (Figure 5A), the true phylogeny (Figure 5B) and the phylogeny 

inferred from the comparison of minority as well as majority mutations (Figure 5C). We used the same settings as 

the HIVNSsites Sweden example. Briefly, the parameter values that were set to a non-zero value are: the 

CodonFreq model is set to F3X4, kappa is 0.3, omega is 1.3, ncatG is 10, cleandata is 1 and Small_diff is .45e-6. 

 

Data availability 

The Illumina sequencing data was deposited in the NCBI short read archive under the accession number 

PRJNA506879.  
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Supporting Information 

Figure S1. Multiplicity of infection and corresponding bottleneck size for the beginning of every 10 transfers 

in the evolution experiment.  
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Figure S2. Mutation frequencies of all experimental lines for all identified majority mutations during the 

experiment. Each plot shows mutation frequencies of the four experimental lines. The y-axis of each plot shows 

the position and type of mutation in the ancestral sequence (i.e. c6515a means we are looking at the relative 

frequencies of a mutation that changed a C at position 6515 in the ancestral sequence to an A) and the frequency of 

that mutation on a log scale. If mutations were not observed in the sequence data then a pseudo count of 1 was 

added. A solid black line indicates the 50% threshold. The x-axis shows the transfer number, i.e. time. 

 

 

Figure S3. Per nucleotide site diversity measures for each HIV-1 gene and noncoding regions.  

 

Figure S4. Relative per nucleotide site diversity measures for each HIV-1 gene and noncoding regions. 

 

Figure S5. Mean coverage per nucleotide for each sequence sample. The sample names are on the bottom of the 

graph. The first part of the name denotes the cell line the viruses evolved in, the second part shows the transfer that 

the sample was sequenced at and the last part the number of the biological repeat. 

 

Table S1. Majority mutation frequencies observed at transfer 90. 

 

Table S2. Probability of positively selected codons inferred by CodeML. 
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