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Abstract A high-precision measurement of the 131Cs→131Xe ground-to-ground-
state electron-capture QEC-value was performed using the ISOLTRAP mass spec-
trometer at ISOLDE/CERN. The novel PI-ICR technique allowed to reach a rel-
ative mass precision δm/m of 1.4 · 10−9. A mass resolving power m/∆m exceeding
1 ·107 was obtained in only 1 s trapping time. Allowed electron-capture transitions
with sub-keV or lower decay energies are of high interest for the direct deter-
mination of the νe mass. The new measurement improves the uncertainty on the
ground-to-ground-state QEC-value by a factor 25 precluding the 131Cs→131Xe pair
as a feasible candidate for the direct determination of the νe mass.
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CSNSM-IN2P3-CNRS, Université Paris-Sud, 91400 Orsay, France

D. Neidherr
GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

Y. Novikov
Department of Physics, St Petersburg State University, St Petersburg 198504, Russia

Y. Novikov
Petersburg Nuclear Physics Institute, 188300 St Petersburg, Russia

L. Schweikhard · F. Wienholtz
Physikalisches Institut, Universität Greifswald, 17489 Greifswald, Germany

ar
X

iv
:1

90
5.

05
51

0v
1 

 [
nu

cl
-e

x]
  1

4 
M

ay
 2

01
9

mailto:jonas.karthein@cern.ch


2 J. Karthein et al.

1 Introduction

The determination of the neutrino rest mass is of broad interest not only in nuclear
physics but also in the fields of particle and astrophysics. On the most fundamental
level, the existence of a non-zero neutrino mass is not explained by the standard
model. However, abundant experimental evidence by the observation of neutrino
oscillations has been found in the last decades, which requires a neutrino mass
and mixing. Hence, a detailed study of different neutrino properties and interac-
tions evolved as a powerful tool in the search for the fundamental theory beyond
the standard model. [1, 2] A very feasible approach for the determination of the
electron-neutrino mass lies in the investigation of electron-capture (EC) reactions
with energies of a few keV or lower. Here, the only particle emitted is the neutrino
itself. Therefore, the smaller the decay energy of these transitions, the higher the
sensitivity to the neutrino rest mass. Such transitions are found in allowed EC-
transitions to excited nuclear states in the daughter nucleus.

Electron and nuclear excitation energies are typically known to sub-keV precision.
Unfortunately, the ground state masses of the decay pairs are, in most cases, known
with uncertainties well above 1 keV and thus constitute the main contribution to
the uncertainty of decay energies. Presently, only Penning-trap mass spectrometry
(PTMS) is capable of providing mass measurements with sub-keV uncertainties.
In recent years, a combination of PTMS and cryogenic microcalorimetry (MMC)
[3] has proven to be a very successful combination for investigating the β−-decay
in 187Re and the electron capture in 163Ho [4]. Several other transitions have been
subsequently suggested as possible candidates for neutrino physics research - the
electron-capture of 131Cs to the E∗ = 364.490(4) keV [5] excited state in 131Xe
being one example.

2 Experiment and analysis

The measurement was performed with the high-precision Penning-trap mass spec-
trometer ISOLTRAP [6, 7, 8] located at CERN’s radioactive ion beam facility
ISOLDE [9]. There, isotopes are produced in nuclear reactions in a thick target,
induced by a 1.4 GeV proton beam. In the present case a uranium-carbide target
was used. After surface ionization, the beam was accelerated to 50 keV, magneti-
cally separated for the ion of interest in ISOLDE’s HRS separator and transported
to the ISOLTRAP setup.

The ISOLTRAP apparatus, depicted in Fig. 1, consists of a sequence of four ion
traps. The continuous 131Cs+ beam from ISOLDE, as well as the 133Cs+ beam
from ISOLTRAP’s offline alkali ion source in the case of reference mass, is first
accumulated in a radio-frequency quadrupole (RFQ) trap [10], where it is cooled
and bunched for 10 ms using ultra-pure helium gas. Isobaric separation is sub-
sequently performed using ISOLTRAP’s multi-reflection time-of-flight (MR-ToF)
device [11], in which trapped ions are reflected back and forth in order to extend
their flight path to ∼ 1 km (∼ 28 ms). Not only has this device shown numerous
times its suitability for the measurement of short-lived isotopes produced in min-
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Fig. 1 Schematic overview of the ISOLTRAP mass spectrometer. Radioactive ion beams
provided by ISOLDE or an offline alkali ion source at an energy of 50 keV are delivered. Inside
the ISOLTRAP apparatus the beam is processed by a sequence of traps: a radio-frequency
quadrupole (RFQ) cooler and buncher (pink), a multi-reflection time-of-flight (MR-ToF) mass
separator/spectrometer (yellow), a preparation Penning trap (green) and a precision Penning
trap (red). Furthermore, an electron multiplier (EMP) particle detector for ToF detection and
a position-sensitive multi-channel plate (MCP) particle detector for position and ToF detection
are shown. For further details, see text.

utes quantities [12, 13] but it has also proved itself to be a perfectly suitable tool for
mass purification [14]. More specifically, in this experiment a mass resolving power
R = m/∆m = t/(2 ·∆t) (where t is the mean of the time-of-flight distribution and
∆t its full width at half maximum) in excess of 1.1 ·105 was achieved. The purified
beam is then transported to the helium buffer-gas-filled preparation Penning trap
for further cooling and purification following the well-established mass-selective
centering technique [15]. Ultimately, the ions arrive in the precision Penning trap
where high-precision mass determination is accomplished by measuring the ion’s
cyclotron frequency νc

νc =
1

2π
· qi
mi
·B (1)

with the charge-to-mass ratio qi/mi and the magnetic field strength B. All detec-
tion techniques currently available at the ISOLTRAP setup - namely the single
pulse time-of-flight ion-cyclotron-resonance (ToF-ICR) mass spectrometry (MS)
[16], the two-pulse Ramsey-type ToF-ICR MS [17] and the recently developed
phase-imaging ion-cyclotron-resonance (PI-ICR) MS [18, 19] - were all used in the
presented experiment.

In both ToF-ICR techniques an excitation frequency is scanned, i.e. the excitation
frequency is varied from one experimental cycle to the next, and the ion’s time of
flight (ToF) to a multi-channel plate detector after ejection from the trap is mea-
sured. This ToF has a minimum at the cyclotron frequency. A typical Ramsey-type
ToF-ICR scan for 131Cs+ is shown in Fig. 2 for an excitation time of 100 ms per
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131Cs+

Fig. 2 Typical Ramsey-type ToF-ICR spectrum of 131Cs+ with an excitation time of 100 ms
per pulse and 1000 ms waiting time. Individual, repeated ToF measurements are shown in
black without any analysis cuts, thus demonstrating the purity of the beam injected inside
the precision Penning trap. The mean of the unbinned ToF distribution per scan step with its
standard deviation as error bar and the fitted theoretical line shape are represented in green
and red respectively [16]. For further details, see text.

pulse and a ”waiting time” of 1000 ms between the pulses. There, the individ-
ual, repeated ToF measurements per scan step is shown in black. The green data
points represent the mean of the unbinned ToF distribution per scan step with its
standard deviation as error bar. The red line represents a least squares fit of the
theoretical line shape to the mean ToF distributions [16].

In addition to the well-established ToF-ICR techniques, the new non-scanning
approach to PTMS, namely PI-ICR, has been applied. This method allows the de-
termination of radial ion frequencies by determining the full phase φtot = 2πn+ φ

in a given accumulation time tacc, consisting of an integer number n ∈ N0 of full
turns plus an additional phase φ which is measured. The radial frequency then
results as νi = (2πn+φ)/(2πtacc). Since the cyclotron frequency in a Penning trap
νc = ν+ +ν− is equal to the sum of its radial eigenfrequencies ν+/−, the technique
is perfectly suited for PTMS allowing a frequency determination at the same or
better precision as ToF-ICR techniques with ∼ 25 times shorter measurement time
[19].

A typical PI-ICR detector image for 131Cs+ is shown in Fig. 2: The dots rep-
resent repeated position projections (so called spots) from the Penning trap to
a position-sensitive detector. In this case, the frequency determination was per-
formed according to the pattern 1/2 (in Fig.3 referred to as P1/P2) measurement
scheme described in [19] which allows for a direct determination of νc. The achieved
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Fig. 3 Typical PI-ICR detector image for 131Cs+ with a center spot C and two overlapping
spots P1/P2 for tacc = 1 s, resolving power R = φtot/(2 ·∆φ) = 1 · 107. For further details,
see text and Ref. [19].

resolving power R in case of Fig.3 was R = φtot/(2 ·∆φ) = 1 ·107 with the total ac-
cumulated phase φtot after tacc = 1 s and the spot’s FWHM in terms of angle ∆φ.
The analysis was performed with a custom-designed analysis software (for details
see Ref. [20]) based on Python and ROOT [21]. The analysis was independently
performed with a LabView analysis software developped by the SHIPTRAP col-
laboration [19] and agrees within uncertainties.

The determination of the cyclotron frequency ratio r = νc,ioi/νc,ref between all
measured cyclotron frequency values νc,ioi of the ion of interest (in this case
131Cs+) of all three measurement methods and the reference ion values νc,ref (in
this case 133Cs+) is performed by simultaneously fitting a polynomial function
p(t) to both data sets [22]:

νc,ioi = p(t) (2)

νc,ref = r · νc,ioi = r · p(t). (3)

The polynomial fit function describes the temporal evolution of the cyclotron
frequencies while the proportionality between the two fits is exactly the cyclotron
frequency ratio r. The ground-to-ground state QEC-value can be directly expressed
following the relation:

QEC = (r − 1) · (mref,lit −me), (4)

where mref,lit is the literature mass of the reference ion (here taken from AME16
[23]) and me [24] is the electron mass. Figure 4 shows all individual cyclotron
frequency measurements of 131Cs+ and 133Cs+ over time. In addition, the poly-
nomial fits are shown. As one can see, all PTMS detection methods used in this
publication are in good agreement. Moreover, the weighted mean of all individual
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PI-ICR ToF-ICR Ramsey PI-ICR

Fig. 4 Simultaneous polynomial fits of the four data sets as well as of all cyclotron frequency
data for 131Cs+ and 133Cs+. For further details, see text.

cyclotron frequency ratios for neighboring, alternating frequency measurements of
131Cs+ and 133Cs+ was calculated [25] and agrees with the polynomial method
described above. The final frequency ratio yields rfinal = 0.9849517704(14). The
uncertainty of the combination of all PI-ICR data is δνc/νc = 1.4 · 10−9.

In addition to the statistical uncertainty derived from the fit, a careful analysis
of the systematic uncertainties which are not covered by the polynomial fit was
performed. These include considering fit parameter correlations, where off-axis
elements in the correlation matrix were negligibly small. The fluctuation of the
individual frequencies after applying different fit cuts was systematically studied.
They were found to be well within the statistical uncertainty on the individual
frequency, proofing the purity of the beam. Since the ion rate was purposely kept
below one ion per measurement cycle, a z-class analysis, i.e. reducing the number
of detected ions per cycle and therefore in the trap itself, did not have to be per-
formed. The data was corrected for ISOLTRAP’s mass-dependent shift (relative
shift: 7 · 10−10) due to the difference in mass between the ion of interest and the
reference ion as described in Ref. [25, 26]. The residual systematic uncertainty of
ISOLTRAP [25] was not taken into account due to the fact that both the ion of
interest and the reference were prepared, injected and measured in identical con-
ditions, hence probing the same volume of the precision trap.

Table 1 presents the obtained ground-to-ground-state decay energy QEC as well
as the allowed (QEC − E∗)-value of interest to the E∗ = 364.490(4) keV [5] state
in 131Xe with their associated uncertainties. The decay-energy of the allowed EC-
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Table 1 Comparison of the measured mass excess, the measured released energy QEC of
the electron-capture-pair ground-to-ground-state decay of 131Cs→131Xe, the released en-
ergy (QEC − E∗) for this electron-capture-pair in terms of ground-to-excited-state decay of
131Cs→131Xe∗, the latter one corrected for the binding energy B of captured L- and M -shell
electrons (QEC−E∗−B) and the final uncertainty compared to literature [5, 23]. For further
details, see text.

(keV) ME QEC QEC-E∗ QEC-E∗-BL QEC-E∗-BM unc.

Literature -88059 355 -10 -15 -11 5
ISOLTRAP -88055.56 358.00 -6.49 -11.95 -7.64 0.17

transition has to be corrected for the binding energy B of captured electrons
(QEC−E∗−B) to the L−shell-electron (B(L-e−) = 5.453 keV [27, 28]) and to the
M−shell-electron (B(M-e−) = 1.1487 keV [27, 28]). It is worth mentioning, that
the 131Xe literature mass is dominated by a high-precision measurement from
SHIPTRAP using the PI-ICR technique [29].

With the refined uncertainty, the ground-to-excited-state value (QEC − E∗) =
−6.49(17) keV appears undoubtedly negative. This translates to the excited state
131Xe∗ being higher in energy than the parent ground state in 131Cs, thus pro-
hibiting this 131Cs→131Xe∗ transition and excluding it as a suitable candidate for
the determination of the electron-neutrino mass.

3 Conclusion

High-precision mass measurements of the 131Cs using established time-of-flight
ion-cyclotron-resonance (ToF-ICR) mass spectrometry (MS) as well as the re-
cently developed phase-imaging ion-cyclotron-resonance (PI-ICR) detection tech-
nique was performed with ISOLTRAP/CERN. We were able to demonstrate the
successful implementation of PI-ICR at ISOLTRAP with a high resolving power
of 1 ·107 for 1 s single-measurement time, a statistical uncertainty of only 1.4 ·10−9

in ∼ 4 hrs of beam time and a very good agreement with our well-established ToF-
ICR measurement techniques (see Fig. 4). The obtained QEC-value agrees with
the value found in literature. However, the refined precision allows now to exclude
this electron-capture transition as a possible candidate for the determination of
the neutrino mass.

Thus the PI-ICR technique appears very promising to tackle even more challenging
cases such as 134Ce, 159Dy and 175Hf [30, 31], the decay energy of which must be
determined at a sub-100 eV level of precision.
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