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We have measured the ground-state g-factor of boronlike argon 40Ar13+ with a fractional un-
certainty of 1.4 × 10−9 with a single ion in the newly developed Alphatrap double Penning-trap
setup. The here obtained value of g = 0.663 648 455 32(93) is in agreement with our theoretical pre-
diction of 0.663 648 12(58). The latter is obtained accounting for quantum electrodynamics, electron
correlation, and nuclear effects within the state-of-the-art theoretical methods. Our experimental
result distinguishes between existing predictions that are in disagreement, and lays the foundations
for an independent determination of the fine-structure constant.

The g-factor of the bound electron permits high-
precision tests of quantum electrodynamics (QED) in
strong Coulomb fields. With an appropriate choice of
the element and charge state, different effects can be
individually addressed. The currently most stringent
test of QED in strong fields has been performed with
hydrogenlike silicon [1, 2]. The QED theory thus con-
firmed has been used subsequently for the determination
of the electron mass [3], determining the current CO-
DATA value [4]. Measuring the isotope shift of the g-
factor of lithiumlike calcium [5] gave access to the rel-
ativistic nuclear recoil effect, scrutinising QED beyond
the external-field approximation [6]. Finally, relativistic
many-electron correlations were investigated using lithi-
umlike silicon [7].

The experimental determination of the g-factor of a
boronlike ion allows, for the first time, for precision tests
of QED involving a bound electron possessing orbital an-
gular momentum, and for more stringent tests of many-
electron correlations. Furthermore, such ions can also be
used in the future for an independent determination of
the fine-structure constant α [8–10], competitive in pre-
cision with the presently best literature value [11].

In this Letter we present the first result of the Al-
phatrap experiment, a Penning-trap setup for high-
precision determination of g-factors. We have measured
the g-factor of the 1s22s22p1/2 ground-state 40Ar13+,
which has been inaccessible to the previous Penning-trap
experiment [12], and compared it with theoretical pre-
dictions. The precision of this measurement allows for
testing all of the presently accessible contributions to the
theoretical value. It also has great potential for future
tests of higher-order contributions, which have not been
calculated yet. Consequently, this measurement paves
the way to perform bound-state QED tests with Al-
phatrap in even stronger fields, ultimately with highly

charged lead ions, and is an important contribution to-
wards α determination with heavy highly charged ions
(HCI) [8, 9]. Additionally, we present a theoretical cal-
culation with improved accuracy of the g-factor. The
uncertainty of the one-loop QED contribution has been
reduced by a factor of three. The electron-correlation
contribution has been recalculated using two independent
methods: large-scale configuration-interaction method in
the Dirac-Fock-Sturm basis (CI-DFS) and recursive per-
turbation theory. The current relative uncertainty of the
theoretical g-factor is 9 × 10−7 and is dominated by the
uncertainty of the many-electron QED and nuclear recoil
terms. Still, the theoretical uncertainty is almost three
orders of magnitude larger than the experimental one,
making further improvement of the theory highly antici-
pated.

Alphatrap, which is the follow-up experiment to the
Mainz g-factor experiment on HCI [2, 3, 5], allows the
injection of externally produced ions up to hydrogenlike
lead. A detailed description of Alphatrap can be found
in Ref. [13]. A double Penning-trap system is inserted
into the bore of a 4.02 T superconducting magnet. A
liquid helium tank cools the trap as well as the detec-
tion electronics to 4.2 K. Owing to the integration of a
cryogenically operable valve, the vacuum inside the trap
is better than 10−16 mbar despite the external coupling,
and ensures the absence of disturbances in the ion mo-
tion due to collisions and allows for virtually unlimited
ion storage time. The trap is connected via a beam-
line to several ion sources including a Heidelberg Com-
pact Electron Beam Ion Trap [14] that gives access to
medium-Z HCI (with Z being the atomic number) and
the cryogenic high-energy Heidelberg electron beam ion
trap [15], which enables access to the high-Z regime for
novel experiments.

Determining the g-factor requires measuring the Lar-

ar
X

iv
:1

90
6.

00
88

1v
1 

 [
ph

ys
ic

s.
at

om
-p

h]
  3

 J
un

 2
01

9



2

AT AT AT

PT PT
0.2

0.4

0.6

0.8

1 5432

AT AT AT

PT PT
0.2

0.4

0.6

0.8

1.0

Time (arb. units)

ν z
 -
 o

ff
se

t 
(H

z)

spin flip

mm-wave guide

injection 
diaphragm

 ν
z
- offset (Hz)

A
m

p
. 
(a

rb
.u

.)

� �

�

-101234567
distance from AT center (cm)

3.9
4
4.1

B
0 
(T

)

PT AT

axial detector axial detector

300mHz

 ν
z
- offset (Hz)

A
m

p
. 
(a

rb
.u

.)

externally 
produced ions

Spin orientation determination
Axial frequency measurement
ν

+
 frequency measurement &

mm-wave injection
Axial frequency measurement
Spin orientation determination5

4

3

2

1 AT

PT

AT

1.0

capture trap

FIG. 1. The Alphatrap double-trap system consists of the precision trap (PT) used for high-precision spectroscopy and the
analysis trap (AT) for spin-state determination. At the end of the trap tower the millimeter-wave guide is attached. After the
externally created ion bunch is decelerated by a pulsed drift tube and dynamically captured by rapid switching of the potential
applied on the electrodes of the capture trap, it is transported to the double Penning-trap system shown here, specifically, to
the PT. There, the ion cloud is reduced to a single 40Ar13+. The measurement cycle is described in the lower part of the figure.

mor frequency νL = gB0e/(4πme), where e and me de-
note the electron’s charge and mass, respectively, in a
well-known magnetic field B0. The latter is deduced via
the measurement of the ion’s free-cyclotron frequency
νc = qB0/(2πM), where q and M are the ion’s charge
and mass, respectively. While νc is being determined, the
ion is simultaneously irradiated with millimeter waves at
frequencies νMW close to the Larmor frequency νL. The
Larmor frequency is extracted from measuring the spin-
flip probability for different excitation frequencies νMW.
The g-factor is obtained from

g = 2
νL
νc

q

e

me

M
= 2Γ0

q

e

me

M
, (1)

where Γ0 denotes the frequency ratio νL/νc.

The single ion’s motion in a Penning trap is a super-
position of three independent harmonic oscillation modes
with the modified cyclotron frequency ν+ ≈ 20 MHz, the
axial frequency νz ≈ 650 kHz and the magnetron fre-
quency ν− ≈ 10 kHz in our setup. The free-cyclotron fre-
quency of the ion is determined by means of the Brown-
Gabrielse invariance theorem ν2c = ν2+ + ν2z + ν2− [16],
where frequency shifts due to possible tilts and elliptic
deformations of the trapping potential are canceled.

These frequencies are detected non-destructively by
measuring the ion-induced image current on axially sep-
arated electrodes. The ion’s oscillation in the axial direc-
tion is brought into resonance with a cryogenic supercon-
ducting tank circuit with a quality factor of Q = 38500.

The voltage drop across the impedance is Fourier trans-
formed and the ion’s frequency appears as a minimum in
the noise spectrum of the detection circuit, the so-called
“dip” signal as shown in the insets of Fig. 1. After resis-
tive cooling, the ion eventually reaches thermal equilib-
rium with the tank’s effective mode temperature. In our
setup this temperature amounts to about 6 K, slightly
above the ambient temperature of 4.2 K. In addition to
the axial frequency, the two radial frequencies are de-
tected on the axial detector by coupling them to the axial
mode via a radio-frequency sideband drive at frequencies
ν+ − νz and νz + ν− [17, 18]. This forces the coupled
modes into a Rabi oscillation, which splits the dip in the
noise spectrum into two dips, the so-called “double-dip”.
This way, the determination of the modified cyclotron
and the magnetron frequency becomes possible.

In order to additionally measure the Larmor frequency,
a typical experimental cycle is as follows (see also Fig. 1):
The ion is adiabatically transported to the analysis trap,
where the ion’s spin state is determined by means of
the continuous Stern-Gerlach effect [19]. The strength
of the magnetic bottle introduced by a ferromagnetic
ring in the analysis trap has been measured to be B2 =
44.35(84) kT/m2. This quadratic inhomogeneity creates

an additional axial force ~F = 2µzB2ẑ which depends on
the magnetic moment orientation. Within this config-
uration a spin-state change is observed as an axial fre-
quency jump, which for 40Ar13+ corresponds to ∆νz =
312(6) mHz out of 335 kHz axial frequency. Therefore, for
unambiguous spin-flip detection the ion trapping voltage
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FIG. 2. Γ resonance (Res. B in Table I), depicting the spin-flip
probability as a function of the frequency ratio Γ = νMW/νc.
The data is fitted with a Lorentzian (solid line) using the
maximum likelihood method. The dashed lines indicate the
1-σ confidence interval of the fit. The blue points represent
the binned data with binomial error bars and are included in
the plot only as a guide for the eye. The red dots represent
the single spin-flip events with 1 being a successful spin flip
and 0 being an unsuccessful one.

needs to be stable at a level of δU/U ≤ 4.5 × 10−7. Af-
ter probing the spin state, the ion is adiabatically trans-
ported to the precision trap. There, the ion is irradiated
with millimeter waves at a frequency near the Larmor
frequency νL ≈ 37 GHz. Simultaneously, the ion’s free-
cyclotron frequency νc is measured, allowing the determi-
nation of the ratio Γ = νMW/νc. For this, all three eigen-
frequencies of the ion are measured within the highly
homogeneous magnetic field of the precision trap which
avoids adverse line-broadening effects of the magnetic
bottle. Finally, the ion is transported back to the analysis
trap for determining whether a spin flip occurred during
the millimeter-wave irradiation in the precision trap. Re-
peating this measurement cycle several times results in a
resonance of the spin-flip probability as a function of the
corresponding Γ ratio as shown in Fig. 2.

Due to the comparably low precision of the theoretical
prediction (∼ppm) compared to the typical line-width
of the experiment (<10 ppb), we have used an adiabatic
rapid passage [20] measurement scheme for the initial res-
onance search. To this end, the magnetic field was swept
using a set of Helmholtz coils that was installed outside
the superconducting magnet. In combination with the
background-free spin-state detection, this method allows
an efficient search in a comparably large frequency range.

After the resonance was found, it has been recorded
twice (Res. A and Res. B in Table I), with a slightly
improved measurement sequence used for Res. B. Using
a maximum likelihood estimation, the centre of each of
the resonances is determined by fitting a Lorentzian line-
shape to the data. The centers of the two resonances are
weighted by their individual statistical uncertainty and

the uncertainty of the axial potential drift corrections
(see Table I). This yields Γ′0 = 1859.082 876 9(23) with
a relative statistical uncertainty of 1.26 × 10−9. This
value needs to be corrected for systematic shifts. The
dominant effect during this measurement campaign was
a drift of the axial frequency in the precision trap dur-
ing the Γ-ratio determination arising from the slow ther-
malisation of the power supply when the trapping volt-
ages are set. The applied voltages (≈ −75 V) are almost
by an order of magnitude larger than previous exper-
iments, making this effect non-negligible. This effect,
which is caused by voltage changes during ion transport,
has been determined with a dedicated measurement to
yield the values of Table I. It was significantly reduced
for Res. B by a more suitable choice of transport volt-
ages and will be mitigated with a dedicated transport
power supply for the next measurement campaign. More-
over, due to the highly optimised design of our preci-
sion trap, which includes a larger diameter of 18 mm,
the effect of electric and magnetic field imperfections are
negligible. The residual inhomogeneities of the magnetic
field (Bz = B0 + B1z + B2z

2 + ...) [21] along the axis
of the precision trap amount to B1 = 2.566(29) mT/m

and B2 = 0.0643(32) T/m
2
. Furthermore, the image

charge shift, which was a dominant systematic uncer-
tainty in past experiments, is now calculated using fi-
nite element method to be δνc/νc = 5.03(25) × 10−11 for
40Ar13+ in Alphatrap and is virtually negligible at the
current precision level. The 5 % uncertainty corresponds
to a conservative estimation, which can be reduced with
a more rigorous calculation if necessary. We also esti-
mate a conservative systematic uncertainty due to the
frequency pulling effect of the detuned cyclotron tank
circuit. The experimental frequency ratio, corrected for
all shifts given in Table I, is Γ0 = 1859.082 876 8(23).

TABLE I. Relative systematic shifts ((Γ0−Γ′0)/Γ′0) and their
uncertainties for each of the obtained Γ resonances. The cor-
responding g-factor at 4.02 T and the one corrected for the cu-
bic Zeeman shift are listed below. The numbers in parentheses
correspond to the statistical and systematic uncertainties, and
the uncertainty due to the external constants, respectively.

Effect Res. A(ppt) Res. B(ppt)
Drift of axial potential 0(870) 0(360)
Image charge −50.3(2.5)
Relativistic mass increase −0.43(6)
Lineshape of dip fit 0(270)
Frequency pulling 0(50)
ν− measurement 0.0(3.4)
Elevated E+ during νz meas. 0.00(82)
Electric field anharmonicity 0.00(60)
Lineshape of Γ resonance 0.00(2)
Magnetic field inhomogeneity �10−2

gexp at B0 = 4.02 T 0.663 648 456 29(83)(42)(5)
gexp at B0 = 0 T 0.663 648 455 32(83)(42)(5)
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The g-factor is determined using eq. (1) with the elec-
tron mass me = 5.485 799 090 70(16) × 10−4 u as given by
CODATA [4] and M(40Ar13+) = 39.955 255 154 5(26) u.
The latter is deduced after correcting the atomic
mass M(40Ar) = 39.962 383 123 8(24) u [22] for the
mass and binding energies of the missing elec-
trons [23]. Our experimental result for the g-factor is
gexp = 0.663 648 456 29(83)(42)(5), where the number
in the first bracket represents the statistical uncertainty,
the second the systematic uncertainty and the third one
accounts for the uncertainty of the electron and the argon
atomic masses.

In 40Ar13+, mixing of the closely spaced 2p1/2 and
2p3/2 levels leads to nonlinear contributions to the Zee-
man splitting. However, the quadratic Zeeman shift is
identical for both m = ±1/2 sublevels, therefore, its con-
tribution to the Zeeman splitting vanishes for the ground
state. The lowest non-zero nonlinear term is the cubic
one, ∼ B3. Its contribution to the g-factor has been eval-
uated in Refs. [24, 25] and amounts to 6.0×10−11 (B/T)2.
For the magnetic field of B0 ≈ 4.02 T of Alphatrap this
results in an absolute shift of 9.7 × 10−10 [26]. Taking
into account the latter, we finally obtain for B0 = 0 T:

g = 0.663 648 455 32(83)(42)(5). (2)

For the theoretical g-factor evaluation, a treatment
based on the Dirac equation is necessary, including the
negative-energy states and the Breit contributions to
the electron-electron interaction. We take into account
electron-correlation effects by means of the CI-DFS ap-
proach [27] as in Refs. [28, 29], confirming the results
therein. This contribution has also been confirmed re-
cently within the coupled-cluster method [30] and within
second-order perturbation theory in 1/Z [31]. Here, we
evaluate it to higher numerical precision using the com-
bination of the CI-DFS approach and recursive pertur-
bation theory (P. Th.) to third and higher orders [32].
The contribution of the negative-energy part of the Dirac
spectrum, which was found to be relevant in the case of
lithiumlike ions in Ref. [7], is also significant here. In ad-
dition, the one-photon exchange correction is calculated
in a QED framework [33] with a basis set constructed
from B-splines within the dual kinetic-balance (DKB)
approach [34] as implemented in [35]. In Table II, the
results for the electron-electron interaction are presented
along with subsequent terms.

The leading QED effect is due to the self-energy (SE)
vertex and wave-function corrections of the 2p1/2 valence
electron. In the leading (Zα)0 approximation, it is equal
to −α/(3π) [38]. The one-electron SE binding correction
was calculated to all orders in Zα in Refs. [39, 40] for
Z ≤ 12. In Ref. [28] it was calculated for Z = 18 with
an effective screening potential. In the present work, we
calculate it with an improved uncertainty using two inde-
pendent methods, with the screening effect on the SE of

TABLE II. Theoretical contributions to the g-factor of
40Ar13+. The parenthesised numbers indicate the uncertainty
of the last digit(s). All digits are significant if no uncertainty
is given.

Contribution Value Ref.
Dirac value 0.663 775 45
Finite nuclear size < 10−10

Electron correlation:
one-photon exchange, (1/Z)1 0.000 657 53
(1/Z)2+, CI-DFS −0.000 007 5(4) [29]
(1/Z)2+, P. Th. & CI-DFS −0.000 007 57(20)*

Nuclear recoil −0.000 009 09(19) [29, 36]
One-loop QED:

self-energy, (1/Z)0 −0.000 768 372 3(3)
(1/Z)1+ −0.000 000 98(15)
(1/Z)1+ −0.000 001 04(19)*

vacuum polarization
electric loop, (1/Z)0 −4.187 × 10−10

(1/Z)1 6.526(2) × 10−9

magnetic loop, (1/Z)0 4.131 × 10−10

(1/Z)1 −1.341 × 10−10

Two-loop QED, (Zα)0 0.000 001 18(6) [37]
Total theory 0.663 648 2(5) TW

0.663 648 08(58)* TW
Experiment 0.663 648 455 32(93) TW

the valence electron accounted for by means of an effec-
tive potential induced by the core electrons. Within the
first method, the SE correction in a local screening poten-
tial is calculated by generalizing the numerical approach
developed in Ref. [41]. Computations are performed with
the localized Dirac-Fock potential, the Kohn-Sham po-
tential, and the core-Hartree potential (see, e.g., Ref. [42]
for details), with the result of −769.35 (15) × 10−6. The
uncertainty estimates the dependence on the choice of
the potential and the error due to the truncation of the
partial-wave expansion. Within the second method, it is
calculated on the basis of the DKB finite basis set with
the core-Hartree, Kohn-Sham, Dirac-Hartree, and Dirac-
Slater potentials following Refs. [43, 44], with the result
of −769.41 (19) × 10−6 (marked by * in Table II), in full
agreement with the first method. The contribution of the
two-electron SE diagrams not approximated by the above
screening potential method is unknown. It can be esti-
mated based on the corresponding calculations for lithi-
umlike ions [45], leading to an uncertainty of 0.51×10−6,
included in the uncertainty of the final theoretical result.

One- and many-electron vacuum polarization (VP)
corrections are also evaluated. We calculate these dia-
grams employing a B-spline basis set. One- and two-
electron magnetic-loop terms are evaluated following
[46, 47]. In case of the 40Ar13+ ion, these terms do not
contribute at the current level of theoretical uncertainty,
however, they will be important for near-future experi-
ments with high-Z systems, especially for the projected
determination of α with very heavy ions [8]. Specifi-
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cally, the VP terms treated here contribute as much as
−4.06 × 10−6 in 208Pb77+. Additionally, two-loop QED
effects known only to zeroth order in (Zα) [37, 38] con-
tribute at the 10−6 level in 40Ar13+. The nuclear recoil
effect in middle-Z boronlike ions was evaluated to zeroth
and first orders in 1/Z in Refs. [29, 36]. A combina-
tion of the two total theoretical results in Table II yields
0.663 648 12(58).
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FIG. 3. Comparison of the experimental (circles) and theo-
retical (squares) g-factors obtained in this work (TW) with
previously calculated values as well as the previous exper-
imental result [49] with 1 × 10−2 relative uncertainty (note
axis label above). The fractional uncertainty of 1.4 × 10−9 of
this work’s experimental g-factor is not visible in this plot.

Comparing the experimental and the theoretical g-
factor values demonstrates an excellent agreement at a
10−7 level. Further improvement of the theory towards
the experimental precision level will constitute a more
precise test of the relativistic and QED many-electron ef-
fects. The current experimental result compared to pre-
vious calculations [29, 31, 48] as well as the improved
value obtained within this work can be seen in Fig. 3. It
should be noted that another theoretical prediction has
been published without error bars [50] giving a value of
g = 0.663 728.

In summary, the first high-precision measurement of a
boronlike ion’s g-factor, namely that of 40Ar13+, with a
fractional uncertainty of 1.4 × 10−9 has been presented.
This level of precision is not only sufficient to test the
presently available theoretical results for the electron-
correlation, QED, and nuclear-recoil effects, but also to
test the foreseen developments in this field, including
higher-order (two-loop and many-electron) QED contri-
butions. Theoretical calculations improved the one-loop
QED contributions by a factor of 3, resulting in a total
relative uncertainty of 9 × 10−7. The agreement between
theory and experiment represents one of the most accu-
rate tests of many-electron QED contributions in strong
fields, and paves the way towards an independent deter-
mination of the fine-structure constant.
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A. J. González Mart́ınez, Z. Harman, U. D. Jentschura,
C. H. Keitel, A. Lapierre, H. Tawara, I. I. Tupitsyn,
J. Ullrich, and A. V. Volotka, Phys. Rev. A 76, 052501
(2007).
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