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1. Introduction

For the last decades, since 1970s [1] when the first fluctuation theorems generalizing the

second law of thermodynamics were formulated (see review [2] and references therein),

there have been discovered many variants of fluctuation relations spreading from the ones

for the heat and environmental entropy production in the static conditions, either in non-

equilibrium steady state (NESS) [3, 4, 5, 6] or during relaxation to equilibrium [7], to the

well-known Jarzynski equality [8] and Crooks relation [9] written for the work dissipated

in the system under a finite-time drive. Some work has been done on their generalizations

for the periodic drive [10, 11] and for the stochastic entropy production [12, 13] which

are less known (please see [14] for the extensive review).

Experimental verifications of different kinds of fluctuation relations has been

initiated by measurements in biological systems [15] and then done in various different

classical systems, such as mechanical [16, 17, 18], biological [19, 20], and condensed

matter systems both in contact with equilibrium [10, 21, 22, 23, 24, 25] and non-

equilibrium [26] environment. In most of these systems, thermodynamic variables (work,

heat, or entropy) has been extracted indirectly via the measurement of the microscopic

state of the system (a position of the bead in a laser tweezer, an instantaneous angular

deflection of the rotation pendulum, a charge state of a Coulomb-blockaded device and

so on). Direct measurements of the heat or work especially in quantum systems [27, 28]

have not been done yet, but many efforts have been undertaken, especially in the most

stable Coulomb-blockaded devices [29, 30, 31, 32, 33, 34].

Recently fluctuation relations have been also generalized to the case of a feedback-

controlled systems [35, 36] including recent ones like [37] which has opened a path to

understand the paradox of Maxwell’s Demon from the Landauer’s principle [38, 39] and

verify these predictions experimentally in finite-time protocols [40, 41, 42, 43, 44, 45, 46,

47] and even in the steady-state conditions in the autonomous realization of a Szilard

engine [31] with the direct measurements of the effect of the feedback both on the system

and demon’s temperatures, giving a direct access to the demon’s thermodynamics (see

recent reviews for the details [48, 49]).

Recent theoretical progress has already provided a more detailed information about

properties of the large fluctuations both in the stochastic entropy production [50, 51,

52, 53] in NESS (with experimental verification in [54], including quantum systems [55])

and in the heat in driven systems [56] basing on a Martingale theory.

Despite the impressive progress in the understanding of physics of fluctuations until

now, the relations between fluctuation theorems in the systems under finite-time drives

and in NESS (or periodic NESS) has been only barely studied. For example, in the

work [57] the importance of initial conditions for finite-time fluctuation theorems in

NESS comparing to their asymptotic long-time counterparts has been discussed. In this

paper, we address the important and demanding question of these relations between

fluctuation theorems for driven systems on an example of a classical Markovian N -level

system.
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The paper is organized as follows. In Sec. 2, we describe the model, overview briefly

main fluctuation theorems, and formulate the main question in the focus. Section 3

gives the standard method of the calculation [58] of the probability distribution of the

dissipated work in a driven system and provides main equations used further. In Sec. 4,

we derive the conditions when the fluctuation relations can be written in the time-

reversal symmetric case and extend the class of drive protocols for which these conditions

are satisfied. Section 5 is devoted to the consideration of the relations of finite-time and

periodic-NESS fluctuation relations in a two-level system, where we provide an exact

correspondence between finite-time and periodic-NESS fluctuation theorems. Section 6

concludes our paper.

2. Model and definitions

In this section, we consider a Markovian N -level system. The formalism of this section

is standard and for more details please address, e.g., the book [58]. The system in focus

is characterized by the energy levels En(λ), n = 0, N − 1, and subjected to the drive

via a time-dependent control parameter λ(t). The system is placed in contact with a

bath with a certain inverse temperature, β. The Markovian dynamics of the considered

system is described by the standard rate equations written in the matrix form

d

dt
|p(t)〉 = Γ̂(λ(t)) |p(t)〉 (1)

for the vector |p(t)〉 = (p0, . . . , pN−1) of probabilities pn(t) of the system to be in the

state n at a certain time instant t. In the main part of the paper, for simplicity, we

consider the case when time-dependent incoming rates Γn,n′(λ(t)) from states n′ to a

certain state n satisfy the local detailed balance (LDB) condition

Γn′,n(λ(t)) = Γn,n′(λ(t))eβ[En(λ(t))−En′ (λ(t))] . (2)

The normalization condition for the probability distribution 〈1|p〉 ≡
∑N−1

n=0 pn(t) = 1,

with |1〉 = (1, . . . , 1), is conserved by rate equations as the overall escape rate from the

state n is Γn,n =
∑

n′ 6=n Γn′,n. Here and further, we put the Boltzmann’s constant to be

unity, i.e., kB = 1 and measure temperature in energy units. The initial distribution

pn(0) of the system is considered to be equilibrium

|peq(λ(0))〉 = eβ[F (λ(0))−Ê(λ(0))] |1〉 , (3)

where En,n′(λ) = δn,n′En(λ) is a diagonal matrix of system’s energy levels and βF (λ) =

− ln
∑

n e
−βEn(λ) is the free energy of the system at a certain value of λ(t) = λ.

The first law of thermodynamics dEn(t)(λ(t)) = δW + δQ, written in terms of the

system internal energy En(t)(λ(t)) gives the definitions of the work performed to the

system

W =

∫ T

0

∂En
∂λ

∣∣∣∣
n(t)

dλ

dt
dt =

∑
j

[
Enj

(t
(J)
j+1)− Enj

(t
(J)
j )
]
, (4)
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Figure 1. Sketch of (a) the general cyclic drive protocol λ(t) (green line), (b) a single

piecewise constant trajectory n(t) of the system state (blue line), which jumps at time

instants t
(J)
j from state nj−1 to nj , and corresponding (c) work (red line) and (d) heat

(orange line) on this trajectory.

and the heat dissipated to the bath

Q = −
∫ T

0

∂En
∂n

∣∣∣∣
λ(t)

dn

dt
dt =

∑
j

[
Enj

(t
(J)
j )− Enj−1

(t
(J)
j )
]
. (5)

being the changes of En(t)(λ(t)) with respect to the control parameter λ(t) and the

system state n(t), respectively, see Fig. 1. Here and further, we consider the evolution

of the system’s state n(t) as a set of jumps from nj−1 to nj occurred at time instant

t
(J)
j , see Fig. 1(b).

For driven systems which obey LDB (2) under a finite-time drive λ(t), 0 ≤ t ≤ T ,

and start from the equilibrium distribution (3), the probability distribution of work is

characterized by the Jarzynski equality [8]〈
e−βW

〉
= e−β∆F (6)

and the Crooks relation [9]

P (W )/P̄ (−W ) = eβ(W−∆F ) . (7)

Here, the averaging 〈. . .〉 is performed over all microscopic realizations of the system

and the bath during the protocol λ(t), P̄ (W ) denotes the probability distribution of

work in the time-reversed drive protocol λ(T − t).
To lift the equilibrium condition on the initial distribution (3), one has to

consider the large-deviation version [62] (sometimes called weak version [57]) of Crook’s

relation [4] for the asymptotic long-time limit

lim
t→∞

1

t
ln

P (W = wt)

P̄ (−W = −wt)
= βw , (8)

where w = W/t is an intensive parameter of work. The free energy rate ∆F/t is

negligible in infinite-time limit as the free energy difference ∆F is bounded. Note that

the analogous large-deviation Crook’s relation can be written for the heat rate q = Q/t

as the internal energy change ∆En(λ) is bounded for all finite values of λ. Further, for

simplicity, we will omit the explicit dependence of En and peq,n on λ(t), keeping only t

as an argument.

We complete the introductory part of the paper by considering briefly the

stochastic entropy productions. Stochastic entropy production of the environment, ∆sm,

generalizes the concept of the heat for the systems violating the LDB condition (2).

Indeed, like heat Q (5), this quantity sums the jumps ∆sm =
∑

i ∆sm,nj−1→nj
(t

(J)
j )
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occurring as soon as the state n(t) of the system changes (from nj−1 to nj occurred at

time instant t
(J)
j ), however, the size of each jump

∆sm,n→n′(t) = ln
Γn′,n(t)

Γn,n′(t)
(9)

coincides with the one ∆Qn→n′(t) ≡ [En′(t)− En(t)] of Q multiplied by β only when

the system obeys LDB (2).

The analogue of the dissipated work, W − ∆F , for this case is the total entropy

production introduced in [12]. It is given by the sum

∆stot = ∆sm + ∆ssys (10)

of the environmental ∆sm and system entropy change ∆ssys = ssys(T )− ssys(0), where

ssys = − ln pn(t)(t) (11)

is the stochastic analogue of the Shannon’s entropy given by 〈ssys〉 = −
∑

n pn ln pn.

The main property of the stochastic total entropy production ∆stot is that it satisfies

the generalized Jarzynski equality and the Crooks relations [12], called sometimes the

integral and detailed fluctuation relations (DFR), respectively [14],

〈e−∆stot〉 = 1 , (12)

P (∆stot)/P̄ (−∆stot) = e∆stot . (13)

These fluctuation relations work beyond LDB condition and for any initial distribution.

However, the price paid for lifting of LDB and the equilibrium initial distribution is

that ∆stot depends not only on a single trajectory realized by a system, but also on

its instantaneous probability distribution via ssys(t). However recently it have been

found that certain decompositions of the stochastic entropy production provide the

representation of ∆stot on a single trajectory in terms of physical observables like work

and particle current for some given initial conditions [63, 64].

The large-deviation variant of DFR (13)

lim
t→∞

1

t
ln

P (∆stot = σt)

P̄ (−∆stot = −σt)
= σ , (14)

has been originally written in the paper [4] for the environmental entropy in the system in

the non-equilibrium steady state (NESS), as the system entropy production is intensive

quantity (as well as the internal and free energies). Note that the large-deviation Crooks

relation for the work in NESS conditions is trivial as the control parameter λ is constant

and the work is zero. To avoid this triviality, further, we consider the periodic-drive

condition inferring periodic-NESS [65]. Thus, the free energy difference can be omitted

in both Eqs. (7, 8).

Obviously in all considered variants (7, 8, 13, 14) of DFR the probability

distribution P̄ in the denominator coincides with the one in the numerator P provided

the drive protocol is time-reversal symmetric (TRS), λ(T − t) = λ(t) ‡
P (W )/P (−W ) = eβ(W−∆F ) , (15)

‡ However, in the large-deviation versions it is enough that the drive would be symmetric with respect

to an arbitrary finite time shift, see, e.g., Fig. 3.
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P (∆stot)/P (−∆stot) = e∆stot , (16)

lim
t→∞

t−1 ln [P (wt)/P (−wt)] = βw , (17)

lim
t→∞

t−1 ln [P (σt)/P (−σt)] = σ . (18)

This poses a certain symmetry restrictions on the distribution P and opens an intriguing

possibility for the direct calculations of first-passage-time distribution for considered

variables from their distributions at fixed time [59, 60]. Another issue emerging from the

relations (15 – 18) is the surprising analogy of the work statistics with the multifractality

of the wavefunctions close to the Anderson localization transition considered in [61].

Both for the dissipated work and for the total entropy production an important

question arises: What is the relation between large deviation and finite-time versions of

Crooks relations? In particular, what are the requirements on the drive beyond TRS for

a system to obey Crook-like relations for the only distribution function P and what are

the relations between these requirements for finite-time protocol and periodic-NESS?

To address all these questions in the next section, we describe the standard method

to calculate the probability distributions by writing the rate equations for the generating

functions and focus mostly on the dissipated work normalized to the temperature

wd = β(W − ∆F ) as a variable of interest. Please see Appendix A for the general

method given, e.g., in the book [58] for other thermodynamics variables mentioned

above.

3. Calculation of P (W −∆F )

In order to write the rate equation of the form similar to (1) one should consider the n-

resolved distribution function |P(wd)〉 = (P0(wd), . . . , PN−1(wd)), with the components

defined as

Pn(β(W −∆F ) = wd) = 〈δ(βW − β∆F − wd)δn,n(t)〉 , (19)

because the probability distribution itself P (wd) = 〈1|P(wd)〉 ≡
∑

n Pn(wd) does not

determine explicitly the system state n(t). To simplify the derivation even further we

go to the Laplace transform of |P(wd)〉 being the n-resolved generating function §

|Gq〉 =

∫
|P(wd)〉 e−qwddwd . (20)

Using the standard trajectory representation of the jump Markov processes widely

used in the full counting statistics (see, e.g., [66]), one can derive the rate equations of

the form of (1)

d

dt
|Gq(t)〉 = Γ̂(q)(t) |Gq(t)〉 , (21)

with the modified rate matrix Γ̂(q)(t), and the initial condition |Gq(0)〉 = |p(0)〉 provided

wd(0) = 0. For the dissipated work which rate ẇd,n(t) is a deterministic function of n(t)

§ Rate equations for the n-resolved distribution function |P(wd)〉 itself are given in Appendix A or [68].
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λ(t) 
tT0

λ(0) 
1t 2−Kt

(a)               (b)     (c) λ(t) 
tT0

1+ktkt
kt∆

λ(t) 
tT0
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Figure 2. (a, b) Sketch of the general cyclic drive protocol λ(t) (green lines) and its

time discretized forms (black lines) (a) with plateaux followed by jumps and (b) jumps

followed by plateaux (both emphasized in red); (c) Modified cyclic drive protocol with

the zeroth, 0 = t0 < t < t1, and last, tK−2 < t < tK−1 = T , intervals of a constant drive

(dashed lines). The latter intervals do not contribute to the work generating function

Gq as the constant drive does not change work in equilibrium (0 = t0 < t < t1) or

relaxation (tK−2 < t < tK−1 = T ) part.

only the escape rates should be modified

Γ(q)
n,n(t) = Γn,n(t) + qẇd,n(t) , (22)

with ẇd,n = ∂en/∂t|n(t) and en(t) = β(En(t)−F (t)). Note that unlike Eq. (1) the latter

equation does not conserve normalization condition as Γ
(q)
n,n 6=

∑
n′ 6=n Γ

(q)
n′,n.

The probability distribution of wd

P (wd) =
1

2πi
lim
Q→∞

∫ χ+iQ

χ−iQ
Gq(t)e

qwddq (23)

is given by the inverse Laplace transform of the generating function

Gq(t) = 〈1|Gq(t)〉 ≡
∑
n

Gq,n(t) . (24)

The parameter χ is greater than real part of all singularities of Gq(t) as a function of q.

The generating function (24), both for finite-time and periodic-NESS protocols with

the duration or the period T can be written as follows

Gq(MT ) = 〈1|
(
Ûq(T )

)M
|peq(0)〉 . (25)

Here, |peq(0)〉 = e−ê0 |1〉 is the initial equilibrium probability distribution vector, with

ek,nn′ = δnn′en(tk) = δnn′β(En(tk) − F (tk)). The evolution operator Ûq(t) satisfying

the same equations (21) as |Gq(t)〉 is given by the time-ordered exponential Ûq(t) =

Texp(
∫ t

0
ˆ̃Γ

(q)

(t)dt) and can be written as a product

Ûq(T ) = eq(êK−1−ê0)ûK−1e
q(êK−2−êK−1)ûK−2 · . . . · eq(ê0−ê1)û0 (26)

compounded of the evolution eq(êk−êk+1) 6= Î of the generating function of wd at drive

jumps occurring at times tk, 1 ≤ k ≤ K − 1, and of the evolution operators of the

probability distribution (1) ûk = exp[Γ̂(tk + 0+)∆tk]. Here, we consider discrete time

intervals ∆tk = tk+1−tk, 0 = t0 < . . . < tK = T , 0 ≤ k ≤ K−1, chosen in such a way to

neglect variations of Γ̂ at each interval ∆tk, see Fig. 2(a). Further, we refer to the drive

discretized in such a way as K-step drive. In Eq. (25), the number of periods M equals

to unity for the finite-time protocol, M = 1, and goes to infinity for periodic-NESS case,

M →∞.
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t

λ(t) 

T20 t1

t1/2 

T

(T+t1)/2 λ1

λ0

Figure 3. Sketch of the two periods of cyclic two-step drive protocol λ(t) (green

line). Red vertical lines show positions of time shifts with respect to which the drive

is time-reversal symmetric.

In the periodic-NESS the quantity relevant for fluctuation relations is the cumulant

generating function

∆q = lim
M→∞

1

M
lnGq(MT ) = ln εq , (27)

which coincides with the logarithm of the largest eigenvalue εq of the evolution operator

Ûq (see, e.g., [68, 69]) and independent of the initial conditions. In terms of the above

mentioned generating functions the integral fluctuation relation (12) reads as〈
e−wd

〉
≡ G1(t) = 1⇒ ∆1 = 0 , (28)

while the detailed ones are

Gq(t) = G1−q(t) and ∆q = ∆1−q (29)

for the finite-time (15) and periodic-NESS (17) protocols, respectively.

4. Time-reversal symmetric drive and beyond

It is quite obvious that the time-reversal symmetry of the drive is too restrictive for

satisfying the DFRs (15, 17, 29). What are more general conditions for which either

or both symmetries (29) are satisfied? To answer this non-trivial question, we consider

structure of the evolution operator. Due to the LDB (2), the evolution operators at

each time step tk < t < tk+1 satisfy the symmetry

ûk = e−êk ûTk e
êk (30)

and the corresponding evolution operator entering the generating function G1−q(MT ) =

〈1| (Û1−q(T ))M |peq(0)〉 takes the form after this symmetry transformation

Û1−q(T ) = e−ê0eq(ê0−êK−1)ûTK−1 · . . . · eq(ê1−ê0)ûT0 e
ê0 . (31)

This leads to the following expressions for the generating functions in both sides of

DFR (29)

Gq(T ) = 〈1| eq(êK−1−ê0)ûK−1 · . . . · û1e
q(ê0−ê1) |peq(0)〉 , (32)

G1−q(T ) = 〈1| eq(ê1−ê0)û1 · . . . · ûK−1e
q(ê0−êK−1) |peq(0)〉 . (33)

One can easily see that the only difference between two expressions is in the inverse

order of indices corresponding to the time intervals.
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In the particular case of K = 2 the only evolution operator entering the latter

expressions is û1 and K − 1 = 1, thus the generating functions are (trivially) equal.

Physically in this case of K = 2, the corresponding two-step drive is TRS with respect

to a certain time shift. Indeed, in this case λ(0 < t < t1) = λ0 and λ(t1 < t < T ) = λ1

and the time shifts t1/2 and (T + t1)/2 put the initial time to the middle of one of two

plateaux thus making the drive TRS, see Fig. 3. As the generating function (32) does

not depend on û0 and, thus, on the zeroth time interval ∆t0, the symmetry for it is

valid in the same way as for the TRS drive protocol. It may be confusing why Gq(T )

is independent of the zeroth time interval ∆t0, but explicitly depends on the last one

∆tK−1. The answer to this question is hidden in the choice of the time discretization.

Indeed, we have chosen the discretized protocol to start with the plateau followed by

the instantaneous jump at tk+1 at each time interval tk < t ≤ tk+1, Fig. 2(a). As the

system is in equilibrium initially for the finite-time protocol, M = 1, the absence of the

drive in 0 < t < t1 changes nothing. In an alternative discretization shown in Fig. 2(b),

when the jumps in drive are followed by plateaux, Gq(T ) depends explicitly on ∆t0, but

not on ∆tK−1 as the relaxation at tK−1 < t < T does not affect the dissipated work. In

general continuous drive both possible plateaux in the beginning and in the end of the

drive do not affect dissipated work as the control parameter is constant, Fig. 2(c). Here

and further, we stick to the first variant of discretization shown in Fig. 2(a) for clarity.

For the general TRS drive all time intervals are coupled in pairs ûk = ûK−k,

êK−k = êk and, thus, the expressions (32, 33) are equal and finite-time DFR in (29) is

obviously satisfied. The corresponding evolution operators Ûq(T ) and Û1−q(T ) simply

relate to each other(
ÛT

1−q

)M
(T ) = Ĉ

(
Ûq(T )

)M
Ĉ−1 , (34)

with Ĉ = eê0û0 for any M . Thus, asymptotic DFR in (29) is also satisfied as both the

initial conditions and the evolution Ĉ give only subleading contributions to ∆q in the

limit t→∞.

This asymptotic DFR in (29) is also preserved in more general case, when the

relation (34) between evolution operators Û1−q(T ) and Ûq(T ) holds with an arbitrary

matrix Ĉ which depends on q and on the protocol at one period, but not on the number

of periods M . If on top of that we initialize the system in such a way that the vectors

|peq(0)〉 ≡ e−ê0 |1〉 and 〈1| are the right and left eigenvectors of Ĉ, respectively, with

the same eigenvalue c

Ĉ |peq(0)〉 = c |peq(0)〉 , 〈1| Ĉ = 〈1| c , (35)

the expressions (32, 33) become equal.

From this perspective one might come to a quite natural conclusion that the

symmetry of the cumulative function ∆q = ∆1−q in periodic-NESS protocols is less

restrictive than the one of the generating function Gq = G1−q in finite-time protocols as

the former does not have any conditions on the initial distribution (cf. the discussion

of the role of initial conditions in NESS [57]). However, in general it is not so clear.
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Crooks TRS Crooks Gq symmetry Gq expression

Finite-time drive P (W )

P̄ (−W )
= eβ(W−∆F ) P (W )

P (−W )
= eβ(W−∆F ) Gq = G1−q Gq

∆t0→∞←− tr Ûq‖
Periodic NESS 1

t
ln P (wt)

P̄ (−wt)
t→∞−→ βw 1

t
ln P (wt)

P (−wt)
t→∞−→ βw ∆q = ∆1−q ∆q = max spec[Ûq]

Table 1. Summary of finite-time and periodic NESS fluctuation theorems. The

notation ”max spec” means the maximal eigenvalue in the spectrum of an operator.

Indeed, the condition (29) for M > 1 crucially depends on ∆t0 via the step evolution

operator û0, while expressions (32, 33) do not. To clarify this statement, we derive a

general relation between the generating function Gq(T ) and the trace of the evolution

operator for ∆t0 →∞

Gq(T ) ≡ 〈1| Ûq(T ) |peq(0)〉 = lim
∆t0→∞

tr Ûq(T ) . (36)

This is the main result of our paper, which works for any classical Markovian N -level

system obeying rate equations (1).

The origin of this relation lies in the structure of rate equations with constant

tunneling rates Γnn′ , for example, at a certain step tk < t < tk+1. Indeed, the eigenvalues

γm(tk) ≤ 0 of the rate matrix Γ̂(tk + 0) are negative, except one single zero value γ0 = 0

corresponding to the unit left eigenvector 〈1| and to the instantaneous equilibrium

distribution vector |peq(tk)〉 as a right eigenvector. Thus, the evolution operator reads

ûk(∆tk) = |peq(tk)〉 〈1|+ e−|γmin|∆tk δ̂uk(∆tk) , (37)

where γmin(tk) = maxm6=0γm(tk) < 0 and δ̂uk(∆tk) is the matrix with non-increasing

matrix elements. The second term in (37) decays exponentially fast to zero with

increasing ∆t0. Thus, considering the limit ∆t0 →∞ in r.h.s. of (36) and substituting

expressions (32) and (26) in l.h.s. and r.h.s., one can easily prove the relation (36).

From Eq. (36) one can conclude that the finite-time fluctuation relation (15) is

satisfied as soon as the trace of the evolution operator in the limit ∆t0 → ∞ satisfies

the symmetry

lim
∆t0→∞

tr Ûq(T ) = lim
∆t0→∞

tr Û1−q(T ) . (38)

On the other hand, the validity of the asymptotic fluctuation relation (17) depends not

only on the evolution operator trace symmetry, but on the symmetry of its maximal

eigenvalue (27). This shows that neither of DFRs in (29) implies the other. The

general results on the detailed fluctuation theorems for the dissipated work known in

the literature or derived in this section are summed up in Table 1.

A particular case of the symmetry (34) relating the step evolution operators ûk and

ûK−k and generalizing the TRS drives is considered in Appendix B. This case provides

an example when the asymptotic fluctuation theorem implies finite-time counterpart,

unlike the results in NESS [57].

As shown in the next section, the satisfaction of the finite-time fluctuation theorem

does not imply the same in the asymptotic long-time limit even in the simplest possible

example of a classical Markovian two-level system.
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∆t2= A+(∆t1) ·       + A+(∆t1) ·
t
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∆t2

(a)   (b) 

Figure 4. (a) Sketch of the cyclic three-step drive protocol λ(t) (green line) and (b)

its decomposition (41) into two-step cyclic and one-step non-cyclic drives with the

coefficients A±(∆t1) of the expansion (40) of the evolution operator û1(∆t1).

5. Two-level system

Two-level systems are special in several aspects. First, any rate matrix Γ̂ in two-level

systems satisfies LDB condition with certain energy difference β(E1−E0) ≡ ln [Γ01/Γ10]

normalized to temperature. Moreover, any probability distribution can be considered

as thermal with a certain parameter β(E1−E0) possibly different from the above one ¶.

In both cases the energy difference E1 − E0 might be not equal to the physical energy

difference in non-equilibrium conditions, but as the two-level system has the only control

parameter 2λ = β(E1 − E0) ≡ ln [Γ01/Γ10] we will use it further. Second, there are

only two drive symmetries of the kind of (34), TRS λ(T − t) = λ(t) and anti-TRS drive

λ(T−t) = −λ(t). The difference between symmetric and anti-symmetric drives is subtle

as the exchange of energies keeps the overall spectrum intact. However, one should take

into account that the non-adiabatic exchange of energy levels affects the occupation

probabilities pn(t). For example, if one prepares a two-level system in equilibrium with

a certain ground E0 and excited E1 state energies and then suddenly exchange them

(λ(T/2 − 0) = −λ(T/2 + 0)), the system would not be in the same equilibrium state

and will decay to the new equilibrium after such quench perturbation.

To start with in this section we first go beyond symmetric and anti-symmetric

drives mentioned above. As shown in the previous section any two-step drive, K = 2, is

TRS and thus it leads to DFR (29) without any additional conditions (see, e.g., [68]).

Therefore, we do one step beyond and provide an example of the simplest non-TRS

drive, namely, three-step drive, K = 3, Fig. 4(a), and consider general conditions under

which this drive satisfies both relations (15) and (17).

As follows from the calculations given in Appendix C, the necessary and sufficient

condition for both DFRs (29) restrict the values of λ(t) at the drive steps to be the

following up to any permutation between steps

λ0 = −λ2, λ1 = 0 . (39)

The surprising thing here is that the above condition is independent not only of the

zeroth time interval, but of all the time durations. One could understand this fact if

for the generating function symmetry Gq = G1−q one needed to begin driving from the

¶ As one of consequences, in two-level systems it is possible to write fluctuation relations not only for

thermodynamic quantities, but even for the finite-time average of the charge state [67]
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degeneracy point λ = 0 when both energies are equal in order to have nearly anti-TRS

drive. However, for this, one has to make two other time intervals to be equal, which is

not the case. Even more surprising thing is that the symmetry Gq = G1−q is valid for

any permutations and time shifts of the drive.

The origin of this emerging symmetry is hidden in the structure of the evolution

operator û1(∆t1) at λ = 0. Indeed, due to the equal values of both incoming rates

Γ01 = Γ10 ≡ |γmin|/2 this evolution operator can be expanded into the superposition

of the unity matrix Î and the Pauli matrix σx reordering the energy levels En in the

inverse order

û1(∆t1) = A+Î + A−σ̂x , (40)

with 2A± = 1 ± e−|γmin|∆t1 . As a result, the generating function (32) splits into the

sum of two-step cyclic and one-step acyclic drives corresponding to the first and second

terms in r.h.s. of both following expressions, respectively (see Fig. 4 for details)

Gq(T ) = 〈1| e−2qê0û2e
qê0(A+Î + A−σx)e

qê0 |peq(0)〉
= A+ 〈1| e−2qê0û2e

2qê0 |peq(0)〉+ A− 〈1| e2qê0 |peq(0)〉 , (41)

G1−q(T ) = 〈1| e−qê0(A+Î + A−σx)e
−qê0û2e

2qê0 |peq(0)〉
= A+ 〈1| e−2qê0û2e

2qê0 |peq(0)〉+ A− 〈1| e2qê0 |peq(0)〉 . (42)

This example opens the way to form non-TRS drives satisfying TRS versions (15, 17) of

fluctuation theorems and motivates the studies in such simple models the first-passage

time distribution [60, 59] and the analogy with multifractality [61] mentioned in the

introduction.

Moreover, two-level systems allow one to find an explicit relation between the finite-

time and asymptotic DFR (29). Indeed, we show below that if the asymptotic fluctuation

theorem is valid ∆q = ∆1−q for two drive protocols which differ only in the duration ∆t0
and ∆t′0 of the zeroth time interval, then its finite-time counterpart Gq = G1−q is also

valid. Moreover in this case the asymptotic fluctuation theorem is valid ∆q = ∆1−q for

any ∆t0.

Surprisingly this statement also works in another direction: if asymptotic ∆q =

∆1−q and finite-time Gq = G1−q fluctuation theorems are satisfied for a certain drive

protocol, then they are valid for such protocol with any ∆t0.

The origin of this relations contains several ingredients. First one is the expression

for the generating function Gq, Eq. (25), through the trace of the evolution operator

(36), see the derivation in the previous section.

The second ingredient is that for a two-level system the validity of the symmetry

∆q = ∆1−q is solely governed by the validity of the symmetry for the trace of the

evolution operator

tr Ûq(T ) = tr Û1−q(T ) . (43)

Indeed, for any protocol and any classical Markovian N -level system the determinant

of the evolution operator is q-independent and given by det Ûq(t) = e−
∫ t
0 tr Γ̂(t′)dt′
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(see Appendix A or [68] for details). In the two-level system the eigenvalues of Ûq(T ) are

determined only by det Ûq(t) and tr Ûq(T ), 2εq = tr Ûq(T )+

√[
tr Ûq(T )

]2

− 4 det Ûq(T ),

thus ∆q as the maximal eigenvalue among two is symmetric, ∆q = ∆1−q, if and only if

Eq. (43) is satisfied.

The third and final ingredient for this calculation is the expression (37) for the step

evolution operator similar to (40), where −γmin = Γ01(tk) + Γ10(tk) > 0 and δ̂uk is the

constant matrix for two-level systems.

Combining ingredients (36, 37, 43) together one can express Gq(T ) via two

tr Ûq(T,∆t0) with different values ∆t0 and ∆t′0 of the zeroth time interval duration

as follows

Gq(T ) =
tr Ûq(T,∆t0)− e−|γmin(0)|(∆t0−∆t′0) tr Ûq(T,∆t

′
0)

1− e−|γmin(0)|(∆t0−∆t′0)
. (44)

Analogously one can express tr Ûq(T,∆t
′′
0) through the same functions, see Appendix D.

However, such analysis cannot be repeated for a general classical Markovian N -level

system. Indeed, as shown in the previous section the expression (36) is valid, while (43)

is only necessary, but not sufficient condition for ∆q = ∆1−q as not only determinant

and trace govern the maximal eigenvalue of the matrix Ûq(T ). The expression (44) also

cannot be written as, in general, the matrix structure of δ̂uk is time-dependent.

The only thing which one can derive is that the sufficient condition to have

Gq = G1−q is the presence of the symmetry ∆q = ∆1−q for N different zeroth time

interval durations (leading to (43) for each of them). This sufficient condition comes

from the fact that the matrix δ̂uk can be written as the sum of constant matrices with

N − 1 different exponentially decaying prefactors and, thus, one can derive expression

for Gq analogous to (44), but it will include N traces tr Ûq(T ) for the protocols with

different ∆t0 in order to remove all N − 1 exponentially decaying components of δ̂uk.

This provides a hint that the symmetries both in finite-time fluctuation relations

and in their periodic-NESS counterparts become more restrictive with increasing system

degrees of freedom, but it cannot completely resolve the question about the relation

between them.

6. Conclusion

To sum up, in this paper, the relations between finite-time (15) and infinite-time (17)

fluctuation relations are considered. We are motivated to focus on the versions of these

fluctuation theorems coinciding in their form with the ones for time-reversal symmetric

drives as they provide the solid ground both for the straightforward calculations of

first-passage-time distribution [59, 60] and for the unexpected analogy of the work

statistics with the multifractality of the wavefunctions close to the Anderson localization

transition [61].

In the general case of a classical Markovian N -level system, we derive the

condition (34) with an arbitrary matrix Ĉ depending on q and on the protocol at one
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period, but not on the number of periods M to satisfy an infinite-time fluctuation

theorem (17). Also we provide the sufficient condition (35) for the corresponding finite-

time fluctuation theorem (15) posing additional restrictions on the initial distribution

similarly to [57]. On the other hand, the particular case (B.1, B.3) of the above

mentioned symmetries is considered in Appendix B and provides an example when

the finite-time fluctuation theorem is less restrictive than its asymptotic counterpart.

In the particular case of a two-level system the explicit relation (44) between finite-

time (15) and infinite-time (17) fluctuation relations is found. Its formulation reads

in two ways: If the asymptotic fluctuation theorem is valid ∆q = ∆1−q for two drive

protocols which differ only in the duration ∆t0 and ∆t′0 of the zeroth time interval, then

its finite-time counterpart Gq = G1−q is valid as well as the asymptotic one for such

protocol with any ∆t0. If asymptotic ∆q = ∆1−q and finite-time Gq = G1−q fluctuation

theorems are satisfied for a certain drive protocol, then they are valid for such protocol

with any ∆t0. Additionally, the class of drive protocols satisfying the above mentioned

relations is extended from the time-reversal-(anti)symmetric ones and an example of the

simplest non-time-reversal-(anti)symmetric drive is given.
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Appendix A. Rate equations and generating functions

In this Appendix section, we give detailed calculations of the probability distribution

functions P (X) of a certain stochastic quantity X and of the corresponding generating

function Gq based on the rate equations (1). As in the case of the dissipated work

the probability distribution P (X) itself does not determine explicitly the system

state n(t) one have to generalize it to the n-resolved distribution function |P(X)〉 =

(P0(X), . . . , PN−1(X)), with the components defined as

Pn(X = x) = 〈δ(X − x)δn,n(t)〉 . (A.1)

The distribution function is given by the sum P (X) = 〈1|P(X)〉 ≡
∑

n Pn(X).

In the special case of the work X = W , one can write rate equations for Pn(W )

explicitly [68]

d

dt
|P(W, t)〉 = Γ̂(t) |P(W, t)〉 − ∂

∂W

[
ˆ̇W |P(W, t)〉

]
(A.2)

as the work rate in the certain state Ẇn ≡ dW
dt

∣∣
n(t)=n

= ∂En

∂λ
dλ
dt

(written in the matrix

form Ẇn,n′ ≡ δn,n′Ẇn) is a deterministic function of the system state n(t). As work
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performed on the system at time t = 0 is zero the initial condition for |P(W, t)〉 reads

as |P(W, 0)〉 = δ(W ) |p(0)〉. This analysis also works for any quantity X with the same

property of Ẋn.

In general, it is impossible to write the rate equation for |P(X)〉 itself, but one can

do it for the n-resolved generating function of the variable X defined as the Laplace

transform of the latter

|Gq〉 =

∫
|P(X)〉 e−qXdX , Gq,n = 〈e−qX(t)δn,n(t)〉 . (A.3)

Indeed, considering the system state trajectory {n(t)} as a set of jumps from nj−1

to nj occurred at time instants t
(J)
j , j = 1, NJ , t

(J)
j < t

(J)
j+1, t

(J)
0 = 0, t

(J)
NJ+1 = t, Fig. 1,

one can write the trajectory probability measure explicitly

PNJ
(t;n0, t

(J)
0 , n1, t

(J)
1 , . . . , nM , t

(J)
M ) = pn0(t

(J)
0 )e

−
∫ t

(J)
1

t
(J)
0

Γn0,n0 (t′)dt′

×
NJ∏
j=1

Γnj ,nj−1
(t

(J)
j )e

−
∫ t

(J)
j+1

t
(J)
j

Γnj,nj (t′)dt′

,(A.4)

which is the product of the probabilities exp

[
−
∫ t(J)

j+1

t
(J)
j

Γnj ,nj
(t′)dt′

]
to have no jumps

in the system in the time interval (t
(J)
j , t

(J)
j+1) provided the system was in the state nj

at time instant t
(J)
j and the conditional probabilities Γnj ,nj−1

(t
(J)
j )dt

(J)
j to have a jump

from nj−1 to nj in the time interval (t
(J)
j , t

(J)
j + dt

(J)
j ) provided there was no jumps

in the interval (t
(J)
j−1, t

(J)
j ). As a result, the rate equations (1) can be easily derived

from this expression with help of averaging over PNJ
of the definition of the probability

distribution pn(t) =
〈
δn,n(t)

〉
, see, e.g., [66].

To write the rate equation for the n-resolved generating function Gq,n =〈
e−qX(t)δn,n(t)

〉
of the piecewise deterministic stochastic process [70] X(t), one should

average e−qX(t)δn,n(t) over the same distribution (A.4). For this, one needs to write the

expression for X(t) at the same state trajectory

X(t) =
∑
j

[
∆Xnj−1→nj

(t
(J)
j ) +

∫ t
(J)
j

t
(J)
j−1

Ẋnj−1
(t′)dt′

]
. (A.5)

Equation (A.5) has both the deterministic contributions Ẋn(t) at fixed n and the

stochastic jumps ∆Xn→n′(t) due to the jumps in n(t) (like for the total entropy

production ∆stot). These contributions enter the generating function expression just

by modifying the rates

Γ
(q)
n,n′(t) = Γn,n′(t)e

−q∆Xn′→n(t) , Γ(q)
n,n(t) = Γn,n(t) + qẊn(t) . (A.6)

Thus, with use of the standard trajectory representation of the Markov jump

processes which is widely used in the full counting statistics (see, e.g., [66]), we derive

the rate equations (21 for the generating function in the form of (1)

d

dt
|Gq(t)〉 = Γ̂(q)(t) |Gq(t)〉 , (A.7)
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with the modified rates (A.6) and the initial condition |Gq(0)〉 = |p(0)〉 provided

X(0) = 0. Note that unlike Eq. (1) the latter equation does not conserve normalization

condition as Γ
(q)
n,n 6=

∑
n′ 6=n Γ

(q)
n′,n.

For the quantities which depend only on the change of the system state n(t) (like

the heat Q or the environment entropy production ∆sm), only the incoming rates are

modified by the exponential factor depending on the size of the corresponding jump

∆Xn′→n(t)

Γ
(q)
n,n′(t) = Γn,n′(t)e

−q∆Xn′→n(t) . (A.8)

Unlike this, for the quantities (like the work W ) for which rate Ẋn(t) is a deterministic

function of n(t) only the escape rates should be modified

Γ(q)
n,n(t) = Γn,n(t) + qẊn(t) . (A.9)

The probability distribution of X

P (X) =
1

2πi
lim
Q→∞

∫ χ+iQ

χ−iQ
Gq(t)e

qXdq . (A.10)

is given by the inverse Laplace transform of the generating function, where χ is greater

than the real part of all singularities of Gq(t) as a function of q and

Gq(t) = 〈1|Gq(t)〉 ≡
∑
n

Gq,n(t) . (A.11)

Note that the deterministic part Xn(t) =
∫ t
Ẋn(t) of the piecewise deterministic

stochastic process (A.5) can be absorbed by the following transformation∣∣∣G̃q(t)
〉

= eqX̂(t) |Gq(t)〉 . (A.12)

restoring a simple jump process with the jump size being the sum of two contributions

∆Xn′→n(t) + (Xn′(t) − Xn(t)). Here, Xn,n′(t) ≡ δn,n′Xn(t) and the l.h.s. satisfies the

rate equations (A.7) with the rates replaced by

Γ̃(q)
n = Γn and Γ̃

(q)
n,n′ = Γn,n′e

−q[∆Xn′→n(t)+Xn′ (t)−Xn(t)] . (A.13)

The price paid for this simplification is the modification of the initial conditions∣∣∣G̃q(0)
〉

= eqX̂(0) |p(0)〉 . (A.14)

The evolution operator Ûq(t) entering the expression (25) for the generating function

Gq(MT ) satisfies the same rate equations (21, A.7) as |Gq(t)〉. Thus, the measure of

phase volume contraction of the system stochastic dynamics, namely, the determinant

of the evolution operator det Ûq(t) satisfies the following rate equation

d

dt
det Ûq(t) = tr Γ̂(q)(t) det Ûq(t) (A.15)

and does not depend on q as tr Γ̂(q)(t) = tr Γ̂(t) =
∑

n Γn,n(t)

det Ûq(t) = e−
∫ t
0 tr Γ̂(t′)dt′ ≡ e−τ(t) ≤ 1 . (A.16)

The function τ(t) gives a certain rescaled “time” (analogous to the entropic time in

Ref. [52]), which sets time of the fastest decay to unity. Note that the time-reversal

transformation changing t by tmax − t changes the rescaled time τ(t) by τ(tmax) − τ(t)

as well.
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Appendix B. Example of symmetry (34)

The particular example of the symmetry (34) for the asymptotic fluctuation

theorem (17) relating the step evolution operators ûk and ûK−k in time intervals ∆tk
and ∆tK−k and generalizing the TRS drives can be written as follows

eqêk ûke
−qêk = B̂qe

qêK−k ûK−ke
−qêK−kB̂−1

q . (B.1)

Here, B̂q is a certain time-independent matrix. This symmetry corresponds to the

following expression for the matrix Ĉ = eê0û0e
−qê0B̂qe

qê0 from (34) if the matrix

e−qê0B̂qe
qê0 commute with û0

e−qê0B̂qe
qê0û0 = û0e

−qê0B̂qe
qê0 . (B.2)

Indeed,

ÛT
1−q(T ) = eê0û0e

q(ê1−ê0)û1 · . . . · ûK−1e
q(ê0−êK−1)e−ê0

= eê0û0e
−qê0eqê1û1e

−qê1 · . . . · eqêK−1ûK−1e
−qêK−1e(q−1)ê0

= eê0û0e
−qê0B̂qe

qêK−1ûK−1e
−qêK−1 · . . . · eqê1û1e

−qê1B̂−1
q e(q−1)ê0

= eê0û0(e−qê0B̂qe
qê0)Ûq(T )û−1

0 (e−qê0B̂qe
qê0)−1e−ê0 = ĈÛq(T )Ĉ−1 .

In this case, the symmetry Gq = G1−q is fulfilled automatically as the

commutation (B.2) leads to the common eigenbasis of both matrices e−qê0B̂qe
qê0 and

û0. Thus, the vectors |peq(0)〉 and 〈1| are the right and left eigenvectors of e−qê0B̂qe
qê0 ,

respectively, with the same eigenvalue b(
e−qê0B̂qe

qê0
)
|peq(0)〉 = b |peq(0)〉 , 〈1| e−qê0B̂qe

qê0 = 〈1| b (B.3)

and this matrix can be diminished in (32, 33) after the transformation (B.1). Note that

the finite-time symmetry works even for lifted commutation relation (B.2) if Eq. (B.3)

still holds. This hints that, in this concrete example, the periodic NESS fluctuation

theorem is more restrictive on the drive than its finite-time counterpart.

As Eq. (B.1) works for all k and for general step evolution operators, the matrix

B̂q satisfies the following condition B̂2
q = Î and thus all eigenvalues, including b

are 1 or −1. A reasonable example of the transformation B̂q is the permutation

of levels En(tk) = EP (n)(tK−k) with P (P (n)) ≡ n, leading, e.g., to anti-symmetric

drive when in the second half period all the levels En are put in the reversed order,

En(T − t) − Em(T − t) = Em(t) − En(t). As discussed in the main text, this

level permutation does not change the system itself, but affects the dynamics of the

occupancies pn(t) and thus leads to some non-trivial dissipated work.

To sum up this section, we provide a particular example of the symmetry (34) being

probably just the permutation of energy levels, which demonstrate that the finite-time

fluctuation theorem can be less restrictive than its asymptotic counterpart.

Appendix C. Three-step drive in two-level system

As mentioned in the main text for a two-level system, the only control parameter is

2λ(t) = β(E1 − E0). Omitting the unimportant global energy shift one can take
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E0 = −E1 and write the energy matrix in the form of Pauli matrix βÊ(t) = σzλ(t). Then

the free energy is βF (t) = − ln[2 cosh(λ(t)/2)], the equilibrium probability distribution

vector |peq(t)〉 = e−σzλ(t) |1〉 and the matrix of the tunneling rates reads as

Γ̂(t) = γ(t)

(
−eλ(t) e−λ(t)

eλ(t) −e−λ(t)

)
= γ(t)(σx − Î)eσzλ . (C.1)

The step evolution operator ûk = exp[Γ̂(tk + 0)∆tk] can be written in a standard

form (see, e.g., [68, 69])

ûk = Î +
1− e−|γmin(tk)|∆tk

2 coshλk

(
σx − Î

)
eσzλk

= |peq(tk)〉 〈1|+ e−|γmin(tk)|∆tk

(
Î − σx

)
eσzλk

2 coshλk
, (C.2)

with −γmin(tk) = 2γk coshλk > 0 and |peq(tk)〉 〈1| ≡ e−σzλ
(
Î + σx

)
. The last line in

(C.2) confirms the general form (37), while the first line for λ = 0 goes to (40).

According to Eq. (27), the cumulative distribution function ∆q(T ) coincides with

the logarithm of the maximal eigenvalue of Ûq(T ). For the two-level system, this

eigenvalue can be explicitly written (see, e.g., [68, 69])

εq =
tr Ûq(T ) +

√[
tr Ûq(T )

]2

− 4 det Ûq(T )

2
. (C.3)

As follows from Eq. (A.16), the determinant det Ûq(T ) does not depend on q. Thus

using Eqs. (27), (36), and (C.3) one concludes that the analysis of tr Ûq(T ) is enough

for both DFRs (29).

Evaluating the trace of Eq. (26) one should keep only even powers of σx

tr Ûq(T ) = B +
2∑

k=0

{ Ck cosh [(λk − λk−1)(2q − 1)]

− Sk sinh [(λk − λk−1)(2q − 1)]}, (C.4)

with

B = tr

[
2∏

k=0

(
Î − (1− e−|γmin(tk)|∆tk)eσzλk

2 coshλk

)]
, (C.5)

Ck = (1 + e−|γmin(tk+1)|∆tk+1)
(1− e−|γmin(tk)|∆tk)

2 coshλk

(1− e−|γmin(tk−1)|∆tk−1)

2 coshλk−1

,(C.6)

Sk = 2 sinhλk+1
(1− e−|γmin(0)|∆t0)

2 coshλ0

(1− e−|γmin(t1)|∆t1)

2 coshλ1

(1− e−|γmin(t2)|∆t2)

2 coshλ2

.(C.7)

Here, the indices k are considered modulo K = 3.

Thus, the symmetry tr Ûq(T ) = tr Û1−q(T ) is valid, if and only if, for any q

2∑
k=0

sinh [(λk − λk−1)(2q − 1)] sinhλk+1 = 0 . (C.8)
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Without loss of generality, let’s consider λ0 < λ1 < λ2 and send q → ∞. Then

one concludes that the coefficient sinhλ1 in front of the hyperbolic sine with the largest

increment λ2 − λ0 > λ1 − λ0, λ2 − λ1 > 0 should go to zero, thus, λ1 = 0. As a result,

Eq. (C.8) reduces to

sinh [λ0] sinh [λ2(2q − 1)]− sinh [λ2] sinh [λ0(2q − 1)] = 0, (C.9)

and leads to λ0 = −λ2. This completes the proof of Eq. (39).

Appendix D. Relations (36, 44) between Gq and trUq

As the step evolution operator ûk(∆tk) entering the expression (26) for the total

evolution operator has the only non-negative eigenvalue 0 corresponding to the left

〈1| and right |peq〉 eigenvectors, it can be represented in the form (37)

ûk(∆tk) = |peq(tk)〉 〈1|+ δ̂uk(∆tk) , (D.1)

with the elements of the matrix δ̂uk(∆tk) exponentially decaying with the time duration

∆tk. As a result,

lim
∆t0→∞

Ûq(T ) = eq(êK−1−ê0)ûK−1e
q(êK−2−êK−1)ûK−2·. . .·eq(ê0−ê1) |peq(0)〉 〈1| (D.2)

and thus the trace of the latter lim∆t0→∞ tr Ûq(T ) coincides with the expression for

Gq(T ) (36) and this concludes the derivation.

For the two-level system the expression (D.1) simplifies to (C.2) and thus

trUq(T,∆t0) = Gq+e
−|γmin(0)|∆t0 tr

[
eq(êK−1−ê0)ûK−1 · . . . · û1e

q(ê0−ê1)δ̂u0

]
.(D.3)

Using the latter expression (D.3) for trUq(T,∆t0) and trUq(T,∆t
′
0) and excluding

the second terms from them, one comes to Eq. (44). The more general expression for

trUq(T,∆t
′′
0) via trUq(T,∆t0) and trUq(T,∆t

′
0) takes the form

trUq(T,∆t
′′
0) =

(
e−|γmin(0)|∆t′0 − e−|γmin(0)|∆t′′0

)
tr Ûq(T,∆t0)

e−|γmin(0)|∆t′0 − e−|γmin(0)|∆t0

−
(
e−|γmin(0)|∆t0 − e−|γmin(0)|∆t′′0

)
tr Ûq(T,∆t

′
0)

e−|γmin(0)|∆t′0 − e−|γmin(0)|∆t0
. (D.4)
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Roldán, J. P. Pekola, arXiv:1809.06870 (2018).

[61] I. M. Khaymovich, J. V. Koski, O.-P. Saira, V. E. Kravtsov, J. P. Pekola, Nat. Comm. 6, 7010

(2015).

[62] H. Touchette, Phys. Rep. 478, 1 (2009).

[63] G. B. Cuetara, M. Esposito, and A. Imparato, Phys. Rev. E 89, 052119 (2014).

[64] R. Rao and M. Esposito, arXiv:1807.09242 (2018).

[65] P. Talkner, New J. Phys. 1, 4 (1999).

[66] D. A. Bagrets, Yu. V. Nazarov, Phys. Rev. B 67, 085316 (2003).

[67] S. Singh, J. T. Peltonen, I. M. Khaymovich, J. V. Koski, C. Flindt, and J. P. Pekola, Phys. Rev.

B 94, 241407(R) (2016).

[68] G. Verley, C. Van den Broeck, and M. Esposito Phys. Rev. E 88, 032137 (2013).

[69] A. C. Barato and R. Chetrite, J. Stat. Mech 2018, 053207 (2018).

[70] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, (Oxford University Press,

2002).

http://urn.fi/URN:ISBN:978-952-60-8420-6
http://urn.fi/URN:ISBN:978-952-60-8420-6

	1 Introduction
	2 Model and definitions
	3 Calculation of P(W-F)
	4 Time-reversal symmetric drive and beyond
	5 Two-level system
	6 Conclusion
	7 Acknowledgements
	Appendix A Rate equations and generating functions
	Appendix B Example of symmetry (??)
	Appendix C Three-step drive in two-level system
	Appendix D Relations (??, ??) between Gq and trUq

