SUPPORTING INFORMATION

Iron Catalyzed Reactions of 2-Pyridone Derivatives:

1,6-Addition and Formal Ring Opening/Cross Coupling

Lin Huang, Yiting Gu, and Alois Fürstner*

Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany) Email: fuerstner@kofo.mpg.de

SUPPORTING CRYSTALLOGRAPHIC INFORMATION

Sigure S-1. Structure of pyridone 16 in the solid state; hydrogen atoms are omitted for clarity

X-ray Crystal Structure Analysis of Compound 16: $C_{12} H_{11} N O_3 S$, $Mr = 249.28 \text{ g} \cdot \text{mol}^{-1}$, colorless prism, crystal size 0.08 x 0.08 x 0.06 mm³, triclinic, space group *P*1, *a* = 6.6271(10) Å, *b* = 7.6892(18) Å, *c* = 11.836(4) Å, $\alpha = 87.57(2)^\circ$, $\beta = 82.410(17)^\circ$, $\gamma = 67.975(17)^\circ$, $V = 554.2(3) Å^3$, T = 100(2) K, Z = 2, $D_{calc} = 1.494 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.287 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.98$, $T_{max} = 0.99$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 3.333 < Θ < 33.047°, 18368 measured reflections, 4182 independent reflections, 2916 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0642$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.053 [l > 2\sigma(l)]$, $wR_2 = 0.117$, 155 parameters. The H atoms were refined using a riding model, S = 1.037, residual electron density 0.6 (0.70 Å from C11)/ -0.4 (0.57 Å from S1) e · Å⁻³. **CCDC- 1917191**.

Figure S-2. Structure of pyrone 12 in the solid state; hydrogen atoms are omitted for clarity

X-ray Crystal Structure Analysis of Compound 12: $C_7 H_8 O_2$, $Mr = 124.13 \text{ g} \cdot \text{mol}^{-1}$, colorless block, crystal size 0.32 x 0.14 x 0.12 mm³, monoclinic, space group $P2_1/c$, a = 7.3014(7) Å, b = 11.8309(10) Å, c = 7.4752(5) Å, $\beta = 91.565(7)^\circ$, V = 645.48(9) Å³, T = 160(2) K, Z = 4, $D_{calc} = 1.277 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.093 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.98$, $T_{max} = 0.99$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 3.280 < Θ < 33.035°, 9708 measured reflections, 2417 independent reflections, 2037 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0319$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.046 [l > 2\sigma(l)]$, $wR_2 = 0.144$, 84 parameters, absolute structure parameter = 0.44(6).

The H atoms were refined using a riding model, S = 1.128, residual electron density 0.4 (0.72 Å from C5)/ -0.3 (0.80 Å from C3) e \cdot Å⁻³. **CCDC- 1917198**.

Figure S-3. Structure of compound **11a** in the solid state; all hydrogen atoms except the –OH involved in hydrogen bonding as well as CH₂Cl₂ contained in the unit cell are omitted for clarity

X-ray Crystal Structure Analysis of Compound 11a: $C_{26} H_{22} Cl_3 N O_2$, $Mr = 486.79 \text{ g} \cdot \text{mol}^{-1}$, colorless needle, crystal size 0.158 x 0.032 x 0.031 mm³, monoclinic, space group $P2_1/c$, a = 6.8389(11) Å, b = 19.279(3) Å, c = 17.827(3) Å, $\beta = 100.843(3)^\circ$, V = 2308.5(7) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.401 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.421 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.95$, $T_{max} = 0.99$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, $2.326 < \Theta < 33.984^\circ$, 71776 measured reflections, 9283 independent reflections, 6581 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0600$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.047 [l > 2\sigma(l)]$, $wR_2 = 0.129$, 293 parameters, absolute structure parameter = 0.44(6).

The H atom at O2 was found and refined, all other H atoms were refined using a riding model, S = 1.035, residual electron density 0.7 (0.74 Å from Cl2)/ -0.9 (0.79 Å from Cl2) e · Å⁻³. **CCDC- 1917196**.

Figure S-4. Structure of compound 17 in the solid state; H-atoms are omitted for clarity

X-ray Crystal Structure Analysis of Compound 17: $C_{18} H_{17} N O_3 S$, $Mr = 327.38 \text{ g} \cdot \text{mol}^{-1}$, colorless block, crystal size 0.35 x 0.28 x 0.15 mm³, orthorhombic, space group $Pna2_1$, a = 11.818(3) Å, b = 16.341(4) Å, c = 8.1630(10) Å, V = 1576.4(5) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.379 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.220 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.94$, $T_{max} = 0.97$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 2.789 < Θ < 33.010°, 29492 measured reflections, 5883 independent reflections, 5698 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0283$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.026 [l > 2\sigma(l)]$, $wR_2 = 0.068$, 209 parameters, absolute structure parameter = 0.045(11).

The H atoms were refined using a riding model, S = 1.077, residual electron density 0.3 (0.76 Å from O2)/ -0.2 (0.57 Å from S1) e · Å⁻³. **CCDC- 1917193**.

Figure S-5. Structure of compound 18a in the solid state; H-atoms are omitted for clarity

X-ray Crystal Structure Analysis of Compound 18a: $C_{18} H_{17} N O_3 S$, $Mr = 327.38 \text{ g} \cdot \text{mol}^{-1}$, colorless plate, crystal size 0.173 x 0.171 x 0.031 mm³, monoclinic, space group $P2_1/n$, a = 5.9691(7) Å, b = 9.9398(11) Å, c = 27.354(3) Å, $\beta = 91.067(2)^\circ$, V = 1622.7(3) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.340 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.214 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.98$, $T_{max} = 0.99$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 2.533 < Θ < 31.064°, 47162 measured reflections, 5194 independent reflections, 7804 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0310$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.042$ [$I > 2\sigma(I)$], $wR_2 = 0.113$, 213 parameters. The H atom at N1 was found and refined, all other H atoms were refined using a riding model, S = 1.077, residual electron density 0.5 (0.67 Å from C16)/ -0.3 (0.38 Å from S1) e · Å⁻³. **CCDC- 1917194**.

Figure S-6. Structure of dienoic acid **27** in the solid state showing two independent molecules in the unit cell; all but the acidic hydrogen atoms are omitted for clarity

X-ray Crystal Structure Analysis of Compound 27. $C_{11} H_{10} O_2$, $Mr = 174.19 \text{ g} \cdot \text{mol}^{-1}$, colorless needle, crystal size 0.35 x 0.28 x 0.15 mm³, orthorhombic, space group $Pca2_1$, a = 22.5169(14) Å, b = 5.5867(4) Å, c = 14.4515(9) Å, V = 1817.9(2) Å³, T = 100(2) K, Z = 8, $D_{calc} = 1.273 \text{ g} \cdot \text{cm}^3$, $\lambda = 1.54178$ Å, $\mu(Cu-K\alpha) = 0.706 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.90$, $T_{max} = 0.97$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, $3.926 < \Theta < 63.626^\circ$, 26900 measured reflections, 2894 independent reflections, 2807 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0355$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.023$ [$I > 2\sigma(I)$], $wR_2 = 0.058$, 244 parameters, absolute structure parameter = -0.10(6), extinction coefficient = 0.0008(2).

The H atoms at O1 and O11 were found and refined, all other H atoms were refined using a riding model, S = 1.057, residual electron density 0.1 (0.78 Å from C7)/ -0.1 (0.71 Å from H25) e · Å⁻³. **CCDC- 1917195**.

Figure S-7. Structure of the homoleptic iron complex **22** in the solid state; the additional molecule of pyrone 12 contained in the unit cell, which is not coordinated to the iron center, is disordered over two positions

Figure S-8. Structure of the Lewis acid/Lewis base adduct **22** in an orientation that reveals the peculiar organization of the pyrone units; the BF_4^- counterions as well as an additional cocrystallized but unbound molecule of **12** are not shown for clarity

X-ray Crystal Structure Analysis of Complex 22: $C_{56} H_{64} B_2 F_8 Fe O_{16}$, $Mr = 1222.54 \text{ g} \cdot \text{mol}^{-1}$, yellow prism, crystal size 0.165 x 0.083 x 0.050 mm³, monoclinic, space group $P2_1/n$, a = 7.1049(10) Å, b = 28.244(4) Å, c = 14.292(2) Å, $\beta = 96.654(3)^\circ$, V = 2848.6(7) Å³, T = 100(2) K, Z = 2, $D_{calc} = 1.425 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.359 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.88$, $T_{max} = 0.95$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 2.034 < Θ < 33.142°, 82422 measured reflections, 10847 independent reflections, 7804 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0847$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.051 [l > 2\sigma(l)]$, $wR_2 = 0.152$, 431 parameters. The H atoms were refined using a riding model, S = 0.959, residual electron density 0.8 (0.89 Å from Fe1)/ -0.9 (0.55 Å from Fe1) $e \cdot Å^{-3}$. **CCDC- 1917197**.

Figure S-9. Structure of the pyrone tricarbonyliron complex **23** in the solid state; hydrogen atoms are omitted for clarity

X-ray Crystal Structure Analysis of Complex 23: $C_{10}H_8$ Fe O₅, Mr = 519.9(2) g · mol⁻¹, yellow plate, crystal size 0.07 x 0.05 x 0.05 mm³, monoclinic, space group $P2_1$, a = 6.9641(14) Å, b = 10.957(2) Å, c = 7.5654(15) Å, $\beta = 115.76(3)^\circ$, V = 1622.7(3) Å³, T = 100(2) K, Z = 2, $D_{calc} = 1.686$ g · cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 1.451$ mm⁻¹, Gaussian absorption correction (T_{min} = 0.98, T_{max} = 0.99), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 2.990 < Θ < 30.079°, 1586 measured reflections, 1586 independent reflections, 1389 reflections with $I > 2\sigma(I)$, $R_{int} = 0$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.040 [l > 2\sigma(l)]$, $wR_2 = 0.068$, 148 parameters, absolute structure parameter = 0.44(6).

The H atoms were refined using a riding model, S = 1.143, residual electron density 0.4 (0.82 Å from C9)/ -0.6 (0.78 Å from Fe1) e · Å⁻³. **CCDC- 1917190**.

Figure S-10. Structure of the pyridone tricarbonyliron complex **24** in the solid state; hydrogen atoms are omitted for clarity

X-ray Crystal Structure Analysis of Complex 24: C₁₅ H₁₁ Fe N O₆ S, *Mr* = 389.16 g · mol⁻¹, yellow needle, crystal size 0.40 x 0.36 x 0.19 mm³, triclinic, space group *P*1, *a* = 6.3777(5) Å, *b* = 6.9416(3) Å, *c* = 18.0314(19) Å, *α* = 96.474(7)°, *β* = 93.427(8)°, *γ* = 107.045(5)°, *V* = 754.72(11) Å³, *T* = 100(2) K, *Z* = 2, *D_{calc}* = 1.712 g · cm³, λ = 0.71073 Å, μ (*Mo-Kα*) = 1.170 mm⁻¹, Gaussian absorption correction (T_{min} = 0.86, T_{max} = 0.97), Bruker-AXS Kappa Mach3 APEX-II diffractometer, 3.098 < Θ < 33.036°, 14110 measured reflections, 5672 independent reflections, 4717 reflections with *I* > 2*σ*(*I*), *R*_{int} = 0.0387.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.040 [I > 2\sigma(I)]$, $wR_2 = 0.099$, 218 parameters. The H atoms were refined using a riding model, S = 1.058, residual electron density 0.6 (0.80 Å from Fe1)/ -1.0 (0.72 Å from Fe1) e · Å⁻³. **CCDC- 1917192**.

General. Unless stated otherwise, all reactions were carried out in flame-dried glassware using anhydrous solvents under argon. The solvents were purified by distillation over the following drying agents and were transferred under argon: THF, Et₂O, *n*-Bu₂O, DME (Mg/anthracene), CH₂Cl₂, toluene (Na/K); DMF, Et₃N and pyridine were dried by an adsorption solvent purification system based on molecular sieves. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM[®]SIL/UV254). Flash chromatography: Merck silica gel 60 (40–63 μm) or Macherey-Nagel fine silica gel 60 (15-40 μm) with predistilled or HPLC grade solvents; NMR: Spectra were recorded on Bruker DPX 300 or AV 400 spectrometers in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ_{C} = 77.16 ppm; residual CHCl₃ in CDCl₃: δ_{H} = 7.26 ppm). IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers ($\tilde{\nu}$) in cm⁻¹. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FTMS (7 T magnet) or Mat 95 (Finnigan).

Unless stated otherwise, all commercially available compounds (ABCR, Acros, Alfa Aesar, Aldrich, TCI, Strem Chemicals) were used as received.

Substrates

Representative Procedure for the Synthesis of 1-Substituted Pyridin-2(1H)-ones. 1-Benzylpyridin-

N O Bn **2(1***H***)-one (1)**. A mixture of 2-pyridin-2(1*H*)-one (2.00 g, 21 mmol), benzyl bromide (5.14 g, 30 mmol) and K_2CO_3 (5.80 g mg, 47 mmol) in DME (40 mL) was stirred for 16 h at 70 °C. After reaching ambient temperature, the reaction was quenched with water and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with

brine, dried over MgSO₄, filtered and evaporated. The residue was purified by flash chromatography (pentane/EtOAc, 1/1 to 1/7) to afford the title compound as a white solid (3.14 g, 96%). m.p. = 74.0-74.4 ^oC. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.20 (m, 7H), 6.61 (d, *J* = 9.2 Hz, 1H), 6.13 (td, *J* = 6.8, 1.4 Hz, 1H), 5.15 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 139.5, 137.3, 136.5, 129.0, 128.3, 128.1, 121.4, 106.3, 52.0. IR (film, cm⁻¹): 3061, 3033, 2928, 1655, 1575, 1422, 1168, 1022, 949, 867, 727, 560. HRMS (EI): *m/z*: calcd for C₁₂H₁₁NO [*M*⁺]: 185.08351, found: 185.08364.

The following compounds were prepared analogously:

Compound S1. Using MeI instead of BnBr as the alkylating agent; colorless oil (1.27 g, 86%). ¹H NMR (400

MHz, CDCl₃) δ 7.32 (ddd, J = 9.0, 6.6, 2.1 Hz, 1H), 7.29 – 7.26 (m, 1H), 6.57 (d, J = 9.0 Hz, 1H), 6.14 (td, J = 6.6, 1.4 Hz, 1H), 3.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 139.6, 138.4, 120.9, 106.0, 37.8. IR (film, cm⁻¹): 3080, 3031, 2916, 1650, 1575, 1537, 1412, 1317, 1153,

1051, 875, 843, 761, 728, 528, 459. HRMS (EI): *m*/*z*: calcd for C₆H₇NO [*M*⁺]: 109.05221, found: 109.05228.

Compound S2. White solid (1.00 g, 98%); m.p. = 85.5-86.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m,

4H), 7.06 - 6.98 (m, 2H), 6.61 (d, J = 8.8 Hz, 1H), 6.15 (td, J = 6.7, 1.3 Hz, 1H), 5.10 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 162.6 (d, *J* = 246.7 Hz), 139.6, 137.2, 132.4 (d, *J* = 3.4 Hz), 130.1 (d, J = 8.4 Hz), 121.6, 115.9 (d, J = 21.6 Hz), 106.5, 51.5. ¹⁹F NMR (282 MHz, CDCl₃) δ –114.1. IR (film, cm⁻¹): 3086, 3066, 3029, 2997, 2957, 1652, 1579, 1505, 1434, 1351, 1221, 1147, 1086, 940, 831, 757, 573, 472. HRMS (EI): m/z: calcd for C₁₂H₁₀NOF [*M*⁺]: 203.07409, found: 203.07448.

Compound S3. White solid (1.04 g, 97%); m.p. = 61.4-62.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (ddd, J =

9.0, 6.6, 2.0 Hz, 1H), 7.28 - 7.23 (m, 2H), 6.92 - 6.80 (m, 3H), 6.61 (ddd, J = 9.0, 1.4, 0.8 Hz, 1H), 6.14 (td, J = 6.7, 1.4 Hz, 1H), 5.12 (s, 2H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 160.1, 139.5, 138.0, 137.3, 130.1, 121.4, 120.5, 113.9, 113.6, 106.3, 55.4, 51.9. IR (film, cm⁻¹): 3070, 3054, 3029, 3001, 2970, 2929, 2843, 1652, 1584, 1538, 1490, 1439, 1422, 1341, 1287, 1261, 1136, 1048, 871, 845, 765, 691, 571, 522.

HRMS (EI): *m/z*: calcd for C₁₃H₁₃NO₂ [*M*⁺]: 215.09408, found: 215.09427.

Compound S4. White solid (7.21 g, 95%); m.p. = 90.2-90.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, Br Bn

7H), 6.53 (dd, J = 9.7, 0.6 Hz, 1H), 5.10 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 142.6, 137.1, 135.8, 129.2, 128.5, 128.4, 122.6, 98.2, 52.2. IR (film, cm⁻¹): 3064, 3043, 2995, 1654, 1579, 1525, 1492, 1433, 1349, 1241, 1150, 1067, 826, 742, 692, 642, 573, 514. HRMS (EI): *m/z*: calcd for C₁₂H₁₀NOBr [*M*⁺]: 262.99404, found: 262.99423.

1-Benzyl-5-methylpyridin-2(1H)-one (S5).¹ Under Ar atmosphere, a mixture of 1-benzyl-5-bromopyridin-2(1H)-one **S4** (792 mg, 3.0 mmol), potassium methyltrifluoroborate (476 mg, 3.9 mmol), Pd(OAc)₂ (33.7 mg, 0.15 mmol), RuPhos (140 mg, 0.30 mmol, 10 mol%) and K₂CO₃ (1.24 g, Ν΄ Bn 9 mmol) in toluene/H₂O (v/v = 4/1, 5 mL) was stirred for 5 h at 90 °C (bath temperature)

until the reaction was completed. The mixture was cooled to ambient temperature before the reaction was guenched with water and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO4, filtered and evaporated. The residue was purified by flash chromatography (pentane/EtOAc, 2/1 to 1/2) to afford the title compound as a white solid (420 mg, 70%). m.p. = 76.2-78.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 7.17 (dd, J = 9.3, 2.5 Hz, 1H), 7.02 (s, 1H), 6.56 (d, J = 9.3 Hz, 1H), 5.11 (s, 2H), 2.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 142.2, 136.8, 134.7, 129.0, 128.2, 128.0, 121.0, 115.4, 51.8, 17.3. IR (film, cm⁻¹): 3035, 2952, 2925, 1664, 1584, 1537, 1495, 1430, 1265, 1144, 1073, 916, 828, 715, 697, 522, 481. HRMS (EI): m/z: calcd for C₁₃H₁₃NO [*M*⁺]: 199.09916, found: 199.09931.

Compound S6. Prepared analogously using potassium phenyltrifluoroborate as the reagent; white solid (684 mg, 87%); m.p. = 73.6-75.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.8, 2.8 Hz, 1H), 7.51 (d, J = 2.3 Hz, 1H), 7.41 - 7.29 (m, 10H), 6.73 (d, J = 9.2 Hz, 1H), 5.23 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 139.4, 136.5, 136.4, 134.7, 134.1, 129.2, 129.1, 128.3, 127.5, 125.9, 121.3, 120.7, 52.4. IR (film, cm⁻¹): 3054, 3029, 2947, 1656, 1584, 1532, 1495, 1423, 1365, 1299, 1151, 1076, 893, 833, 764, 694, 597, 490. HRMS (EI): m/z: calcd for C₁₈H₁₅NO [M^+]: 261.11481, found: 261.11516.

Compound S7. Prepared analogously using potassium cyclopropyltrifluoroborate as the reagent; pale

N Bn

yellow oil (651 mg, 97%); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 7.09 (dd, J = 9.3, 2.6 Hz, 1H), 7.05 (d, J = 2.6 Hz, 1H), 6.56 (d, J = 9.3 Hz, 1H), 5.12 (s, 2H), 1.61 (tt, J = 8.4, 5.1 Hz, 1H), 0.80 (ddd, J = 8.4, 6.2, 4.8 Hz, 2H), 0.47 (dt, J = 6.2, 4.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 139.3, 136.7, 134.1, 129.0, 128.2, 128.0, 121.4, 121.1,

52.0, 12.0, 6.7. IR (film, cm⁻¹): 3080, 3065, 3031, 3004, 2930, 2851, 1662, 1592, 1535, 1454, 1368, 1260, 1155, 878, 830, 731, 699, 559. HRMS (EI): *m/z*: calcd for C₁₅H₁₅NO [*M*⁺]: 225.11481, found: 225.11500.

1-Phenyl-pyridin-2(1*H***)-one (S8).²** A mixture of 2-pyridone (1.00 g, 10.5 mmol), Cul (0.2 g, 1.06 mmol, 10 mol%), iodobenzene (2.35 mL, 21 mmol) and K_2CO_3 (1.47 g, 10.5 mmol) in DMF (2 mL) was stirred for 12 h at 150 °C under Ar. The mixture was allowed to cool before the reaction was quenched with water and the aqueous phase extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated, and the residue was purified by flash chromatography to afford the title compound as a white solid (1.52 at 0.65%) mmol and K_2CO_3 (1.47 g, 10.5 mmol) in DMF (2 mL) are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) mmol are specified by flash chromatography to afford the title compound as a white solid (1.52 b) for the specified b) for the specified by flash chromatography to afford the title compound as a white solid (1.52 b) for the specified by flash chromatography to afford the title compound as a white solid (1.52 b) for the specified b) for the specified b) for the specified by flash chromatography to afford the title compound as a white solid (1.52 b) for the specified b) for the spe

g, 85%). m.p. = 128.0-129.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.45 – 7.36 (m, 4H), 7.33 (ddd, *J* = 6.9, 2.1, 0.6 Hz, 1H), 6.66 (d, *J* = 9.3 Hz, 1H), 6.23 (td, *J* = 6.7, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 141.1, 139.9, 138.1, 129.5, 128.6, 126.7, 122.1, 106.0. IR (film, cm⁻¹): 3052, 3041, 3014, 2913, 1656, 1578, 1526, 1488, 1272, 1252, 1126, 983, 839, 756, 692, 582, 453. HRMS (EI): *m/z*: calcd for C₁₁H₉NO [*M*⁺]: 171.06786, found: 171.06795.

1-Tosyl-pyridin-2(1H)-one (16). A mixture of 2-pyridone (2.00 g, 21 mmol), tosyl chloride (4.41 g, 23

mmol) and Et₃N (4.26 g, 42 mmol) in THF (20 mL) was stirred at ambient temperature for 12 h. The reaction was quenched with water and the aqueous phase extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated. The residue was purified by flash chromatography (pentane/EtOAc, 4/1 to 1/1) to afford the title compound as a white solid (1.15 g, 21%). m.p. = 141.3-142.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (ddd, *J* = 7.6, 2.0, 0.8 Hz, 1H), 8.02 – 7.96 (m, 2H), 7.38 – 7.27 (m, 3H), 6.41 (dt, *J* = 9.3, 1.2 Hz, 1H), 6.24 (ddd, *J* = 7.6, 6.4, 1.2 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 146.4, 141.3, 133.4, 131.8, 130.1, 129.6, 123.6, 106.4, 22.0. IR (film, cm⁻¹): 3354, 3260, 3121, 3106, 1673, 1601, 1530, 1359, 1245, 1163, 1123, 1086, 1020, 819, 770, 686, 646, 544, 512. HRMS (ESI): *m/z*: calcd for C₁₂H₁₁NO₃SNa [*M*+*Na*⁺]: 272.03519, found: 272.03505. **Compound S9**. Prepared analogously using potassium *p*-methoxyphenylsulfonyl chloride as the reagent;

white solid (1.05 g, 19%); m.p. = 120.4-122.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.01 (m, 3H), 7.30 (ddd, *J* = 9.3, 6.4, 2.0 Hz, 1H), 7.00 (dt, *J* = 9.2, 2.0 Hz, 2H), 6.41 (dt, *J* = 9.4, 1.0 Hz, 1H), 6.23 (ddd, *J* = 7.6, 6.4, 1.3 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 160.3, 141.2, 132.6, 131.8, 127.4, 123.6, 114.2, 106.2, 55.9. IR (film, cm⁻¹): 3118, 3103, 3023, 2988, 2954, 2851, 1673, 1592, 1536, 1497, 1359, 1271, 1251, 1167, 1127, 1089, 1016, 829, 801, 765, 684, 569, 550. HRMS (ESI): *m/z*: calcd for C₁₂H₁₂NO₄S [*M*+*H*⁺]: 266.04816, found:266.04823.

Compound S10. Prepared analogously using potassium *p*-fluorophenylsulfonyl chloride as the reagent;

white solid (327 mg, 45%); m.p. = 172.0-173.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.11 (m, 2H), 8.07 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.32 (ddd, *J* = 9.4, 6.4, 2.0 Hz, 1H), 7.26 – 7.18 (m, 2H), 6.43 (dt, *J* = 9.4, 1.0 Hz, 1H), 6.26 (ddd, *J* = 7.6, 6.4, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5 (d, *J* = 258.6 Hz), 160.2, 141.5, 133.2 (d, *J* = 10.1 Hz), 132.3 (d, *J* = 3.1 Hz), 131.6, 123.6, 116.4 (d, *J* = 23.1 Hz), 106.6. ¹⁹F NMR (282 MHz, CDCl₃) δ –100.9. IR (film, cm⁻¹): 3116, 3097, 3065, 3042, 1675, 1583, 1534, 1488, 1362, 1233, 1181, 1127, 1084, 1009, 819, 759, 692, 543, 503. HRMS (ESI): *m/z*: calcd for C₁₁H₈FNO₃SNa [*M*+*Na*⁺]: 276.01011, found: 26.01000.

Compound S11. Prepared analogously using potassium thiophene-2-sulfonyl chloride as the reagent;

white solid (2.49 g, 62%); m.p. = 134.1-134.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, *J* = 3.9, 1.5 Hz, 1H), 8.02 (ddd, *J* = 7.6, 2.0, 0.8 Hz, 1H), 7.78 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.32 (ddd, *J* = 9.4, 6.4, 1.9 Hz, 1H), 7.14 (dd, *J* = 5.0, 3.9 Hz, 1H), 6.48 (dt, *J* = 9.4, 1.0 Hz, 1H), 6.24 (ddd, *J* = 7.6, 6.4, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 141.3, 138.0, 136.5, 135.7, 131.5, 127.5, 123.5, 106.6. IR (film, cm⁻¹): 3110, 3097, 1679, 1600, 1530, 1376, 1340, 1246, 1227, 1170, 1128, 1011, 824, 747, 682, 562, 511. HRMS (ESI): *m/z*: calcd for C₉H₇NO₃SNa [*M*+Na⁺]:

263.97596, found: 263.97607.

Iron Catalyzed Reactions

Representative Procedure for the Iron Catalyzed Pyridone 1,6-Addition Reaction. 1-Benzyl-6-phenyl-

3,6-dihydropyridin-2(1*H***)-one (2a).** A solution of PhMgBr (3 M in THF, 0.15 mL, 0.45 mmol) was added drowpise to a rapidly stirred solution of compound **1** (55.6 mg, 0.3 mmol) and Fe(acac)₃ (5.3 mg, 0.015 mmol) in THF (3 mL) at -45 °C. The mixture was stirred for 50 min at this temperature before the reaction was quenched with sat. aq.

NH₄Cl. The aqueous phase was extracted with EtOAc (3 x 10 mL), the combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated, and the residue was purified by flash chromatography (pentane/EtOAc = 10/1, 6/1, 4/1, 2/1) to afford the title compound as a pale yellow solid (76.1 mg, 96%). m.p. = 117.2-118.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 6H), 7.22 – 7.15 (m, 4H), 5.81 – 5.72 (m, 1H), 5.72 – 5.65 (m, 1H), 5.61 (d, *J* = 14.9 Hz, 1H), 4.81 (qd, *J* = 3.9, 1.2 Hz, 1H),

3.42 (d, J = 14.9 Hz, 1H), 3.33 – 3.14 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 140.2, 136.9, 129.2, 128.8, 128.4, 128.3, 127.6, 127.2, 126.5, 120.6, 61.8, 46.4, 32.3. IR (film, cm⁻¹): 3086, 3057, 3022, 3006, 2925, 2891, 1638, 1449, 1402, 1316, 1262, 1147, 1027, 940, 841, 767, 700, 481. HRMS (EI): m/z: calcd for C₁₈H₁₇NO [M^+]: 263.13046, found: 263.13065.

The following compounds were prepared analogously on 0.2 mmol scale:

Compound 2b. The reaction was performed using 3 equiv of ArMgBr; pale yellow solid (36.8 mg, 72%).

Ph N O Ph

m.p. = 95.4-96.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.15 (m, 6H), 7.10 – 7.06 (m, 2H), 6.97 – 6.91 (m, 2H), 5.95 – 5.85 (m, 2H), 5.26 (q, *J* = 3.3 Hz, 1H), 3.42 – 3.32 (m, 1H), 3.30 – 3.21 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 141.1, 140.0, 129.1, 128.8, 128.2, 128.1, 127.6, 127.4, 126.4, 121.2, 67.2, 32.8. IR (film, cm⁻¹): 3083, 3059, 3030, 3006,

2931, 2880, 1643, 1431, 1403, 1288, 1141, 1074, 759, 693, 559. HRMS (EI): *m/z*: calcd for C₁₇H₁₅NO [*M*⁺]: 249.11481, found: 249.11503.

Compound 2c. The reaction was performed using 3 equiv of ArMgBr at -20 °C; white solid (17.9 mg,

Ph NO

46%). m.p. = 63.3-64.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 3H), 7.23 – 7.16 (m, 2H), 5.80 – 5.67 (m, 2H), 4.87 (dd, *J* = 3.3 Hz, 1H), 3.21 – 3.03 (m, 2H), 2.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 140.3, 129.2, 128.3, 126.9, 126.2, 120.9, 65.7, 32.8,

32.0. IR (film, cm⁻¹): 3082, 3055, 3026, 2907, 2797, 1630, 1487, 1448, 1398, 1311, 1242, 1060, 836, 759, 695, 437. HRMS (EI): *m*/*z*: calcd for C₁₂H₁₃NO [*M*⁺]: 187.09916, found: 187.09931.

Compound 3a. The reaction was performed using 3 equiv of ArMgBr at -20 °C; pale yellow oil (37.6 mg,

MeO NO Bn

62%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 3H), 7.22 – 7.17 (m, 2H), 7.12 – 7.07 (m, 2H), 6.93 – 6.87 (m, 2H), 5.78 – 5.63 (m, 2H), 5.59 (d, J = 15.0 Hz, 1H), 4.75 (ddd, J = 8.4, 2.8, 1.0 Hz, 1H), 3.81 (s, 3H), 3.43 (d, J = 15.0 Hz, 1H), 3.31 – 3.13 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 159.6, 136.9,

132.0, 128.7, 128.4, 128.3, 127.5, 126.7, 120.3, 114.5, 61.1, 55.4, 46.2, 32.2. IR (film, cm⁻¹): 3031, 3001, 2932, 2836, 1639, 1509, 1450, 1407, 1241, 1173, 1030, 909, 829, 725, 684, 496. HRMS (EI): *m/z*: calcd for C₁₉H₁₉NO [*M*⁺]: 293.14103, found: 293.14099.

Compound 3b. The reaction was performed using 3 equiv of ArMgBr at -20 °C; pale yellow oil (48.5 mg,

82%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 5H), 7.19 – 7.15 (m, 2H), 7.14 – 7.09 (m, 2H), 5.81 – 5.57 (m, 3H), 4.79 (ddd, *J* = 3.9, 1.4 Hz, 1H), 3.39 (d, *J* = 14.9 Hz, 1H), 3.32 – 3.13 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 138.7, 136.6, 134.1, 129.4, 128.8, 128.5, 128.3, 127.6, 126.0, 121.1, 61.1, 46.4, 32.2.

IR (film, cm⁻¹): 3087, 3062, 3029, 2927, 2852, 1642, 1450, 1404, 1246, 1089, 1014, 821, 729, 698, 495. HRMS (EI): m/z: calcd for C₁₈H₁₆NOCI [M^{+}]: 297.09149, found: 297.09163. **Compound 4a.** The reaction was performed using 3 equiv of ArMgBr at -45 °C to RT; pale yellow oil (50.6

 $\begin{array}{c} \text{mg, 91\%}. \ ^{1}\text{H NMR (400 MHz, CDCl_{3}) } \delta \ 7.32 - 7.17 \ (\text{m, 6H}), \ 7.15 - 7.08 \ (\text{m, 4H}), \ 5.47 \ (\text{d}, J) \\ = 15.0 \ \text{Hz}, \ 1\text{H}), \ 5.41 \ (\text{ddp}, J = 4.0, \ 2.6, \ 1.3 \ \text{Hz}, \ 1\text{H}), \ 4.40 \ (\text{t}, J = 3.2 \ \text{Hz}, \ 1\text{H}), \ 3.29 \ (\text{d}, J = 15.0 \ \text{Hz}, \ 1\text{H}), \ 3.26 \ - \ 3.04 \ (\text{m, 2H}), \ 1.43 \ - \ 1.36 \ (\text{m, 3H}). \ ^{13}\text{C NMR (101 MHz, CDCl_{3}) } \delta \ 167.7, \\ 140.0, \ 136.9, \ 132.5, \ 129.0, \ 128.7, \ 128.4, \ 128.3, \ 127.7, \ 127.5, \ 117.0, \ 65.6, \ 46.4, \ 32.5, \end{array}$

20.1. IR (film, cm⁻¹): 3085, 3062, 3028, 2917, 2851, 1643, 1449, 1247, 1065, 846, 806, 698, 498. HRMS (EI): *m/z*: calcd for C₁₉H₁₉NO [*M*⁺]: 277.14611, found: 277.14637.

Compound 4b. The reaction was performed using 3 equiv of ArMgBr at -20 °C; pale yellow oil (70.0 mg,

96%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.12 (m, 8H), 7.11 – 7.06 (m, 3H), 7.02 (dd, J = 7.6, 1.8 Hz, 2H), 6.94 (dd, J = 6.6, 2.8 Hz, 2H), 5.90 (dd, J = 4.7, 2.8 Hz, 1H), 5.57 (d, J = 15.2 Hz, 1H), 5.14 (t, J = 2.6 Hz, 1H), 3.48 (d, J = 15.2 Hz, 1H), 3.43 – 3.26 (m, 2H). ¹³C

NMR (101 MHz, CDCl₃) δ 167.9, 139.3, 138.3, 138.2, 136.8, 128.92, 128.88, 128.5, 128.2, 128.0, 127.8, 127.6, 127.5, 126.7, 119.8, 63.5, 46.7, 33.1. IR (film, cm⁻¹): 3085, 3061, 3028, 2923, 1641, 1451, 1253, 1072, 908, 727, 695. HRMS (ESI): m/z: calcd for C₂₄H₂₁NONa [$M+Na^+$]: 362.15153, found: 362.15143.

Compound 5. The reaction was performed using 3 equiv of ArMgBr; pale yellow oil (52.1 mg, 89%). ¹H

138.1, 136.9, 128.9, 128.7, 128.3, 128.1, 127.8, 127.4, 114.2, 65.5, 46.4, 32.3, 13.9, 6.1, 5.1. IR (film, cm⁻¹): 3084, 3063, 3028, 3005, 2920, 2874, 1643, 1450, 1409, 1248, 1077, 1021, 848, 729, 699, 493. HRMS (EI): m/z: calcd for C₂₁H₂₁NO [M^+]: 303.16176, found: 303.16186.

Compound 6. The reaction was performed using 3 equiv of ArMgBr at -20 °C; pale yellow oil (60.6 mg,

Ph

Ph

91%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.29 (m, 6H), 7.26 - 7.23 (m, 2H), 7.22 - 7.17 (m, 2H), 6.13 (dd, J = 4.2, 3.0 Hz, 1H), 5.53 (d, J = 15.0 Hz, 1H), 4.76 (t, J = 3.4 Hz, 1H), 3.42 - 3.21 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 138.0, 136.2, 129.14, 129.10, 128.9, 128.4, 128.1, 127.9, 124.2, 118.7, 66.7, 46.8, 34.3. IR (film, cm⁻¹): 3085, 3062,

3029, 2920, 2850, 1645, 1449, 1405, 1243, 1072, 840, 729, 696, 496. HRMS (EI): m/z: calcd for $C_{18}H_{16}NOBr [M^+]$: 341.04099, found: 341.04096.

Compound 7. The reaction was performed using 3 equiv of allylmagnesium bromide at -20 °C to RT; pale

yellow oil (27.7 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.13 (m, 5H), 5.75 (dtd, *J* = 10.0, 3.4, 0.9 Hz, 1H), 5.68 – 5.55 (m, 2H), 5.45 (d, *J* = 15.2 Hz, 1H), 5.06 – 4.97 (m, 2H), 3.91 (d, *J* = 15.2 Hz, 1H), 3.86 – 3.80 (m, 1H), 2.98 – 2.91 (m, 2H), 2.42 – 2.33 (m, 1H), 2.25 (dddd, *J* = 12.8, 6.5, 3.1, 1.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6,

137.0, 132.1, 128.7, 128.0, 127.5, 125.8, 123.1, 119.4, 56.5, 46.5, 37.5, 32.7. IR (film, cm⁻¹): 3074, 3030,

2978, 2925, 1637, 1451, 1408, 1322, 1253, 1149, 1071, 996, 917, 703, 497. HRMS (ESI): *m/z*: calcd for C₁₅H₁₇NONa [*M*+*Na*⁺]: 250.12023, found: 250.12026.

Compound 8. The reaction was performed using 3 equiv of benyzlmagnesium bromide; white solid (50.1

mg, 91%). m.p. = 99.2-100.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 2H), 7.21 – 7.11 (m, 6H), 7.02 – 6.95 (m, 2H), 5.63 (ddd, *J* = 10.0, 4.8, 2.0 Hz, 1H), 5.60 – 5.52 (m, 2H), 4.02 – 3.95 (m, 1H), 3.92 (d, *J* = 15.1 Hz, 1H), 2.87 (dd, *J* = 13.4, 6.8 Hz, 1H), 2.80 – 2.65 (m, 2H), 2.17 – 2.06 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 137.1, 135.9, 130.1, 128.8, 128.3, 127.9, 127.5, 126.8, 125.5, 124.0, 57.7, 46.8, 39.3, 32.4. IR (film, cm⁻¹): 3051, 3028, 2955, 2925, 2895, 1626, 1454, 1405, 1261, 1163, 1081, 1029, 967, 724, 693, 494. HRMS (ESI): *m/z*: calcd for C₁₉H₁₉NONa [*M*+*Na*⁺]: 300.13588, found: 300.13582.

Compound 9. Yellow oil (54.8 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 3H), 7.27 – 7.15 (m,

3H), 6.86 - 6.71 (m, 3H), 5.79 - 5.65 (m, 2H), 5.59 (d, J = 14.9 Hz, 1H), 4.83 (dd, J = 3.6 Hz, 1H), 3.78 (s, 3H), 3.39 (d, J = 14.9 Hz, 1H), 3.32 - 3.12 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 159.9, 140.1, 138.4, 129.7, 129.2, 128.3, 127.1, 126.5, 120.6, 120.6, 113.9, 112.9, 61.8, 55.3, 46.3, 32.2. IR (film, cm⁻¹): 3047, 3029, 3000, 2935, 2835, 1643, 1449, 1260, 1145, 1044, 838, 695, 485. HRMS

(EI): *m*/*z*: calcd for C₁₉H₁₉NO₂ [*M*⁺]: 293.14103, found: 293.14129.

Compound 12. The reaction was performed using 3 equiv of ArMgBr; pale yellow solid (48.8 mg, 88%).

m.p. = 130.6-131.1°C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 3H), 7.21 – 7.12 (m, 4H), 6.98 (t, *J* = 8.7 Hz, 2H), 5.78 – 5.64 (m, 2H), 5.50 (d, *J* = 14.9 Hz, 1H), 4.79 (dq, *J* = 3.9, 1.2 Hz, 1H), 3.44 (d, *J* = 14.9 Hz, 1H), 3.26 (ddt, *J* = 22.3, 4.5, 2.1 Hz, 1H), 3.17 (dtd, *J* = 22.3, 3.7, 1.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 162.3 (d, *J* = 245.5 Hz), 140.0, 132.7 (d, *J* = 3.3 Hz), 130.1 (d, *J* = 8.0 Hz), 129.2, 128.4, 127.1, 126.4, 120.6, 115.5 (d, *J* = 21.4 Hz), 61.9, 45.8, 32.2. ¹⁹F NMR (282 MHz, CDCl₃) δ

-115.1. IR (film, cm⁻¹): 3070, 3053, 3029, 3004, 2931, 2891, 1638, 1508, 1450, 1402, 1264, 1215, 1156, 1027, 920, 842, 806, 768, 699, 461. HRMS (EI): *m/z*: calcd for C₁₈H₁₆NOF [*M*⁺]: 281.12104, found: 281.12128.

Compound 17. The reaction was performed in the presence of PPh₃ (10 mol%) to give the product as a

white solid (20.4 mg, 62%). m.p. = $192.4-193.2^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H), 7.25 – 7.21 (m, 2H), 7.07 (d, *J* = 8.6 Hz, 2H), 6.03 – 5.93 (m, 2H), 5.73 (dt, *J* = 9.5, 3.6 Hz, 1H), 3.20 (dt, *J* = 3.8, 2.2 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 144.6, 139.8, 135.6, 129.3, 128.9, 128.7, 128.3, 127.4, 127.1, 119.5, 62.0, 34.2,

21.6. IR (film, cm⁻¹): 3086, 3063, 3027, 2962, 2921, 1687, 1595, 1451, 1353, 1243, 1162, 1085, 811, 701, 684, 537. HRMS (ESI): *m/z*: calcd for C₁₈H₁₇NO₃Na [*M*+*Na*⁺]: 350.08214, found: 350.08245. Single crystals

suitable for X-ray diffraction were grown by slow evaporation of a solution of this product in CH_2Cl_2 /pentane.

Representative Procedure for the Iron Catalyzed Three Component Reaction. (*Z*)-1-Benzyl-3-((4-chlorophenyl)(hydroxy)methylene)-6-phenyl-3,6-dihydropyridin-2(1H)-one (11a). A solution of PhMgBr

(1.18 M in THF, 0.51 mL, 0.60 mmol) was slowly added to a rapidly stirred solution of compound **1** (37.0 mg, 0.2 mmol), methyl 4-chlorobenzoate (68.2 mg, 0.4 mmol) and Fe(acac)₃ (3.5 mg, 0.01 mmol, 5 mol%) in THF (2 mL) at -45 °C. The mixture was stirred for 30 min at this temperature before the reaction was quenched with sat. aq. NH₄Cl. The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated. The residue was purified by flash chromatography

(hexane/EtOAc = 50/1, 20/1, 10/1, 6/1) to afford the title compound as a pale yellow solid (39.7 mg, 87%). m.p. = 91.7-92.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 15.18 (s, 1H), 7.56 – 7.50 (m, 2H), 7.43 – 7.23 (m, 12H), 6.29 (dd, *J* = 10.1, 1.3 Hz, 1H), 5.57 (d, *J* = 15.0 Hz, 1H), 5.30 (dd, *J* = 10.1, 4.5 Hz, 1H), 5.01 (dd, *J* = 4.5, 1.1 Hz, 1H), 3.54 (d, *J* = 15.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 167.4, 140.5, 136.4, 136.1, 133.2, 130.4, 129.3, 128.9, 128.7, 128.5, 128.3, 127.8, 127.1, 121.0, 119.5, 98.8, 62.7, 46.4. IR (film, cm⁻¹): 3085, 3059, 3028, 2977, 2950, 2925, 1724, 1654, 1594, 1469, 1450, 1341, 1264, 1089, 1014, 906, 836, 728, 523. HRMS (ESI): *m/z*: calcd for C₂₅H₂₁CINO₂ [*M*+*H*⁺]: 402.12553, found: 402.12548. Single crystals suitable for X-ray diffraction were grown by slow evaporation of a solution of this product in CH₂Cl₂/pentane.

Compound 11b. Prepared analogously using methyl 3-phenylpropanoate as the electrophilic coupling

partner; pale yellow oil (76.6 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 14.94 (s, 1H), 7.31 – 7.07 (m, 15H), 6.09 (dd, *J* = 10.1, 1.3 Hz, 1H), 5.42 (d, *J* = 15.1 Hz, 1H), 5.10 (dd, *J* = 10.1, 4.3 Hz, 1H), 4.85 (d, *J* = 4.2 Hz, 1H), 3.37 (d, *J* = 15.1 Hz, 1H), 2.91 (t, *J* = 7.9 Hz, 2H), 2.70 – 2.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 169.3, 141.0, 140.8, 136.6, 133.2, 129.2, 128.8, 128.6, 128.4, 128.2, 127.6, 127.2, 126.3,

119.8, 118.1, 98.1, 62.6, 46.1, 33.4, 33.1. IR (film, cm⁻¹): 3085, 3061, 3027, 2930, 2863, 1736, 1654, 1596, 1469, 1451, 1358, 1256, 1211, 1028, 912, 747, 723, 696, 510. HRMS (ESI): *m/z*: calcd for C₂₇H₂₆NO₂ [*M*+*H*⁺]: 396.19580, found: 396.19585.

Representative Procedure for the Iron Catalyzed Formal Ring-opening/Cross Coupling of 2-Pyridone

Deravitives. (2*Z*,4*E*)-5-Phenyl-N-tosylpenta-2,4-dienamide (18a). A solution of PhMgBr (1 \bowtie in THF, 0.6 mL, 0.6 mmol) was added dropwise to a rapidly stirred solution of compound **16** (49.9 mg, 0.2 mmol), Fe(acac)₃ (3.5 mg, 0.01

mmol, 5 mol%) and PPh₃ (5.2 mg, 0.02 mmol, 10 mol%) in Et₂O (2 mL) at -30 °C. The mixture was stirred for 30 min at this temperature before DMF (4 mL) was introduced and the temperature raised to -10 °C

over the course of 2 h. The reaction was quenched with sat. aq. NH₄Cl and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated. The residue was purified by flash chromatography (pentane/ethyl acetate = 4/1, 2/1, 1/1) to afford the title compound as a pale yellow solid (38.3 mg, 60%, 2*Z*/2*E* = 15/1). m.p. = 139.1-141.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8,71 (s, 1H), 8.10 (ddd, *J* = 15.7, 11.5, 0.8 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.52 – 7.45 (m, 2H), 7.38 – 7.29 (m, 5H), 6.80 (d, *J* = 15.7 Hz, 1H), 6.71 (t, *J* = 11.5 Hz, 1H), 5.62 (d, *J* = 11.1 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 147.5, 145.2, 143.8, 136.03, 136.00, 129.8, 129.6, 128.9, 128.5, 128.0, 124.8, 115.8, 21.9. IR (film, cm⁻¹): 3253, 3074, 3057, 3025, 2922, 2873, 1697, 1615, 1592, 1435, 1329, 1235, 1122, 1083, 984, 878, 657, 542. HRMS (ESI): *m/z*: calcd for C₁₈H₁₇NO₃SNa [*M*+*Na*⁺]: 350.08214, found: 350.08242. Single crystals suitable for X-ray diffraction were grown by slow evaporation of a solution of this product in CH₂Cl₂/pentane.

The following compounds were prepared analogously:

Compound 18b. Pale yellow oil (47.5 mg, 70%, 2Z/2E = 15/1). ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H),

8.16 – 8.03 (m, 3H), 7.47 (dd, J = 7.8, 1.8 Hz, 2H), 7.35 – 7.27 (m, 3H), 7.03 – 6.95 (m, 2H), 6.79 (d, J = 15.7 Hz, 1H), 6.70 (t, J = 11.2 Hz, 1H), 5.66 (d, J = 11.2 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.4, 147.2, 143.5, 136.0, 130.7, 130.2, 129.5, 128.8, 127.9, 124.8,

116.2, 114.4, 55.8. IR (film, cm⁻¹): 3239, 3077, 3064, 2929, 2841, 1688, 1590, 1497, 1433, 1335, 1261, 1163, 1124, 1080, 1023, 864, 832, 803, 729, 665, 576, 553. HRMS (ESI): *m/z*: calcd for C₁₈H₁₇NO₄SNa [*M*+*Na*⁺]: 366.07705, found: 366.07737.

Compound 18c. Pale yellow solid (32.4 mg, 47%, 2Z/2E = 18/1). m.p. = 69.0-71.4 °C. ¹H NMR (400 MHz,

CDCl₃) δ 9.01 (s, 1H), 8.20 – 8.13 (m, 2H), 8.09 (ddd, *J* = 15.7, 11.5, 1.0 Hz, 1H), 7.47 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.35 – 7.28 (m, 3H), 7.22 (t, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 15.7 Hz, 1H), 6.73 (t, *J* = 11.6 Hz, 1H), 5.65 (d, *J* = 11.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (d, *J* = 256.8 Hz), 163.2, 147.8,

144.1, 135.9, 134.8, 131.5 (d, *J* = 9.7 Hz), 129.7, 128.9, 127.9, 124.7, 116.5 (d, *J* = 22.8 Hz), 115.7. ¹⁹F NMR (282 MHz, CDCl₃) δ –102.9. IR (film, cm⁻¹): 3245, 3106, 3074, 2859, 1692, 1612, 1586, 1431, 1338, 1122, 1079, 868, 838, 754, 665, 576, 544. HRMS (ESI): *m/z*: calcd for C₁₇H₁₃FNO₃S [*M*⁻]: 330.06057, found: 330.06064.

Compound 19a. Pale yellow solid (55.0 mg, 74%, 2Z/2E = 8/1). m.p. = 162.8-163.5 °C. ¹H NMR (400 MHz,

OMe CDCl₃) δ 8.57 (s, 1H), 8.09 – 7.94 (m, 3H), 7.44 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 15.5 Hz, 1H), 6.69 (t, J = 11.2 Hz, 1H), 5.54 (d, J = 11.2 Hz, 1H), 3.86 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.3, 160.9, 147.8, 143.6, 130.8, 130.5, 129.5, 129.1,

128.9, 122.9, 114.7, 114.4, 55.8, 55.5. IR (film, cm⁻¹): 3270, 3064, 2984, 2933, 2910, 2872, 1687, 1589, 1500, 1417, 1252, 1162, 1114, 1080, 1018, 993, 834, 799, 668, 556. HRMS (ESI): *m/z*: calcd for C₁₉H₁₈NO₅S [*M*⁻]: 372.09112, found: 372.09120.

Compound 19b. Pale yellow solid (45.1 mg, 61%, 2Z/2E = 13/1). m.p. = 160.3-161.5 °C. ¹H NMR (400 MHz,

OMe CDCl₃) δ 8.61 (s, 1H), 8.13 – 7.99 (m, 3H), 7.41 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 6.79 – 6.64 (m, 2H), 5.62 (d, J = 11.1 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 163.0, 146.9, 142.0, 135.3, 134.6, 130.8, 130.2, 129.1, 129.0, 125.3, 116.5, 114.4, 55.9. IR (film, cm⁻¹):

3272, 3064, 3039, 2978, 2946, 2841, 1691, 1591, 1498, 1409, 1264, 1161, 1079, 994, 830, 797, 666, 556. HRMS (ESI): *m*/*z*: calcd for C₁₈H₁₅CINO₄S [*M*-*H*]: 376.04158, found: 376.04179.

Compound 20. Pale yellow solid (52.4 mg, 69%, 2Z/2E = 23/1). m.p. = 215.4-217.2 °C. ¹H NMR (400 MHz,

CDCl₃) δ 9.14 (s, 1H), 8.14 – 8.00 (m, 3H), 7.06 – 6.93 (m, 4H), 6.76 – 6.61 (m, 3H), 5.72 (d, *J* = 11.2 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 163.2 (dd, *J* = 248.6, 12.9 Hz), 163.1, 145.8, 140.4 (t, *J* = 3.1 Hz), 139.4 (t, *J* = 9.5 Hz), 130.8, 130.0, 127.1, 118.1, 114.4, 110.3 (dd, *J* = 25.7, 6.9 Hz), 104.5 (t, *J* = 25.6 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ –109.7. IR (film, cm⁻¹):

3228, 3086, 2983, 2871, 2845, 1733, 1706, 1593, 1431, 1334, 1259, 1165, 1115, 1079, 980, 851, 830, 663, 553. HRMS (ESI): *m/z*: calcd for C₁₈H₁₄F₂NO₄S [*M*-*H*]: 378.06171, found: 378.06186.

Compound 21. Pale yellow solid (34.1 mg, 55%, 2Z/2E = 18/1). m.p. = 134.1-134.9 °C. ¹H NMR (400 MHz,

CDCl₃) δ 8.08 (ddd, *J* = 15.7, 11.5, 0.9 Hz, 1H), 7.88 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.62 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.31 – 7.23 (m, 3H), 7.06 (dd, *J* = 4.9, 3.9 Hz, 1H), 6.78 (d, *J* = 15.7 Hz, 1H), 6.70 (t, *J* = 11.5 Hz, 1H), 5.55 (dt, *J*

= 11.0, 0.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 147.8, 144.1, 139.3, 136.0, 135.2, 134.0, 129.7, 128.9, 128.0, 127.6, 124.8, 115.7. IR (film, cm⁻¹): 3245, 3098, 3026, 2873, 1685, 1612, 1585, 1433, 1340, 1178, 1123, 1090, 1019, 876, 809, 726, 591, 567. HRMS (ESI): m/z: calcd for C₁₅H₁₃NO₃S₂Na [$M+Na^+$]: 342.02291, found: 342.02329.

Compound 27. A solution of PhMgBr (3 \bowtie in Et₂O, 0.1 mL, 0.3 mmol) was slowly added to a rapidly stirred solution of 2-pyrone (19.2 mg, 0.2 mmol) and Fe(acac)₃ (3.5 mg, 0.01 mmol, 5 mol%) in Et₂O (2 mL) at -30 °C. After stirring for 20 min at this temperature, the

Ph O OH reaction was quenched with sat. aq. NH_4Cl and the pH of the aqueous layer adjusted to \approx 2-3 upon addition of HCl (1 M). The aqueous phase was extracted with EtOAc (5 x 20 mL), the

combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated. The residue was purified by flash chromatography (pentane/EtOAc = 10/1, 4/1, 2/1) to afford the title

compound as a pale yellow solid material (15.5 mg, 44%). m.p. = 130.2-130.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.20 (s, 1H), 8.11 (ddd, *J* = 15.3, 11.6, 1.1 Hz, 1H), 7.55 (dd, *J* = 8.2, 1.2 Hz, 2H), 7.42 – 7.29 (m, 3H), 6.93 – 6.82 (m, 2H), 5.77 (d, *J* = 11.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 147.2, 142.6, 136.3, 129.4, 128.9, 127.8, 125.0, 116.5. IR (film, cm⁻¹): 3033, 2953, 2922, 2825, 2745, 2565, 1685, 1608, 1585, 1434, 1246, 1227, 958, 821, 744, 698. HRMS (ESI): *m/z*: calcd for C₁₁H₉NO₂ [*M*-*H*]: 173.06081, found: 173.06071. Single crystals suitable for X-ray diffraction were grown by slow evaporation of a solution of this product in CH₂Cl₂/pentane.

Control Experiments

0

Compound 14. Triethylamine (0.6 mL, 4.3 mmol, 1.5 equiv), HOBt (0.43 g, 3.15 mmol) and EDC·HCI (0.83

g, 4.3 mmol) were added to a solution of benzylamine (0.34 mL, 3.15 mmol) and acid **13** (0.4 g, 2.9 mmol)³ in DMF (1.5 mL) and CH_2CI_2 (20 mL). The mixture was stirred for 4 h before the solvent was evaporated. The residue was suspended in water (30 mL) and extracted from the aqueous phase with EtOAc (3 x 20 mL). The

combined organic layers were washed with aq. citric acid solution (0.5 M), sat. aq. NaHCO₃ and brine, dried over MgSO₄, and evaporated. The residue was purified by flash chromatography (hexane/EtOAc = 6/1, 4/1, 2/1, 1/1) to give the title compound as a pale orange oil (0.61 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.29 – 7.24 (m, 3H), 6.27 (s, 1H), 5.96 (s, 1H), 5.73 (td, *J* = 1.4, 1.3 Hz, 1H), 4.45 (d, *J* = 5.5 Hz, 2H), 1.89 (dd, *J* = 1.4, 0.7 Hz, 3H), 1.68 (d, *J* = 1.4 Hz, 3H), 1.60 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 146.1, 138.7, 138.6, 128.8, 128.0, 127.6, 123.7, 122.3, 43.8, 26.0, 25.5, 19.7. IR (film, cm⁻¹): 3306, 3064, 3031, 2975, 2929, 2874, 1724, 1646, 1525, 1454, 1376, 1265, 1075, 1029, 733, 697. HRMS (EI): *m/z*: calcd for C₁₅H₁₉NO [*M*⁺]: 229.14611, found: 229.14612.

Compound 15. LiHMDS (40.7 mg, 0.24 mmol, 2.4 equiv) was added to a stirred solution of amide 14

(47.2 mg, 0.2 mmol, 1 equiv) in DMF (2 mL) and the resulting mixture was stirred at 100 °C for 3 h. After reaching ambient temperature, the reaction was quenched with sat. aq. NH_4CI and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over $MgSO_4$, filtered and concentrated, and

the residue was purified by flash chromatography (pentane/EtOAc, 5:1 to 1/1) to afford the title compound as a white solid material (31.8 mg, 67%). m.p. = 77.7-78.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.15 (m, 5H), 5.86 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 2.24 (t, *J* = 1.1 Hz, 2H), 1.89 (s, 3H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 148.4, 140.3, 128.4, 127.1, 126.6, 120.1, 56.6, 44.6, 44.1, 26.8, 23.0. IR (film, cm⁻¹): 3061, 3031, 2980, 2930, 1668, 1605, 1433, 1409, 1350, 1192, 1029, 885, 847, 718, 693. HRMS (ESI): *m/z*: calcd for C₁₅H₁₉NONa [*M*+*Na*⁺]: 252.13588, found: 252.13574.

Iron Complexes

Preparation of Adduct [22-(4,6-dimethyl-2H-pyran-2.one]. AgBF₄ (227 mg, 1.2 mmol) was added to a

solution of FeCl₂(THF)_{1.5} (143 mg, 0.61 mmol) in THF (3 mL), causing the formation of a white precipitate. The suspension was stirred for 2 h before the mixture was filtered through a pad of Celite under Ar, which was thoroughly washed with THF (8 mL). 4,6-Dimethyl-2-pyrone **12** (455 mg, 3.7 mmol) was added to the combined filtrates, resulting in the appearance of a yellow color. The mixture was stirred for 5 h before all volatile materials were evaporated. The remaining yellow solid was rinsed with

pentane and Et_2O and then dried in vacuo to give the title complex as a brown crystalline material (528 mg, 79%) which is an adduct of complex 22 with unbound 4,6-dimethyl-2*H*-pyran-2.one, see Figure S-7. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of this complex in CH_2Cl_2 .

(Tricarbonyl)Iron Pyrone Complex 23. A Schlenk flask was charged with Fe₂(CO)₉ (293 mg, 0.81 mmol)

and 2-pyrone **12** (200 mg, 1.61 mmol) under Ar. Degassed anhydrous *n*-Bu₂O/THF (v/v 5/1, 24 mL) was added and the solution was stirred at 65 °C for 0.5 h while argon was slowly bubbled through the mixture. Two further portions of Fe₂(CO)₉ (291 mg, 0.81 mmol each) were added at 0.5 h intervals. After stirring for another 2 h, the mixture

was allowed to reach ambient temperature before the solvent was evaporated. Purification of the residue by flash chromatography (hexane/EtOAc = 10/1 to 4/1) yielded the title compound as a yellow solid material (92.6 mg, 19%). m. p. (decomp.) = 100.4-101.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.43 (s, 1H), 2.99 (d, *J* = 1.6 Hz, 1H), 2.41 (s, 3H), 1.86 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 208.0, 170.7, 105.8, 100.9, 78.0, 53.1, 22.6, 20.4. IR (film, cm⁻¹): 3065, 2992, 2961, 2927, 2895, 2055, 1973, 1715, 1439, 1356, 1264, 1167, 1052, 1001, 860, 754, 606, 568. HRMS (ESI): *m/z*: calcd for C₁₀H₈FeO₅Na [*M*+*Na*⁺]: 286.96133, found: 286.96122. Single crystals suitable for X-ray diffraction were grown by slowly lowering the temperature of a saturated solution of this product in EtOAc/pentane from +20 °C to -30 °C.

(Tricarbonyl)iron Pyridone Complex 24. Prepared analogously as a yellow solid material (177 mg, 21%).

m. p. (decomp.) = 183.4-184.7 °C. ¹H NMR (400 MHz, CD_2Cl_2) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.20 – 6.10 (m, 1H), 5.76 – 5.68 (m, 1H), 5.22 (dt, *J* = 5.4, 2.6 Hz, 1H), 2.89 (dt, *J* = 6.9, 2.3 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CD_2Cl_2) δ 207.7, 170.3, 145.9, 135.5, 130.1, 128.6, 90.3, 77.1, 66.3, 53.8, 22.0. IR (film, cm⁻¹): 3079, 2922, 2064, 1992, 1698, 1594, 1347, 1158, 1084, 608, 546. HRMS (Exactive): m/z: calcd for C₁₅H₁₁FeNO₆SNa [$M+Na^+$]: 411.95487, found: 411.95461. Single crystals suitable for X-ray diffraction were grown by slowly lowering the temperature of a saturated solution of this product in EtOAc/pentane from 20 °C to -30 °C.

References

- (1) Falb, E.; Ulanenko, K.; Tor, A.; Gottesfeld, R.; Weitman, M.; Afri, M.; Gottlieb, H.; Hassner, A. *Green Chem.* **2017**, *19*, 5046.
- (2) Sugahara, M.; Ukita, T. *Chem. Pharm. Bull.* **1997**, *45*, 719.
- (3) Sun, C.-L.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 13071.

